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1  Introduction

While there is very strong evidence that climate change 
in the past decades has been dominated by human effects 
on the environment, natural factors still exert a significant 
influence on climate variations (IPCC 2013). The respec-
tive roles of various natural influences, their interplay 
and their expected variation in the future is, however, still 
poorly understood.

Global climate simulations have by now reached a 
degree of development where they are able to model many 
of these effects; however, there is still a very significant 
diversity between the outcomes of various simulations 
depending on model assumptions and the effects consid-
ered. The high complexity of these simulations often also 
makes their results hard to interpret from a physical point of 
view. (For a detailed discussion see IPCC 2013, Chapter 9).

As a result, at the opposite end of the spectrum of mod-
els, taking the simplest possible approach of a linear mul-
tiregression analysis of the empirical data has become 
increasingly popular in recent years. In such studies, the 
time series of a global indicator of climate change y, most 
commonly the mean global surface temperature (GST) or 
the mean sea surface temperature (SST) is fitted by a linear 
combination of of number of parameters xi:

(1)
y(t) = x0 + c1x1(t −∆t1)+ c2x2(t −∆t2)

+ · · · + cNxN (t −∆tN )

Abstract  Results from a multiregression analysis of the 
global and sea surface temperature anomalies for the period 
1950–2011 are presented where among the independent 
variables multidecade oscillation signals over various oce-
anic areas are included. These indices are defined in anal-
ogy with the Atlantic Multidecadal Oscillation (AMO) 
index. Unexpectedly we find that a strong multidecade 
oscillation signal echoing the AMO is also present in the 
Western and Northwestern Pacific region. The results 
indicate that naturally induced climate variations seem 
to be dominated by two internal variability modes of the 
ocean–atmosphere system: AMO and El Niño Southern 
Oscillation, with a marked geographical dichotomy in 
their respective areas of dominance. As the AMO index is 
directly derived from SST data the finding that the AMO 
signal is present on a large fraction of the global oceanic 
surface casts doubt on its use as an independent explanatory 
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Here, t is time and the ci’s and ∆ti’s are fitting parameters. 
The set of xi considered are usually indices of human and nat-
ural influences on the climate system, such as greenhouse gas 
(GHG) emission, tropospheric and stratospheric aerosol input 
(these are predominantly of anthropogenic and natural origin, 
respectively), solar radiative forcing as well as indices of the 
most important internal oscillations of the atmosphere–ocean 
system such as the El Niño Southern Oscillation (ENSO).

Such multiregression analyses rely on two assumptions 
that inherently limit the validity of their conclusions. The 
first is the assumption of linearity which can be reasona-
bly assumed to hold as long as the input paramaters vary 
within a certain limited range. How wide that range is and 
what will be the response of the climate system beyond the 
range is an issue that can be only be examined in physical 
models of the climate systems such as global simulations. 
The second, although often implicit, critical assumption of 
multiregression analyses is that the set of xi’s is complete 
and non-redundant, i.e. that the input parameters are inde-
pendent and include all physically important factors influ-
encing climate change. Neglecting an important factor will 
result in assigning an unduly high explanatory power to the 
factors considered, while a correlation between two xi time 
series (whether it is a chance correlation or the result of a 
physical link between the effects) will result in aliasing, i.e. 
an indecisive situation with a strong cross-talk between the 
corresponding ci coefficients.

Perhaps the most influential of these studies was the 
work of (Lean and Rind 2008, 2009). The input parameters 
considered were monthly values of the multivariate ENSO 
index, total solar irradiance, stratospheric aerosol concen-
tration, and a net anthropogenic forcing parameter. The 
time lags ∆ti were chosen to maximize the explained vari-
ance: this generally resulted in lags of a few months except 
in the case of anthropogenic forcing where an optimal time 
lag of 10  years was found. The regression was found to 
explain 76  % of the variance in the CRU1 monthly GST 
data from 1889 to 2006.

In a more recent extension of this approach, Chylek 
et al. (2014) include the Atlantic Multidecadal Oscillation 
(AMO) index among the explanatory variables. Further dif-
ferences in their analysis as compared to Lean and Rind 
include the use of annual, rather than monthly data and 
another GST time series (GISS2 vs. CRU). Even without 
the introduction of time lags, the factors considered by 
Lean and Rind were found to explain 89 % of the variance 
in the mean annual GST series for the period considered 
(1900–2012), the higher explanatory power being presum-
ably due to the use of yearly averages. Adding the AMO 

1  CRU = Climate Research Unit (University of East Anglia).
2  GISS = NASA Goddard Institute for Space Studies.

index to the natural factors influencing climate was found 
to increase the explained variance to 94 %. A most surpris-
ing finding, however, was that a combination of greenhouse 
gas (GHG) emission and AMO alone explains 93 % of the 
variance—nearly as much as all the factors combined! (To 
place this in context we note that GHG alone explains 
∼81% of the variance).

The fact that a high explanatory power can be achieved 
in linear multiregression models employing quite different 
sets of explanatory variables suggests that a strong alias-
ing may be present either between the various explanatory 
variables, or between some of the explanatory variables and 
the dependent variable (the mean GST). The objective of 
the present paper is to examine to what extent such aliasing 
may influence the curious results of Chylek et al.

The structure of the paper is the following. In Sect.  2 
we present and discuss the data used. Section 3 focuses on 
the issue on potential aliasing between the AMO index and 
the GST time series, while in Sect. 4 we address aliasing 
between the various natural factors determining climate. 
Section 5 concludes the paper.

2 � Data analysis

In contrast to the previous studies, in most of the present 
work we restrict the analysis to the time period 1950–2011. 
This is motivated by the following considerations of homo-
geneity of the data set.

–– The ENSO index is directly available for this period 
only, earlier values being reconstructions based on tem-
perature data alone.

–– The usual definition of the AMO index involves the sub-
traction of a linear trend purported to represent anthro-
pogenic influence—this assumed linearity of anthropo-
genic effects is also questionable over a longer base line.

–– All standard GST anomaly (GSTA) data sets rely heav-
ily on sea surface temperatures. In the period prior to 
1950 major bias corrections are applied to these data 
the details of which are a source of added uncertainty in 
the results (Smith and Reynolds 2002; Thompson et al. 
2008; Hansen et al. 2010).

–– Recently there has been some disagreement regarding 
a possible temporal inhomogeneity in the calibration of 
the sunspot number series upon which the solar irradi-
ance reconstruction is based (Clette et  al. 2014). This 
issue also mainly affects data before about 1950. A 
caveat to be noted in connection with this temporal limi-
tation is that due to a more limited long term variation 
of solar activity levels during this period, our approach 
may result in a lower weight attributed to solar irradia-
tion variations in natural climate variations.
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URLs of our data sources are listed in Table 1.
For GSTA we use the data available at the NASA GISS 

web site (Hansen et al. 2010) while SST data were down-
loaded from the home page of NOAA (Smith and Reyn-
olds 2004). Regression analyses of GST and SST data yield 
very similar results. In this paper, after analysing GST data 
to confirm some previous results we will focus on the anal-
ysis of the SST data set.

Radiative forcing by anthropogenic aerosols, greenhouse 
gases and aerosols froms volcanic eruptions were taken 
from (Hansen et al. 2007, 2011). Results using greenhouse 
gas (GHG) data alone or all anthropogenic forcings proved 
to be virtually indistinguishable; in addition, a strong alias-
ing exists between these effects, so in what follows anthro-
pogenic forcings will be routinely often represented by 
GHG alone.

Instead of using a model dependent reconstruction of 
solar radiative forcing we characterise solar activity vari-
ations simply by the International Sunspot Number series 
as given by the Royal Observatory of Belgium (unrevised 
values).

Annual values of the ENSO and NAO indices were 
obtained from the NOAA data base (Wolter and Timlin 
1993, 1998; Jones et al. 1997).

Values of the AMO index are also available from NOAA 
but in most of our analysis here we calculated this index 
directly from the SST grids as described in (Enfield et al. 
2001) but without applying the smoothing on the data.

3 � AMO versus GSTA

In the present paper we extend previous multiregression 
analyses to address a number of questions raised in earlier 
work. First, there may be an issue regarding the validity of 
the use of the AMO index as an independent explanatory 
valuable, given that the definition of this index is based on 
the mean sea surface temperature over a significant fraction 
of the globe (i.e., the N-Atlantic basin). It is to some extent 
natural to expect that, upon linear detrending, these data 
will reflect naturally induced global temperature variations.

As a first step we made an analysis closely following 
that of (Chylek et  al. 2014), performing a linear regres-
sion in order to explain the temporal evolution of the GSTA 
with different subsets of the potential explanatory variables 
(anthropogenic, natural, AMO—cf. caption of Fig. 1).

The resulting values of the explained variance R2 as well 
as the adjusted variance R2

adj, taking into account the num-
ber of variables included to the regression, are summarized 
in Table  2. Overall, our numbers are in good agreement 
with the results shown in Table 1 of Chylek et al. (2014). 
Note that we further test whether the introduction of the 
North Atlantic Oscillation (NAO) Index as an explanatory 
variable improves the regressions but, as apparent from the 
table, the results were negative.

In order to check whether the good explanatory power 
of AMO is simply a consequence of its definition based on 
mean temperature anomalies on a non-negligible part of the 
global ocean surface, we set out to investigate whether the 
N-Atlantic region is of any special interest from this point 
of view.

For this purpose, we arbitrarily assign other eight 
regions of comparable size on the global ocean (see Fig. 1). 
For each region we determine a “multidecade oscillation” 
(MO) index using the same procedure as for the AMO (but 
no smoothing is applied to the annual values). With each 
of these MO data sets, combined with the GHG data, we 

Table 1   URLs of data sources
GSTA http://data.giss.nasa.gov/gistemp/

SST http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html

GHG + aerosols http://data.giss.nasa.gov/modelforce/Fe.1880-2011.txt

Sunspot numbers (unrevised) http://www.sidc.be/silso/

ENSO http://www.esrl.noaa.gov/psd/enso/mei/

NAO http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/NAO/

AMO http://www.esrl.noaa.gov/psd/data/timeseries/AMO/

Table 2   Multilingual regressions applied to GST anomaly using 
subsets of the potential explanatory variables, including natural and 
anthropogenic effects 

R2

adj values in bold letters are those that are also listed in Table 1 of 
Chylek et al. (2014) (see the results in graphic form in Section S.1, 
Electronic Supplementary Material)

 “Natural” = ENSO + solar and volcanic forcing. AMO index values 
here are from NOAA

 “Anthropogenic” = green house gases (GHG) + tropospheric aero-
sols (AER), as given by Hansen et al. (2007, 2011)

Explanatory variables R2 R2

adj

Anthropogenic 0.816 0.810

Natural + anthropogenic 0.888 0.878

Natural + anthropogenic + AMO 0.956 0.952

Natural + anthropogenic + NAO 0.889 0.8768

GHG + AMO 0.919 0.917

GHG + NAO 0.815 0.809

http://data.giss.nasa.gov/gistemp/
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html
http://data.giss.nasa.gov/modelforce/Fe.1880-2011.txt
http://www.sidc.be/silso/
http://www.esrl.noaa.gov/psd/enso/mei/
http://www.esrl.noaa.gov/psd/gcos%5fwgsp/Timeseries/NAO/
http://www.esrl.noaa.gov/psd/data/timeseries/AMO/


1886 M. Nagy et al.

1 3

perform a linear regression to the GSTA record. Results are 
shown in Table 3. (The first line of the table refers to the 
AMO index calculated by us from the SST data.)

It is clear that significant differences are present between 
the explanatory power of the MO indices of different 
regions with respect to the GSTA. For some regions the 
value of R2

adj hardly differs from its counterpart obtained 
with GHG alone, while for others the inclusion of the MO 
index in the analysis leads to a spectacular improvement. 
The N-Atlantic region (and the mid-Atlantic region over-
lapping with it) yields the highest explained variance of 
all; yet, interestingly, it is almost equalled by the Western 
Pacific region (and, to some extent, the NW-Pacific region 
overlapping with it).

Indeed, the overall parallelism in the MO indices calcu-
lated for these regions is borne out in Fig. 2. The character-
istic 50–60 year cyclicity of AMO is very clearly reflected 
in the Western Pacific region, albeit with a higher added 
“noise” in the form of short-term fluctuations, and also in 
a smoother but slightly more distorted form in the NW-
Pacific. In the first part of the period there is a hint of some 
phase lag between the Atlantic and Pacific signals but in 
view of the smoothing applied the only certain statement is 
that any phase lag is well below the width of the smoothing 
window (i.e. no more than a few years).

Other areas of the global ocean such as the Indian 
Ocean, the Eastern Pacific or the Southern Atlantic, on the 
other hand, do not show such a clear reflection of the AMO 
signal, nor is their explanatory power with regard to the 
GSTA even nearly as high.

In view of the relative shortness of the time period con-
sidered (1950–2011) the robustness of our findings may 

be in question. In order to address this, ignoring the issues 
related to the use of pre-1950 data listed in Sect. 2, in Fig. 3 
we plot smoothed MO indices for the relevant regions start-
ing from 1920. The plot confirms that the parallel variation 
of smoothed detrended temperature anomalies between the 
N-Atlantic and W-Pacific regions was present also in the 
first half of the 20th century, lending support to the robust-
ness of the result.

The question naturally arises: what is the origin of this 
surprising parallelism between two distant regions of the 
globe? One possibility may be that the AMO is a global 
climate phenomenon that is for some reason more strongly 
imprinted in the regional signal in some areas than in oth-
ers (e.g. due to being suppressed in ENSO-affected areas). 
Alternatively, it is also possible that we are dealing with a 
real teleconnection effect. The physical mechanism of this 
teleconnection is an open question. One possibility is an 
atmospheric teleconnection across the Eurasian land mass: 
the prevailing westerlies may carry the AMO-induced 
atmospheric anomalies (SAT and moisture) to the Pacific, 
where the effect is attenuated from West to East. The other 
possibility of a link via the global thermophilicoceanic cir-
culation is even more tentative as it would imply a connec-
tion, possibly by advection of deep/bottom water, across 
the Southern hemisphere. In either case, given that the 
other main manifestation of this oscillatory phenomenon is 
in the Western Pacific region, it may be more aptly called 
the “Atlanto-Pacific Multidimensional Oscillation”.

The mechanism driving the multidecade variation is still 
open to question; here we only note that internal variations 
in ocean basins on a time scale of decades naturally arise 
from aline oscillations [(cf. Huang (2010), Ch.5.].

Fig. 1   Sea surface regions defined for comparison with the North Atlantic region, as outlined for the usual definition of AMO index (Enfield 
et al. 2001)



1887The Atlanto-Pacific multidecade oscillation and its imprint on the global temperature record

1 3

4 � AMO versus other natural factors

The results in Table  1 confirm the surprising finding by 
Chylek et al. (2014) that anthropogenic forcing combined 

with the AMO has the potential to explain a very high frac-
tion of the observed variance in GSTA, while adding all the 
other natural forcings only leads to a slight further improve-
ment in the fit. What makes this result rather puzzling is 

Fig. 2   MO indices as a function of time for selected sea surface regions individually (top) and overplotted (bottom), after smoothing by an 
11-year sliding window
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that these other natural factors, combined with the anthro-
pogenic forcing could also explain a rather high proportion 
(88 %) of the variance even without the inclusion of AMO. 
Therefore, if the AMO were indeed the predominant natu-
ral factor influencing climate, this high explanatory power 
of other natural influences would remain unexplained or 
should be attributed to a chance coincidence.

Note, however, that from Table  1 it is also seen that 
anthropogenic effects alone can explain 81 % of the vari-
ance of the temperature anomaly. External forcing and the 
ENSO only add 7 % to this while the AMO adds approxi-
mately 10 %. AMO and other natural effects combined add 
14 % instead of the 17 % that would be expected if they 
were uncorrelated. The correlation between AMO and other 
natural factors that is needed to explain this discrepancy is 
then not so excessive as it might appear at first sight.

To independently check this inference, we have per-
formed a regression analysis with a detrended MO index as 
dependent variable and other natural factors as explanatory 
variables. The results are shown in Table 4. It is apparent 
that in the regions displaying a marked AMO signal natural 
factors explain typically about 20 % of the variance in the 
MO index, in agreement with our arguments above.

The four regions found to display a strong AMO signal 
in the previous section together cover a significant fraction 
of the total sea surface area inside the −60 < φ < +60 lat-
itude zone. This prompts the question whether the strong 
imprint of AMO on the global mean SST signal (and, by 
inference, on the GST signal) is simply due to its predom-
inance in a significant fraction of the base area or else it 
influences climate on a more global scale.

In order to clarify this issue we consider the mean 
sea surface temperature anomaly in the part of the 
−60 < φ < +60 latitude zone not covered by the four 
regions displaying a strong AMO signal (see Fig. 4). The 
results of a multiregression analysis of this mean anomaly 
series are shown in Table 5, and an example of regression 

Fig. 3   Same as Fig. 2 (bottom) for the base period 1920–2011

Table 3   Results of linear regression of Global Surface Temperature 
Anomalies when the explanatory variables employed were the GHG 
and MO indices

Here, the MO index was defined for different sea surface areas shown 
in Fig.  1. In this table AMO refers to the index that we calculated 
from the SST data. The last column shows the correlation coeffi-
cient between the downloaded AMO data series and MO indices. In 
the first line the correlation coefficient of downloaded and calculated 
AMO index is shown (see the results in graphic form in Section S.2, 
Electronic Supplementary Material)

Sea surface area R2 R2

adj
rAMO

Atlantic Ocean, North (AMO) 0.923 0.920 0.970

Atlantic Ocean, Middle 0.914 0.911 0.604

Atlantic Ocean, South 0.812 0.805 –0.295

Indian Ocean 0.9226 0.846 0.202

Pacific Ocean, Middle West 0.912 0.909 0.664

Pacific Ocean, North East 0.840 0.833 0.0838

Pacific Ocean, North West 0.880 0.875 0.657

Pacific Ocean, South East 0.839 0.834 0.089

Pacific Ocean, South West 0.862 0.857 0.428

Whole Ocean Surface (SST) 0.971 0.970 0.646
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on Fig. 5. It is clearly seen that the explanatory power of 
AMO with respect to the mean SST anomaly series is dras-
tically reduced if the main AMO regions are omitted.

5 � Conclusion

In this paper we have presented results from a series of lin-
ear multiregression analyses of global and regional SST.

A most surprising and unexpected find was the very 
strong appearance of the AMO signal in the detrended SST 
anomaly time series over the Western tropical pacific and 
over the NW Pacific. To the best of our knowledge, such 
a clear indication of a strong AMO imprint in this oceanic 
region (or indeed any oceanic region far from the North 
Atlantic) has not been demonstrated before. Hints of an in-
phase variation of temperature variations in the NW-Pacific 
and N-Atlantic can be seen in both proxy reconstructions 
and coupled atmosphere-ocean models (Delworth and 
Mann 2000). The definitions of the so-called Pacific Dec-
ade Oscillation (POD) and Interdepartmental Pacific Oscil-
lation (POI) involve much larger areas over which the the 
AMO signal becomes inter tangled with the long-term 
residual of ENSO and other effects. Principal component 
analysis (PA) and other similar methods applied to the 
patio-temporal distribution of SST data have in fact already 
demonstrated the presence of a component related to AMO 
with a rather high amplitude in the NW Pacific (McCabe 
and Palecki 2006; d’Orgeville and Peltier 2007), while the 
other dominant component is a decade-scale ENSO resid-
ual. Our results are in agreement with these earlier findings 

Table 4   Results of linear regression when the dependent variable is 
one of the different MO indices and explanatory variables are the nat-
ural factors alone or combined with anthropogenic forcing

See the results of regression in the case of both natural and anthropo-
genic effects in graphic form in Section S.3, Electronic Supplemen-
tary Material

Sea surface area Natural effects 
only

Natural and 
anthropogenic 
effects

R2 R2

adj R2 R2

adj

Atlantic Ocean, North (AMO) 0.229 0.189 0.500 0.455

Atlantic Ocean, Middle 0.200 0.158 0.742 0.719

Atlantic Ocean, South 0.076 0.028 0.793 0.775

Indian Ocean 0.488 0.198 0.933 0.859

Pacific Ocean, Middle West 0.127 0.082 0.660 0.629

Pacific Ocean, North East 0.591 0.570 0.648 0.616

Pacific Ocean, North West 0.223 0.183 0.555 0.516

Pacific Ocean, South East 0.766 0.754 0.909 0.901

Pacific Ocean, South West 0.249 0.210 0.792 0.773

Whole Ocean Surface (SST) 0.497 0.471 0.911 0.903

Table 5   Results from multilinear regressions to SST anomalies cal-
culated over regions unaffected by the AMO

Explanatory variables R2 R2

adj

Anthropogenic 0.819 0.810

Natural + anthropogenic 0.965 0.961

Natural + GHG + AMO 0.961 0.957

GHG + AMO 0.771 0.763

GHG + ENSO 0.942 0.941

Fig. 4   A snapshot of the 
distribution of the MO index 
defined over the sea surface area 
not affected by the AMO signal. 
(Blue-to-red scale with arbitrary 
normalization)
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but also display a surprisingly sharp geographical dichot-
omy between oceanic areas affected by one or the other 
principal component. These areas predominantly (though 
not exclusively) lie on the Northern and Southern hemi-
spheres for the AMO and ENSO components, respectively, 
supporting also the use of the term “Northern Multidimen-
sional Oscillation” as recently suggested by Steinman et al. 
(2015).

Aliasing between the AMO signal and other natural fac-
tors is found to be relatively weak (∼20%). On the other 
hand, the fact that a strong and evident AMO signal is dis-
played in detrended SST anomalies over a significant frac-
tion of the global oceanic surface implies a strong aliasing 
link between the AMO index and the global mean SST 
anomaly.

Indeed, if the AMO signal, defined on the basis of SST 
values over a larger area is present over a significant frac-
tion of the ocean surface, this casts doubt on the use of 
AMO as an explanatory factor in multiregression analysis. 
“Explaining” global mean temperature variations by the 
mean temperature variations on a large fraction of the globe 
is a rather tautological exercise. It may seem that AMO is 
part of the problem rather than part of the solution. One 
may even argue that this is also true for ENSO to some 
extent, even though SST data are only one of six inputs that 
are combined to form this particular index.

Without delving too deeply into the philosophical issue 
of the meaning of “explanatory variable” we may suggest 
that a sensible approach is to consider a statistically sig-
nificant correlation “explanatory” when the physical link 
is at least not implausible while the possible alternatives 
(an inverse cause-effect relationship or the two time series 
being due to a common cause) are a priori much less plau-
sible; at the same time the two data sets are truly independ-
ent. These criteria are satisfied for external climate forc-
ings such as TS, stratospheric aerosols or anthropogenic 
forcings (note that aliasing between these effects may still 
be an issue). For internal variabilities independence is dif-
ficult to ascertain: even when an index (e.g. the SOU) is 
based on data that do not include SST it can be argued that 
it is just another manifestation of the same weather pattern 
that is also reflected in [a subset of] the SST data analysed. 
In short of a definitive answer to this conundrum it is still 
important to stress the importance of choosing an internal 
variability index that has as little direct dependence on the 
data set being analysed as possible.

To summarize our findings, naturally induced climate 
variations seem to be dominated by two dominant internal 
variablility modes of the ocean–atmosphere system, with a 
marked geographical dichotomy in their respective areas of 
dominance. The influence of external forcings is non-negli-
gible but secondary to these internal variabilities. However, 

Fig. 5   Time series of MO index, according to Fig. 4—blue line. Purple dashed line indicates the result of linear regression, when the explana-
tory variables are the natural and anthropogenic effects
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for a proper assessment of the influence of forcings a multi-
regression analysis where internal variabilities, esp. AMO, 
are treated as explanatory variables on an equal footing 
with the forcings seems to be inappropriate.
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