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Abstract: How to obtain a good convergence and well-spread optimal Pareto front is still a major challenge for 

most meta-heuristic multi-objective optimization (MOO) methods. In this paper, a novel hybrid teaching 

learning based particle swarm optimization (HTL-PSO) with circular crowded sorting (CCS), named HTL-

MOPSO, is proposed for solving MOO problems. Specifically, the new HTL-MOPSO combines the canonical 

PSO search with a teaching-learning-based optimization (TLBO) algorithm in order to improve search ability 

and speed up search procedure. Also, CCS technique is developed to improve the diversity and spread of 

solutions when truncating the external elitism archive. The performance of HTL-MOPSO algorithm was tested 

on several well-known benchmarks problems and compared with other state-of-the-art MOO algorithms in 

respect of convergence and spread of final solutions to the true Pareto front. Also, the individual contributions 

made by the strategies of HTL-PSO and CCS are analyzed. Experimental results validate the effectiveness of 

HTL-MOPSO and demonstrate its superior ability to find solutions of better spread and diversity, while assuring 

a good convergence.  

 
Keywords: Multi-objective optimization; particle swarm optimization; teaching learning based optimization; 

crowded sorting.  

 

1 Introduction 

Multi-objective optimization (MOO) problem is presented in a great variety of real-life optimization 

problems with more than one conflict objectives. The main goal of MOO is to achieve a set of optimal solutions 

that are: 1) as close as possible to the true Pareto front (PF), 2) have good diversity, 3) as well as to spread them 

evenly. In the past decades, evolutionary algorithms (EAs)[1][2][3][4] have been empirically shown to be 

suitable and efficient in addressing MOO problems due to their capacity to obtain a series of Pareto-optimal 

solution approximations in a single run [1]. Subsequently, various EA algorithms for MOO algorithms [6] [7] 

[8], have been developed and achieved great success.  

More recently, Particle Swarm Optimization (PSO), another popular swarm intelligence optimization 

technique has been widely applied to optimization problems [9][10][11]. Benefits including simple 

implementation, low computational cost and high efficiency, render PSO effectively in dealing with single 

objective optimization compared with EAs, and have led to adaptation for tackling MOO problems [12] [13][14] 

[15]. However, there are problems to be addressed when PSO is extended to multi-objective particle swarm 

optimization (MOPSO)[16]. The high selection pressure presented in PSO often sacrifices diversity of 

population during the evolution process [17]and this can lead to more serious undesirable premature 

convergence or local optima in MOPSO.  

To cope up with MOO problems, many strategies have been extensively developed in MOPSO from different 

respects. In the first category, the authors make use of the dynamic/flexible mechanisms of parameter selection 

instead of constant parameters in MOPSO to balance the convergence and diversity [15][18]. In [15] the values 

of inertia weight w and acceleration coefficient c1 decrease linearly while acceleration coefficient c2 increase 

linearly to balance the exploitation and exploration. But these kinds of improvements do not depart from its 

roots and still keep the original property of PSO. In the second category, the multiple swarm concepts are 

incorporated into MOPSO to effectively enhance the exploration capacity and deal with multimodal problem 
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[19][20][21]. In [20], the number of swarms is dynamically adjusted to help regulating the computational 

resources at different stages while multiple swarms are encouraged to explore different regions to preserve 

diversity. However, MOPSO variants with multiple populations need to establish communication channel 

between subwarms which promote the population diversity with the complicated algorithms structures. Also, the 

selection of leader for each particle in population provides great benefits to control convergence and promote 

diversity of solutions [22][23][24][25]. The external elitism archive is often used to store the nondominated 

solutions where global best (gbest) is chosen from.  Random selection is the simplest and least expensive method 

but usually lacks convergence.  The popular crowding distance technique can be applied not only to update the 

archive but also to select the gbest. But the extreme nondominated solutions with infinite value of crowding 

distance are given the highest priority to be gbests, which inadvertently decreases diversity in the swarm. At the 

last category, it is known that hybridizing PSO with other local search technique is an effective mechanism to 

balance the global and local search ability. In MOLS-MOPSO [26], multi-objective dichotomy line search 

(MOLS) strategy is activated periodically to enhance local search, improving convergence to the PF. Luo et al. 

in [27] presents a hybrid multi-objective optimization approach named MO-PSO-EDA. Based on the probability 

model, each sub-population reproduces new offspring the particle swarm optimization (PSO) algorithm and the 

estimation of distribution algorithm (EDA) to solve complex problem. Izuia et al. [28] proposes a new multi-

objective optimization where gradient-based optimization method is combined with MOPSO to alleviate 

constraint-handling difficulties. A new memetic algorithm for multi-objective optimization is proposed in [29], 

which combines the global search ability of particle swarm optimization with a synchronous local search 

heuristic for directed local fine-tuning. The article [30] presents a new hybrid optimizer in which an innovative 

optimal particles local search strategy on basis of bound optimization by quadratic approximation algorithm and 

exterior penalty function method is integrated into MOPSO to improve the convergence performance of PSO, 

and preserve diversity of non-dominated set. However, many hybrids MOPSO with general-purposed local 

search still show low convergence precision and undesirable diversity. 

Although above MOPSO works have shown a great improvement to search ability, there are still some 

remaining problems which need to be addressed. The particles in current PSO lack the sufficient information 

exchange within population. Most of them tend to avoid the premature at the cost of decreasing the convergence 

speed. They are poor when dealing with multi-frontal problems. Thus, it is difficult for them to simultaneously 

capture satisfactory optimal solutions with respect to MOO�s good convergence and well-spread goals. The 

motivation behind this work is to obtain better convergence and spread PFs lies in that: 1) based on canonical 

PSO evolution process guided by personal best and gbest, may we use more population information and give 

more emphasis on the information exchange between all particles; 2) may the selection operator maintain more 

sufficient diversity to well spread the obtained solution along the whole PF? Inspired by learning-based 

optimization algorithm (TLBO) [31] [32], the average value (the center) of population can be used to push 

whole population to better search space. Also, the solution can learn from others rather than non-dominated 

solutions only to promote diversity. In addition, the selection operator may consider more diversity issue that the 

crowded distance impact of reminded solutions after other unselected candidates are deleted.  
To these effects we propose a novel effective HTL-MOPSO that incorporated TLBO to PSO evolution, uses 

a modified selection based on crowded distance and other multiple strategies in order to better approximate real 

PF. The paper is organized as follows: Section 2 gives description of PSO, TLBO and HTL-PSO techniques. In 

Section 3, the algorithm details of HTL-MOPSO are introduced, followed by numerical simulations and an 

analysis of tests on well-known benchmarks in Section 4. Section 5 presents the conclusion and some possible 

paths for further research. 

 

2 Hybrid TLBO based PSO strategy 

2.1 Particle swarm optimization 

     As we know, the original idea of PSO algorithm was inspired by food searching process of population-based 

birds or fish [9]. The basic PSO search process is illustrated in (1) and (2). It is shown that the position of each 

particle, x, is regarded as a potential solution of dimensional space, and is modified by varying velocity, 

personal particle best (pbest) position and global best (gbest) position in whole swarm. pbest represents 



cognitive ability of every individual, whereas gbest is the individual with optimal fitness denotes experience of 

whole individuals in the population. 

 , 1 1 2 2* * *( ) * *( )new i i i i iv w v c r pbest x c r gbest x   =   (1) 

 , ,new i i new ix x v   (2) 

In (1) - (2) xi and vi present the position and velocity vector of ith solution; w is the inertia weight; c1 and c2 are 

the acceleration coefficients; r1 and r2 are uniformly random numbers between (0, 1). The values of w, c1 and c2 

in this study will be determined by using the method in TV-MOPSO [15]. 

2.2 Teaching learning based optimization 

TLBO algorithm is a recently proposed technique inspired from the philosophy of teaching and learning 

process on learners[32]. The freedom of specific parameters determination and good convergence ability makes 

TLBO effective and efficient in solving optimization problem. Teacher phase and learner phase are two 

important phases in TLBO as follows: 

 

1) Teacher phase  

The best solution in each iteration will be chosen as the teacher xteacher, who tries to shift mean of the class 

(the population), denoted by M, toward itself. The teacher will be new mean of the swarm, represented by M_new. 

The solution changes its position according to the difference between the present and the new mean shown as (3) 

and (4). 

 
3_ *( _ * )i newdifference mean r M TF M   (3) 

 , _new i i ix x difference mean   (4) 

where r3 is a uniformly distributed random number between (0, 1); TF is teacher factor which is used to decide 

the value of the mean to be changed, and could be chosen from either 1 or 2 randomly stochastically. All 

solutions should be re-evaluated after update of each teaching phase in order to determine the better solution 

from xi and xnew,i for passing to learning phase. 

  

2) Learner phase 

Students can update their knowledge through interaction with other students in learning phase. Assume that 

jth solution in the swarm is randomly selected and the learning procedure of ith ( )i j solution in a minimization 

problem f(x) is described as: 
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where r4 and r5 are the random number between (0,1). If xnew,i is better than xi, we accept xnew,i; otherwise xi is 

accepted. 

 

3) Modified TLBO 

As descried in original TLBO, all solutions need to be evaluated twice every iteration, in teaching phase 

and learning phase respectively. In order to reduce evaluation complexity and combine the advantage of two 

phases, a modified TLBO (MTLBO) is proposed where teaching phase and learning phase are incorporated in 

(6). 
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where D1 and D2 denote the coefficient factors of teacher phase and learner phase respectively, inspired from the 
coefficient factors c1 and c2 in (1) of PSO process. 

 



2.3 HTL-PSO evolution process 

To improve the search ability of the canonical PSO, our purpose in this section is to incorporate advantages 

of TLBO into PSO evolution, donated by HTL-PSO. In teacher phase, the random vector between 

nondominated space and the mean of population guides the population approaches the better search space on the 

functional landscape increasing exploration at the same times favoring convergence towards the promising 

basins of attraction. This phase in (3) and (4) is periodically invoked in the first half number of the iterations of 

PSO to enhance search ability without deteriorating the diversity in the early movements of the particles. 

Learner phase can improve the information exchange between particles and prevent the premature convergence 

of the population. In the later particles movement stages, smaller deviation of particle in search space is 

preferred [15]. Thus, the learner phase is periodically invoked in the second half number of the iterations of PSO 

to help the algorithm jump out of local optimum and find more diverse nondonimated solutions.  

In HTL-PSO evolution, the effective global PSO[21] update is employed for main search and gives a good 

direction to optimal region; the teacher phase and learner phase in TLBO are activated periodically as auxiliary 

search techniques to use more population information and exchange more information between all solutions to 

improve search ability. As the TLBO is periodically invoked, not only globally, PSO is also not disturbed, but 

also enhances the ability of the whole algorithm. HTL-PSO updating scheme is shown in algorithm 1. 

Algorithm 1 Hybrid PSO/TLBO (HTL-PSO) search process 

If (t mod INV˅>0 

Activate PSO search according to Equation(1) and (2); 

Else 
IF t<Gen 
   D2=0; 

 Select values  for D1; 

Else 
   D1=0; 

 Select values  for D2; 

Endif 
Activate MTLBO according to Equation (6); 

Endif  

where t denotes current iteration number, Gen is the total iteration,  INV is a positive constant to stand the 

frequency of introducing MTLBO.   

3 Hybrid teaching learning based multi-objective PSO 

3.1 Get pbest, gbest and  teacher  

    In PSO, pbest is the best position that an individual has had which corresponds to personal experiences. In 

HTL-MOPSO, if the present solution dominates the pbest solution, it replaces the latter; otherwise, the pbest 

solution is kept; if neither of them is dominated by each other, then we select one of them randomly. 

To solve the conflicting objectives problem in MOO, nondominated solutions are often maintained in an 

external archive from which a solution is picked up as the gbest [12] [15]. A simple dynamically weighted sum 

method is usedto choose gbest for every particle from external archive [33]. The same method with gbest is used 

to select the teacher solution, i.e. M_new in TLBO algorithm. 

3.2 Circular crowded sorting 

The external elitism archive is often used to keep a record of the nondominated solutions obtained in the 

process of searching. In this study, the selection of gbest and teacher solution is done from this archive. At each 

iteration, the nondominated solutions from combined population of the present population and the archive are 

stored in archive. If the size of the archive exceeds the maximum size limit, it needs to be truncated considering 

diversity and spread preservation. 



Deb et al [6] proposed a selector scheme using nondominated ranking and crowded distance sorting with 

respect to fitness and spread. However, the original crowded sorting (CS) method remains two problems: 1) The 

sort of density is fine for bi-objective problems, but it is not competitive enough for more than 2 objectives 

problems. 2) The impact of each solution on the crowded distance of remaining solutions is not taken into 

consideration. It is the fact that a solution deemed to be crowded may become less crowded when other more 

crowded solutions in the neighborhood are eliminated. Motivated by this idea, circular crowded sorting (CCS) 

strategy is proposed to select solutions from nondominated candidates set. For each candidate in archive H, we 

compute the first and second minimum Euclidean distance of it from all other candidates in H.  The average of 

these two distances is used as the crowding distance of the candidate. The crowded distance here can avoid that 

the extreme nondominated solutions with infinite value of crowding distance are given the highest priority to be 

gbest. 

The detailed procedure of CCS is described as follows:  

Step 1: Calculate the crowding distances for all solutions, and keep a record of the two closest neighbors;  

Step 2: All candidates are sorted by their crowding distance; the most crowded solution is deleted; 

Step 3: Only update the crowding distances of the remaining candidates whose two closest neighbors is 

related with the deleted solution; jump to step 2.  

Repeat step 2 and 3 until the size of the remaining solutions satisfies the final scale.  

We consider the complexity of a single iteration of CCS. The basic operations and complexities of CCS are 

described as follows: Now suppose we need to select N0 solutions from N solutions that mean N-N0 solutions are 

deleted. The computational complexity of crowding distance calculation for one solution in the first step is 

O(NlogN). The total complexity of distance calculation for all candidates is and find the most crowded candidate 

is O(N2logN+ NlogN)=O( N2logN). Hence, the complexity of CCS is less than O( 0
2

0

( ) log( )
N N

i

N i N i



 ).  

3.3 Implementation of HTL-MOPSO 

  As described above, the proposed HTL-MOPSO is implemented as follows algorithm 2: 

 

Algorithm 2 TLBO based multi-objective PSO (HTL-MOPSO) procedure 

Initiate population P with size N: position, velocity, pbest; External archive Ex_list  and its maximum size is 

EN; 

Save the nondominated solutions of the initial population in  Ex_list; 
While termination condition is not reached 

   For each particle xi in P 
        If t mod INV>0 

Get gbest from  Ex _list; 
Update the velocity vi; 

Obtain offspring particle xnew,i using PSO according to (1) and (2); 

Else 
    Get the teacher from  Ex _list; 
    Obtain offspring particle xnew,i using MTLBO according to (6); 

    Get the velocity vi=xnew,i-xi; 
Endif 

   Endfor 
If  all(v<=v_limit) , Polynomial mutation is applied;  

Evaluate all solutions in population P;  

Update pbest for all solutions in P ;    
Ex_list=non_dominated( Ex_list  P);  

Update the Ex_list; 
If(size(Ex _list)>EN), truncates Ex_list  using CCS;  

Endwhile 
Output the solutions in archive Ex_list . 



4 Simulation experiment 

4.1 Performance Metric 

   A quantitative assessment for the performance of proposed HTL-MOPSO algorithm is shown in this section. 

Inverted generational distance (IGD) in (9) could measure both the convergence and spread of the obtained 

Pareto solutions along the true Pareto front in a sense [34]. The smaller IGD values imply the better 

performance. 
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(9) 

where P presents the obtained Pareto solution set; P* is a set of uniformly distributed optimal Pareto solutions; 

d(v,P) is the minimum Euclidean distance between v and the solutions in P;|P*| is the cardinality of set P*. 

 

4.2 Benchmark Test 

In this study, the well know benchmarks ZDT1, ZDT2, ZDT3, ZDT4, ZDT6 [6], and DTLZ1, DTLZ2, 

DTLZ5, DTLZ7 [35] and UF2, UF3, UF7 [34] are used for algorithms assessment. In order to further 

investigate HTL-MOPSO, the method is compared with other popular MOO algorithms including NSGA-II [6] 

[36], TV-MOPSO [15], MOEA/D [7] and MOTLBO [31]. In order to evaluate the significance of the results, we 

need some statistical analysis methods [37][38]. Here, a non-parametric statistical test, the Wilcoxon�s rank-sum 

tests [38] using Matlab statistical toolbox, have been carried out at 5% significant level. P-values calculated for 

Wilcoxon�s rank-sum test on test problems are listed in Table 2, where N/A indicates �not applicable� which 

means that the corresponding algorithm could not statistically compare with itself in the rank-sum test. 

All codes of mentioned algorithms are programmed in MATLAB R2014a by the authors according to 

corresponding references. The population size and iteration number of all algorithm are set to be 100 and 250 

respectively when solving ZDT and DTLZ problem except that iteration number 500 for DTLZ1 . When solving 

the complicated UF problems, all the algorithms are with a population size of 100 and the iteration number of 

1000. Other parameters setting of different algorithms are described in Table 1. To eliminate the randomness, all 

mentioned algorithms run 30 times independently. The experiment results are shown in Table2, where the sign 

�-� means that algorithm fails to approximate an acceptable Pareto front at most times among 30 runs.  

 
Table 1 Parameters setting of listed multi-objective algorithms 

Archive size Archive size 100 for test problems 

Crossover probability Crossover probability 0.9 for NSGA-II[6] and 1.0 for MOEA/D[7] 

Mutation probability 
Mutation probability 1/d for NSGA-II[6], TV-MOPSO[9], MOEA/D[7] and HTL-MOPSO 

(where d is the number of decision variables) 

Other parameters 

TV-MOPSO [9], HTL-MOPSO: w1=0.7, w2=0.4,c1i=2.5, c1f=0.5, c2i=0.5,c2f=2.5. 

HTL-MOPSO: INV=7 ; 

1) t<=Gen/2,D1=1.75 ,D2=0; 

2)  t>Gen/2, D1=0, D2=1 

 

4.3 Experimental results on test problems  

 
Table 2 Mean (M), variance (Var) values and p-values of IGD on test problems 

algorithms NSGA-II TV-MOPSO MOEA/D MOTLBO HTL-MOPSO

ZDT1 

IGD(M) 4.88e-03 4.58e-03 4.60e-03 4.68e-03 3.88e-03 
Var 3.61e-08 2.15e-08 4.00e-08 4.12e-08 9.36e-10 

p-value 2.92e-11 2.92 e-11 2.92 e-11 2.91e-11 N/A 

ZDT2 

IGD(M) 5.02e-03 4.79e-03 4.05e-03 - 3.85e-03 
Var 5.47e-08 3.14e-08 5.51e-09 - 5.29e-10 

p-value 2.74e-11 2.73 e-11 9.19e-10 - N/A 

ZDT3 
IGD(M) 7.40e-03 4.84e-03 1.06e-02 5.28e-03 4.82e-03 

Var 7.27e-05 1.11e-08 1.93e-08 8.47e-07 5.90e-09 



p-value 2.99e-11 5.84e-01 2.94e-11 1.25e-10 N/A 

ZDT4 

IGD(M) 7.15e-03 5.19e+00 3.58e-02 - 3.99e-03 
Var 2.95e-06 1.65e+01 1.57e-03 - 3.22e-09 

p-value 4.88e-11 1.40e-11 1.88e-11 - N/A 

ZDT6 

IGD(M) 1.01e-02 3.91e-03 2.74e-03 3.76e-03 3.08e-03 

Var 2.70e-06 8.80e-08 3.45e-10 4.97 e-08 3.19e-09 

p-value 2.34e-12 2.18e-12 N/A 2.24e-12 1.15e-12 

DTLZ1 

IGD(M) 2.57-02 - 2.89e-02 - 2.06e-02 
Var 1.02e-02 - 6.39e-06 - 7.15e-07 

p-value 2.99e-11 - 3.01e-11 - N/A 

DTLZ2 

IGD(M) 6.86e-02 8.26e-02 7.15e-02 9.11e-02 6.02e-02 
Var 9.56e-06 9.23e-06 8.95e-07 4.51e-05 2.69e-06 

p-value 2.98e-11 2.99e-011 2.97e-11 3.00e-11 N/A 

DTLZ5 

IGD(M) 5.65e-03 6.65e-03 9.70e-03 2.0509e-02 3.78e-03 
Var 1.34e-07 4.25e-07 2.06e-07 3.8006e-06 1.04e-07 

p-value 2.73e-11 3.00e-11 2.76e-11 3.01e-11 N/A 

DTLZ7 

IGD(M) 3.92e-01 5.64e-02 8.48e-02 - 4.35e-02 
Var 3.09e-02 9.83e-06 2.11e-04 - 8.89e-07 

p-value 2.99e-11 2.99e-11 2.98e-11 3.01e-11 N/A 

UF2 

IGD(M) 3.03e-02 6.72e-02 2.85e-02 6.17e-01 4.71e-02 

Var 7.61e-05 6.12e-05 2.12e-05 4.19e-03 3.54e-05 

p-value 8.47e-01 2.99e-11 N/A 3.01e-11 7.00e-11 

UF3 

IGD(M) 5.52e-02 1.71e-01 2.43e-01 5.25e-01 5.89e-02 

Var 5.65e-04 4.48e-05 5.79e-03 1.05e-02 1.99e-04 

p-value N/A 3.01e-11 6.06e-11 3.02e-11 1.68e-04 

UF7 

IGD(M) 2.02e-01 8.35e-02 1.96e-01 1.30e+00 3.06e-02 
Var 2.25e-02 3.02e-05 1.78e-02 1.89e-02 2.20e-05 

p-value 1.74e-05 3.00e-11 2.70e-2 3.02e-11 N/A 

 

4.4 Discussion of the results  

4.4.1 Experiments results on ZDT and DTLZ problems 

Table 2 shows the mean and variance of IGD metrics as well as p-values (Wilcoxon rank-sum test) achieved 

by aforementioned algorithms including NSGA-II, TV-MOPSO, MOEA/D, MOTLBO and HTL-MOPSO. The 

reprehensive Pareto front in a run obtained by abovementioned algorithms on ZDT and DTLZ problems are 

shown in Fig.1-7. 

For ZDT1 and ZDT2, all listed algorithms can easily converge to optimal Pareto front presented by low IGD 

values in Table 2. The p-values indicate HTL-MOPSO is significantly better than other counterparts on ZDT1 

and ZDT2 functions, while other four algorithms have similar performance. The worst performance on ZDT2 is 

MOTLBO, which fails to get a set of solutions. 

For ZDT3 whose Pareto-front is disconnected, all five algorithms are able to find the solutions near optimal 

Pareto front. MOEA/D has poor spread as illustrated by Fig.1 (a). From Table 2, it is observed HTL-MOPSO is 

the best with respect to IGD values which finds the ideal Pareto front as Fig.1 (b) while TV-MOPSO ranks 

second. Given that the p-value of TV-MOPSO is greater than 0.05 on ZDT3 in Table 2, the performance of 

HTL-MOPSO is similar to TV-MOPSO.  
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Fig.1 Pareto fronts produces by (a) MOEA/D and (b)HTL-MOPSO on ZDT3 

For ZDT4 with a number of local Pareto fronts, lead to significant difficulties to many MOO algorithms. The 

typical simulation results using all algorithms except MOTLBO on ZDT4 are shown in Fig.2. TV-MOPSO in 

Fig.2 (b) gets stuck at a local Pareto front far away from optimal Pareto front. MOEA/D in Fig.2 (c) gives a poor 

convergence even though the produced Pareto front is closer to optimal Pareto front compared with TV-MOPSO. 

Only NSGA-II in Fig.2 (a) and HTL-MOPSO in Fig.2 (d) are able to escape from different local optima. From 

Fig.2, we can see that HTL-MOPSO has found best convergence and better spread solutions along the entire 

Pareto optimal region. The capacity to find well-converged and well-spread of HTL-MOPSO are apparently the 

best as shown by the lowest values of IGD in Table 2 and the p-values indicate that HTL-MOPSO has superior 

performance than other counterparts ZDT4 functions. 
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Fig.2. Pareto fronts produces by (a)NSGA-II, (b) TV-MOPSO, (c) MOEA/D and (d)HTL-MOPSO on ZDT4 

ZDT6 has the non-convex and non-uniformly spaced Pareto front. The Pareto fronts produced by 

aforementioned algorithms are presented in Fig.3. It is clearly observed from Table 2 and Fig.3 (a) that NSGA-

II gives the poor convergence of achieved Pareto front compared with HTL-MOPSO in Fig.3.(e). In Fig.3 (b), 

TV-MOPSO consistently fails to push parts of achieved solutions converge to true Pareto front. In most case 

with ZDT6, HTL-MOPSO displays an outstanding convergence and spread performance as Fig.3(e). 

Unfortunately, HTL-MOPSO failed to push all Pareto solutions close to true Pareto set in less than 10% among 



30 simulation runs as demonstrated in Fig.3 (f). It is because few solutions far away from optimal Pareto front 

are stored in external elitism archive. The same situations occur in MOTLBO as shown in Fig.3 (d). However, 

the results in Table 2 and Fig.3 (c) signify that MOEA/D performs the best not only in obtaining close 

approximation of optimal Pareto set but also maintaining a uniform spread on the region.  The HTL-MOPSO 

performs the second best on ZDT6. 
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Fig.3. Pareto front produced by(a) NSGA-II,(b)TV-MOPSO,(c)MOEA/D,(d)MOTLBO,(e,f)HTL-MOPSO on ZDT6 

The benchmark problem DTLZ1 is a three-objective problem with a linear Pareto-optimal front. The search 

space contains (115-1) local Pareto hyper-planes which challenges the MOP algorithms� exploitation ability to 

deal with multi-modality. The Pareto front solutions produced by three competitive algorithms including 

NSGA-II, MOEA/D and HTL-MOPSO are illustrated in Fig.4. NSGA-II in Fig.4 (a) has failed in obtaining the 

non-dominated sets precisely with respect to IGD. Compared with NSGA-II, although MOEA/D has resulted in 

a better shape in Fig.4 (b), its IGD metrics in Table 2 are outperformed by HTL-MOPSO. HTL-MOPSO is the 

best among all mentioned algorithms in terms of the convergence and spread performance as demonstrated in 

Fig.4 (c). The p-values indicate that HTL-MOPSO is significantly better than other counterparts on DTLZ1. 
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Fig.4 Pareto front produced by(a) NSGA-II,(b)MOEA/D,(c)HTL-MOPSO on DTLZ1 

The benchmark problem DTLZ2 with three objectives has a spherical Pareto-front. The Pareto fronts of 

DTLZ2 produced by NSGA-II, TV-MOPSO, MOEA/D and HTL-MOPSO are presented in Fig.5. With respect 

to spread performance in Fig.5, HTL-MOPSO is better than NSGA-II, TV-MOPSO, MOTLBO and MOEA/D. 

Also, the p-values comparison indicates HTL-MOPSO significantly outperforms other counterparts on DTLZ2. 
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Fig.5 Pareto front produced by(a) NSGA-II,(b) TV-MOPSO,(c) MOEA/D,(d)HTL-MOPSO on DTLZ2 

The benchmark problem DTLZ5 with three objectives tests the ability to converge into a degenerated curve. 

The Pareto front produced by NSGA-II, MOEA/D, MOTLBO and HTL-MOPSO are shown in Fig.6. From 

Table 2 and Fig.6 (c), it is observed that MOTLBO has the worst convergence especially at the bottom of the 

curve. HTL-MOPSO shows a more competitive convergence performance than other 4 algorithms. At the same 

time, HTL-MOPSO is able to provide the best spread solutions in obtaining Pareto front shown in Fig.6 (d). In 

terms of IGD metric, HTL-MOPSO is found to be the best followed by NSGA-II and TV-MOPSO. MOEA/D 

and MOTLBO are worse than other 3 algorithms with respect to IGD. The p-values again show that HTL-

MOPSO is significantly better than other counterparts on DTLZ5. 
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Fig.6 Pareto front produced by(a) NSGA-II,(b)MOEA/D,(c)MOTLBO,(d)HTL-MOPSO on DTLZ5 

    The test problem DTLZ7 has 23-1 disconnected Pareto-optimal regions in the search space, which challenges 

the capacity of the algorithms to maintain subpopulation in different Pareto-optimal regions. The Pareto fronts 

produced by NSGA-II, TV-MOPSO, MOEA/D and HTL-MOPSO on DTLZ7 are presented in Fig.7. In Table 2, 

NSGA-II and MOEA/D provide better convergence performance than HTL-MOPSO. However, it is observed 

by Fig.7 (a) that NSGA-II fails to obtain all of the disconnected regions and MOEA/D in Fig.7 (c) suffers bad 

spread of obtained Pareto solutions among optimal Pareto regions. On the other hand,  in Fig.7 (b) and Fig.7 (d), 

TV-MOPSO and HTL-MOPSO achieve better spread among true Pareto Front than NSGA-II and MODA/D. 

From Table 2, we can find that HTL-MOPSO and TV-MOPSO is the best and second-best performer in terms of 

IGD respectively. HTL-MOPSO is significantly better than other counterparts on DTLZ7 by comparing p-

values in Table 2. 



In conclusion, from the highlights in Table 2 and the discussion above, it is evident that HTL-MOPSO is a 

competitive algorithm on ZDT and DTLZ problems compared with some powerful algorithms. For most 

aforementioned benchmark functions, HTL-MOPSO allows the best IGD to be achieved in Table 2, being 

significantly better than the others, consistently for all test functions except for ZDT6. As for multimodal test 

functions, such as ZDT4 and DTLZ1, HTL-MOPSO are able to jump out the local optima and converge closely 

to the global Pareto front. Compared with TV-MOPSO, the search ability of HTL-PSO is better. The archive 

truncating strategy based on CCS allows better spread metric to be achieved.  

 

4.4.2 Experiments results on UF problems 

The previous section has demonstrated that HTL-MOPSO show a challenging performance on ZDT and 

DTLZ problems. In this part, the performance of HTL-MOPSO is further compared with other algorithms on the 

UF problems, which are the recently presented test problem with complicated Pareto set [34]. 

According to Table 2, on UF2 problem, MOEA/D is the best but not significantly different with NSGAII 

according to the p-values of Wilcoxon test. HTL-MOPSO is promising (the third best) and slightly worse than 

NSGA-II and MODA/D. The NSGA-II performs best with respect to UF3, followed by HTL-MOPSO. The 

results in Table 2 show that HTL-MOPSO performs best on UF7 followed by TV-MOPSO.  

Fig.8 further compares HTL-MOPSO with best algorithm among NSGA-II, TV-MOPSO, MOEA/D and 

MOTLBO, by plotting the typical Pareto fronts on UF problems. In Fig.8 (a) (b), the Pareto solutions captured 

by HTL-MOPSO are not close to true Pareto front on the right side on UF2 and it is beaten by MOEA/D. On 

UF3 problem, Table 2 shows that NSGA-II has the smaller IGD value compared with HT-MOPSO. But HTL-

MOPSO performs much better on the spread of Pareto solutions as illustrated in Fig.8(c), (d). For IGD metrics 

of UF7 problem in Table 2, HTL-MOPSO is best performer. According to Fig.8 (e), (f), the second best 

algorithm TV-MOPSO is observed to miss more parts of Pareto solutions and more far away from true PF. The 

results of UF problems test show that HTL-MOPSO is a promising algorithm and has reasonably performance 

on the UF benchmarks. 
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Fig.7 Pareto front produced by(a) NSGA-II,(b)TV-MOPSO,(b)MOEA/D,(d)HTL-MOPSO on DTLZ7 
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Fig.8 Pareto solutions in all 30 runs produced by(a) MOEA/D(UF2), (b)HTL-MOPSO(UF2), (c) NSGA-II (UF3), (d) HTL-MOPSO (UF3), 

( e) TV-MOPSO(UF7), (f) HTL-MOPSO(UF7) 

  

4.5 Comparison of HTL-PSO with PSO  

The TLBO is incorporated within PSO (HTL-PSO) search process in order to enhance search ability. For 

unimodal problems, Fig. 9(a), (b) show the final nondominated solutions in all 30 runs by HTL-MOPSO and 

MOPSO (proposed HTL-MOPSO without TLBO) on ZDT2 and ZDT3. Note that it is easy to solve the ZDT2 

and ZDT3 problems. But the MOPSO still misses the true Pareto front a few times while HTL-MOPSO always 

performs well.  

For multimodal problems, HTL-PSO can help algorithm to avoid local optimum. In Fig.9(c), (d), a 

representative Pareto front of ZDT4 and DTLZ1 in a run by HTL-MOPSO and MOPSO are shown. The figures 

clearly show that MOPSO is easy to be trapped into local Pareto fronts and HTL-MOPSO has stronger global 

search ability to approximate the true Pareto fronts. The advantages of HTL-MOPSO are evident when solving 

MOPs with both unimodal and multimodal objective functions. The analysis reveals that search ability of HTL-

PSO is better than single PSO without hybridization. 
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Fig. 9 Pareto fronts obtained by HTL-MOPSO and MOPSO on (a) ZDT2,(b) ZDT3,(c) ZDT4, (d) DTLZ1 

 

4.6 Benefits of CCS 

The HTL-MOPSO algorithm uses the circular crowded sorting (CCS) to truncate elitism archive instead of 

the popular CS in NSGA-II [6]. In this section, the benefits of CCS are investigated. The direct comparisons of 

CCS with CS are shown in Fig.10 and Fig.11. Here, Fig.10 (a) and Fig.11 (a) describe the original solutions of a 

two-objective problem and three-objective problem, respectively. The final solutions selected by CS and CCS 

are clearly shown in Fig.10 (b), (c) and Fig.11 (b), (c). Comparing Fig.10 (b) and Fig.10 (c) in same solutions 

scale, the final solutions by CCS have a better diversity and spread than that achieved by CS. Similarly, Fig.11 

(c) has a much better spread than Fig.11 (b). According to the analysis, the archive truncating strategy based on 

CCS allows a better spread performance to be achieved.  
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Fig.10 two-objective problem:(a) original solutions;(b)final solutions selected by CS;(c) final solutions selected by CCS 
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We further compare the IGD means and variance values on test problems obtained by HTL-MOPSO and 

HTL-MOPSO-CS (variant of HTL-MOPSO with CS instead of CCS) in Table 3. The comparisons Table 3 

show that HTL-MOPSO outperforms HTL-MOPSO-CS on all 12 test problems. Specially, on multimodal 

ZDT4 and DTLZ1 problems, HTL-MOPSO is significantly better than HTL-MOPSO-CS with respect to mean 

and variance values. It is mean that CCS helps the algorithm jump out of local optimum and obtain a good 

spread of final PF. The results efficiently prove the advantage of the adoption of CCS technique.  

Table 3 IGD means and variances of  HTL-MOPSO and HTL-MOPSO-CS on test problems 

problems 
HTL-MOPSO HTL-MOPSO-CS 

Mean Variance Mean Variance 

ZDT1 3.88e-03 9.36e-10 4. 77e-03 8.77e-08 

ZDT2 3.85e-03 5.29e-10 4.94e-03 1.07e-07 

ZDT3 4.82e-03 5.90e-09 5.08e-03 2.94e-08 

ZDT4 3.99e-03 3.22e-09 2.17e-02 5.30e-03 

ZDT6 3.08e-03 3.19e-09 4.06e-03 1.18e-07 

DTLZ1 2.06e-02 7.15e-07 3.59e-02 2.47e-03 

DTLZ2 6.02e-02 2.69e-06 7.79e-02 2.71e-05 

DTLZ5 3.78e-03 1.04e-07 4.97e-03 1.43e-07 

DTLZ7 4.35e-02 8.89e-07 8.93e-02 1.22e-02 

UF2 4.71e-02 3.54e-05 4.86e-02 2.97e-05 
UF3  5.89ee-02 1.99e-04 5.98e-02 1.52e-04 
UF7 3.06e-02 2.20e-05 4.45e-02 2.66e-05 

 

4.7 Impact of parameter setting 

The parameters of inertia w, the accelerating coefficient c1, c2 referred to TV-MOPSO [15]. Here, interval 

generation INV, teaching factor D1 and learning factors D2 are investigated, where impact of different parameters 

values impact on the algorithm performance are investigated. The investigations are conducted on IGD mean of 

ZDT4 with multimodal objectives function and DTLZ2 with unimodal objectives functions in 30 runs. 

Fig.12(a) and (b) shows the mean IGD values of ZDT4 and DTLZ2 when HTL-MOPSO uses different INV 
values. For ZDT4 problem with multimodal problem, when INV is smaller than 4, HTL-MOPSO fails to get 

Pareto solutions, which is not shown in Fig.12 (a). We can see in Fig. 12(a) that a relatively small INV values 

(between 4 and 10) are preferred. This may be due to the fact that a relatively small INV means that TLBO are 

invoked more frequently to enhance the search ability of PSO. For DTLZ2, it is evident that in Fig. 12(b) HTL-

MOPSO is less sensitive to the values INV when it is greater than 4. 

The impact of D1 and D2 on HTL-MOPSO�s performance is also investigated on ZDT4 and DTLZ2 in 

Fig.12(c) and (d). For ZDT4 problem, the range of [0.75, 2] for D1 and the range of [0.25, 1] for D2 are 

preferred. For DTLZ2 problem, HTL-MOPSO is much less sensitive to D1 and D2 values, the results are not 

plotted in the Figures. 
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Fig.12. Mean IGD values of HTL-MOPSO ,(a) Different INV on DTLZ2,(b) Different INV on ZDT4,(c) Different D1 on ZDT4;(d) 

Different D2 on ZDT4 

  

5 Conclusions 

In this paper, a novel multi-objective PSO algorithm named HTL-MOPSO has been proposed. Several 

strategies including HTL-PSO, CCS and some other techniques are employed to enhance the performance of 

canonical MOPSO. HTL-MOPSO benefits from the following main aspects when solving MOPs and the 

contributions of this paper include: 1) As the particles in canonical MOPSO update their positions according to 

the personal best and the global best, insufficient shared information is transferred among different particles. In 

HTL-MOPSO, teacher phase and learner phase in TLBO are periodically invoked in PSO to pay more attention 

to whole information (mean positions) of all particles and encourage more interaction among different solutions, 

respectively. Hence, the search ability of HTL-MOPSO is improved by comparing with single PSO evolution 

and HTL-MOPSO has more capacity to jump out of local Pareto Front without deteriorating the main PSO 

convergence process. 2) As a section operator, circular crowded sorting is developed and performed on the 

elitism archive update process. The impact of each deleted solution on the crowded distance of remaining 

solutions is taken into consideration, which can maintain more diversity of candidates compared with existing 

crowding distance sorting. This is helpful for MOPs to maintain the diversity and the good distribution of non-

dominated solutions along Pareto fronts. 3) The proposed HTL-MOPSO is complemented in this work to solve 

MOPs and the separate contributions of main strategies incorporated in HTL-MOPSO are confirmed. 

The performance of HTL-MOPSO are tested on different MOPs benchmark functions includes ZDT, DTLZ 

and UF sets. Some state-of-the art algorithms, such as NSGA-II, MOEA/D, TV-MOPSO, MOTLBO, are used 

for comparisons. The experiments results show that HTL-MOPSO generally significantly outperforms all other 

algorithms on ZDT and DTLZ problems with respect to IGD metrics. For complicate UF problems, even though 

HTL-MOPSO does not always perform the best, it is shown promising performance compared with other time-

consuming evolution algorithms (NSGA-II and MODA/D). Thus, experiment results support the good 

performance of HTL-MOPSO. Furthermore, the contributions of HTL-PSO evolution process and CCS section 

operator are investigated respectively. The analysis confirms that the benefit of HTL-PSO in bringing diversity 

to avoid local optimum and the benefits of CCS in maintaining diversity and good spread of solutions. 



Although HTL-MOPSO with CCS has a better performance than that with CS, CCS is more time consuming. 

This is due the fact that the candidates are selected step by step according to the density. Meanwhile, the 

advantages of HTL-MOPSO on UF problems are not evident. Future work may focus on how to improve search 

ability of HTL-MOPSO on complicated Pareto front problems. The proposed efficient method is promising to 

be adopted in solving many objectives problems as well as more real world MOP problems.  
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