
This is a repository copy of Resource boxing: Converting realistic cloud task utilization
patterns for theoretical scheduling.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/113247/

Version: Accepted Version

Proceedings Paper:
Primas, B, Djemame, K orcid.org/0000-0001-5811-5263, Garraghan, P et al. (1 more
author) (2016) Resource boxing: Converting realistic cloud task utilization patterns for
theoretical scheduling. In: Proceedings - 9th IEEE/ACM International Conference on Utility
and Cloud Computing, UCC 2016. 9th IEEE/ACM International Conference on Utility and
Cloud Computing, UCC 2016, 06-09 Dec 2016, Shanghai, China. ACM , pp. 138-147.
ISBN 9781450346160

https://doi.org/10.1145/2996890.2996897

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Resource Boxing: Converting Realistic Cloud Task
Utilization Patterns for Theoretical Scheduling

Bernhard Primas, Peter Garraghan, Karim Djemame
School of Computing,
University of Leeds

{scbjp, p.m.garraghan, k.djemame} @leeds.ac.uk

Abstract—Scheduling is a core component within distributed
systems to determine optimal allocation of tasks within servers.
This is challenging within modern Cloud computing systems –
comprising millions of tasks executing in thousands of
heterogeneous servers. Theoretical scheduling is capable of
providing complete and sophisticated algorithms towards a
single objective function. However, Cloud computing systems
pursue multiple and oftentimes conflicting objectives towards
provisioning high levels of performance, availability, reliability
and energy-efficiency. As a result, theoretical scheduling for
Cloud computing is performed by simplifying assumptions for
applicability. This is especially true for task utilization patterns,
which fluctuate in practice yet are modelled as piecewise
constant in theoretical scheduling models. While there exists
work for modelling dynamic Cloud task patterns for evaluating
applied scheduling, such models are incompatible with the
inputs needed for theoretical scheduling – which require such
patterns to be represented as boxes. Presently there exist no
methods capable of accurately converting real task patterns
derived from empirical data into boxes. This results in a
significant gap towards theoreticians understanding and
proposing algorithms derived from realistic assumptions
towards enhanced Cloud scheduling. This work proposes
resource boxing – an approach for automated conversion of
realistic task patterns in Cloud computing directly into box
inputs for theoretical scheduling. We propose numerous
resource conversion algorithms capable of accurately
representing real task utilization patterns in the form of
scheduling boxes. Algorithms were evaluated using production
Cloud trace data, demonstrating a difference between real
utilization and scheduling boxes less than 5%. We also provide
an application for how resource boxing can be exploited to
directly translate research from the applied community into the
theoretical community.

Keywords— Scheduling, task patterns, resource conversion

I. INTRODUCTION

Cloud computing has increasingly become an important
component within Internet infrastructure, capable of
provisioning application service to millions of users globally.
These systems composed by hundreds and thousands of inter-
connected machines require highly effective scheduling
algorithms in order to satisfy Service Level Agreement (SLA)
imposed by users. Application scheduling is a critical
component in Cloud computing, reflected by a large body of
research proposing scheduling algorithms pursuing various
objective functions ranging from performance [1][2],
dependability [3][4][5], networking [6][7], and energy-
efficiency [8][9][10].

These algorithms are created and validated through formal
proof, simulation, and experimentation. More generally,
algorithms can be categorized as stemming from applied and
theoretical research communities. Applied algorithms are
based on heuristics, and is realized through a relatively simple
decision making (such as round-robin) evaluated through
simulation or experimentation.

Theoretical scheduling has intensely been studied by
mathematicians for decades [12][13], providing important
contributions to numerous fields such as manufacturing and
service [14][15]. Theoretical scheduling studies optimal
allocation of boxes (that are typically called jobs) to machines
in adherence to an objective function. In terms of computing,
boxes and machines are represented as tasks that execute
within machines. While it has been demonstrated that
important contributions have been made from theoretical
scheduling, there exist challenges of their direct dissemination
within Cloud computing systems. This is due to sacrificing
realistic assumptions of system operation for more complete,
yet simplistic models. An important strong assumption that
theoretical scheduling models typically impose is that task
resource demand can be represented by a piecewise constant
function (i.e. boxes) [16][17]. Importantly, boxes are unable
to capture the dynamicity of resource utilization patterns
inherit within Cloud computing [18]. Failure to capture this
behavior results in reduced applicability due to the disconnect
between evaluating theoretical scheduling derived from real
world operation in modern Cloud computing systems. Such a
challenge represents a significant gap between theoretical and
applied scheduling, that are driven by completeness and
heuristics, respectively.

As a result, there is a need to accurately map task
execution patterns from real Cloud computing systems into
the context of theoretical scheduling. In other words, there is
a requirement to find an accurate representation of execution
patterns that is composed by boxes. Such a technique would
therefore allow a direct application of theoretical scheduling
algorithms to real execution patterns. This is not currently
possible as algorithm inputs for theoretical scheduling are not
compatible with resource fluctuation intrinsic to task resource
utilization patterns. A significant challenge towards bridging
this gap are methods capable of automated conversion of
realistic system behavior that are directly understood and
applicable within a theoretical context. Such a method would
allow for (1) evaluation of sophisticated algorithms with a
strong mathematical basis driven by realistic Cloud operation,
(2) enable the broader theoretical scheduling community
direct access to understanding modern Cloud system

behavior. The process of converting task patterns into boxes
also poses a number of challenges, which in its current form
requires significant manual effort bespoke to a specific studied
system. Furthermore, which resource conversion method is
the most effective in terms of accurately characterizing task
execution with trade-offs of computation and data creation
remains unclear.

This paper proposes a method for converting realistic task
resource utilization patterns directly into boxes (termed
resource boxing) making them directly exploitable for
theoretical scheduling. The method is capable of automated
conversion irrespective of underlying system architecture,
resource type, and task dynamicity. Our contributions are
listed as follows:

Identification of the knowledge gap between theoretical
and applied scheduling in Cloud computing. This represents a
serious endeavor within an unexplored research area towards
introducing realistic assumptions from applied scheduling
into theory. We provide a number of advantages and
disadvantages in Cloud computing scheduling within each
respective area, and challenges in addressing this identified
gap.

Investigation and evaluation of numerous approaches for
resource boxing. We detail multiple algorithms for resource
boxing using event-based, periodic, and hybrid approaches.
We evaluate their respective accuracy and trade-offs from
resource boxing of a large-scale production Cloud datacenter.
We applied our proposed method within experiments to study
the relationship between resource utilization and power.

The paper is structured as follows: Section 2 introduces
the background; Section 3 discusses related work; Section 4
details approaches for resource boxing, Section 5 evaluates
the resource boxing algorithms; Section 6 details practical
application of algorithms; Section 7 provides conclusions and
future work.

II. BACKGROUND

Traditional theoretical scheduling focuses on assigning
limited resources to tasks with the goal of minimizing a single
objective function. In the context of theoretical scheduling,
resources are typically referred to as machines and tasks are
referred to as jobs. Within in this paper we use the term task
instead of job in order to avoid confusion with terminology
within applied scheduling.

A typical theoretical scheduling problem can be
formulated as follows, with [15] providing additional detail.
We are given 券 tasks 劇怠┸ ┼ ┸ 劇津 and 兼 machines 警怠┸ ┼ ┸ 警陳.
For every task 劇珍, for な 判 倹 判 券, there are a given number of
problem specific parameters. Typical examples for task
parameters include release time 堅珍 denoting the time at which 劇珍 becomes available, or processing 喧珍 denoting the time that 劇珍 needs to complete. The objective of a scheduler is then to
decide for each task

 (1) which machine the task should be assigned to, and

 (2) when the task should start on the selected machine

such that a number of problem specific constraints are
satisfied and that a given objective function is minimized.
Examples of constraints include that tasks which are assigned
to the same machine must not overlap (i.e. simultaneous
execution), and each task 劇珍 can only be started after its
release time 堅珍. A typical example for an objective is the
makespan 系�ax, which denotes the completion time of the
task that finishes last. As an example, we consider an
instance with five tasks and two machines, with input
parameters for the tasks are provided in Table 1.

Table 1. Input parameters for an instance with 5 tasks.

 参層 参匝 参惣 参想 参捜 司斬 0 1 0 3 5 喧斬 2 3 2 2 1

We consider the makespan as the objective function we
want to minimize. Figure 1 illustrates a Gantt chart of an
optimal solution for this problem (omitting a formal proof).
No tasks within the same machine overlap since no boxes
overlap. Furthermore, it is easily verifiable that each task starts
after its release time. This optimal solution consists of tasks 劇怠┸ 劇替 and 劇泰 assigned to machine 警怠 and tasks 劇態 and 劇戴
being assigned to machine 警態. Note that interval 岷ど┸な峅 is idle
within machine 警態 whereas interval 岷に┸ぬ峅 is idle on machine 警怠. The minimized value of the makespan is given by は.

Applying traditionally theoretical scheduling within the
context of Cloud computing systems is challenging for
numerous reasons. First, there is only very limited
information about the tasks available to the scheduler. For
example, the release time in not known in advance since tasks

Figure 2. Representation of a task execution patterns by a

series boxes.

Figure 1. Example Gantt chart of optimal schedule

are submitted to the system at random times. Moreover, it is
not always clear how long the task execution will require,
meaning that the processing time of a task can be unknown.
Furthermore, Cloud computing tasks require computational
resources such as CPU, memory or disk for execution. Since
the resource demand varies over time, it is challenging to
accurately represent this behavior using boxes as shown in
Figure 2. However, theoretical scheduling algorithm
typically require a detailed representation of tasks. This is
highlighted within [19] stating that a large body of Cloud task
assignment is based on “a detailed representation of tasks to
be executed, but a rather simplistic representation of the
hosts”, thus resulting in evaluation in simulation as opposed
to measurements from a real system. As a result, we believe
that there is an opportunity to convert Cloud workload
patterns into boxes and still capturing realistic system
behavior.

III. RELATED WORK

Due to the mostly unexplored nature of this research area,
there is limited efforts towards converting realistic
assumptions of Cloud computing into a purely theoretical
context. As a result, the body of work can be categorized
within the context of studying and modeling Cloud task
patterns, applied scheduling, and theoretical scheduling.

There exist numerous works that attempt to study task
patterns within Cloud computing that have been used in order
to enhance scheduling. Mishra, et al. [20] classifies task
execution qualitative boundaries for execution duration and
uses k-means clustering to construct task classes. Using trace
data from four Google compute cluster for 4 days. They
construct eight different classes of tasks, separated by their
respective duration and resource utilization.

Kuvulya et al. [21] present a statistical analysis of
MapReduce jobs from the M45 supercomputer cluster to
ascertain the statistical characteristics of resource utilization
and job patterns. They provide details pertaining to number of
tasks, completion rate, and average job distribution. They
model job completion rate using a Lognormal distribution,
and that 95% of jobs complete within under 20 minutes.

Solis Moreno, et al. [18] propose a method of analyzing
and modeling user and task patterns. Their approach was
applied a production Cloud datacenter of over 12,500 servers
and 29 days operation. They are able to categorize and capture
task resource utilization patterns through statistical analysis
and probabilistic distribution functions, demonstrating
numerous types of resource pattern usage in Cloud computing
validated within CloudSim.

The statistical properties of derived Cloud task patterns
have been directly used to construct assumptions and evaluate
applied scheduling algorithms [17][22][23]. While these
works can be leveraged by the research community to enhance
scheduling, derived task utilization patterns are predominately
based on coarse-grain statistics or probabilistic models that
produce dynamic resource utilization, and thus cannot be
readily translated into a box format as inputs for theoretical
scheduling.

From the theoretical point of view, there have been
numerous scheduling models proposed for distributed
systems. Rahman et al. [24] propose a scheduling model for
workflow applications. They represent the workflow
application as Directed Acyclic Graph (DAG) in which nodes
correspond to tasks and edges correspond to precedence
dependencies between the tasks. The goal is to minimize the
total estimated cost for running required services while
assuring that the application finishes prior to a given deadline.

Yin et al. [25] also considered the problem of assigning
application tasks to different processors such that the cost for
the system is minimized and constraints limiting resource
usage are satisfied. They added a penalty factor to the
objective function to avoid solutions with too many tardy
tasks. Due to the NP-completeness of the problem, a particle
swarm optimization algorithm is presented to find near
optimal solutions.

Jiang et al. [16] consider the problem of concurrent
workflow scheduling in high performance computing
resources (HPC clouds). They presented a scheduling method
that aims to minimize the total cost in terms of the
computation cost, the communication cost as well as the
earliest start time.

Li [9] studies the resource scheduling problem based on a
service level agreement (SLA) which is known to be NP-hard.
The SLA incorporates restrictions based on throughput,
latency and cost. Using stochastic integer programming
technique, an optimal solution is presented that satisfies all
SLA constraints and minimizes the total cost.

Numerous additional works for metaheuristic scheduling
techniques for Cloud computing also exist as surveyed in [17]
detailing metaheuristic scheduling models and algorithms for
Cloud computing studied from a theoretical point of view.
Numerous novel approaches are presented, however it is also
highlighted that both assumptions and objectives are often not
objectively clear in the context of Cloud computing, differing
between study.

IV. RESOURCE BOXING

A. System Model

The objective of our approach is to convert realistic task
resource utilization patterns in Cloud computing into boxes
that can be directly understood and integrated into theoretical
scheduling algorithms (defined as resource boxing). Figure 3
depicts a high level system model of this approach that
automates this entire process. The resource utilization patterns
of servers are transmitted to the resource boxing process and
consists of the following steps:

System characterizer: Raw trace data of server resource
utilization patterns are studied to distinguish unique task
execution patterns for each server within the Cloud computing
system. The system filters and extracts key parameters of
interest from the raw trace data in order to collect task ID, task
utilization and respective timestamp of occurrence. This
allows to massively reduce the computation and data size of
the file for resource boxing.

Resource convertor: The filtered data for task resource
patterns are then applied to an algorithm to conduct automated
resource boxing. It is possible to select the type of algorithm
for performing conversion, as well as configure its parameters
dependent on administrator requirements. The output of this
component is the equivalent resource utilization of the server
within a box format, stored within a database and visualized
for exploitation for analysis and exploitation.

It is currently unclear what is the optimal method for
resource boxing in terms of computation, number of updates,
and accuracy within the context of task patterns within Cloud
computing. Within the next section we propose various
conversion algorithms to perform resource boxing.

B. General Notation

Resource boxing is the transformation of complex and
dynamic utilization patterns of tasks into a series of boxes.
Within this work we focus on CPU utilization, however the
transformation is directly applicable other resources such as
memory, disk usage, and network.

We start by defining the notation that we use for the
remainder of this paper based on a task 劇賃 assigned to a
machine 警沈. The release time of 劇賃 is denoted by 堅賃 and
corresponds to the time at which 劇賃 is assigned to 警沈. Note
that this includes migration or rescheduling of 劇賃 to 警沈 due
to failures or eviction policies within the scheduler. Similarly,
the completion time is denoted by 系賃 and corresponds to the
last time at which 劇賃 runs on 警沈. This includes completion of
execution of 劇賃, migration of 劇賃 to other machines, as well as
task eviction or failure. The CPU utilization pattern of task 劇賃 is given by a time sequence 実賃 噺 岫建賃怠┸ 建賃態┸ ┼ ┸ 建賃津岻

and by a sequence of CPU utilizations 蔀賃 噺 岫憲賃怠┸ 憲賃態┸ ┼ ┸ 憲賃津岻.

Here 憲賃珍 represents the CPU utilization at time 建賃珍 for な 判 倹 判 券, where 券 is the number of measurements available.
Both sets 実賃 and 蔀賃 are part of the input within resource

boxing. Resource boxing selects a set of update points 湿賃
which is defined as
 湿賃 噺 岶喧賃沈】 喧賃沈 update poi�t┸ な 判 件 判 兼岼,

where an update point is the time the height of a box for
task 劇 may change, and 兼 denotes the number of update
points. Times 建賃怠 and 建賃津 are not considered as update points
for resource boxing. As an example, the update points in
Figure 2 are given by 湿 噺 岶に┸ね┸ぱ┸など岼.

Having introduced the notation, we explain how to
determine the box height at release time and at every update
point and how to select the set of update points 湿賃.

C. Box Height Determination

Consider a CPU utilization pattern with utilization sequence 蔀賃, time sequence 実賃 and a set of update points 湿賃. For an
update point 喧賃沈 we distinguish the following three cases:

1) Case 餐 噺 仕: The update points coincides with the
completion time of 劇賃 and therefore no further box is
created.

2) Case 層 隼 餐 隼 仕: The condition 件 伴 な implies that the
update point 喧賃沈 is not the release time 堅賃 噺 喧賃怠 of 劇賃.
Therefore, the update point 喧賃岫沈貸怠岻 exists and the time
interval
 範喧賃岫沈貸怠岻┸ 喧賃沈匪 噺 版建賃珍】喧賃岫沈貸怠岻 判 建賃珍 隼 喧賃沈繁

is non-empty. The height of the box in interval

 範喧賃沈 ┸ 喧賃岫沈袋怠岻飯 噺 版建賃珍】喧賃沈 判 建賃珍 隼 喧賃岫沈袋怠岻繁

is then calculated by the weighted average CPU
utilization over time interval 岷喧沈貸怠┸ 喧沈岻.

3) Case 餐 噺 層: The update point coincides with the release

time of 劇賃, thus taking the weighted average CPU
utilization over the previous time interval is not possible.
Instead, the height of the box for time interval 岷喧賃怠┸ 喧賃態峅
is chosen using an estimator. A simple choice for an
estimator is the CPU utilization 憲賃怠 at time 建賃怠 as
illustrated in Figure 2. It is also possible to use historical
data, prediction techniques, or a combination of both to
achieve a more accurate estimator as found in [18].
However, the choice of the estimator will not have a
significant impact on the overall accuracy since only the
first box is affected.

D. Conversion Algorithms

In this subsection we propose a number of algorithms each of
which uses different logic for selecting the set of update
points for a 劇賃 on machine 警沈. It is worth noting that each of
these approaches is capable of resource boxing multi-tenant
servers (i.e. multiple tasks executing simultaneously). We
consider four different resource conversion algorithms: time
zero, event-based, interval-based, and hybrid.

Figure 3. System model of resource boxing.

Time Zero: Resource boxing is performed at the very
beginning of task execution within the server and there are no
box updates performed. Therefore, the update set 湿賃 噺 湿賃待 is
empty: 湿賃待 噺 叶┻
As shown in Figure 4(a), the box height does not change
irrespective of task utilization. This approach would appear
to be effective in the event of very stable task patterns since
updating would result in minimal change

Event-based: Resource boxing is performed based on a
reactive approach to changes within the server environment.
In other words, update points are calculated when a task is
assigned or completed within the server as shown in Figure
4(b). Such an approach has been used for scheduling
decisions in [20] under the assumption that significant
alteration to utilization patterns occur due to event changes
within the server. In this context, an event is defined as the
timestamp when another task is assigned to, or completes
within 警沈. The update set 湿賃 噺 湿賃帳 consists of all time points
in (堅賃 ┸ 系賃) at which an event occurs. This can be represented
as
 湿賃帳 噺 岶建】堅賃 隼 建 隼 系賃┸ 建 is task arrival【departure 岼.

Note that this definition also implies 堅賃 ┸ 系賃 鞄 湿賃帳.

Interval-based: Updates are periodically performed at fixed
time intervals as shown in Figure 4(c). The interval is
determined by periodic updates at every 詣 time units where 詣
is a configurable input parameter determined by the system
administrator. This allows for more coarse-grain or fine-
grained formation dependent on parameter selection, and
resource boxing irrespective of the server status and number

of tasks. The update set 湿賃 噺 湿賃彫岫挑岻 is given by
 湿賃彫岫挑岻 噺 岶建】建 噺 堅賃 髪 欠詣┸ 欠 伴 ど┸ 建 隼 系賃岼.

Similar to above, this implies 堅賃 ┸ 系賃 鞄 湿賃彫岫挑岻.
Hybrid approach: It is possible to combine both event-
based and interval-based into a single algorithm. This allows
to capture sudden changes to the task composition within a
server whilst updating dynamic changes of long running tasks
during extended periods of no event occurrence. Similar to
interval-based, parameter 詣 is configurable. The hybrid

update set 湿賃張岫挑岻 is simply the union of the event-based and
interval-based update sets:
 湿賃張岫挑岻 噺 湿賃帳 姦 湿賃彫岫挑岻 .

V. ALGORITHM EVALUATION

A. Metrics to Measure Similiarity

In order to analyze the accuracy of proposed algorithms
for resource boxing, it is necessary to define a proper metric

that measures the similarity between Cloud resource patterns
and the resource boxing representation. As resource boxing
can be agnostically applied to various resource utilization
patterns, it is unlikely that there is a single metric that is
considered to be the overall optimal choice. For this reason,
we propose several metrics for algorithm evaluation.

Consider machine 警沈 over a time horizon 実 噺 岫建怠┸ 建態┸ ┼ ┸ 建津岻.

We consider the total resource utilization sequence 重 噺 岫戟怠┸ 戟態┸ ┼ ┸ 戟津岻,

where 戟珍 樺 重 is the total resource utilization of 警沈 at time 建珍.
In other words, 戟珍 is equal to the aggregated value of resource
usage of each task on 警沈at time 建珍. Similarly, we consider the
total box height sequence 酋 噺 岫稽怠┸ 稽態┸ ┼ ┸ 稽津岻,

where 稽珍 樺 酋 is the aggregated height of boxes at time 建珍.

(a)

(b)

(c)

Figure 4. Visual depiction of resource boxing algorithms
(a) Time zero, (b) event-based, (c) interval-based

Absolute Deviation: This metric calculates the error of
resource boxing at every time and weights it according to the
length of the subsequent interval: な建津 伐 建怠 布岫建珍袋怠 伐 建珍津貸怠

珍退怠 岻弁戟珍 伐 稽珍弁┻
Since there are 券 time points and only 券-1 intervals, this
metric does not take into account the value 戟津.

Relative Deviation: Similar to the absolute deviation, this
metric calculates the relative error at every time and weights
it accordingly:
 な建津 伐 建怠 布岫建珍袋怠 伐 建珍津貸怠

珍退怠 岻 弁戟珍 伐 稽珍弁戟珍 ┻

For the same reason as before, the value 戟津 is not considered.
Ratio of Averages: Let 重 be the average total resource
utilization and ler 酋 represent the average total box height
(both weighted accordingly). Then the ratio of averages is

defined by
酋 重 . This metric is useful to check whether resource

boxing is overestimating or underestimating the actual
resource pattern on average.

Ratio of Variances: Let Var岷重峅 and Var岷酋峅 be the variances
of the average total resource utilization and of the total box
heights. The ratio of Variances Var岷酋峅 Var岷重峅

is a metric that can be used to verify that the variance of the
box approach is close to the variance of the original data.

Ratio of Standard Deviations: The ratio of standard
deviations is defined by 謬撃欠堅岷酋峅 謬撃欠堅岷重峅 ┸

and is used to verify whether the standard deviation of the
box approach is close to the standard deviation of the original
data.

B. Resource Boxing Evaluation with Production Data

In this section we apply resource boxing to the second
version of Google Cloud tracelog [26][27] to analyze
algorithm accuracy. The Google Cloud tracelog contains
12,580 servers, over 25 million tasks and 930 users for 29
days full days of operation. This data contains information
about both CPU and memory utilization of tasks within
machines normalized between 0 to 1. Each record refers to an
average resource utilization value over a period of typically
five minutes.

In our analysis we have randomly selected 150 machines
of various architectures and execution from the data set and
automatically extracted the parameters task ID (comprising
JobId and taskindex), timestamp, CPU utilization and
machine ID from the task_resource_usage table over the
entire month. We have applied resource boxing to the CPU
utilization patterns of each machine. Conversion algorithms
time zero and event-based have been applied, as well the
interval-based and hybrid approaches using a range of
periodic update parameter {5, 10, 15, 25, 30} values for 詣.

Figure 6 and Figure 7 shows a graphical comparison
between real machine CPU utilization over three days
compared to resource boxing algorithms, with each color
represented a unique task. It is observable that visually these
patterns are similar – capable of capturing the fluctuation of
resource usage and scheduling/completion of tasks. Clearly,
the plots visually demonstrate that the event-based approach
is more accurate than the time zero algorithm.

Figure 5 provides details of the absolute deviation of
resource boxing and empirical data from all 150 machines,
respectively. It is observable that with the exception of time
zero, all resource conversion results in an error rate less than
8% and a mean of 3%. The reason for the large deviation for

Figure 5. Absolute error deviation for all resource converson algorithms.

time zero is due to the fact that the height of each box remains
constant and cannot capture fluctuating resource patterns.
The hybrid approach results in the lowest error rate less than
4% and a mean of approximately 2.5%. However, as
illustrated in Figure 8 and Figure 9, this also introduces the
largest number of update points. This is an important
consideration within the context of large-scale Cloud
computing systems – heavy network use to transmit data and
computation of resource boxing can potentially have a
detrimental effect on the network performance of the system.

We demonstrated for interval-based resource boxing that
it is possible to control the number of updates created by the
algorithm as shown in Figure 9. We observe that there exists

a negative correlation between the number of updates and the
error rate for resource boxing accuracy. This allows for
system administrators to select an appropriate periodic
interval dependent on accuracy required, or even current
utilization of the system (i.e. low level of cluster usage can
allow for more fine grained data collection). Furthermore,
this is an important consideration for online scheduling,
requiring rapid decision making for effective task allocation.
On the other hand, time zero algorithm only requires a single
update to calculate the box, and resulting in an error rate up
to 10-15%. This is important in order to capture and mitigate
extreme or abnormal task behavior that may arise in Cloud
computing systems (e.g. correlated failures).

(a) (b)

Figure 6. Day 3-6 utilization patterns of machineID 257408789 (a) real CPU utilization, (b) Time-zero

(a) (b)

Figure 7. Day 3-6 utilization patterns of machineID 32915063 (a) real CPU utilization, (b) Event-based

Figure 9. Parameter L sensitivity Figure 8. Resource boxing update per algorithm

0

2000

4000

6000

8000

10000

12000

14000

16000

T
im

e
 Z

e
ro

E
v

e
n

t

In
t.

 (
L=

3
0

)

In
t.

 (
L=

2
5

)

In
t.

 (
L=

2
0

)

In
t.

 (
L=

1
5

)

In
t.

 (
L=

1
0

)

In
t.

 (
L=

5
)

H
y

b
r.

(L
=

3
0

)

H
y

b
r.

(L
=

2
5

)

H
y

b
.(

L=
2

0
)

H
y

b
r.

(L
=

1
5

)

H
y

b
r.

(L
=

1
0

)

H
y

b
r.

(L
=

5
)

N
u

m
b

e
r

o
f

u
p

d
a

te
s

While the hybrid algorithm achieves the highest accuracy,
from the analysis it is observable that interval-based resource
boxing is capable of achieving high levels of accuracy whilst
minimizing the number of updates – with the advantage of
the latter being controllable due to parameter configuration.
The analysis of a production Cloud computing system
demonstrates that it is possible to convert real task patterns
into boxes applicable for theoretical scheduling. Specifically,
we are capable of capturing deviation in task execution within
multi-tenant environments and introduction of new tasks
automatically. However, it is worth highlighting that
although there exists dynamic change in resource utilization
patterns over the month period, task patterns are observed to
be relatively stable per individual task as analyzed in [1], and
that the CPU utilization is a five minute aggregate, resulting
in increased algorithm accuracy. As a result, it is necessary to
study resource boxing at much higher fidelity of resource
utilization patterns.

VI. VALIDATION & APPLICATION

Within this section we detail a scenario to which resource
boxing can be used to study and improve scheduling within
Cloud computing from a theoretical context.

We used our method for resource boxing to investigate
whether it is possible to translate empirical energy profiles
into theoretical scheduling inputs. We conducted an
experiment to collect the power profiles of a DELL D3400,
Intel Core 2 Quad CPU @2.83GHz running Debian Ubuntu
over a period of 450 seconds. We developed a program
written in C++ to emulate multiple tasks simultaneously
executing with their task patterns changing over time.
Each task was generated such that it performs the following
life cycle:

1. The task is generated at time 建 噺 ど. The total life time 失 of the task is chosen randomly from interval
[150,450]. Go to step 2.

2. There is a 30% probability that the task is put into sleep
mode for 嫌 seconds, where 嫌 is stochastically selected
from 岷ど┸にのど峅. If the task was put to sleep, set 建 噺 嫌. If
not, set 建 噺 ど. Go to step 3.

3. If 建 半 失, go to step 4. Otherwise, select a number ゾ
randomly from 岷なの┸にの峅. The CPU utilization of the task
in interval 岷建┸ 建 髪 ゾ峅 is then artificially forced to a
constant, yet randomly chosen, level. Set 建 噺 建 髪 ゾ and
go to step 3.

4. The task is killed and ceases execution.

By using a Bash-script we have recorded and extracted
the CPU utilization of every task using the top command and
its respective timestamp. It is possible for the task process to
be recorded as 0 due to low scheduling priority (observable
within production systems)[19]. Therefore, we collect the
average record for each second and task which provides a
more realistic CPU utilization.

We collected the server power consumption using
Voltech PM1000+ power meter that automatically measures

and extracts the actual power consumption of the server
throughout the experiment. We obtained exactly one record
per second for the power consumption (measured in Watts).

We apply resource boxing algorithms to the CPU
utilization pattern of tasks and analyzed the accuracy of our
approach. Figure 10 gives graphical comparison for the
event-based algorithm to the recorded CPU utilization (top).
The task behavior can be accurately represented every second
with an error rate of 1.08%.

We exploit the produced resource boxing approximation
to calculate server energy consumption and measure its

(a)

(b)

(c)

Figure 10. Server resource patterns for
(a) real CPU, (b) event-based CPU, (c) power consumption.

100

105

110

115

120

125

130

135

140

145

0 100 200 300 400

P
o

w
e

r
(W

)

Time (s)

similarity compared to actual energy recorded. Modelling the
power as a linear function of the CPU utilization is widely
recognized within the literature [29][30]. From data produced
within the experiment we construct a linear function 鶏岫戟岻 with parameters 欠 and 決 as follows: 鶏岫戟岻 噺 欠 髪 決戟.

In order to determine suitable values for 欠 and 決 we have
conducted a linear regression analysis based on the data we
recorded previously with the Voltech PM1000+ power meter.
This analysis yielded 欠 噺 はね┻な and 決 噺 などの┻ば , therefore the
power function reads now as follows: 鶏岫戟岻 噺 はね┻な戟 髪 などの┻ば.

This formula was applied to calculate the energy
consumption based on both the recorded CPU utilization
levels and the resource boxing approximation. The energy
consumption is calculated by integrating power over time
which translates to taking the weighted average mean of the
recorded power consumption records in our discrete context.
Our analysis findings show that the total energy consumed by
the server is 57 kWs per experiment execution with less than
a 1% error rate when applied to resource boxing. This shows
the predicted energy comes very close to the actual consumed
energy, indicating that using resource boxing can
successfully capture realistic server power usage which can
be exploited for evaluating theoretical power-aware
scheduling models.

VII. CONCLUSION

In this paper we have presented resource boxing - an
approach for translating realistic resource utilization patterns
of Cloud computing tasks into inputs that are useable by
theoretical scheduling algorithms. We have identified a
knowledge gap which exists between theoretical and applied
scheduling, and have an automated technique for schedule
box creation derived from real Cloud utilization in order for
these closer collaboration between these communities. Our
conclusions are summarized as follows:

Real task patterns can be directly converted for
theoretical scheduling inputs. We demonstrate from analysis
of production trace data and experiments that it is possible to
create box equivalent of diverse task execution within multi-
tenant Cloud servers with less than 3% error rate in absolute
deviation.

Interval-based resource boxing is highly effective. In
terms of accuracy, number of updates, and computation time,
it appears that interval-based resource conversion is the most
effective within our case studies. However, this particular
algorithm requires a system administrator to manually
specify the time period between updates which may not be
always possible or desired. For such cases we recommend
using event-based resource boxing since we demonstrated it
to have an acceptable accuracy and since it requires no input
parameters.

Future work includes introducing even more extreme
workflow patterns to evaluate its accuracy, as well as
evaluate numerous theoretical algorithms by using the
derived boxes from this analysis. We plan to directly apply
this approach in order to perform online decision making
using theoretical scheduling algorithms within real systems.
Finally, we intend to generate a workload generator that
creates boxes that can provide theoretical inputs for
evaluating based on realistic task behavior.

ACKNOWLEDGMENT

This work is partly supported by the European Commission
under H2020-ICT-20152 contract 687584 - Transparent
heterogeneous hardware Architecture deployment for eNergy
Gain in Operation (TANGO) project.

REFERENCES
[1] H. N. Van, F. D. Tran, J.M Menaud, SLA-aware Virtual Resource

Management for Cloud Infrastrtuctures, IEEE International
Conference on Computer and Inforamtion Technology, 2009, vol. 1,
pp. 357-362.

[2] K. Tsakalozos, M. Roussopoulos, A. Delis, VM placement in non-
homogeneous IaaS-Clouds. In International Conference on Service-
Oriented Computing, 2011, pp. 172-187.

[3] F. Machida, M. Kawato, Y. Maeno, Redundant virtual machine
placement for fault-tolerant consolidated server clusters. IEEE
Network Operations and Management Symposium-NOMS, 2010, pp.
32-39.

[4] Y. Zhang, Z. Zheng, Z., M.R. Lyu, BFTCloud: A byzantine fault
tolerance framework for voluntary-resource cloud computing, IEEE
International Conference on Cloud Computing (CLOUD), 2011, pp.
444-451.

[5] B. Javadi, J. Abawajy, R. Buyya, Failure-aware resource provisioning
for hybrid Cloud infrastructure, Journal of parallel and distributed
computing, 2012, 72(10), pp. 1318-1331.

[6] X. Meng, V. Pappas, L. Zhang, Improving the scalability of data center
networks with traffic-aware virtual machine placement. IEEE
INFOCOM, 2010, pp. 1-9.

[7] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, E.
Silvera, A stable network-aware vm placement for cloud systems.
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (ccgrid), 2012, pp. 498-506.

[8] A.M. Sampaio, J.G. Barbosa, R. Prodan, PIASA: a Power and
Interference Aware Resource Management Strategy for Heterogeneous
Workloads in Cloud Data Centers, Simulation Modelling and Practise
Theory, 2015.

[9] Q. Li, An optimal algorithm for resource scheduling in cloud
computing. In Advances in Multimedia, Software Engineering and
Computing, 2011, Vol. 2, pp. 293-299.

[10] P. Graubner, M. Schmidt, B. Freisleben, Energy-efficient management
of virtual machines in eucalyptus, IEEE International Conference on
Cloud Computing (CLOUD), 2011, pp. 243-250.

[11] S. Srikantaiah, A. Kansal, A., F. Zhao, Energy aware consolidation for
cloud computing. In Proceedings of the 2008 conference on Power
aware computing and systems, 2008, Vol. 10, pp. 1-5.

[12] S.M. Johnson, Optimal two┽and three┽stage production schedules with
setup times included, Naval research logistics quarterly, 1954, 1(1), pp.
61-68.

[13] R. Bellman, Mathematical aspects of scheduling theory, Journal of the
Society for Industrial and Applied Mathematics, 1956, 4(3), pp. 168-
205.

[14] J.W. Herrmann, Operations Scheduling with Applications in
Manufacturing and Services, Journal of Scheduling, 5(1), 2002, 95-96.

[15] P. Brucker, Scheduling Algorithms. Springer 1998.

[16] H.J. Jiang, K.C. Huang, H.Y. Chang, D.S. Gu, J.P. Shih, Scheduling
concurrent workflows in HPC cloud through exploiting schedule gaps.
In International Conference on Algorithms and Architectures for
Parallel Processing, 2011, pp. 282-293.

[17] C.W. Tsai, J.J. Rodrigues, Metaheuristic scheduling for cloud: A
survey. IEEE Systems Journal, 2014, 8(1), 279-291.

[18] I.S. Moreno, P. Garraghan, P. Townend, J. Xu, Analysis, modeling and
simulation of workload patterns in a large-scale utility cloud. IEEE
Transactions on Cloud Computing, 2014, 2(2), 208-221.

[19] L. Wang, E. Gelenbe, Adaptive dispatching of tasks in the cloud, IEEE
Transactions on Cloud Computing 2015.

[20] A. K. Mishra, J.L. Hellerstein, W. Cirne, C.R. Das, Towards
Characterizating Cloud Backend Workloads: Insights from Google
Computer Clusters, SIMETRICS Performance Evaluation Review,
2010, vol. 37, pp. 34-41.

[21] S. Kavulya, J. Tan, R. Gandhi, P. Narasimhan, An Analysis of Traces
from a Production MapReduce Cluster, IEEE/ACM International
Conference on Cluster, Cloud, and Grid Computing, 2010, pp. 94-103.

[22] I. S. Moreno, R. Yang, J. Xu, T. Wo, Improved energy-efficiency in
cloud datacenters with interference-aware virtual machine placement,
IEEE International Symposium on Autonomous Decentralized
Systems (ISADS), 2013, pp. 1-8.

[23] S. F. Piraghaj, et al. “Virtual Machine Customization and Task
Mapping Architecture for Efficient Allocation of Cloud Data Center
Resources”, The Computer Journal,, vol. 59, no.2, 2016, pp. 208 – 224.

[24] M. Rahman, X. Li, H. Palit, Hybrid heuristic for scheduling data
analytics workflow applications in hybrid cloud environment. IEEE

International Symposium on Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW), 2011, pp. 966-974.

[25] P.Y. Yin, S.S. Yu, P.P. Wang, Y.T. Wang, A hybrid particle swarm
optimization algorithm for optimal task assignment in distributed
systems. Computer Standards & Interfaces, 2006, 28(4), pp. 441-450.

[26] C. Reiss, J. Wilkes, and J. Hellerstein, “Google Cluster-Usage Traces:
Format + Schema,” Google Inc.
[https://drive.google.com/file/d/0B5g07T_gRDg9Z0lsSTEtTWtpOW
8/view]

[27] ClusterData2011_2 traces. [Online] Available:
https://github.com/google/cluster-
data/blob/master/ClusterData2011_2.md

[28] C. Wilke, S. Götz, S. Richly, JouleUnit: a generic framework for
software energy profiling and testing, ACM workshop on Green in/by
software engineering, 2013, pp. 9-14 ACM.

[29] A. Beloglazov, R. Buyya, "Energy Efficient Resource Management in
Virtualized Cloud Data Centers," IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing, 2010, pp. 826-831.

[30] H. Qiang, et al., "Power Consumption of Virtual Machine Live
Migration in Clouds," International Conference on Communications
and Mobile Computing (CMC), 2011, pp. 122-125.

