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INTRODUCTION  

Mannitol is probably the most abundant naturally occurring polyol. It is produced by a wide 

range of living organisms, with the noticeable exception of the Archaea and the animal kingdom. It 

fulfils key physiological roles, including carbon storage and protection against environmental stress 

(Iwamoto & Shiraiwa, 2005; Patel & Williamson, 2016). Indeed, mannitol can act as organic 

osmolyte, compatible solute, anti-oxidant, or thermal protectant. Among Eukaryotes, plants rely on 

mannose-6-phosphate reductase for mannitol production from fructose-6-phosphate (F6P) (Stoop et 

al., 1996). Apicomplexa (Schmatz, 1989) and algae (Karsten et al., 1997) have evolved a different 

pathway where mannitol-1-phosphate dehydrogenase (M1PDH) reduces F6P into mannitol-1-

phosphate (M1P), which is then hydrolysed to mannitol by a mannitol-1-phosphatase (M1Pase) (Fig. 

1a). A similar pathway occurs in fungi (Solomon et al., 2007). In algae and Apicomplexa, both 

reactions are part of the mannitol cycle supporting production and recycling of this polyol. Genes 

and proteins for M1PDH have been characterized from fungi, but not for M1Pase. Conversely, both 

M1PDH and M1Pase genes and enzymes have been studied in the Apicomplexa Eimeria tenella 

(Schmatz, 1989; Liberator et al., 1998). In algae, mannitol occurs in several lineages (Supporting 

Information Table S1) and can represent up to 25 % of their dry matter (Reed et al., 1985). Both 

M1PDH and M1Pase activities have been determined in the red microalga Dixoniella grisea (Eggert 

et al., 2006), the macroalga Caloglossa leprieurii (Karsten et al., 1997), and endogenous enzymes 

purified from Caloglossa (Iwamoto et al., 2001 and 2003), but the encoding genes have not been 

identified yet. M1PDH activity has also been measured in the green alga Platymonas subcordiformis 

(Richter and Kirst, 1987). Mannitol metabolism has been well studied in brown algae, and 

recombinant Ectocarpus M1PDH and M1Pase both characterized (Rousvoal et al., 2011; Groisillier et 

al., 2014; Bonin et al., 2015). M1PDH phylogenetic analysis indicated that bacterial/fungal and 

apicomplexa/algal sequences formed two distinct groups among the polyol specific long chain 

dehydrogenase/reductase family (PSLDR) (Bonin et al., 2015). Moreover, Ectocarpus and Eimeria 

M1Pases belong to distinct families of phosphatases: the haloacid dehalogenases (HAD-M1Pase) for 

the former, and the histidine phosphatases (His-M1Pase) for the latter (Liberator et al., 1998; 

Groisillier et al., 2014).  

Algae represent a polyphyletic group with differing life styles (aquatic, terrestrial, 

extremophile, symbiotic), and their importance to aquatic ecosystems and global carbon balances 

makes them an important area of study (Field et al., 1998). Algae arose from a complex evolutionary 

history involving endosymbioses and lateral gene transfers (LTGs) that have shaped their metabolic 

networks (Falkowski et al., 2004). In this context, it was first suggested that brown algal M1PDH and 

M1Pase genes were acquired by LTG from actinobacteria (Michel et al., 2010). Subsequently, it was 
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proposed that these genes were transferred from bacteria to an ancestral Ochrophyta after the 

separation of diatoms (Dittami et al., 2011). To increase understanding of mannitol biosynthesis in 

algae, we had two objectives in this study: (i) to assess the occurrence of enzymes involved in 

mannitol biosynthesis across algal lineages, based on previously characterized algal and apicomplexa 

M1PDHs and M1Pases; (ii) to analyse the evolution of the mannitol biosynthetic pathway in these 

organisms. Mining of recently available transcriptomic and genomic resources revealed an 

unexpected diversity of M1PDHs and M1Pases, and we put forward hypotheses for their evolution 

among algae.  

 

 

Materials and Methods  

Algal M1PDH and M1Pases were identified using homology searches to the protein 

sequences of biochemically characterized M1PDH (ES0017G00030_Esil) and HAD-M1Pase 

(Es0100G00180_Esil) of the brown alga Ectocarpus (Groisillier et al., 2014; Bonin et al., 2015), and 

His-M1Pase (AF032462_Eten) of the apicomplexa Eimeria tenella (Liberator et al., 1998). These 

sequences were used to interrogate the Marine Microbial Eukaryote Transcriptome Sequencing 

Project (MMETSP, http://marinemicroeukaryotes.org/), the 1000 plants (OneKP; 

https://sites.google.com/a/ualberta.ca/onekp/) transcriptome project, the Eukaryotic Pathogen 

Database Resources (EuPathDB; http://eupathdb.org/eupathdb/), and proteomes translated from 

individual algal genomes (Supporting Information Table S2). Hit sequences with E-value ≤ 1E-05 were 

collected for further analysis (Supporting Information Notes S1, S2, S3, S4). The molecular 

evolutionary genetics analysis 6 (MEGA6; Tamura et al., 2013) software was used for multiple 

sequences alignments, performed with MUSCLE, and for phylogenetic analysis using bootstrapped 

Maximum Likelihood. Signal peptide and sub-cellular localization were predicted using PredAlgo 

(Tardif et al., 2012), ASAFind (Gruber et al., 2015), and PlasmoAP (Foth et al., 2003). An Expanded 

version of the Materials and Methods section is given in Supporting Information Methods S1. 

 

 

Results and discussion 

Distribution of mannitol biosynthetic genes in algae 

When analysing these results, it is important to consider that the abundance of particular 

transcripts in transcriptomes is influenced by culture conditions and life cycle stages, and that non-

occurrence in the transcriptome does not necessarily equate to non-occurrence in the genome of 
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the corresponding organism. Similarly, it is possible that absence of sequences in genomes may 

result from insufficient depth of sequencing and/or the absence of prediction for genes of interest. 

For algae resulting from primary endosymbiosis event (Fig. 1b), mannitol has been reported 

in some Chlorophyta, in a few species of Rhodophyta, but not in Charophyta and Glaucophyta. In 

accordance with these observations, our studies revealed no M1PDH or M1Pase genes in 

Charophyta or Glaucophyta species analysed. (Fig. 1b, Supporting Information Table S3). However, 

such genes are present in a small number of species of Chlorodendrophyceae, Mamiellophyceae, 

and Pyramimonadophyceae, and in one Rhodophyta species. Interestingly, the types of mannitol 

biosynthetic genes seen in these species are generally diverse and parallel pathways seem to exist in 

many of them. All Mamiellophyceae species contain a bi-functional M1PDH/HAD-M1Pase fusion 

protein alongside a standalone HAD-M1Pase (stHAD-M1Pase). Two distinct pathways appear to be 

available in species of Tetraselmis (Chlorodendrophyceae) and Pyramimonas 

(Pyramimonadophyceae) investigated, one based on standalone M1PDHs (stM1PDHs) and stHAD-

M1Pases, the other on bi-functional proteins. A similar pattern is apparent in the Rhodophyta 

Rhodella maculata. No genomic or transcriptomic resources were available to assess the occurrence 

of M1PDH and M1Pase in the only Floridophyceae known to produce mannitol, i.e. species of the 

genus Caloglossa (Karsten and West, 1993). Mannitol biosynthetic genes are also identified in algae 

resulting from green-algal secondary endosymbiosis (Fig. 1b). Euglenozoa, as in Mamiellophyceae, 

possess a stHAD-M1Pase and a bi-modular M1PDH/HAD-M1Pase, whilst Chlorarachniophyceae 

contain several copies of stM1PDH and stHAD-M1Pase genes. 

Among algae derived from red-algal secondary endosymbiosis (Fig. 1b), no genes of interest 

are observed in Cryptophyte species that were examined. In Haptophyceae, only some species of 

Prymnesiophyceae possess M1PDH and M1Pase genes, with two distinct profiles. While stHAD-

M1Pases and standalone His-M1Pases (stHis-M1Pases) co-occur in Isochrysidales, only stHis-

M1Pases have been identified in others, alongside at least one gene encoding a stM1PDH. In 

unicellular Ochrophyta, mannitol production has been reported in several classes, notably 

Bacillariophyceae (species Thalassiosira fluviatilis; Hellebust, 1965) and Chrysophyceae (species 

Ochromonas minima; Dittami et al., 2011). However, both species were not represented in datasets 

analysed. Meanwhile, genes of interest are absent in all Bacillariophyceae, Chrysophyceae and 

Bolidophyceae inspected, and are heterogeneously distributed in other classes. Only some 

Dictyochophyceae species possess a bi-functional M1PDH/HAD-M1Pase. Pelagophyceae and 

Pinguiophyceae contain stM1PDHs and stHis-M1Pases, while Eustigmatophyceae, Raphidophyceae, 

Phaeophyceae, and Xanthophyceae possess stM1PDHs and stHAD-M1Pases. Among Alveolates, 

mannitol has been reported in Amphidinium cartereae (Bidwell, 1957), but no mannitol biosynthetic 
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genes were identified in this species. However, the corresponding genes are found in Chromerida, 

Apicomplexa of the Eimeria genus, and a minority of Dinoflagellates species examined. In these 

latter, a patchy distribution of M1PDH and M1Pase genes is observed, with several combinations of 

enzymes, including the occurrence of bi-functional proteins. 

 

Phylogenetic analyses of algal M1PDHs and M1Pases  

A phylogenetic tree of M1PDH standalone proteins and modules was obtained after 

alignment of the sequences (Supporting Information Fig. S1 and Notes S5), and it features several 

well-supported groups (Supporting Information Fig. S2). One illustrates the monophyly of green algal 

standalone enzymes and modules sequences, except for the module identified in Pterosperma 

(Pyramimonadophyceae). Mamiellophyceae M1PDH modules form a sub-group distinct from the 

one containing Pyramimonas and Tetraselmis sequences. In Chlorarachniophyceae, all stM1PDHs are 

derived from a common ancestor. Conversely, at least two groups of standalone sequences are 

observed for some lineages resulting from red algal secondary endosymbiosis, i.e. Haptophyceae, 

Raphidophyceae, Pelagophyceae, Xanthophyceae, and Phaeophyceae. However, there is no strong 

bootstrap support at the deeper branches for these lineages. In Dictyochophyceae, standalone and 

module M1PDHs are contained in separated groups. No trend for predicted localization/signal 

peptide can be inferred for most of these lineages (Supporting Information Table S4 and Notes S5). 

However, 13 out of 20 of the brown algal group 1 sequences are predicted to be plastidial or to 

contain a signal peptide, while only three out of 16 for group 2 sequences show such signal 

sequences. A third type of M1PDH is observed in Ectocarpales, probably from duplication of a group 

1 sequence, and in Pelagophyceae. Alveolate M1PDHs form several distinct sub-groups. Two types of 

standalones are distinguished in Chromerida. The cluster of Alexandrium standalones is closely 

related to two Pinguiophyceae homologs. Standalones and modules from other Dinoflagellates are 

part of the same sub-group, closely related to Pelagophyceae and Haptophyceae group 1 

standalones. 

Analysis of HAD-M1Pases (Supporting Information Fig. S3-S4 and Notes S5) shows that 

modules and standalone proteins of Mamiellophyceae form two separate groups. Most 

Mamiellophyceae stHAD-M1Pases are predicted to be chloroplastic, in contrast to Tetraselmis and 

Pyramimonas sequences (Supporting Information Table S4 and Notes S5). Chlorarachniophyceae 

stHAD-M1Pases are comprised of two independent groups, and an additional small cluster probably 

corresponds to a specific duplication in Bigelowiella species. As for M1PDHs, no specific trend is 

found in the predicted subcellular localisation/presence of signal peptides in these M1Pases. 

Sequences from Eutreptiella and Rhodella form two distinct well-supported sub-groups, similar to 
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the M1PDH phylogeny. In brown algae, two distinctive groups of stHAD-M1Pases were identified. 

Seven of the 20 sequences of group 1 are predicted to be plastidial, while none of the 19 in group 2 

are. Raphidophyceae sequences occur in two sub-groups in which both Heterosigma akashiwo and 

Chattonella subsalsa are represented. Dinoflagellate standalones and modules are probably 

monophyletic because all are contained in one moderately supported group, closely related to the 

cluster formed by Prymnesiophyceae sequences. 

His-M1Pases were identified in all phyla derived from a red algal endosymbiont, i.e. 

Haptophyceae, Ochrophyta, Chromerida, Dinoflagellates, and Apicomplexa. Some sub-groups 

corresponding to these lineages are well supported (Supporting Information Fig. S5-S6 and Notes 

S5), such as Dictyochophyceae, Pelagophyceae and Alexandrium.  

The phylogenetic tree built for bifunctional M1PDH/M1Pases is robust, consisting of three 

main groups (Fig. 2; Supporting Information Fig. S7 and Notes S5). One supports the monophyly of 

the green algal sequences, except for Pterosperma. Moreover, Mamiellophyceae, Tetraselmis and 

Pyramimonas sequences belong to three distinct sub-groups, apart for the sequence 

0118958248_Pobo for which the location in the tree is uncertain. Most of these green algal 

sequences are predicted to be plastidial. A second cluster groups together Eutreptiella, red algal, and 

Dinoflagellates sequences. Finally, a third group contains the three Dictyochophyceae and the 

Pterosperma fusions.  

 

Conclusions and hypotheses for the evolution of M1PDHs and M1Pases in 

algae 

Previous assumptions on evolution of mannitol biosynthesis in algae (Michel et al., 2010; 

Dittami et al., 2011) were revisited by analysis of extended transcriptomic and genomic resources. 

M1PDH and M1Pases genes are identified in most of the phyla analysed (Fig. 3), with different 

combinations of standalone and fusion proteins, in good correlation with the occurrence of mannitol 

in algae. Algal mannitol biosynthesis was probably shaped by the occurrence of new substrate 

specificity within the PSLDR, HAD, and histidine phosphatase superfamilies of proteins. Since extant 

cyanobacteria are not able to produce mannitol, we suggest that standalone M1PDH and HAD-

M1Pase genes may have been present in the non-photosynthetic eukaryotic host cell involved in 

primary endosymbiosis. This is also probably the case for one or several of the eukaryotic hosts 

involved in secondary and/or possible subsequent endosymbioses (Burki et al., 2016). Little 

information is available about the metabolic repertoire of these heterotrophic hosts (Gould et al., 

2008) and their phylogenetic relationships remain unclear (Baurain et al., 2010). Mannitol 

biosynthetic genes were then lost in Glaucophyta, Charophyta, Rhodophyta, Cryptophyta, and 
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Bacillariophyceae, retained as standalone proteins, or fused to create bi-functional proteins. Several 

specific duplication events occurred later on in several lineages. This concerns for instance M1PDHs 

and HAD-M1Pases in Chlorarachniophyceae, Tetraselmis and Pyramimonas species, notably for the 

occurrence of fusion proteins in these green algae. We also suggest that His-M1Pase may have been 

present in ancestors of the CASH lineages (Cryptophyta, Alveolata, Stramenopiles and Haptophyta; 

Baurain et al., 2010), and then subsequently lost in some individual genus/species. Moreover, LTGs 

between eukaryotic algae may have also contributed to the uneven distribution of M1PDHs and 

M1Pases in these organisms. Bi-modular M1PDH/M1Pases appear independently in different 

lineages. Such proteins in the green alga Pterosperma and in the red microalga Rhodella maculata 

represent interesting cases. The former probably arose by fusion of M1PDH and His-M1Pase 

modules acquired possibly by LTG(s) from Pelagophycae and/or a Dictyochophyceae, both classes 

being closely phylogenetically related (Brown & Sorhannus, 2010). Mannitol production is limited to 

few Rhodophyta species, and identification of M1PDH and M1Pase in the macroalga Caloglossa 

should help to better understand evolution of this metabolic pathway in these organisms. 

Identification of mannitol biosynthetic genes shows that several pathways can co-exist in 

some algae, such as [stM1PDH+stHAD-M1Pase] and [stM1PDH+stHis-M1Pase], or [stM1PDH+stHAD-

M1Pase] and bi-functional M1PDH/HAD-M1Pase, or even all three in the Dictyochophyceae. 

Furthermore, some species contain several genes for the same enzymatic activity, sometimes with 

different predicted cellular localization. Such apparent functional redundancy may be of 

physiological importance, and suggests intriguing questions about evolution, subcellular localization, 

regulation, and ecological significance of algal mannitol synthesis pathways. This is particularly 

interesting in the era of “Oceans Systems Biology” (Karsenty, 2012) and the study of phytoplankton 

given their major contributions to carbon cycling at the planetary scale (Bork et al., 2015). 
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Figure legends 

Fig. 1. Mannitol biosynthetic pathway and its distribution in algae. (a) The two steps of mannitol 

production from frunctose-6-phosphate catalysed by a mannitol-1-phosphate dehydrogenase 

(M1PDH) and a mannitol-1-phosphatase (M1Pase). (b) Occurrence of M1PDHs and M1Pases in algae. 

The schematic representation of algal phylogeny uses the colour code considered in the tables. A 

green asterisk indicates the secondary endosymbiosis of a green alga, a red asterisk the secondary 

endosymbiosis of a red alga. In the tables, dark colours indicate the identification of genes of 

interest in the organisms analysed. The name of algal classes for which mannitol production has 

been observed (Supplementary Information Table S1) is underlined. # indicates that mannitol has 

been observed in only one species of Bacillariophyceae (Thalassiosira fluviatilis), one species of 

Chrysophyceae (Ochromonas minima), and one genus of Floridophyceae (Caloglossa) which were 

not represented in the datasets analysed. Each combination of genes observed for a class of algae is 

represented by a row (see Supplementary Information Table S3 for an expanded version of these 

tables). A few inconsistencies were observed when comparing algae showed to produce mannitol 

and distribution of M1PDHs and M1Pases, and are detailed in Supporting Information Note S5. 

 

Fig. 2. Molecular phylogenetic analysis by the maximum likelihood (ML) method of bi-functional 

M1PDH-M1Pases. Numbers indicate the bootstrap values in the ML analysis (100 replicates). Colour 

code is identical as in Fig. 1b. The origin of the sequences is indicated by a 4-5 letter abbreviation at 

the end of the name of the sequences, and abbreviations are defined in Supporting Information 

Table S3. 

 

Fig. 3. Evolution of M1PDHs and M1Pases in algae. Primary and secondary endosymbioses are 

represented as described previously (Keeling, 2013). Unusual cases, such as the M1PDH/His-M1Pase 

fusion in the green alga Pterosperma sp. and the occurrence of M1PDH and M1Pase genes in the red 

alga Rhodella maculata, are not indicated for the sake of clarity; for the same reason, no gene 

duplication events are included in the figure. The symbol  indicates the loss of mannitol 

biosynthetic genes. The prefix “St” was used for standalone proteins and “Fus” for bi-functional 

M1PDH/M1Pase fusions. 
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Table S2 List of transcriptomic and genomic resources considered for the analyses presented in this 

study 

Table S3 Distribution of mannitol synthesis genes in algae and some of their related protists 

Table S4 Prediction of signal peptide and of potential cellular localization 

Methods S1 Expanded description of the methods 



12 

 

Notes S1 List of M1PDH standalones and modules used for phylogenetic and peptide 

signal/subcellular localization prediction analysis 

Notes S2 List of HAD-M1Pase standalones and modules used for phylogenetic and peptide 

signal/subcellular localization prediction analysis 

Notes S3 List of His-M1Pases standalones and modules used for phylogenetic and peptide 

signal/subcellular localization prediction analysis 

Notes S4 List of fusion M1PDH/M1Pases used for phylogenetic and peptide signal/subcellular 

localization prediction analysis 

Notes S5 Expanded version of the Results and Discussion section 



Fructose-6-phosphate Mannitol-1-phosphate Mannitol
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