
This is a repository copy of Linearizability and Causality.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/113094/

Version: Accepted Version

Proceedings Paper:
Doherty, S. and Derrick, J. (2016) Linearizability and Causality. In: Software Engineering
and Formal Methods. 14th International Conference, SEFM 2016, 04-08 Jul 2016, Vienna,
Austria. Lecture Notes in Computer Science, 9763 . Springer , pp. 45-60. ISBN
978-3-319-41590-1

https://doi.org/10.1007/978-3-319-41591-8_4

This is a post-peer-review, pre-copyedit version of an article published in Software
Engineering and Formal Methods. SEFM 2016. Lecture Notes in Computer Science, vol
976. The final authenticated version is available online at:
https://doi.org/10.1007/978-3-319-41591-8_4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Linearizability and Causality

Simon Doherty and John Derrick

Department of Computing, University of Sheffield, Sheffield, UK

Abstract. Most work on the verification of concurrent objects for shared
memory assumes sequential consistency, but most multicore processors
support only weak memory models that do not provide sequential consis-
tency. Furthermore, most verification efforts focus on the linearizability

of concurrent objects, but there are existing implementations optimized
to run on weak memory models that are not linearizable.
In this paper, we address these problems by introducing causal lin-

earizability, a correctness condition for concurrent objects running on
weak memory models. Like linearizability itself, causal linearizability en-
ables concurrent objects to be composed, under weak constraints on the
client’s behaviour. We specify these constraints by introducing a notion
of operation-race freedom, where programs that satisfy this property are
guaranteed to behave as if their shared objects were in fact linearizable.
We apply these ideas to objects from the Linux kernel, optimized to run
on TSO, the memory model of the x86 processor family.

1 Introduction

The past decade has seen a great deal of interest in the verification of highly op-
timized, shared-memory concurrent objects. This interest is partly motivated by
the increasing importance of multicore systems. Much of this verification work
has assumed that these concurrent implementations run on the sequentially con-
sistent memory model. However, contemporary multicore architectures do not
implement this strong model. Rather, they implement weak memory models,
which allow reorderings of memory operations, relative to what would be legal
under sequential consistency. Examples of such models include TSO (imple-
mented on the x86) [10], POWER and ARM [2]. These models create significant
challenges for verifying that an implementation satisfies a particular correctness
condition [5].

Furthermore it is not always clear what correctness conditions are appropri-
ate for an implementation running on a weak memory model. Specifically, the
standard correctness condition for concurrent objects is linearizabilty [8]. How-
ever, as described in Section 1.1, there are implementations of concurrent objects
optimized to run on weak memory models that are not linearizable. Neverthe-
less, these implementations are used in important contexts, including the Linux
kernel. This is possible because when these objects are used in a stereotypical
fashion, their nonlinearizable behaviours are not observable to their clients.

Our goal in this paper is to define a correctness condition appropriate for
these nonlinearizable objects. We introduce a correctness condition called causal

linearizablilty. Roughly speaking, an object is causally linearizable if all its ex-
ecutions can be transformed into linearizable executions, in a way that is not
observable to any thread. As we shall see, causal linearizability is stronger than
sequential consistency, and therefore programmers can reason about causally lin-
earizable systems using established intuitions and verification techniques. Fur-
thermore, unlike some competing proposals, causal linearizability places no con-
straints on the algorithmic techniques used in the implementation of concurrent
objects.

Causal linearizability enables concurrent objects to be composed, under cer-
tain constraints on the client’s behaviour. We specify these constraints by in-
troducing a notion of operation-race freedom, where programs that satisfy this
property are guaranteed to behave as if their shared objects were linearizable.

In the remainder of the introduction we motivate our work by describing a
nonlinearizable data structure designed for a particular weak memory model (in
this case, TSO). The structure of the rest of the paper is as follows. Section
2 outlines our contribution, and compares it to related work. Section 3 defines
the formal framework and notation, and Section 4 defines independence and
causal ordering, which are key concepts in our definition of causal linearizability.
Section 5 defines causal linearizability itself. Section 6 then defines operation-race
freedom and outlines a proof method for proving causal linearizability. Section
7 applies our ideas to the TSO memory model. Section 8 concludes.

1.1 Motivation - Nonlinearizable Objects on TSO

The Total Store Order (TSO) memory model optimizes write operations by
first buffering a write to a local write buffer, and later flushing the write to
shared memory. The effect of the write is immediately visible to the core that
issues it, but is only visible to other cores after the write has been flushed. The
x86 instruction set provides primitives for ensuring that the effect of a write is
visible to other threads on other cores. The barrier operation flushes all writes of
the executing core that have not previously been flushed. In addition, memory
operations that both read and modify shared memory may be locked. A locked
operation appears to execute atomically, and the locking mechanism causes the
executing core’s write buffer to be emptied both before and after the execution
of the locked operation. We formalize this memory model in Section 7.

Locked operations and barriers are typically costly, relative to simple reads
and writes. For this reason, optimized datastructures often avoid such synchro-
nization primitives where possible. Here we describe a simple example of such an
algorithm: a spinlock algorithm for x86 processors that is adapted from an imple-
mentation in the Linux kernel. Figure 1 presents pseudocode for the algorithm,
which uses a simple boolean flag (F below) to record whether the lock is cur-
rently held by some thread. A thread acquires the lock using the try_acquire

procedure, which fails if the lock is currently held (an unconditional acquire

procedure can be implemented by repeatedly invoking try_acquire until suc-
cessful). The try_acquire procedure uses a locked operation to atomically de-
termine whether the lock is held and to set the flag to true. (This operation

bool F := false;

void release() {

R1 F := false;

}

bool try acquire() {

T1 locked {

T2 held := F;

T3 F := true;

T4 }

T5 return !held;

}

Fig. 1. Nonlinearizable spinlock implementation

is called an atomic test-and-set). Note that this operation has no effect if the
flag is already true. Thus, if the lock is not held, then try_acquire successfully
acquires the lock and returns true. Otherwise, the acquisition attempt fails, and
try_acquire returns false. The optimised release operation simply sets the
flag to false, without using any locked or barrier operations.

The spinlock implementation is not linearizable. Intuitively, linearizability
requires that each operation on the lock appears to take effect at some point
between its invocation and response. To see how this fails, consider the execution
in Figure 2. In this example, two threads, t1 and t2 attempt to acquire the
lock L, using the try_acquire operation. The first acquisition attempt (of t1)
succeeds, because the lock is free; t1 then releases the lock (presumably after
accessing some shared state protected by the lock), but the write that changes the
lock’s state is not yet flushed to shared memory. Now t2’s lock acquisition fails,
despite being invoked after the end of t1’s release operation. This is because,
in the example, the releasing write is not flushed until after the completion of
t2’s try_acquire. Thus, t2’s try_acquire appears to take effect between t1’s
acquisition and release operations. Linearizability requires that the try_acquire

appear to take effect after t1’s release.

T1 T2

L.try acquire()

returns true

L.release()

return

L.try acquire()

returns false

Fig. 2. Nonlinearizable spinlock history.

Despite the fact that it is not lin-
earizable, there are important circum-
stances in which this spinlock imple-
mentation can be correctly used. In-
deed, a spinlock essentially identical
to this has been used extensively in
the Linux kernel. Fundamentally, the
goal of this paper is to investigate and
formalize conditions under which ob-
jects like this spinlock may be used
safely on weak memory models.

2 Our Contribution

In this paper, we describe a weakening of linearizability which we call causal
linearizability. Note that in the execution of Figure 2, no thread can observe
that the invocation of thread t2’s try_acquire occurred after the response of
t1’s release, and therefore no thread can observe the failure of linearizability.

Causal linearizability allows operations to be linearized out of order, in cases
where no thread can observe this reordering.

However, the lock L is the only object in execution in Figure 2. In general,
clients of the lock may have other means of communicating, apart from opera-
tions on L. Therefore, under some circumstances, clients may observe that the
execution is not linearizable. Our second contribution is to define a condition
called operation-race freedom (ORF) on the clients of nonlinearizable objects like
the TSO spinlock, such that clients satisfying ORF cannot observe a failure of
linearizability. ORF is inspired by data-race freedom (DRF) approaches, which
we discuss below. However, unlike DRF, ORF is defined in terms of high-level
invocations and responses, rather than low-level reads and writes.

Finally, we provide a proof method for verifying causal linearizability. We
define a correctness condition called response-synchronized linearizability (RS-
linearizability). In the context of TSO, proving that a data structure satisfies
RS-linearizability amounts to proving that the structure is linearizable in all
executions where every write executed during an operation are flushed by the
time any operation completes. Because of this, we can prove RS-linearizability
using essentially standard techniques used for proving linearizability. In Secton
6, we show that any set of RS-linearizable objects is causally linearizable, when
the objects’ clients satisfy ORF.

Related Work One way to address the issues raised by weak memory models
is based on the observation that locks and other synchronization primitives are
typically used in certain stereotypical ways. For example, a lock is never released
unless it has been first acquired; and the shared state that a lock protects is not
normally accessed without holding the lock. As shown in [9], these circumstances
mean that the spinlock’s nonlinearizable behaviour can never be observed by any
participating thread.

The analysis given in [9] belongs to a class of approaches that define con-
ditions under which a program running on a weak memory model will behave
as if it were running on a sequentially-consistent memory. These conditions are
often phrased in terms data-races: a data-race is a pair of operations executed
by different threads, one of which is a write, such that the two operations can
be adjacent in some execution of the (multithreaded) program. Data-race free
(DRF) programs are those whose executions never contain data races, and the
executions of DRF programs are always sequentially consistent.

Data-race free algorithms that are linearizable on the sequentially-consistent
model will appear to be linearizable on the appropriate weak memory model.
Thus the problem of verifying a DRF algorithm on weak-memory is reduced
to that of verifying it under the standard assumption of sequential consistency.
However, DRF-based approaches have the drawback that algorithms that are
not DRF cannot be verified. Our approach does not suffer from this limitation:
implementations are free to use any algorithmic techniques, regardless of DRF.
Furthermore, the ORF property only constrains the ordering of high-level invo-
cations and responses, rather than low level reads and writes.

[3, 7] define correctness conditions for TSO by weakening linearizability.
[3] introduces abstract specifications that manipulate TSO-style write-buffers
such that the abstract effect of an operation can be delayed until after the
operation’s response. [7] proposes adding nondeterminism to concurrent objects’
specifications to account for possible delay in the effect of an operation becoming
visible. Neither work systematically addresses how to reason about the behaviour
of clients that use these weakened abstract objects. In our work, the abstract
specifications underlying linearizability are unchanged, and programs satsifying
the ORF constraint are guaranteed to behave as if their shared objects were
linearizable.

RS-linearizability is a generalisation of TSO-linearizability, described in [5].
That work shows that TSO-linearizability can be verified using more-or-less
standard techniques for proving linearizability. However, [5] does not address
how to reason about the behaviour of clients that use TSO-linearizable objects,
as we do with the ORF constraint.

3 Modelling Threads, Histories and Objects

As is standard, we assume a set of invocations I and responses R, which are
used to represent operations on a set X of objects. The invocations and responses
of an object define its interactons with the external environment so we define
Ext = I [R to be the set of external actions. We denote by obj (a) the object
associated with a 2 Ext . We also assume a set of memory actions Mem, which
typically includes reads, writes and other standard actions on shared-memory.
Operational definitions of weak memory models typically involve hidden actions
that are used to model the memory system’s propagation of information between
threads, so we assume a set Hidden ✓ Mem (for example, in TSO the hidden
actions are the flushes). Let Act = Ext [Mem be the set of actions.

In our model, each action is executed either on behalf of a thread (e.g.,
invocations, or read operations), or on behalf of some memory system (these are
the hidden actions). To represent this, we assume a set of threads T , a function
thr : Act ! T [{?} = T?, such that thr(a) = ? iff a 2 Hidden.

Executions are modelled as histories, which are sequences of actions. We
denote by gh the concatenation of two histories g and h. When h is a history
and A a set of actions, we denote by h ⌫ A the sequence of actions a 2 A

occurring in h. For a history h, the thread history of t 2 T , denoted h ⌫ t , is
h ⌫ {a : thr(a) = t}. Two histories h and h 0 are thread equivalent if h ⌫ t = h 0 ⌫ t ,
for all threads t 2 T . (Note that two histories may be thread equivalent while
having different hidden actions.)

For example, the behaviour shown in Figure 2 is represented by the history:

L.try acqt1 , lockedt1(TAS ,F , false), respt1(L, true),L.releaset1 ,writet1(F , false),

respt1(L),L.try acqt2 , lockedt2(TAS ,F , true), respt2(L, false),flush(F , false) (1)

Let a = L.try acqt1 . Then a is an invocation of the try_acquire operation,
thr(a) = t1 and obj (a) = L. The action respt1(L, true) is a response from object

L, of the thread t1, returning the value true. lockedt1(TAS ,F , false) is a locked
invocation of the test-and-set operation on the location F , again by thread t1 that
returns the value false. flush(F , false) is a flush action of the memory subsystem,
that sets the value of F to false in the shared store. This history is thread
equivalent to the following:

L.try acqt1 , lockedt1(TAS ,F , false), respt1(L, true),

L.try acqt2 , lockedt2(TAS ,F , true), respt2(L, false),

L.releaset1 ,writet1(F , false),flush(F , false), respt1(L) (2)

A history is well-formed if for all t 2 T , h ⌫ t ⌫ Ext is an alternating se-
quence of invocations and responses, beginning with an invocation. Note that
well-formedness only constrains invocations and responses. Memory operations
may be freely interleaved with the external actions. From now on, we assume
that all histories are well-formed. A history is complete if every thread history
is empty or ends in a response.

An object system is a prefix-closed set of well-formed histories. A sequential
object system is an object system where every invocation is followed immediately
by a response, in every history. If O is an object system then acts(O) is the set
of actions appearing in any history of O .

We wish to reason about orders on the actions appearing in histories. In
general, each action may appear several times in a history. Strictly speaking, to
define appropriate orders on the actions, we would need to tag actions with some
identifying information, to obtain an event which is guaranteed to be unique in
the history. However, for the sake of simplicity, we assume that each action
only appears at most once in each history. For example, each thread may only
execute at most one write for each location-value pair. This restriction can be
lifted straightforwardly, at the cost of some notational complexity. 1

Given a history h, the real-time order of h, denoted !h is the strict total
order on actions such that a !h b if a occurs before b in h. The program

order, denoted
p
−!h , is the strict partial order on the actions of h such that

a
p
−!h b if thr(a) = thr(b) and a !h b. For example, in History 1 above,

L.releaset1
p
−!h writet1(F , false) and writet1(F , false) !h flush(F , false).

4 Independence and Causal Ordering

In this section, we develop a notion of causal ordering. Roughly speaking, an
action a is causally prior to an action b in a history h if a !h b and some
thread can observe that a and b occurred in that order. Therefore, we can safely
reorder events that are not causally ordered. Causal order itself is expressed in
terms of an independence relation between actions, which we now define. The

1 The full version of the paper, which can be found at arxiv.org/abs/1604.06734,
presents a model of histories in which events are unique.

notion of independence, and the idea of using independence to construct a causal
order has a long history. See [6] for a discussion in a related context.

Given an object system S , two actions a and b are S -independent if thr(a) 6=
thr(b) and for all histories g and h,

gha, bih 2 S , ghb, aih 2 S (3)

(Here, ha, bi denotes the sequence of length two containing a and then b.) Ac-
cording to this definition, TSO flushes are independent iff they are to distinct
locations. Again in TSO, read and write actions in different threads are always
independent, but two actions of the same thread never are. (Inter-thread com-
munication only occurs during flush or locked actions.)

We define the causal order over a history in terms of this independence re-
lation. We say that h is S -causally equivalent to h 0 if h 0 is obtained from h by
zero or more transpositions of adjacent, S -independent actions. Note that causal
equivalence is an equivalence relation. Actions a and b are S -causally ordered in
h, denoted a ,!S

h b if for all causally equivalent histories h 0, a !h0 b. This is a
transitive and acyclic relation, and therefore ,!S

h is a strict partial order.
For example, because the release operation does not contain any locked ac-

tions, Histories 1 and 2 on page 6 are causally equivalent. On the other hand,
the actions lockedt2(TAS ,F , true) and flush(F , false) are not independent, and
therefore lockedt2(TAS ,F , true) ,!h flush(F , false).

Note that independence, causal equivalence, and causal order are all defined
relative to a specific object system. However, we often elide the object system
parameter when it is obvious from context.

One key idea of this work is that a history is “correct” if it can be transformed
into a linearizable history in a way that is not observable to any thread. The
following lemma is our main tool for effecting this transformation. It says that a
history can be reordered to be consistent with any partial order that contains the
history’s causal ordering. The thrust of our compositionality condition, presented
in Section 6, is to provide sufficent conditions for the existence of a strict partial
order satisfying the hypotheses of this lemma. 2

Lemma 1. Let S be an object system, let h 2 S be a history, and let < be a
strict partial order on the events of h such that ,!S

h✓<. Then there exists an
h 0 causally equivalent to h such that for all events a, b in h (equivalently in h 0)
a < b implies a !h0 b. 2

We are now in a position to formally define causal linearizability. Essentially,
an object system is causally linearizable if all its histories have causally equivalent
linearizable histories. The key idea behind linearizablity is that each operation
should appear to take effect atomically, at some point between the operation’s
invocation an response. See [8] or [4] for a formal definition.

2 For reasons of space, this paper does not contain proofs of Lemma 1 or the other
results presented in this paper. The full version of the paper contains the proofs,
and can be found at arxiv.org/abs/1604.06734.

Definition 1 (Causal Linearizability). An object system S is causally lin-
earizable to a sequential object system T if for all h 2 S , h is S -causally equiv-
alent to some history h 0 such that h 0 ⌫ acts(T) \ Ext is linearizable to T .

Note that causal linearizability is defined in terms of histories that contain both
external and internal actions. Typically linearizability and related correctness
conditions are defined purely in terms of external actions. Here, we preserve the
internal actions of the object, because those internal actions carry the causal
order.

5 Observational Refinement and Causal Linearizability

In this section, we introduce a notion of client and a notion of composition
of a client with an object system (Definition 5). We then define a notion of
observational refinement for object systems. One object system S observationally
refines another object system T for a client C if the external behaviour of C

composed with S is included in the external behaviour of C composed with
T . These notions have a twofold purpose. First, they provide a framework in
which to show that causal linearizability is a reasonable correctness condition:
the composition of a client with a causally linearizable object system has only
the behaviours of the client composed with a corresponding linearizable object
system (Theorem 1). Second, these notions allow us to specify a constraint on
the behaviour of a client, such that the client can safely use a composition of
nonlinearizable objects.

A client is a prefix-closed set of histories, where each history contains only one
thread, and all actions are thread actions (so that the client contains no hidden
actions). Each client history represents a possible interaction of a client thread
with an object system. While each client history contains only one thread, the
client itself may contain histories of several threads. For example, consider the
histories that might be generated by a thread t1 repeatedly executing spinlock’s
try_acquire operation (Figure 1) until the lock is successfully acquired. The set
of histories generated in this way for every thread is a client. One such history is
L.try acqt1 , lockedt1(TAS ,F , false), respt1(L, true), where t1 successfully acquires
the lock on the first attempt. A history where the thread acquires the lock after
two attempts is

L.try acqt1 , lockedt1(TAS ,F , true), respt1(L, false),

L.try acqt1 , lockedt1(TAS ,F , false), respt1(L, true) (4)

Thus, the client histories contain the memory operations determined by the
implementations of the shared objects.

The composition of an object system O and client program C , denoted C [O]
is the object system defined as follows:

C [O] = {h : h ⌫ acts(O) 2 O ^ 8 t 2 T . h ⌫ t 2 C} (5)

So for all h 2 C [O], h is an interleaving of actions of the threads in C , and every
thread history of h is allowed by both the object system and the client program.

We need a notion of observational refinement relative to a given client.

Definition 2 (Observational Refinement). An object system S observation-
aly refines an object system T for a client C if for every h 2 C [S], there exists
some h 0 2 C [T] where h ⌫ Ext and h 0 ⌫ Ext are thread equivalent.

The following theorem shows that causal linearizability is sound with respect
to observational refinement. Because of this, a causally linearizable object can be
used instead of a linearizable object, while preserving correctness of the client’s
behaviour.

Theorem 1 (Causal Linearizability Implies Observational Refinement).
Let T be a sequential object system, and let T 0 be its set of linearizable histories.
Let S be an object system such that acts(T) \ Ext = acts(S) \ Ext . If C [S] is
causally linearizable to T , then S observationally refines T 0 for C .

6 Flush-based Memory and Operation-race Freedom

Causal linearizability is a general correctness condition, potentially applicable
in a range of contexts. Our goal is to apply it to objects running on weak mem-
ory models. To this end, we formally define a notion of flush-based memory.
Flush-based memory is a generalisation of TSO and some other memory mod-
els, including partial store order [1]. This section develops a proof technique for
causal linearizability of an object system running on flush-based memory, and
hence for observational refinement.

Our proof technique can be encapsulated in the following formula: Operation-
race freedom + Response-synchronized linearizabilty) Causal linearizability.
Response-synchronized linearizability, a weakening of linearizability, is a cor-
rectness property specialised for flush-based memory, and is adapted from TSO
linearizability studied in [5]. That work presents techniques for verifying TSO lin-
earizability and proofs that spinlock and seqlock are TSO linearizable. Theorem
2 below shows that a multi-object system composed of response-synchronized
linearizable objects is causally linearizable, under a constraint on the multi-
object system’s clients. This constraint is called operation-race freedom, given in
Definition 6.

A flush-based memory is an object system whose histories do not contain
invocations or responses (so its only actions are memory actions), together with
a thread-action function thr acth : Hidden ! Act , for each history h in the
memory model. Hidden actions model the propagation of writes and other op-
erations that modify shared memory. We use the thr act function to record the
operation that each hidden action propagates. Therefore, for each f 2 Hidden,
we require that thr acth(f) 62 Hidden. (f is short for flush.) For example, in
TSO, the hidden actions are the flushes, and thr acth associates with each flush
the write that created the buffer entry which is being flushed.

Flush based memories must satisfy a technical constraint. We require that
the effect of a flush be invisible to the thread on whose behalf the flush is being
performed. This captures the idea that flushes are responsible for propagating
the effect of operations from one thread to another, rather than affecting the
behaviour of the invoking thread.

Definition 3 (Local Flush Invisible). A memory model M is local flush
invisible if for all histories h 2 M , actions a, b, f in h such that a = thr act(f)

and a
p
−!h b !h f , b and f are M -independent.

For the rest of this section, fix a memory model M with thread action function
thr act . Furthermore, fix an object system S , such that for all h 2 S , h ⌫Mem 2
M . Thus, S is an object system that may contain both external and internal
actions.

Definition 4 (Response Synchronization). Given a history h, the response-
synchronization relation of h is

RS
−−!h=,!S

h [{(f , resph(thr acth(f))) : f 2 Hidden} (6)

A response-synchronized history is one where each flush appears before its

associated response. That is, h 2 S is response-synchronized if
RS
−−!h✓!h . An

object system is response-synchronized linearizable (or RS-linearizable) if all its
response synchronized histories are linearizable.

It is relatively easy to verify RS-linearizability. The idea is to construct a
model of the system such that response actions are not enabled until the op-
eration’s writes have been flushed, and then to prove that the implementation
is linearizable on this stronger model. See [5] for a careful development of the
technique.

Operation-race freedom requires that clients provide sufficent synchroniza-
tion to prevent any thread from observing that a flush has taken place after its
corresponding response action. Definition 5 formalizes which actions count as
synchronizing actions, for the purposes of operation-race freedom. Operation-
race freedom has one key property not shared by standard notions of data-race
freedom: invocations and responses can count as synchronizing actions. This has
two advantages. First, we can reason about the absence of races based on the
presence of synchronizing invocations and responses, rather than being based on
low-level memory operations that have synchronization properties. Second, im-
plementations of concurrent objects are free to employ racey techniques within
each operation.

Definition 5 (Synchronization Point). An action b is a synchronization

point in h 2 S , if for all actions a such that a
p
−!h b or a = b, all actions

c such that thr(c) 6= thr(a) and b ,!S
h c, and all hidden actions f such that

thr act(f) = a, not c ,!S
h f .

For example, in TSO, barrier operations are synchronization points. This is
because such operations ensure that the issuing thread’s write buffer is empty
before the barrier is executed. Therefore, any write before the barrier in program
order is flushed before the barrier executes, and so the write’s flush cannot be
after the barrier in causal order. For the same reason, locked operations are also
synchronization points in TSO.

Under this definition, invocations and responses may also be synchronization
points. An invocation is a synchronization point if its first memory action is
a synchronization point, and a response is a synchronization point if its last
memory action is a synchronization point. This is because any external action
is independent of any hidden action.

Definition 6 (Operation Race). An operation race (or o-race) in a history
h is a triple r0, i , r1, where r0, r1 are responses, i is an invocation such that

r0
p
−!h i , i ,!S

h r1, thr(r0) 6= thr(r1), obj (r0) = obj (r1), there is some hidden
action f such that r0 = resph(thr acth(f)), and there is no synchronization point
between r0 and i (inclusive) in program order.

We say that an object system is o-race free (ORF) if no history has an o-race.
Below we provide an example of an execution containing an o-race. This

example and the next use a datastructure called a seqlock, another concurrent
object optimised for use on TSO, and adapted from an implementation in the
Linux kernel [9]. Seqlock is an object providing read and write operations with
the usual semantics, except that several values can be read or written in one
operation. Seqlock has the restriction that there may only be one active write
operation at a time, but there may be any number of concurrent read operations
and reads may execute concurrently with a write. Seqlock does not use any
locking mechanism internally, instead relying on a counter to ensure that read
operations observe a consistent set of values. Seqlock does not use any locked
or barrier operations, and the read operation never writes to any location in
memory. Other details of the algorithm do not matter for our purposes. See [3]
for a complete description.

Consider the behaviour presented in Figure 3, adapted from [9]. Here, three
threads interact using an instance L of the spinlock object, and an instance S

of seqlock. In this example execution, the flush correponding to the write of
t2’s release operation is delayed until the end of the execution, but the flushes
associated with the writes of t1’s seqlock write operation occur immediately (note
that because the seqlock does not use any barrier or locked operations, this flush
could have occurred at any point after the write to memory). This history is
not sequentially consistent. If it were sequentially consistent, thread t2’s release
would need to take effect before thread t1’s write, which in turn would take
effect before thread t3’s read. However, this is inconsistent with the fact that
t3’s try-acquire apears to take effect before thread t2’s release. Because it is not
sequentially consistent, this execution would be impossible if the spinlock and
seqlock were both linearizable objects. Therefore, the composition of spinlock
and seqlock do not observationally refine a composition of linearizable objects,

T1 T2 T3

L.try acquire(),

returns true

L.release()

S.read(), returns (0,0)

S.write(1, 1)

S.read(), returns (1,1)

L.try acquire(),

returns false

Fig. 3. A racey execution of a spinlock L and a seqlock S. Operation-race freedom
prohibits the race between t2’s release and read, and t3’s try-acquire.

for any client capable of producing this behaviour. There is a race between the
response of t2’s release operation, the invocation of t2’s subsequent read, and the
release of t3’s try-acquire.

Theorem 2 below shows that an ORF multi-object system composed of
response-synchronized linearizable objects is causally linearizable, under one
technical assumption. We require that the objects themselves must not inter-
fere. That is, each action of each object must be independent of all potentially
adjacent actions of other objects. This constraint is implicit in the standard
composition result for linearizability, and is satisfied by any multi-object system
where each object uses regions of shared-memory disjoint from all the other ob-
jects. If a multi-object system does not satsify this property, then one object can
affect the behaviour of another object by modifying its representation. There-
fore, a composition of individually linearizable objects may not be linearizable
itself.

Definition 7 (Noninterfering Object System). An object system S is non-
interfering if for all histories h 2 S , and actions a, b adjacent in h, if thr(a) 6=
thr(b) and obj (a) 6= obj (b) then a and b are independent.

The following lemma shows that the response-synchronization relation is
acyclic for an operation-race free object system. This allows us to prove Theorem
2 by applying Lemma 1.

Lemma 2 (Acyclicity of the Response-synchronization Relation). If M
is a memory model and C [M] is a noninterfering, ORF object system, then for
all h 2 C [M], the response-synchronisation relation is acyclic.

We can now state our compositionality result. This result says that any client
composed with a set of RS-linearizable objects observationally refines the client
when composed with linearizable objects, so long as the client is ORF when
composed with the RS-linearizable objects. In this case, RS-linearizable objects
can be used instead of linearizable objects, while preserving correctness of the
client.

Theorem 2 (Composition). Let X be a set of objects and for each x 2 X ,
let Tx be a sequential object system. If M is a flush-based memory and C [M] is

an ORF noninterfering multi-object system such that for each x 2 X , C [M] ⌫ x
is response-synchronized linearizable to Tx , then C [M] is causally linearizable
to T = h : 8 x 2 X . h ⌫ acts(Tx) 2 Tx , and thus C [M] observationally refines
C [T].

7 Operation-race Freedom on TSO

We apply our technique to the well-known total store order (TSO) memory
model, a version of which is implemented by the ubiqitous x86 processor family.
Indeed, we closely follow the formalization of TSO for x86 given in [10]. We then
argue that TSO has the properties required of a flush-based memory, including
the local flush invisibility property. Finally, we demonstrate how to determine
whether a client is operation-race free.

We model TSO as a labelled transition system (LTS) T = hST ,AT , IT ,RT i.
Each state s 2 ST has the form hM ,Bi where

– M is the contents of shared memory, M : Loc ! Z, where Loc is the set of
locations.

– B records for each thread the contents of its buffer, which is a sequence of
location/value pairs. Thus, B : T ! (Loc ⇥ Z)⇤.

The initial state predicate IT says only that every buffer is empty (formally,
8 t 2 T . B(s) = hi). The transition relation RT is given in Figure 4. The
labels (or actions) in the set AT are as follows. For each thread t 2 T , location
x 2 Loc and value v , r 2 Z, there is a write action writet(x , v), a read action
readt(x , r), a flush action flush(t , x , v) and a barrier action barriert . Further,
there is a locked action lockt(f , x , v , r), for each f : Z ⇥ Z ! Z taken from an
appropriate list of read-modify-write (RMW) operations. Locked actions model
the atomic application of an RMW operation to shared memory. For example,
lockt(+, x , 1, r) models the atomic increment of the value at x , and r is the value
in location x immediately before the increment. The x86 instruction set supports
a range of other RMW operations, such as add and test-and-set.

The set of traces of this TSO LTS is prefix-closed and thus forms an object
system, which we denote by TSO . The system actions of TSO are just the flush
actions, so the TSO thr function returns ? for flush actions, and the thread
index of all other actions. The thr acth function associates with each flush f the
write that is being flushed. TSO has the flush invisibility property, of Definition
3, because a flush is independent of any action of the issuing thread, except for
the write that is being flushed (as proved in the full version of the paper).

We now explain by example how to check that a client is ORF. Our example
is the double-checked locking implementation presented in Figure 5. Double-
checked locking is a pattern for lazily initializing a shared object at most once in
any execution. The ensure_init procedure implements this pattern. Here, the
shared object is represented using a seqlock X. The ensure_init procedure first
reads the values in X, and completes immediately if X has already been initialised.
Otherwise, ensure_init acquires a spinlock L and then checks again whether X

(last write(B(t), x) = ? ^M (x) = r) _ last write(B(t), x) = r

(M ,B)
readt (x ,r)
−−−−−−! (M ,B)

Read

b0 = B(t)h(l , v)i

(M ,B)
writet (x ,v)
−−−−−−−! (M ,B ⊕ {t 7! b0})

Write

B(t) = h(l , v)ib0

(M ,B)
flush(t,x ,v)
−−−−−−−! (M ⊕ {l 7! v},B ⊕ {t 7! b0})

Flush

B(t) = hi

(M ,B)
barriert−−−−−! (M ,B)

Barrier

B(t) = hi r = M (x)

(M ,B)
lockt (f ,x ,v,r)
−−−−−−−−! (M ⊕ {x 7! f (c, v)},B)

Locked -RMW

Fig. 4. Transition relation of the TSO memory model. If b is a write buffer,
latest write(b, x) returns the value of the last write to x in b, if it exists, or ? otherwise.

val ensure init() {

1. (v0, v1) = X.read();

2. if (v0 == null) {

3. L.acquire();

4. (v0, v1) = X.read();

5. if (v0 == null) {

6. (v0, v1) = initial value;

7. X.write(v0, v1);

8. Barrier();

9. }

10. L.release();

11. }

12. return (v0, v1);

}

Fig. 5. Pseudocode for a client executing a double checked locking protocol.

has already been initialised (by some concurrent thread), again completing if the
initialisation has alread occurred. Otherwise, ensure_init initialises the object,
executes a barrier, releases the lock and returns.

To show that this code is ORF, we must employ knowledge about which
invocations and responses of our objects are synchronization points, and which
operations do not execute write actions. As we described in the discussion af-
ter Definition 5, in TSO all barriers and locked operations are synchronization
points. Furthermore, because the try-acquire’s only memory operation is a locked
operation, both the invocation and response of try-acquire are synchronization
points. Finally, the read operation of seqlock can never execute a write action.

To show that ensure_init has no o-races, we must consider the relationship
between each operation, and the next operation in program order. For each case,
we must show that no o-race is possible.

– The read on Line 1 never executes a write, so its response cannot form an
o-race with the subsequent invocation.

– The response of the acquire on Line 3 is a synchronization point, so it cannot
form an o-race with the subsequent read.

– As with the read on Line 1, the read on Line 4 never executes a write
operation, and so its response cannot form an o-race.

– The write on Line 7 is followed by the barrier on Line 8, so this cannot form
an o-race.

Note that during this argument, we only need to consider whether or not the
invocation or response of each operation is a synchronization point, or whether
the operation never executes write actions. We do not require any further infor-
mation about the operation’s implementation. Again, this means that operations
may themselves be racey.

8 Concluding Remarks

Although the details of the paper are fairly technical the essence of the contri-
bution is simple: how can we use non-linearizable algorithms safely. The context
that we work in here is that of weak memory models, where TSO provides an
important example. This work should also be applicable to other flush-based
memory models. Such an extension is work for the future.

To enable our multi-object systems to be composed safely we introduced a
notion of operation-race freedom. However, what about non-operation-race free
programs? Our formulation provides no composability guaranteess for a family
of objects where even one of those objects is not response-synchronized. As
indicated in Section 6, this is a less severe restriction than other proposals based
on some notion of data race freedom (because of its modularity). However, it
seems reasonable to expect that some compositionality result would hold for the
subset of response-synchronized objects. Again this is left as future work.

References

1. Sarita V Adve and Kourosh Gharachorloo. Shared memory consistency models: a
tutorial. Computer, 29(12):66–76, Dec 1996.

2. Jade Alglave, Anthony Fox, Samin Ishtiaq, Magnus O Myreen, Susmit Sarkar,
Peter Sewell, and Francesco Zappa Nardelli. The Semantics of Power and ARM
Multiprocessor Machine Code. In L. Petersen and M.M.T. Chakravarty, editors,
DAMP ’09, pages 13–24. ACM, 2008.

3. Sebastian Burckhardt, Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang.
Concurrent library correctness on the TSO memory model. In Helmut Seidl, editor,
Programming Languages and Systems, volume 7211 of Lecture Notes in Computer

Science, pages 87–107. Springer Berlin Heidelberg, 2012.
4. John Derrick, Gerhard Schellhorn, and Heike Wehrheim. Mechanically verified

proof obligations for linearizability. ACM Trans. Program. Lang. Syst., 33(1):4:1–
4:43, January 2011.

5. John Derrick, Graeme Smith, and Brijesh Dongol. Verifying Linearizability on
TSO Architectures. In Elvira Albert and Emil Sekerinski, editors, Integrated For-

mal Methods, volume 8739 of Lecture Notes in Computer Science, pages 341–356.
Springer International Publishing, 2014.

6. Ivana FilipoviÊ, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang. Abstraction
for concurrent objects. Theoretical Computer Science, 411(51-52):4379 – 4398,
2010.

7. Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang. Show no weakness:
Sequentially consistent specifications of TSO libraries. In Distributed Computing,
pages 31–45. Springer, 2012.

8. Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July
1990.

9. Scott Owens. Reasoning about the Implementation of Concurrency Abstractions
on x86-TSO. In Theo D’Hondt, editor, ECOOP 2010, volume 6183 of Lecture

Notes in Computer Science, pages 478–503. Springer Berlin Heidelberg, 2010.
10. Scott Owens, Susmit Sarkar, and Peter Sewell. A Better x86 Memory Model: x86-

TSO. In Stefan Berghofer, Tobias Nipkow, Christian Urban, and Makarius Wenzel,
editors, Theorem Proving in Higher Order Logics, volume 5674 of Lecture Notes in

Computer Science, pages 391–407. Springer Berlin Heidelberg, 2009.

