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Abstract We investigate crustal deformation due to the extraction of water and steam from a
high-enthalpy geothermal reservoir; a common occurrence, yet not well understood. The cause of this
deformation can be a change in pressure or in temperature in the reservoir, both of which can be caused by
extraction or injection of geothermal fluids. Our study area, the Hengill mountains in SW Iceland, is an active
volcanic center and a plate triple junction that hosts two power plants producing geothermal energy. This
combination of natural and anthropogenic processes causes a complex displacement field at the surface.
We analyze geodetic data—Global Navigation Satellite System and Interferometric Synthetic Aperture
Radar—to obtain the surface velocity field, which we then simulate using an inverse modeling approach.
We focus on the deformation around the geothermal power plants but need to model the regional tectonic
and volcanic deformation as well, because the signals are overlapping. We find that plate motion and a
deep contracting body can explain the broad scale signal in the area. Local deformation near the two
power plants, Hellisheidi and Nesjavellir, can be explained by extraction of geothermal fluids. We estimate
reservoirs extending from 0.6 to 3.0 km depth at Hellisheidi, and 1.0 to 3.0 km depth at Nesjavellir for
observed pressure decrease rates of 0.25 MPa/yr and 0.1 MPa/yr, respectively. We find that the main cause
for the subsidence in the geothermal area is the observed pressure drawdown.

1. Introduction

Deformation of the Earth’s crust caused by utilization of natural resources has been observed in many
places. Examples include the following: exploitation of hydrocarbons [e.g., Fielding et al., 1998], groundwater
[e.g., Chi and Reilinger, 1984], and geothermal fluids [e.g., Segall, 1985; Mossop and Segall, 1997; Allis and
Zhan, 2000; Fialko and Simons, 2000; Keiding et al., 2010; Vasco et al., 2013; Jeanne et al., 2014; Ali et al., 2016;
Drouin, 2016; Barbour et al., 2016]. Here we present a case study of crustal deformation driven by the use of a
high-temperature geothermal field, a phenomenon that is not well understood. One challenge is to identify
the cause of the deformation, as the volume change of a geothermal subsurface reservoir has been assumed
to be caused mainly by (a) changes in pore/fracture pressure due to extraction or injection of fluids [e.g., Allis
and Zhan, 2000; Barbour et al., 2016] or (b) changes in temperature of the host rock due to production or
injection [e.g., Ali et al., 2016].

Mount Hengill is a volcanic system in SW Iceland, located on the plate boundary between the North American
and Eurasian plates. More precisely, it marks the triple junction between the spreading-type Reykjanes
Peninsula (RP), the Western Volcanic Zone (WVZ), and the transform-type South Iceland Seismic Zone (SISZ),
see Figure 1. The volcanic basement hosts a high-temperature field harnessed by two power plants: Hellisheidi
and Nesjavellir. The local geology is complex and composed of highly fractured interbedded hyaloclastite and
lava formations [Franzson et al., 2010; Sæmundsson, 1967]. There are many normal faults orientated along the
SW-NE trending fissure swarm, as well as active N-S strike-slip faults [Clifton et al., 2002].

Due to its vicinity to the SISZ, many earthquakes are recorded around Hengill. In May 2008 a seismic sequence
with two MW 6 earthquakes close to the Ölfus River (see Figure 2) occurred in the western end of the SISZ
[Hreinsdóttir et al., 2009]. Coseismic deformation from the two main events could be observed throughout
the Hengill range [Decriem et al., 2010] and postseismic deformation affected the surrounding areas during
the years following the ruptures [Geirsson et al., 2010]. The 2008 events are considered a continuation of a
seismic sequence that started with two earthquakes in 2000 farther east in the SISZ, with moment magni-
tudes of 6.4–6.5 [e.g., Árnadóttir et al., 2001; Pedersen et al., 2003; Decriem et al., 2010]. Earthquake sequences
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Figure 1. Southwest Iceland and the study area around Mount Hengill. Orange areas denote fissure swarms. Surface faults are shown as black lines and are taken
from Clifton et al. [2002] and Einarsson [2008]. The small map of Iceland in the bottom right shows the location of plate boundaries taken from Árnadóttir et al.
[2009] and plate velocities calculated using the MORVEL model [DeMets et al., 2010].

in the SISZ recur at average intervals of 80–100 years, the last sequences in 1732–1734, 1784, and 1896

[Einarsson, 1991].

Hengill experienced volcanic unrest, with an increase in earthquake activity and uplift, between 1993 and

1998 [Feigl et al., 2000; Sigmundsson et al., 1997]. Seismic activity was strongly increased and climaxed in

two earthquakes in June and November 1998 with magnitudes of MW 5.4 and 5.1, respectively [Vogfjörd and

Slunga, 2003; Jakobsdóttir, 2008]. Feigl et al. [2000] examined Interferometric Synthetic Aperture Radar (InSAR)

data and found surface uplift rates of up to 19 mm/yr, which they interpreted to have been caused by pressure

increase in a magma source at 7 km depth (shown with a yellow diamond in Figure 2).

Magmatic intrusions are the energy source for the geothermal fields in Hengill. Two power plants have been

constructed to harness this resource. Nesjavellir has been operational since 1990 with an extraction rate

of around 5 Mton/yr (water-steam mixture) in the first year and an average rate of around 16 Mton/yr in

2012–2015 [Gunnlaugsson, 2016a]. At Hellisheidi the production started in 2006 with a rate of 7 Mton/yr and

was increased to an average rate of 38 Mton/yr in 2012–2015 [Gunnlaugsson, 2016b]. To maintain reservoir

pressure, wastewater reinjection is being done at Hellisheidi, most of which around Húsmúli. The injection

at this site received special attention for having triggered several earthquake swarms including two Ml 3.8

earthquakes in October 2011, a few weeks after it was initiated with a flow rate of around 550 l/s [Halldorsson

et al., 2012]. The total injection at Hellisheidi was on average 22 Mton in 2012–2015, of which 13 Mton were

injected at Húsmúli [Gunnlaugsson, 2016b].

To gain a better understanding of the deformation in the Hengill area, we apply models that simulate the

elastic response of the rock to pressure changes in the geothermal reservoir. We combine these models with

a nonlinear inversion algorithm to find the best match of modeled and observed surface displacements. The

problem in the Hengill area, however, is that there are several different processes that cause surface motion,
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Figure 2. The Hengill area. HH denotes the Hellisheidi area, NV the Nesjavellir area. Continuous GNSS stations (white squares), mapped surface fractures (black
lines) and the largest earthquakes in the area since 2008 (green and purple stars). The most productive boreholes at Hellisheidi and Nesjavellir are marked by red
circles and lines. The black rectangle outlines the area of Figure 11. The three central volcanoes Hengill, Hrómundartindur, and Grensdalur are marked by HE, HR,
and GR, respectively. The magmatic intrusion inferred by Feigl et al. [2000] is denoted with a yellow diamond.

in addition to the geothermal signal. In order to adequately study the local signals, we need a modeling
approach that accounts for the regional deformation signal.

We concentrate our study on deformation during 2012–2015, as the production was fairly constant during
this time. This also minimizes the influence of postseismic deformation from the two M 6 2008 earthquakes
and excludes coseismic deformation from the two Ml 3.8 Húsmúli earthquakes in 2011. Also, we do not expect
postseismic deformation from the small 2011 events after mid-2012, as confirmed by the continuous Global
Navigation Satellite System (GNSS) station HUSM.
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2. Observables
2.1. GNSS Data
We use two different modes of GNSS observations: continuous and campaign observations. With the former
term we refer to GNSS stations that are installed in the field continuously and whose daily station posi-
tions we calculate from 24 h of measurements. Campaign stations were measured during annual campaigns
(in 2012, 2013, 2014, and 2015) conducted by the Institute of Earth Sciences where stations are observed for
at least 72 h. A dense GNSS network in Hengill was measured by Iceland Geosurvey (ÍSOR) in 2012, albeit with
shorter observation sessions and less frequently. The station velocity estimates derived from data from the
continuous stations are superior compared to those that are based on campaign data, because of the higher
number of data points. Also, the accuracy of the positions derived from continuous measurements is higher,
because position accuracy increases with deployment time, as error sources can be estimated more accurately
[Dzurisin, 2007] and no changes in antenna height position are introduced. The campaign mode, however, is
an important addition that helps increase the spatial density of the GNSS network.

In this study we use data from five continuous and 61 campaign stations (Figure 3). The data were analyzed
with the GAMIT software, version 10.6 [Herring et al., 2015]. We include data from continuous GNSS stations in
Iceland and over 100 global reference stations to determine the daily solutions in the ITRF08 reference frame
[Altamimi et al., 2012]. We then used the GLOBK software, version 5.29 [Herring et al., 2015], to estimate GNSS
station positions and velocities in the study area, for the time interval 2012–2015 relative to stable North
America (see Figure 3). We observe vertical and horizontal motion on the order of 10–25 mm/yr in the vicinity
of the Hellisheidi power plant. The eastward oriented horizontal velocities in the south are mostly caused by
spreading across the plate boundary between North America and Eurasia.

2.2. InSAR Data
In addition to the GNSS data set we use satellite-borne synthetic aperture radar (SAR) data, from the
TerraSAR-X mission, track 41. We use the ascending (south-to-north orbit) data that the satellite acquires
using a right looking configuration. Properties of satellite and orbit for track 41 can be found in Table 1. The
SAR acquisitions are processed pairwise using interferometry—SAR interferometry is commonly denoted
InSAR—essentially, measuring relative ground displacements (in the line of sight (LOS) of the satellite)
through changes in phase between two images. In-depth theory on InSAR methodology can be found in,
e.g., Dzurisin [2007].

We create interferograms with the DORIS software [Kampes et al., 2003]. To account for topographic contri-
butions we use the 25 m resolution intermediate TanDEM-X digital elevation model. Since we have access
to multiple SAR acquisitions from a single track, we use a multitemporal InSAR approach [Hooper, 2008], in
particular the small-baseline method which is implemented in the StaMPS software [Hooper et al., 2012]. The
algorithm uses a set of interferometric pairs (21 in our case) of a given track and identifies pixels that decorre-
late little over short time intervals [Hooper, 2008]. Those pixels are then used to track the ground deformation
over the time range of all acquisitions. StaMPS creates a time series of deformation (Figure 4) for these pixels
and estimates an average velocity for the observation time. We use a subset of nine interferograms to esti-
mate LOS velocities for the 2012–2015 time interval. The dates of the images that have been used for these
interferograms are given in Table 2. In addition to being able to cover longer time spans, the multitemporal
approach has the advantage of minimizing decorrelation noise. The average LOS unit vector for the imaged
area is [−0.50−0.12 0.86] (east, north, up) which implies that the measurements are mainly sensitive to vertical
and E-W motion.

We remove the spatially correlated DEM (Digital Elevation Model) error from the interferograms and apply a
linear correction to those interferograms we suspect are biased by variations in atmospheric delay [Bekaert
et al., 2015a]. The resulting time series plot is shown in Figure 4. Local deformation signals can be observed in
the vicinity of both power plants and in the central east of the image. Regionally, we see a NW-SE gradient in
deformation across the area, probably related to spreading across the plate boundary (see Figure 4).

Errors in the InSAR data are spatially correlated, which means that we need to find the full variance-covariance
matrix to describe the error distribution of the InSAR velocity field v. To this end we follow the procedure of
Bekaert et al. [2015b]. The method uses the variance of the difference in error between data points depending
on their distance, i.e., a semivariogram, which can be extracted from the data set. Once the semivariogram is
obtained, we calculate the data error covariance according to the analysis described in Appendix A.

JUNCU ET AL. HENGILL DEFORMATION 695



Journal of Geophysical Research: Solid Earth 10.1002/2016JB013626

Figure 3. GNSS station velocities 2012–2015 relative to stable North America. Horizontal velocities are shown by arrows, with 95% confidence interval ellipses.
Vertical velocities are shown by colored circles. Continuous GNSS stations are shown with white squares. The maximum vertical velocities are at campaign
stations HH47 and NE63 with 23 and 18 mm/yr subsidence, respectively.

2.3. Production Data, Pressure, and Temperature Measurements
Reykjavík Energy and ÍSOR monitor pressure and temperature in several boreholes in the production
area in Nesjavellir and Hellisheidi. Hellisheidi is the larger plant and had fairly constant production rates
between 2012 and 2014 in the range of 40 Mton/yr. It was lower in the years before, however, and has
also been reduced again to around 32 Mton/yr in 2015 [Gunnlaugsson, 2016b]. At Nesjavellir the produc-
tion rate has been relatively constant between 2009 and 2015, in a range between 14 and 16 Mton/yr
[Gunnlaugsson, 2016a].
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Table 1. Configuration of Satellite and Orbit for TerraSAR-X Track 41

TerraSAR-X T41 Configuration

Heading 346∘

Look direction right

Look angle 27.2∘ –29.5∘

Altitude 515 km

Latitude 64.05∘

Wavelength 31 mm (X band)

Resolution 3 m

Covered area 50 km × 30 km

Figure 4. InSAR time series. Line of Sight (LOS) motion as change of phase observed from the satellite between 2012 and 2015. Negative phase values represent
motion of the ground away from the satellite, positive values represent motion toward the satellite. Reference value is the mean value of the whole area.
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Table 2. Interferometric Pairs of the SAR Acquisitions Used for Estimating
the InSAR Velocity Fielda

Interferogram Δt (days) bp (m)

5/2012–7/2012 66 11.5

5/2012–9/2012 132 251.8

5/2012–10/2013 539 −82.5

7/2012–9/2012 66 240.3

7/2012–10/2013 473 −94.0

9/2012–10/2013 407 −334.3

10/2013–6/2014 242 176.4

10/2013–7/2015 638 110.0

6/2014–7/2015 396 −66.4
aThe first column gives the month and year of the interferograms,

second column the time interval, and the last column the perpendicular
baseline.

Measurements of both pressure and temperature have been conducted in selected boreholes by ÍSOR
[Haraldsdóttir, 2014; Tryggvason, 2014]. Rates of pressure drop seem to be consistently linear and range
between 0.2 and 0.3 MPa/yr in the Hellisheidi region and 0.06 and 0.14 MPa/yr around Nesjavellir (Figure 5).
The temperature measurements are less consistent. A linear rate of temperature decrease can be observed in,
e.g., borehole HE-07 at 1100 m depth with around 3∘C/yr. Temperature decrease is only observed in boreholes
where the temperature is on the boiling point curve, the cooling being consistent with the pressure drop. This
can be explained by absorption of latent heat due to pressure-induced boiling. The area most affected by this
is the central part of the Hellisheidi field [Gunnarsson et al., 2011].

3. Inverse Modeling

Our approach to modeling the observed deformation is using elastic half-space models relating subsurface
processes to surface deformation. We embed these forward models in a nonlinear inversion framework to find
a set of model parameters that can best reproduce the geodetic data. For the geothermal reservoirs we use the
pressurized prolate spheroid model derived by Yang et al. [1988], which has been applied in comparable sce-
narios [Fialko and Simons, 2000; Keiding et al., 2010]. This model consist of a pressurized body—representing
a geothermal reservoir—emplaced in an elastic half-space (the Earth’s crust). Pressure changes within the
body cause stresses in the crust that result in deformation. For the broad scale deformation that occurs in
eastern Hengill we assume a point source [Mogi, 1958]. We compare the calculated surface deformation with
the observed deformation from our GNSS and InSAR data sets and adjust the source parameters to obtain the
best agreement with the data. Following previous studies of deformation in geothermal areas we assume a
shear modulus of𝜇 = 10 GPa and a Poisson’s ratio of 𝜈 = 0.25 [see Fialko and Simons, 2000; Keiding et al., 2010].

The high number of InSAR data points (∼104) is impractical for the joint modeling of GNSS and InSAR data
since it increases computation time and can create an imbalance in relative weights of the two data sets (the
amount of GNSS measurements is on the order of 102). Therefore, we subsample the data set based on the vari-
ance of pixels with a quadtree algorithm [Jónsson et al., 2002] to obtain a similar number of InSAR data as GNSS
data. This method results in an InSAR data set that has a higher resolution in regions of larger displacement
gradients and a lower resolution in regions with smaller gradients.

Since this is a nonlinear optimization problem with an infinite number of solutions, we apply a Bayesian
optimization scheme. We use the cascading adaptive transitional metropolis in parallel (CATMIP) algorithm
developed by Minson et al. [2013], a modified form of the Metropolis–Hastings algorithm [Metropolis et al.,
1953; Hastings, 1970], which is used to sample the posterior probability density function (PDF) of the model
parameter space. It uses an annealing procedure similar to simulated annealing optimization [Kirkpatrick et al.,
1983]. During the annealing, the algorithm undergoes a succession of “cooling” steps, producing a new, inter-
mediate PDF each time, until it reaches its final “temperature” which yields the optimal solution. At each step
the samples from the previous stage are being resampled according to their relative likelihood, and each of
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Figure 5. (top row) Pressure changes and (bottom row) temperature changes over time in different boreholes. (left column) Hellisheidi, (right column) Nesjavellir.
Measurement depths are given in the legend. Data from Reykjavik Energy [Gunnlaugsson, 2016a, 2016b] and ÍSOR [Haraldsdóttir, 2014; Tryggvason, 2014].

those resamples serves as a seed for a separate Markov chain. This has the effect that more Markov chains
are generated in regions of higher probability, which accelerates the algorithm toward the target posterior
distribution.

The likelihood function p(D|𝜃) lets us calculate the probability of the observed data D given a model 𝜽,

p(D|𝜽) = 1

(2𝜋)Ndp∕2|C| 1
2

e− 1
2

rTC−1r
, (1)

where Ndp is the number of data points, C the covariance, and r the residual between observed and model
data points. T is the matrix transpose.

The posterior PDF, p(`|D), can be obtained following Bayes Theorem, which states that it is proportional to
p(D|`):

p(𝜽|D) ∝ p(D|𝜽) p(𝜽) , (2)

where p(`) is the prior PDF that describes the probability of each value of `. For a detailed description of the
algorithm, see Minson et al. [2013].

4. Results

We model the observed geodetic data to learn more about the mechanisms that cause the deformation.
In the Hengill area this a challenging problem because we observed signals from an interplay of tectonics,
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Figure 6. (left) GNSS horizontal velocities 2012–2015, (middle) predicted plate velocities using plate model from Árnadóttir et al. [2009] and (right) residual
velocities. The velocities are shown relative to stable North America.

magmatism, and man-made deformation in two geothermal fields. The rate of plate spreading across Iceland
is around 2 cm/yr and∼1 cm/yr in the study area. That is the same order of magnitude as the rate of subsidence
in the vicinity of the power plants, which also causes horizontal motion toward the center of subsidence. The
continuous GNSS stations OLKE and HVER as well as several campaign stations south of HVER are subsiding
at a rate of up to 1 cm/yr (see Figure 3 and Table S1 in the supporting information), suggesting a wide area of
subsidence probably indicating a deep source. Hence, we are aware of at least three different processes that
cause deformation of similar magnitudes in the Hengill area. In order to estimate the deformation around the
two power plants, we therefore also need to account for the plate spreading and broader scale deformation
signal in the area. Our strategy is to first simplify the data set by correcting the horizontal velocities for the
plate motion signal. Due to the limited aperture of the data in our study of Hengill and the number of local
sources, we are not able to estimate the plate motion signal independently. We therefore choose to use a plate
motion model from using the plate motion model from a study of country-wide GNSS motion by Árnadóttir
et al. [2009]. In the Hengill area, the model consists of the obliquely spreading RP, the spreading WVZ, and the
transform-type SISZ (see Figure 1). This allows us to better isolate the local geothermal signals as well as the
broader signal in eastern Hengill, see Figures 6 and 7.

After substracting the plate motion from the InSAR data, the local deformation signals around the power
plants become more distinct and the long wavelength NW–SE gradient is reduced (Figure 7). In the GNSS data,

Figure 7. (left) InSAR mean velocity field for the 2012–2015 time interval derived from the time series shown in Figure 4, (middle) predicted plate velocity using
plate model from Árnadóttir et al. [2009] and (right) residual velocities. The plate boundaries are plotted as black lines. All velocities are in LOS direction, positive
toward the satellite, negative away from it. The black hexagon shows the location of the reference point of the velocities (vlos = 0).

JUNCU ET AL. HENGILL DEFORMATION 700



Journal of Geophysical Research: Solid Earth 10.1002/2016JB013626

Table 3. Estimated Parameters of the Deformation Sources and Their 90% Confidence Intervals (CI)a

Hellisheidi Joint 90% CI InSAR 90% CI GNSS 90% CI

Hellisheidi

Longitude (∘W) 21.371 (21.365; 21.378) 21.376 (21.358; 21.389) 21.369 (21.358; 21.382)

Latitude (∘N) 64.033 (64.030; 64.036) 64.032 (64.023; 64.038) 64.030 (64.020; 64.037)

Depth (km) 0.6 (0.3; 0.9) 0.7 (0.3; 2.5) 0.6 (0.2; 1.4)

Semimajor axis (km) 2.6 (1.9; 3.4) 2.5 (1.7; 5.4) 3.7 (2.3; 6.3)

Semiminor axis (km) 1.2 (1.0; 1.5) 1.1 (0.7; 1.5) 1.0 (0.7; 1.3)

Strike (deg) 46 (25; 68) 48 (16; 76) 31 (13; 60)

Nesjavellir

Longitude (∘W) 21.267 (21.254; 21.284) 21.274 (21.259; 21.288) 21.275 (21.255; 21.294)

Latitude (∘N) 64.107 (64.092; 64.127) 64.097 (64.075; 64.122) 64.099 (64.077; 64.128)

Depth (km) 1.0 (0.1; 2.3) 0.8 (0.2; 1.9) 1.0 (0.1; 2.1)

Semimajor axis (km) 3.8 (1.9; 6.4) 3.7 (1.8; 6.3) 3.8 (1.9; 6.1)

Semiminor axis (km) 1.0 (0.4; 1.5) 0.8 (0.2; 1.3) 0.5 (0.1; 1.3)

Strike (deg) 22 (2; 66) 16 (2; 60) 33 (5; 80)

Eastern Hengill

Longitude (∘W) 21.247 (21.230; 21.267) 21.261 (21.129; 21.383) 21.251 (21.226; 21.274)

Latitude (∘N) 64.057 (64.048; 64.066) 64.034 (64.004; 64.097) 64.060 (64.049; 64.070)

Depth (km) 6.9 (5.9; 8.1) 16.9 (11.9; 19.6) 7.2 (5.9; 8.5)

ΔV (106 m3/yr) −2.4 (-1.8; -3.1) −16.1 (−1.8; −31.0) −2.5 (−1.6; −3.4)
aThe depths of the spheroidal sources at Hellisheidi and Nesjavellir are to the top of the body, the depth of the point

source in eastern Hengill is to the center. The coordinates represent the center of the respective sources. The semimajor
axis is half the long axis of the spheroid, orientated along its strike direction which is measured from the north. The
semiminor axes are half the short axes of the spheroid, i.e., the vertical axis and the axis that is perpendicular to the
strike. Pressure change is fixed at −0.25 MPa/yr (Hellisheidi) and −0.1 MPa/yr (Nesjavellir). We assume a shear modulus of
𝜇 = 10 GPa and a Poisson’s ratio of 𝜈 = 0.25.

the horizontal velocities point toward Hengill (Figure 6), indicating a deep source in addition to the shallow
geothermal sources.

Using only two geothermal sources, we obtain results that do not agree with the actual locations of the
geothermal fields, because the nonlinear optimization tries to reduce residuals of the broad scale signal in
eastern Hengill. By adding an unconstrained point source [Mogi, 1958] to the solution space, we obtain more

Figure 8. (left) Subsampled InSAR velocities 2012–2015 corrected for plate motion, (middle) estimated velocities, and (right) residuals. All in LOS of the satellite.
The velocity reference point is denoted by a black hexagon. Black ellipses show surface projections of the spheroidal source locations, the white circle marks the
point source.
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Figure 9. Observed GNSS station velocities after correcting for plate motion (black arrows) and estimated station velocities (red arrows) for the 2012–2015 time
interval. (top row) Horizontal deformation corrected for plate motion using the ISNET model [Árnadóttir et al., 2009]. (bottom row) Vertical deformation. Plots on
the left-hand side show observed motion with black arrows and 95% confidence intervals and model predictions with red arrows. The plots on the right show
residuals. All velocities are referenced to the continuous GNSS station SELF (see Figure 1). Dark green ellipsoids are geothermal source locations, the white circle
depicts the deep point contraction source.
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Figure 10. Posterior probability distribution for the model parameters of the spheroidal geothermal reservoirs. Depth is to the top of the reservoir. The
coordinates represent the center of the respective sources. The semimajor axis is half the long axis of the spheroid, orientated along its strike direction which is
measured from north. The semiminor axes are half the short axes of the spheroid, i.e., the vertical axis and the axis that is perpendicular to the strike. Pressure
change is fixed at −0.25 MPa/yr (Hellisheidi) and −0.1 MPa/yr (Nesjavellir).

reasonable solutions for the geothermal sources and an additional deep source in eastern Hengill. For this
source we obtain parameters (and 90% confidence intervals) of 6.9+1.2

−1.0 km depth and 2.4+0.7
−0.6 million m3/yr

volume decrease at the coordinates 64.057± 0.009∘N and 21.253+0.020
−0.017

∘W (see Table 3). The location of this
source falls into the area between the three central volcanoes of Hengill, Hrómundartindur, Hengill, and
Grensdalur [Feigl et al., 2000]. In this area both the InSAR data (see Figures 4 and 8) as well as the GNSS sta-
tions show significant displacement (subsidence rates of around 10 mm/yr at OLKE, HVER, and neighboring
stations; see Figures 3 and 9). Our result is about∼3 km NW of the magmatic intrusion suggested by Feigl et al.
[2000] for the 1994–1998 uplift episode (which was 21.213∘W/64.032∘N/7.0 km depth). The proximity of the
source locations suggests that the sources for the inflation and deflation are most likely related.

For the local signals around the geothermal power plants we use two spheroid-shaped pressure sources [Yang
et al., 1988]. We fix the pressure change at Hellisheidi to −0.25 MPa/yr which is the average rate of measured
pressure decrease in the reservoir (see section 2.3). We find a shallow source of deformation (1.8 ± 0.4 km
depth) below Hellisheidi with a volume of around 16 km3 (Table 3). This translates to a decrease in reservoir
volume ΔV of 4 ⋅ 105 m3/yr using the relation given by Eshelby [1957]:

ΔV = VΔP∕𝜇 , (3)

where V is the total reservoir volume, ΔP the change in pressure, and 𝜇 the shear modulus.

At Nesjavellir we fix the pressure change to −0.1 MPa/yr and find a reservoir with a depth of 2.0+1.4
−1.1 km and

volume of around 17 km3. The rate of volume decrease is approximately 2 ⋅ 105 m3/yr. The source parameters
are less well constrained than at Hellisheidi (Figure 10) due to fewer GNSS stations and low signal-to-noise
ratio, compared to Hellisheidi.

It should be noted that the obtained volumes depend on the pressure change that is assumed for
each reservoir. Considering the range of observed rates of pressure decay (see section 2.3), the reservoir
volume at Hellisheidi may be as large as 17 km3 (for a pressure change of −0.2 MPa/yr) or as low as
14 km3 (ΔP = −0.3 MPa/yr). At Nesjavellir the volume may range from 16 km3 (ΔP = −0.14 MPa/yr) to 18 km3

(ΔP = −0.06 MPa/yr). However, the uncertainties we obtain for the source dimensions (see Table 3) indicate
even larger ranges for the total reservoir volumes.
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The two spheroidal sources yield results that agree with the geodetic data within residuals of 5 mm/yr in the
areas around the power plants. These models reproduce the regions of highest deformation in the InSAR data
set (up to 26 mm/yr LOS velocity around the Hellisheidi power plant), as well as the largest GNSS velocities
(Figure 3). At Hellisheidi, the model captures the maximum magnitude of the subsidence signal with resid-
uals below 5 mm/yr and has a similarly SW-NE elongated shape. In the northeastern part of Hellisheidi field,
however, the deformation is overestimated in the model when compared to the InSAR data (Figure 8). Around
Nesjavellir the model has significant misfits, which can be seen in the InSAR data (Figure 8) and the vertical
GNSS velocities of the stations further east of Nesjavellir (Figure 9). It may be that the Nesjavellir source is
being overpredicted in order to accomodate the horizontal GNSS velocities.

The geothermal source models we obtain are shallow, which is consistent with the production depths in
Hengill. Studies of other geothermal areas find similar source depths, e.g., depth ranges from 1 to 3 km for
spheroidal sources in the Coso area in California [Fialko and Simons, 2000].

5. Discussion

Crustal deformation due to geothermal power production is mainly caused by contraction or expansion of
the rock matrix in the reservoirs. It can be driven by changes in temperature as well as pressure, which may
be in a feedback relation to each other. In order to keep the modeling simple, we first examine the effect of
pressure change in our simulations and then use the results to evaluate whether this was a reasonable choice.
We justify our choice with the fact that changes in pressure have been observed consistently throughout both
reservoirs whereas temperature changes occur only in a few boreholes (see Figure 5). We use the measured
reservoir pressure changes as a fixed parameter in our models and show that they can explain the deformation
at Hellisheidi. This indicates that pressure changes are likely to be a key factor in the deformation.

5.1. Comparing Modeled Volume Changes to Extraction Rates
Pressure change can be translated into a change of reservoir volume, see equation (3). Other deformation
studies have compared this model-estimated change of reservoir volume to volumetric fluid extraction rates,
estimated from mass extraction rates given by the power plant operator [e.g., Eysteinsson, 2000; Keiding et al.,
2010; Drouin, 2016; Barbour et al., 2016]. They often find discrepancy between estimated and observed volume
change of more than 1 order of magnitude. This is not surprising since this approach is overly simplistic, mainly
for two reasons: first, in a high-temperature geothermal field, the ratio of water to steam within the reservoir
is not known. Thus, there is a large uncertainty when converting mass flow to volume flow. Second (and more
importantly), the extracted fluid volume does not equal the total volume change of the reservoir. Instead, if
we want to compare the change in rock volume to known production rates, we have to consider how they
are related. For a reservoir with a volume V , the mass of produced fluid Δm can be related to the change in
reservoir pressure ΔP through the storativity s of the rock, i.e., following Axelsson [2012]: Δm = sVΔP. Using
equation (3) we can introduce the change in reservoir volume ΔV into this equation and find an expression
that relates the mass extraction rate to the estimated ΔV (for spheroidal reservoirs)

Δm = s𝜇ΔV, (4)

where 𝜇 is the shear modulus. Thus, in order to compare reservoir volume change to extraction rates, ideally,
we should know the storativity. Since the storativity is not known in this case, we can only make a circular
argument by solving for the value of s and then decide whether it is a reasonable value or not. To do this,
we have to take into account that the mass extraction is balanced by natural recharge. According to reser-
voir models, we assume a total recharge rate for both Hellisheidi and Nesjavellir of 50% and then obtain a
storativity of around 5⋅10−6 kg m−3 Pa−1 for Hellisheidi (withΔm = 18 Mton/yr,ΔV = 4⋅105 m3/yr and𝜇 = 10
GPa) and 4 ⋅10−6 kg m−3 Pa−1 for Nesjavellir (withΔm = 8 Mton/yr,ΔV = 2 ⋅105 m3/yr, and𝜇 = 10 GPa). These
estimates of storativity are within the range of liquid-dominated reservoirs (0.1–10 ⋅ 10−6 kg m−3 Pa−1,
see Table 3 in Axelsson [2012]).

5.2. Impact of Thermal Contraction
Thermal contraction of the rock matrix might be another important contribution to the total deformation. We
can use the observed rates of temperature drop to approximate the magnitude of deformation that we could
expect from thermal contraction of the rock matrix. Observed temperature changes at the Hellisheidi power
plant indicate a decrease of up to 3∘C/yr in several boreholes, while others show no change (see Figure 5).
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Figure 11. Temperature distribution, boreholes (blue dots and lines), and data points (red stars) in the Hellisheidi reservoir at 1000 m depth.

We assume that temperature is reduced mainly due to latent heat effects of boiling caused by dropping pres-
sure, and this appears only in the part of the reservoir that has a combination of high temperatures and
low pressures. These conditions can be found in the uppermost part of the central region of the reservoir
(see Figure 11). We approximate the size of the area to 1.5 km2 with a thickness of around 300 m. We
use the thermal expansion relation ΔVth = 𝛼VΔT [Turcotte and Schubert, 2002]—where ΔT , V , and 𝛼 are the
temperature change, volume, and thermal expansion coefficient of the rock, respectively—to estimate the
volume change due to thermal contraction, ΔVth. Assuming a coefficient of thermal expansion (for a rock
with basalt-like composition) of 𝛼 = 2 ⋅ 10−5°/C [Robertson, 1988] and a rock volume of 0.5 m3 (see above), we
obtain a contraction of about 3 ⋅ 104 m3/yr. That is less than 10% of the volume change that we estimate for
the spheroidal source at Hellisheidi (see section 4). This indicates that for this area, the deformation caused
by temperature changes is probably minor when compared to deformation caused by changes in pressure.

5.3. Nature of the Deep Source in Eastern Hengill
We want to test if the subsidence observed in the eastern part of Hengill may be related to the intrusion that
Feigl et al. [2000] inferred for the time interval 1994–1998. The total volume of injected magma inferred by
Feigl et al. [2000] amounts to ∼40 million m3. If the whole volume would solidify after the intrusion, it would
cause a subsequent volume decrease of 4 million m3, assuming a density ratio between liquid and solid
magma of 0.9 [Caricchi et al., 2014]. Our modeling results (Table 3) imply a volume loss of 7 million m3 over
the time interval 2012–2015, which is larger than the estimate of the contraction of the intrusion due to
solidification by a factor of around 2. The difference is likely to be even larger since there is probably contrac-
tion before and after the 2012–2015 time interval. The mismatch both in volumes and in source locations
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(see section 4) could suggest that interpreting the inflation and deflation as solely caused by a magmatic intru-
sion and the cooling thereof might be—at least partly—incorrect. Other studies have shown that inflation
in volcanic areas can be explained by natural hydrothermal fluid injection and gas formation [Hurwitz et al.,
2007; Hutnak et al., 2009]. These processes yield a volume increase that is more reversible than one caused by
magma injection alone, and thus may better explain the magnitude of deflation that we estimate. A distinct
location for pore pressure-driven deformation would also be harder to constrain because of the mobility of
the fluids, which might further explain the difference in modeled locations between inflation and deflation
episodes. Furthermore, Tryggvason et al. [2002] conducted a seismic tomography study (using seismic data
from 1973 to 1999) and found a low-velocity anomaly below Hengill, which they intepreted as evidence for
the presence of supercritical fluids at depth. If close to the critical point, these fluids could have been the
explanation for the inflation.

6. Conclusion

We obtain the surface deformation field in the Hengill region from 2012 to 2015 from both GNSS and SAR
observations and correct the data for plate motion using the results from Árnadóttir et al. [2009]. We perform
a joint inversion on the residual velocities using models of pressurized spheroids and spheres in an elastic
half-space. The inversion shows that the remaining data can be reproduced by three deformation sources.
We find two shallow spheroidal sources representing contracting geothermal reservoirs in the Hellisheidi and
Nesjavellir production fields. We also estimate a deep contracting source below eastern Hengill in the vicinity
of the 1994–1998 inflation source [Feigl et al., 2000]. The results show how complex deformation signals can
be in Iceland, where tectonic, magmatic, and anthropogenic deformation can overlap, and how important it
is to take all these processes into account.

The eastern Hengill deformation source has a depth of 6.9+1.2
−1.0 km and a volume loss of around 2 million m3/yr.

We can not conclusively link it to the intrusion suggested by Feigl et al. [2000]. To better understand this sig-
nal, the whole deformation history since the end of the uplift episode should be considered. It may also be
worthwhile to revisit the deformation data for the intrusive episode and investigate if it may be explained by
processes other than magma intrusion, e.g., natural hydrothermal fluid injection, gas formation, or thermal
expansion.

The Hellisheidi geothermal source model we estimate extends from about 0.6 to 3.0 km depth and is orien-
tated roughly along the regional fissure swarm. The Nesjavellir source extends from about 1.0 to 3.0 km depth.
This source is less well constrained than the Hellisheidi source, due to a lower GNSS station density and a
weaker deformation signal.

Using the observed pressure change in the geothermal fields, we are able to reproduce the subsidence signal
at the surface. Therefore, we argue that it is likely that the pressure decrease is responsible for most of the
deformation observed in the geothermal areas.

Appendix A: The Variance-Covariance Matrix of the InSAR Data Set

For obtaining the variance-covariance matrix of the InSAR data we follow the procedure by Bekaert et al.
[2015b]. We start with the variance of the difference of two correlated variables, which is given by

𝜎2
pq = 𝜎2

p + 𝜎2
q − 2 Cpq , (A1)

where 𝜎2
pq is the difference in variances between any random pair of points, p and q, in the InSAR image, 𝜎2

p is
the variance of point p, and Cpq is the covariance of points p and q, which is what we are interested in.

Now, if we assume all points by themselves have the same variance (𝜎2
p = 𝜎2

q ), equation (A1) reduces to that
of a semivariogram,

𝛾pq(x) = 𝜎2
0 − Cpq(x) , (A2)

where x is the distance between points p and q, 𝜎2
0 is the variance at each point, and

𝛾pq = 1
2
𝜎2

pq . (A3)
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Figure A1. Semivariogram value over the distance between points. The model (green line) is calculated from
equation (A6). 𝜎2

bin
= 23.6 mm2, N = 0.8 mm2, R = 17.5 km.

We use a bootstrapping approach [see, e.g., Efron and Tibshirani, 1986] to calculate the right-hand side of
equation (A3). To this end, we first compute the best estimate of the velocity field, v̂, from the interferograms
using weighted least squares based on the covariance between each of them. Then, we calculate n realizations
of the velocity field vboot by resampling from the set of interferograms. We can calculate the residuals between
vboot and v̂ as,

rk = vk
boot − v̂ , (A4)

where k represents one of the n bootstrap realizations.

Now, we can use the residuals to estimate the variance, 𝜎2
pq, between pairs of points,

𝜎2
pq =

n∑
k

(
rk

pq

)2

n − 1
, (A5)

where rk
pq is the difference in rk between a random pair of points p and q (rk

p − rk
q).

Binning 𝜎2
pq depending on distance between points yields the semivariogram which we can describe with a

Gaussian semivariogram model,

𝛾m(x) = N + 𝜎2
0 (1 − e−3 x

R ) , (A6)

where N is often called nugget term, representing variations on small spatial scale, R is the range, i.e., the
distance limit after which data is no longer correlated and the variance 𝜎2

0 is also known as the sill. Using the
binned variances, we can estimate N, 𝜎2

0 and R, plug 𝜎2
0 and 𝛾 into equation (A2) and solve it for Cpq. Then we

can calculate the variance-covariance matrix of our data as follows:

Cpq(x) = 𝜎2
bin ⋅ e−3 x

R − N , (A7)

Using the estimated semivariogram of our data (see Figure A1), we use the model of equation (A2) and invert
for the values of N, 𝜎2

0 , and R: 𝜎2
bin = 23.6 mm2, N = 0.8 mm2, R = 17.5 km. From here we calculate the

variance-covariance matrix of our data using equation (A7). These estimates give a standard deviation of the
InSAR data of 4.9 mm/yr.
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