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Abstract—Scheduling is a core component within distributed 
systems to determine optimal allocation of tasks within servers. 
This is challenging within modern Cloud computing systems – 
comprising millions of tasks executing in thousands of 
heterogeneous servers. Theoretical scheduling is capable of 
providing complete and sophisticated algorithms towards a 
single objective function. However, Cloud computing systems 
pursue multiple and oftentimes conflicting objectives towards 
provisioning high levels of performance, availability, reliability 
and energy-efficiency. As a result, theoretical scheduling for 
Cloud computing is performed by simplifying assumptions for 
applicability. This is especially true for task utilization patterns, 
which fluctuate in practice yet are modelled as piecewise 
constant in theoretical scheduling models. While there exists 
work for modelling dynamic Cloud task patterns for evaluating 
applied scheduling, such models are incompatible with the 
inputs needed for theoretical scheduling – which require such 
patterns to be represented as boxes. Presently there exist no 
methods capable of accurately converting real task patterns 
derived from empirical data into boxes. This results in a 
significant gap towards theoreticians understanding and 
proposing algorithms derived from realistic assumptions 
towards enhanced Cloud scheduling. This work proposes 
resource boxing – an approach for automated conversion of 
realistic task patterns in Cloud computing directly into box 
inputs for theoretical scheduling. We propose numerous 
resource conversion algorithms capable of accurately 
representing real task utilization patterns in the form of 
scheduling boxes. Algorithms were evaluated using production 
Cloud trace data, demonstrating a difference between real 
utilization and scheduling boxes less than 5%. We also provide 
an application for how resource boxing can be exploited to 
directly translate research from the applied community into the 
theoretical community.    

Keywords— Scheduling, task patterns, resource conversion 

I.  INTRODUCTION 

Cloud computing has increasingly become an important 
component within Internet infrastructure, capable of 
provisioning application service to millions of users globally. 
These systems composed by hundreds and thousands of inter-
connected machines require highly effective scheduling 
algorithms in order to satisfy Service Level Agreement (SLA) 
imposed by users. Application scheduling is a critical 
component in Cloud computing, reflected by a large body of 
research proposing scheduling algorithms pursuing various 
objective functions ranging from performance [1][2], 
dependability [3][4][5], networking [6][7], and energy-
efficiency [8][9][10]. 

These algorithms are created and validated through formal 
proof, simulation, and experimentation. More generally, 
algorithms can be categorized as stemming from applied and 
theoretical research communities. Applied algorithms are 
based on heuristics, and is realized through a relatively simple 
decision making (such as round-robin) evaluated through 
simulation or experimentation. 

Theoretical scheduling has intensely been studied by 
mathematicians for decades [12][13], providing important 
contributions to numerous fields such as manufacturing and 
service [14][15]. Theoretical scheduling studies optimal 
allocation of boxes (that are typically called jobs) to machines 
in adherence to an objective function. In terms of computing, 
boxes and machines are represented as tasks that execute 
within machines. While it has been demonstrated that 
important contributions have been made from theoretical 
scheduling, there exist challenges of their direct dissemination 
within Cloud computing systems. This is due to sacrificing 
realistic assumptions of system operation for more complete, 
yet simplistic models. An important strong assumption that 
theoretical scheduling models typically impose is that task 
resource demand can be represented by a piecewise constant 
function (i.e. boxes) [16][17]. Importantly, boxes are unable 
to capture the dynamicity of resource utilization patterns 
inherit within Cloud computing [18]. Failure to capture this 
behavior results in reduced applicability due to the disconnect 
between evaluating theoretical scheduling derived from real 
world operation in modern Cloud computing systems. Such a 
challenge represents a significant gap between theoretical and 
applied scheduling, that are driven by completeness and 
heuristics, respectively. 

As a result, there is a need to accurately map task 
execution patterns from real Cloud computing systems into 
the context of theoretical scheduling. In other words, there is 
a requirement to find an accurate representation of execution 
patterns that is composed by boxes. Such a technique would 
therefore allow a direct application of theoretical scheduling 
algorithms to real execution patterns. This is not currently 
possible as algorithm inputs for theoretical scheduling are not 
compatible with resource fluctuation intrinsic to task resource 
utilization patterns. A significant challenge towards bridging 
this gap are methods capable of automated conversion of 
realistic system behavior that are directly understood and 
applicable within a theoretical context. Such a method would 
allow for (1) evaluation of sophisticated algorithms with a 
strong mathematical basis driven by realistic Cloud operation, 
(2) enable the broader theoretical scheduling community 
direct access to understanding modern Cloud system 



behavior. The process of converting task patterns into boxes 
also poses a number of challenges, which in its current form 
requires significant manual effort bespoke to a specific studied 
system. Furthermore, which resource conversion method is 
the most effective in terms of accurately characterizing task 
execution with trade-offs of computation and data creation 
remains unclear. 

This paper proposes a method for converting realistic task 
resource utilization patterns directly into boxes (termed 
resource boxing) making them directly exploitable for 
theoretical scheduling. The method is capable of automated 
conversion irrespective of underlying system architecture, 
resource type, and task dynamicity. Our contributions are 
listed as follows: 

Identification of the knowledge gap between theoretical 
and applied scheduling in Cloud computing. This represents a 
serious endeavor within an unexplored research area towards 
introducing realistic assumptions from applied scheduling 
into theory. We provide a number of advantages and 
disadvantages in Cloud computing scheduling within each 
respective area, and challenges in addressing this identified 
gap. 

Investigation and evaluation of numerous approaches for 
resource boxing. We detail multiple algorithms for resource 
boxing using event-based, periodic, and hybrid approaches. 
We evaluate their respective accuracy and trade-offs from 
resource boxing of a large-scale production Cloud datacenter. 
We applied our proposed method within experiments to study 
the relationship between resource utilization and power. 

The paper is structured as follows: Section 2 introduces 
the background; Section 3 discusses related work; Section 4 
details approaches for resource boxing, Section 5 evaluates 
the resource boxing algorithms; Section 6 details practical 
application of algorithms; Section 7 provides conclusions and 
future work. 

II. BACKGROUND  

Traditional theoretical scheduling focuses on assigning 
limited resources to tasks with the goal of minimizing a single 
objective function. In the context of theoretical scheduling, 
resources are typically referred to as machines and tasks are 
referred to as jobs. Within in this paper we use the term task 
instead of job in order to avoid confusion with terminology 
within applied scheduling. 

A typical theoretical scheduling problem can be 
formulated as follows, with [15] providing additional detail. 
We are given 券 tasks 劇怠┸ ┼ ┸ 劇津 and 兼 machines 警怠┸ ┼ ┸ 警陳. 
For every task 劇珍, for な 判 倹 判 券, there are a given number of 
problem specific parameters. Typical examples for task 
parameters include release time 堅珍 denoting the time at which 劇珍 becomes available, or processing 喧珍 denoting the time that 劇珍 needs to complete. The objective of a scheduler is then to 
decide for each task 

 (1) which machine the task should be assigned to, and 

 (2) when the task should start on the selected machine 

such that a number of problem specific constraints are 
satisfied and that a given objective function is minimized. 
Examples of constraints include that tasks which are assigned 
to the same machine must not overlap (i.e. simultaneous 
execution), and each task 劇珍 can only be started after its 
release time 堅珍. A typical example for an objective is the 
makespan 系�ax, which denotes the completion time of the 
task that finishes last.  As an example, we consider an 
instance with five tasks and two machines, with input 
parameters for the tasks are provided in Table 1.  
 
Table 1. Input parameters for an instance with 5 tasks. 

 参層 参匝 参惣 参想 参捜 司斬 0 1 0 3 5 喧斬 2 3 2 2 1 
 

We consider the makespan as the objective function we 
want to minimize. Figure 1 illustrates a Gantt chart of an 
optimal solution for this problem (omitting a formal proof). 
No tasks within the same machine overlap since no boxes 
overlap. Furthermore, it is easily verifiable that each task starts 
after its release time. This optimal solution consists of tasks 劇怠┸ 劇替 and 劇泰 assigned to machine 警怠 and tasks 劇態 and 劇戴 
being assigned to machine 警態. Note that interval 岷ど┸な峅 is idle 
within machine 警態 whereas interval 岷に┸ぬ峅 is idle on machine 警怠. The minimized value of the makespan is given by は. 

Applying traditionally theoretical scheduling within the 
context of Cloud computing systems is challenging for 
numerous reasons. First, there is only very limited 
information about the tasks available to the scheduler. For 
example, the release time in not known in advance since tasks 

 
Figure 2. Representation of a task execution patterns by a 

series boxes. 

 
Figure 1. Example Gantt chart of optimal schedule 



are submitted to the system at random times. Moreover, it is 
not always clear how long the task execution will require, 
meaning that the processing time of a task can be unknown. 
Furthermore, Cloud computing tasks require computational 
resources such as CPU, memory or disk for execution. Since 
the resource demand varies over time, it is challenging to 
accurately represent this behavior using boxes as shown in 
Figure 2. However, theoretical scheduling algorithm 
typically require a detailed representation of tasks. This is 
highlighted within [19] stating that a large body of Cloud task 
assignment is based on “a detailed representation of tasks to 
be executed, but a rather simplistic representation of the 
hosts”, thus resulting in evaluation in simulation as opposed 
to measurements from a real system. As a result, we believe 
that there is an opportunity to convert Cloud workload 
patterns into boxes and still capturing realistic system 
behavior.  

III.   RELATED WORK 

Due to the mostly unexplored nature of this research area, 
there is limited efforts towards converting realistic 
assumptions of Cloud computing into a purely theoretical 
context. As a result, the body of work can be categorized 
within the context of studying and modeling Cloud task 
patterns, applied scheduling, and theoretical scheduling. 

There exist numerous works that attempt to study task 
patterns within Cloud computing that have been used in order 
to enhance scheduling. Mishra, et al. [20] classifies task 
execution qualitative boundaries for execution duration and 
uses k-means clustering to construct task classes. Using trace 
data from four Google compute cluster for 4 days. They 
construct eight different classes of tasks, separated by their 
respective duration and resource utilization.  

Kuvulya et al. [21] present a statistical analysis of 
MapReduce jobs from the M45 supercomputer cluster to 
ascertain the statistical characteristics of resource utilization 
and job patterns. They provide details pertaining to number of 
tasks, completion rate, and average job distribution. They 
model job completion rate using a Lognormal distribution, 
and that 95% of jobs complete within under 20 minutes. 

Solis Moreno, et al. [18] propose a method of analyzing 
and modeling user and task patterns. Their approach was 
applied a production Cloud datacenter of over 12,500 servers 
and 29 days operation. They are able to categorize and capture 
task resource utilization patterns through statistical analysis 
and probabilistic distribution functions, demonstrating 
numerous types of resource pattern usage in Cloud computing 
validated within CloudSim. 

The statistical properties of derived Cloud task patterns 
have been directly used to construct assumptions and evaluate  
applied scheduling algorithms [17][22][23]. While these 
works can be leveraged by the research community to enhance 
scheduling, derived task utilization patterns are predominately 
based on coarse-grain statistics or probabilistic models that 
produce dynamic resource utilization, and thus cannot be 
readily translated into a box format as inputs for theoretical 
scheduling. 

From the theoretical point of view, there have been 
numerous scheduling models proposed for distributed 
systems. Rahman et al. [24] propose a scheduling model for 
workflow applications. They represent the workflow 
application as Directed Acyclic Graph (DAG) in which nodes 
correspond to tasks and edges correspond to precedence 
dependencies between the tasks. The goal is to minimize the 
total estimated cost for running required services while 
assuring that the application finishes prior to a given deadline. 

Yin et al. [25] also considered the problem of assigning 
application tasks to different processors such that the cost for 
the system is minimized and constraints limiting resource 
usage are satisfied. They added a penalty factor to the 
objective function to avoid solutions with too many tardy 
tasks. Due to the NP-completeness of the problem, a particle 
swarm optimization algorithm is presented to find near 
optimal solutions. 

Jiang et al. [16] consider the problem of concurrent 
workflow scheduling in high performance computing 
resources (HPC clouds). They presented a scheduling method 
that aims to minimize the total cost in terms of the 
computation cost, the communication cost as well as the 
earliest start time. 

Li  [9] studies the resource scheduling problem based on a 
service level agreement (SLA) which is known to be NP-hard. 
The SLA incorporates restrictions based on throughput, 
latency and cost. Using stochastic integer programming 
technique, an optimal solution is presented that satisfies all 
SLA constraints and minimizes the total cost. 

Numerous additional works for metaheuristic scheduling 
techniques for Cloud computing also exist as surveyed in [17]   
detailing metaheuristic scheduling models and algorithms for 
Cloud computing studied from a theoretical point of view. 
Numerous novel approaches are presented, however it is also 
highlighted that both assumptions and objectives are often not 
objectively clear in the context of Cloud computing, differing 
between study. 

IV.  RESOURCE BOXING  

A. System Model 

The objective of our approach is to convert realistic task 
resource utilization patterns in Cloud computing into boxes 
that can be directly understood and integrated into theoretical 
scheduling algorithms (defined as resource boxing). Figure 3 
depicts a high level system model of this approach that 
automates this entire process. The resource utilization patterns 
of servers are transmitted to the resource boxing process and 
consists of the following steps: 

System characterizer: Raw trace data of server resource 
utilization patterns are studied to distinguish unique task 
execution patterns for each server within the Cloud computing 
system. The system filters and extracts key parameters of 
interest from the raw trace data in order to collect task ID, task 
utilization and respective timestamp of occurrence. This 
allows to massively reduce the computation and data size of 
the file for resource boxing. 



Resource convertor: The filtered data for task resource 
patterns are then applied to an algorithm to conduct automated 
resource boxing. It is possible to select the type of algorithm 
for performing conversion, as well as configure its parameters 
dependent on administrator requirements. The output of this 
component is the equivalent resource utilization of the server 
within a box format, stored within a database and visualized 
for exploitation for analysis and exploitation. 

It is currently unclear what is the optimal method for 
resource boxing in terms of computation, number of updates, 
and accuracy within the context of task patterns within Cloud 
computing. Within the next section we propose various 
conversion algorithms to perform resource boxing. 

B. General Notation 

Resource boxing is the transformation of complex and 
dynamic utilization patterns of tasks into a series of boxes. 
Within this work we focus on CPU utilization, however the 
transformation is directly applicable other resources such as 
memory, disk usage, and network.  

We start by defining the notation that we use for the 
remainder of this paper based on a task 劇賃 assigned to a 
machine 警沈. The release time of 劇賃 is denoted by 堅賃 and 
corresponds to the time at which 劇賃 is assigned to 警沈. Note 
that this includes migration or rescheduling of 劇賃 to 警沈 due 
to failures or eviction policies within the scheduler. Similarly, 
the completion time is denoted by 系賃 and corresponds to the 
last time at which 劇賃 runs on 警沈. This includes completion of 
execution of 劇賃, migration of 劇賃 to other machines, as well as 
task eviction or failure. The CPU utilization pattern of task 劇賃 is given by a time sequence  実賃 噺 岫建賃怠┸ 建賃態┸ ┼ ┸ 建賃津岻 

and by a sequence of CPU utilizations 蔀賃 噺 岫憲賃怠┸ 憲賃態┸ ┼ ┸ 憲賃津岻. 

Here 憲賃珍 represents the CPU utilization at time 建賃珍 for               な 判 倹 判 券, where 券 is the number of measurements available. 
Both sets 実賃 and 蔀賃 are part of the input within resource 

boxing. Resource boxing selects a set of update points 湿賃 
which is defined as 
 湿賃 噺 岶喧賃沈】 喧賃沈  update poi�t┸ な 判 件 判 兼岼, 
 

where an update point is the time the height of a box for 
task 劇 may change, and 兼 denotes the number of update 
points. Times 建賃怠 and 建賃津 are not considered as update points 
for resource boxing. As an example, the update points in 
Figure 2 are given by 湿 噺 岶に┸ね┸ぱ┸など岼.  

Having introduced the notation, we explain how to 
determine the box height at release time and at every update 
point and how to select the set of update points 湿賃.  

C. Box Height Determination 

Consider a CPU utilization pattern with utilization sequence 蔀賃, time sequence 実賃 and a set of update points 湿賃. For an 
update point 喧賃沈 we distinguish the following three cases: 

1) Case 餐 噺 仕: The update points coincides with the 
completion time of 劇賃 and therefore no further box is 
created.  

2) Case 層 隼 餐 隼 仕: The condition 件 伴 な implies that the 
update point 喧賃沈 is not the release time 堅賃 噺 喧賃怠 of 劇賃. 
Therefore, the update point 喧賃岫沈貸怠岻 exists and the time 
interval 
 範喧賃岫沈貸怠岻┸ 喧賃沈匪 噺 版建賃珍】喧賃岫沈貸怠岻 判 建賃珍 隼 喧賃沈繁 
 
is non-empty. The height of the box in interval 

 範喧賃沈 ┸ 喧賃岫沈袋怠岻飯 噺 版建賃珍】喧賃沈 判 建賃珍 隼 喧賃岫沈袋怠岻繁 
 
is then calculated by the weighted average CPU 
utilization over time interval 岷喧沈貸怠┸ 喧沈岻. 

 
3) Case 餐 噺 層: The update point coincides with the release 

time of 劇賃, thus taking the weighted average CPU 
utilization over the previous time interval is not possible. 
Instead, the height of the box for time interval 岷喧賃怠┸ 喧賃態峅 
is chosen using an estimator. A simple choice for an 
estimator is the CPU utilization 憲賃怠 at time 建賃怠 as 
illustrated in Figure 2. It is also possible to use historical 
data, prediction techniques, or a combination of both to 
achieve a more accurate estimator as found in [18]. 
However, the choice of the estimator will not have a 
significant impact on the overall accuracy since only the 
first box is affected. 

D. Conversion Algorithms 

In this subsection we propose a number of algorithms each of 
which uses different logic for selecting the set of update 
points for a 劇賃 on machine 警沈. It is worth noting that each of 
these approaches is capable of resource boxing multi-tenant 
servers (i.e. multiple tasks executing simultaneously). We 
consider four different resource conversion algorithms: time 
zero, event-based, interval-based, and hybrid. 

Figure 3. System model of resource boxing. 



Time Zero: Resource boxing is performed at the very 
beginning of task execution within the server and there are no 
box updates performed. Therefore, the update set 湿賃 噺 湿賃待 is 
empty:  湿賃待 噺 叶┻                 
As shown in Figure 4(a), the box height does not change 
irrespective of task utilization. This approach would appear 
to be effective in the event of very stable task patterns since 
updating would result in minimal change 

 
Event-based: Resource boxing is performed based on a 
reactive approach to changes within the server environment. 
In other words, update points are calculated when a task is 
assigned or completed within the server as shown in Figure 
4(b). Such an approach has been used for scheduling 
decisions in [20] under the assumption that significant 
alteration to utilization patterns occur due to event changes 
within the server. In this context, an event is defined as the 
timestamp when another task is assigned to, or completes 
within 警沈. The update set 湿賃 噺 湿賃帳 consists of all time points 
in ( 堅賃 ┸ 系賃) at which an event occurs. This can be represented 
as 
 湿賃帳 噺 岶建】堅賃 隼 建 隼 系賃┸ 建 is task arrival【departure 岼. 

 
Note that this definition also implies 堅賃 ┸ 系賃 鞄 湿賃帳. 

Interval-based: Updates are periodically performed at fixed 
time intervals as shown in Figure 4(c). The interval is 
determined by periodic updates at every 詣 time units where 詣 
is a configurable input parameter determined by the system 
administrator. This allows for more coarse-grain or fine-
grained formation dependent on parameter selection, and 
resource boxing irrespective of the server status and number 

of tasks. The update set 湿賃 噺 湿賃彫岫挑岻 is given by 
    湿賃彫岫挑岻 噺 岶建】建 噺 堅賃 髪 欠詣┸ 欠 伴 ど┸ 建 隼 系賃岼. 

 

Similar to above, this implies 堅賃 ┸ 系賃 鞄 湿賃彫岫挑岻. 
Hybrid approach: It is possible to combine both event-
based and interval-based into a single algorithm. This allows 
to capture sudden changes to the task composition within a 
server whilst updating dynamic changes of long running tasks 
during extended periods of no event occurrence. Similar to 
interval-based, parameter 詣 is configurable. The hybrid  

update set 湿賃張岫挑岻 is simply the union of the event-based and 
interval-based update sets: 
 湿賃張岫挑岻 噺 湿賃帳 姦 湿賃彫岫挑岻             . 

V. ALGORITHM EVALUATION  

A. Metrics to Measure Similiarity 

In order to analyze the accuracy of proposed algorithms 
for resource boxing, it is necessary to define a proper metric 

that measures the similarity between Cloud resource patterns 
and the resource boxing representation. As resource boxing 
can be agnostically applied to various resource utilization 
patterns, it is unlikely that there is a single metric that is 
considered to be the overall optimal choice. For this reason, 
we propose several metrics for algorithm evaluation.   

Consider machine 警沈 over a time horizon 実 噺 岫建怠┸ 建態┸ ┼ ┸ 建津岻. 

We consider the total resource utilization sequence 重 噺 岫戟怠┸ 戟態┸ ┼ ┸ 戟津岻, 

where 戟珍 樺  重 is the total resource utilization of 警沈 at time 建珍. 
In other words, 戟珍 is equal to the aggregated value of resource 
usage of each task on 警沈at time 建珍. Similarly, we consider the 
total box height sequence 酋 噺 岫稽怠┸ 稽態┸ ┼ ┸ 稽津岻, 

where 稽珍 樺  酋 is the aggregated height of boxes at time 建珍. 

 
 
 
 
  
 
 
 
 
 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Visual depiction of resource boxing algorithms  
(a) Time zero, (b) event-based, (c) interval-based 

 



Absolute Deviation: This metric calculates the error of 
resource boxing at every time and weights it according to the 
length of the subsequent interval:  な建津 伐 建怠 布岫建珍袋怠 伐 建珍津貸怠

珍退怠 岻弁戟珍 伐 稽珍弁┻ 
Since there are 券 time points and only 券-1 intervals, this 
metric does not take into account the value 戟津. 

Relative Deviation: Similar to the absolute deviation, this 
metric calculates the relative error at every time and weights 
it accordingly:  
 な建津 伐 建怠 布岫建珍袋怠 伐 建珍津貸怠

珍退怠 岻 弁戟珍 伐 稽珍弁戟珍 ┻ 
 
For the same reason as before, the value 戟津 is not considered. 
Ratio of Averages: Let 重 be the average total resource 
utilization and ler 酋 represent the average total box height 
(both weighted accordingly). Then the ratio of averages is 

defined by 
酋 重 . This metric is useful to check whether resource 

boxing is overestimating or underestimating the actual 
resource pattern on average.  

Ratio of Variances: Let Var岷重峅 and Var岷酋峅 be the variances 
of the average total resource utilization and of the total box 
heights. The ratio of Variances  Var岷酋峅  Var岷重峅  

is a metric that can be used to verify that the variance of the 
box approach is close to the variance of the original data. 

Ratio of Standard Deviations: The ratio of standard 
deviations is defined by 謬撃欠堅岷酋峅  謬撃欠堅岷重峅 ┸ 

and is used to verify whether the standard  deviation of the 
box approach is close to the standard deviation of the original 
data. 

B. Resource Boxing Evaluation with Production Data 

In this section we apply resource boxing to the second 
version of Google Cloud tracelog [26][27] to analyze 
algorithm accuracy. The Google Cloud tracelog contains 
12,580 servers, over 25 million tasks and 930 users for 29 
days full days of operation. This data contains information 
about both CPU and memory utilization of tasks within 
machines normalized between 0 to 1. Each record refers to an 
average resource utilization value over a period of typically 
five minutes. 

In our analysis we have randomly selected 150 machines 
of various architectures and execution from the data set and 
automatically extracted the parameters task ID (comprising 
JobId and taskindex), timestamp, CPU utilization and 
machine ID from the task_resource_usage table over the 
entire month. We have applied resource boxing to the CPU 
utilization patterns of each machine. Conversion algorithms 
time zero and event-based have been applied, as well the 
interval-based and hybrid approaches using a range of 
periodic update parameter {5, 10, 15, 25, 30} values for 詣.   

Figure 6 and Figure 7 shows a graphical comparison 
between real machine CPU utilization over three days 
compared to resource boxing algorithms, with each color 
represented a unique task. It is observable that visually these 
patterns are similar – capable of capturing the fluctuation of 
resource usage and scheduling/completion of tasks. Clearly, 
the plots visually demonstrate that the event-based approach 
is more accurate than the time zero algorithm.  

Figure 5 provides details of the absolute deviation of 
resource boxing and empirical data from all 150 machines, 
respectively. It is observable that with the exception of time 
zero, all resource conversion results in an error rate less than 
8% and a mean of 3%. The reason for the large deviation for 

 
Figure 5.  Absolute error deviation for all resource converson algorithms. 



time zero is due to the fact that the  height of each box remains 
constant and cannot capture fluctuating resource patterns. 
The hybrid approach results in the lowest error rate less than 
4% and a mean of approximately 2.5%. However, as 
illustrated in Figure 8 and Figure 9, this also introduces the 
largest number of update points. This is an important 
consideration within the context of large-scale Cloud 
computing systems – heavy network use to transmit data and 
computation of resource boxing can potentially have a 
detrimental effect on the network performance of the system.  

We demonstrated for interval-based resource boxing that 
it is possible to control the number of updates created by the 
algorithm as shown in Figure 9. We observe that there exists 

a negative correlation between the number of updates and the 
error rate for resource boxing accuracy. This allows for 
system administrators to select an appropriate periodic 
interval dependent on accuracy required, or even current 
utilization of the system (i.e. low level of cluster usage can 
allow for more fine grained data collection). Furthermore, 
this is an important consideration for online scheduling, 
requiring rapid decision making for effective task allocation. 
On the other hand, time zero algorithm only requires a single 
update to calculate the box, and resulting in an error rate up 
to 10-15%. This is important in order to capture and mitigate 
extreme or abnormal task behavior that may arise in Cloud 
computing systems (e.g. correlated failures). 

 
(a)                                                                                     (b) 

Figure 6. Day 3-6 utilization patterns of machineID 257408789 (a) real CPU utilization, (b) Time-zero 

 
(a)                                                                                     (b) 

Figure 7. Day 3-6 utilization patterns of machineID 32915063 (a) real CPU utilization, (b) Event-based 
 

Figure 9. Parameter L sensitivity Figure 8. Resource boxing update per algorithm 
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While the hybrid algorithm achieves the highest accuracy, 
from the analysis it is observable that interval-based resource 
boxing is capable of achieving high levels of accuracy whilst 
minimizing the number of updates – with the advantage of 
the latter being controllable due to parameter configuration. 
The analysis of a production Cloud computing system 
demonstrates that it is possible to convert real task patterns 
into boxes applicable for theoretical scheduling. Specifically, 
we are capable of capturing deviation in task execution within 
multi-tenant environments and introduction of new tasks 
automatically. However, it is worth highlighting that 
although there exists dynamic change in resource utilization 
patterns over the month period, task patterns are observed to 
be relatively stable per individual task as analyzed in [1], and 
that the CPU utilization is a five minute aggregate, resulting 
in increased algorithm accuracy. As a result, it is necessary to 
study resource boxing at much higher fidelity of resource 
utilization patterns.  

VI.  VALIDATION &  APPLICATION 

Within this section we detail a scenario to which resource 
boxing can be used to study and improve scheduling within 
Cloud computing from a theoretical context.  

We used our method for resource boxing to investigate 
whether it is possible to translate empirical energy profiles 
into theoretical scheduling inputs. We conducted an 
experiment to collect the power profiles of a DELL D3400, 
Intel Core 2 Quad CPU @2.83GHz running Debian Ubuntu 
over a period of 450 seconds. We developed a program 
written in C++ to emulate multiple tasks simultaneously 
executing with their task patterns changing over time. 
Each task was generated such that it performs the following 
life cycle: 

1. The task is generated at time 建 噺 ど. The total life time 失 of the task is chosen randomly from interval 
[150,450]. Go to step 2.  

2. There is a 30% probability that the task is put into sleep 
mode for 嫌 seconds, where 嫌 is stochastically selected 
from 岷ど┸にのど峅. If the task was put to sleep, set 建 噺 嫌. If 
not, set 建 噺 ど. Go  to step 3. 

3. If 建 半 失, go to step 4. Otherwise, select a number ゾ 
randomly from 岷なの┸にの峅. The CPU utilization of the task 
in interval 岷建┸ 建 髪 ゾ峅 is then artificially forced to a 
constant, yet randomly chosen, level. Set 建 噺 建 髪 ゾ and 
go to step 3. 

4. The task is killed and ceases execution. 

By using a Bash-script we have recorded and extracted 
the CPU utilization of every task using the top command and 
its respective timestamp. It is possible for the task process to 
be recorded as 0 due to low scheduling priority (observable 
within production systems)[19]. Therefore, we collect the 
average record for each second and task which provides a 
more realistic CPU utilization.  

We collected the server power consumption using 
Voltech PM1000+ power meter that automatically measures 

and extracts the actual power consumption of the server 
throughout the experiment. We obtained exactly one record 
per second for the power consumption (measured in Watts).  

We apply resource boxing algorithms to the CPU 
utilization pattern of tasks and analyzed the accuracy of our 
approach. Figure 10 gives graphical comparison for the 
event-based algorithm to the recorded CPU utilization (top). 
The task behavior can be accurately represented every second 
with an error rate of 1.08%. 

We exploit the produced resource boxing approximation 
to calculate server energy consumption and measure its 

 
(a) 

 
(b) 

 
(c) 

Figure 10. Server resource patterns for  
(a) real CPU, (b) event-based CPU, (c) power consumption. 
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similarity compared to actual energy recorded. Modelling the 
power as a linear function of the CPU utilization is widely 
recognized within the literature [29][30]. From data produced 
within the experiment we construct a linear function 鶏岫戟岻 with parameters 欠 and 決 as follows: 鶏岫戟岻 噺 欠 髪 決戟. 

In order to determine suitable values for 欠 and 決 we have 
conducted a linear regression analysis based on the data we 
recorded previously with the Voltech PM1000+ power meter. 
This analysis yielded 欠 噺 はね┻な and 決 噺 などの┻ば , therefore the 
power function reads now as follows: 鶏岫戟岻 噺 はね┻な戟 髪 などの┻ば. 

This formula was applied to calculate the energy 
consumption based on both the recorded CPU utilization 
levels and the resource boxing approximation. The energy 
consumption is calculated by integrating power over time 
which translates to taking the weighted average mean of the 
recorded power consumption records in our discrete context. 
Our analysis findings show that the total energy consumed by 
the server is 57 kWs per experiment execution with less than 
a 1% error rate when applied to resource boxing. This shows 
the predicted energy comes very close to the actual consumed 
energy, indicating that using resource boxing can 
successfully capture realistic server power usage which can 
be exploited for evaluating theoretical power-aware 
scheduling models. 

VII.  CONCLUSION 

In this paper we have presented resource boxing - an 
approach for translating realistic resource utilization patterns 
of Cloud computing tasks into inputs that are useable by 
theoretical scheduling algorithms. We have identified a 
knowledge gap which exists between theoretical and applied 
scheduling, and have an automated technique for schedule 
box creation derived from real Cloud utilization in order for 
these closer collaboration between these communities. Our 
conclusions are summarized as follows:  

Real task patterns can be directly converted for 
theoretical scheduling inputs. We demonstrate from analysis 
of production trace data and experiments that it is possible to 
create box equivalent of diverse task execution within multi-
tenant Cloud servers with less than 3% error rate in absolute 
deviation. 

Interval-based resource boxing is highly effective. In 
terms of accuracy, number of updates, and computation time, 
it appears that interval-based resource conversion is the most 
effective within our case studies. However, this particular 
algorithm requires a system administrator to manually 
specify the time period between updates which may not be 
always possible or desired. For such cases we recommend 
using event-based resource boxing since we demonstrated it 
to have an acceptable accuracy and since it requires no input 
parameters. 

 

Future work includes introducing even more extreme 
workflow patterns to evaluate its accuracy, as well as 
evaluate numerous theoretical algorithms by using the 
derived boxes from this analysis. We plan to directly apply 
this approach in order to perform online decision making 
using theoretical scheduling algorithms within real systems. 
Finally, we intend to generate a workload generator that 
creates boxes that can provide theoretical inputs for 
evaluating based on realistic task behavior. 
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