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Rotating Magnetic Shallow Water Waves and Instabilities in a Sphere
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(December 2016)

Waves in a thin layer on a rotating sphere are studied. The effect of a toroidal magnetic field is consid-
ered, using the shallow water ideal MHD equations. The work is motivated by suggestions that there is a
stably stratified layer below the Earth’s core mantle boundary, and the existence of stable layers in stellar
tachoclines. With an azimuthal background field known as the Malkus field, Bφ = B0sinθ, θ being the
co-latitude, a non-diffusive instability is found with azimuthal wavenumber m = 1. A necessary condition
for instability is that the Alfvén speed exceeds Ω0R0 where Ω0 is the rotation rate and R0 the sphere
radius. Magneto-inertial gravity waves propagating westward and eastward occur, and become equatorially
trapped when the field is strong. Magneto-Kelvin waves propagate eastward at low field strength, but a new
westward propagating Kelvin wave is found when the field is strong. Fast magnetic Rossby waves travel
westward, whilst the slow magnetic Rossby waves generally travel eastward, except for some m = 1 modes
at large field strength. An exceptional very slow westward m = 1 magnetic Rossby wave mode occurs at
all field strengths. The current-driven instability occurs for m = 1 when the slow and fast magnetic Rossby
waves interact. With strong field the magnetic Rossby waves become trapped at the pole. An asymptotic
analysis giving the wave speed and wave form in terms of elementary functions is possible both in polar
trapped and equatorially trapped cases.

Keywords: MHD waves, shallow water model, azimuthal field, rotating MHD fluids.

1. Introduction

Waves are ubiquitous in geophysical and astrophysical fluids. For many such systems the
interaction of rotation and stratification leads naturally to the propagation of wave modes at
a wide range of frequencies. Waves are known to play an important role in neutral fluids such
as the Earth’s ocean and atmosphere with inertial waves (and near-inertial waves) believed
to play a role in transport, mixing and dissipation in the ocean, whilst gravity waves are vital
in transferring energy, momentum and species between different atmospheric layers and also
influence upper atmosphere winds, turbulence, temperature and chemistry in Earth’s oceans
and atmosphere (see e.g. Vallis 2006). Global scale planetary waves such as Rossby waves
are known to have an influence on terrestrial weather and potentially climate and have been
implicated in playing a potential role in generating mean zonal flows on gas giants such as
Jupiter and Saturn (see e.g. Grazzini and Vitart 2015, Legarreta et al. 2016)

For electrically conducting fluids in geophysics and astrophysics the magnetic field will
strongly influence the wave dynamics. Though rotating magnetohydrodynamic waves can
be important in convectively unstable environments, their role is complicated owing to the
presence of turbulence. In stably stratified environments these waves can play a similar role
in transport and driving to their hydrodynamic counterparts.

Rotating MHD waves have been extensively studied in the context of the Earth’s fluid outer
core, which is believed to be the seat of the geodynamo. Following early work by Hide (Hide
1969, Acheson and Hide 1973) there have been many investigations (see for example Finlay
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et al. 2010). Of particular interest for the current investigation is the proposed presence of
a stably stratified layer at the Core-Mantle Boundary (CMB). This layer was theoretically
predicted by Braginsky (1998), who discussed the nature of some of the waves that might be
found in such a layer. In particular, he established that the existence of this stable stratified
layer a the top of the core would permit the propagation of magnetic Rossby waves and sug-
gested that this oscillation might be related to short time-scale geomagnetic secular variation,
length of day variation and oscillation of the pole position. Interestingly, there is now sig-
nificant observational evidence that such a layer exists. Analysing seismic velocities profiles,
Helffrich and Kaneshima (2010), observed a reduction in wave speeds just below the Core-
Mantle boundary of the Earth; these differences suggest the presence of a stably stratified
layer of about 300 km in thickness at the top of the core.

The presence of wave-modes in the stably stratified interior of the Sun has also recently
received renewed attention. The solar tachocline is a thin layer of strong radial and latitu-
dinal differential rotation at the base of the solar convection zone that has been revealed
by helioseismology (see e.g. Spiegel and Zahn 1992, Tobias 2005, Miesch 2005, Christensen-
Dalsgaard and Thompson 2007). The tachocline is believed to play an important role in the
generation of the eleven year activity cycle through dynamo action. Theoretical investigation
of the tachocline has shown that it is the potential seat of many MHD instabilities including
magnetic buoyancy instabilities (Hughes 2007), double-diffusive shear instabilities (see e.g.
Rashid et al. 2008) and joint instabilities of the differential rotation and toroidal magnetic
field (which we shall discuss in more detail later) (Gilman and Fox 1997, Gilman and Dikpati
2002, Cally 2003, Cally et al. 2008, Hollerbach and Cally 2009). The presence and impor-
tance of wave motions has recently been emphasised by McIntosh and collaborators who have
utilised 360◦ imaging observations to detect the presence of Rossby-like motions in the Sun’s
interior that are critical carriers of solar activity (Mcintosh et al. In Press). Recent investi-
gations of waves in the solar interior include those that focus on the interaction of internal
gravity waves with magnetic fields, (see for example MacGregor and Rogers 2011, Mathis and
de Brye 2011) in the radiative interior and those that look at local and global waves in the thin
tachocline (Schecter et al. 2001, Zaqarashvili et al. 2007, 2009, Heng and Spitkovsky 2009).
These final investigations utilised the Shallow Water Magnetohydrodynamic equations (and
model extensions thereof) introduced by Gilman (2000), which form the basis of this current
investigation. A related strand of work is that of (Sharif and Jones 2005) where the motion in
the thin layer is assumed to be completely two-dimensional. This can be viewed as the limit
of large buoyancy frequency in the shallow water system.

Final motivation for the study of waves in thin magnetised, stably stratified shells comes
from the dynamics of atmospheres of exoplanets located close to their parent stars (sometimes
called Hot Jupiters). It is possible that for these systems the ionosphere of the planet may
extend downwards significantly into the atmosphere, making it necessary to include MHD
effects into the stably stratified dynamics of these layers (Cho 2008, Koskinen et al. 2010,
2014).

In this paper we derive a description of the wave modes in a magnetised shallow water
environment; there are three types of solutions: Magneto-Rossby waves, Magneto-Inertial
gravity waves and Kelvin modes. These oscillations are affected by rotation and the magnetic
field through the parameters ǫ = 4Ω2

0R
2
0/gH0 and α = v2

A/4Ω2
0R

2
0. where Ω0, H0 and vA are

the rotation rate, the height of the layer and the Alfvén speed, respectively. The precise value
of these non-dimensional parameters in any given astrophysical situation is uncertain and
probably these can only be estimated to an order of magnitude. Moreover these parameters
vary according to position. For example, the effective gravity in the layer varies significantly in
the solar interior; in the tachocline there exist regions of high effective gravity (in the radiative
layer) and lower effective gravity (in the overshoot region.) This will probably be the case for
all stars with both a convecting layer and a stably stratified layer as the stratification must
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move from being essentially adiabatic in the convection layer to strongly subadiabatic in the
stable layer. In the Earth, there is probably also a gradual transition from convection to
stable stratification but this is difficult to characterize either theoretically or observationally
via seismology. For this reason, rather than limiting attention on parameters believed to be
relevant to either stellar or planetary interiors we give a full description of the wave modes
in such systems as the parameters α and ǫ are varied, including many asymptotic limits,
where the modes become trapped either at the poles or the equator. We also demonstrate
how current-driven instabilities may arise through the interaction of two wave modes. Care
should be taken in applying the results of the analysis here to any individual astrophysical
object, owing both to the uncertainty in the correct parameters and to the simplified nature of
the model presented here. The present work aims to describe the waves and instability types
that can provide a guide to more realistic, but more complicated, models of particular objects
where only numerical analysis is possible.

This paper is organised as follows. In section 2, we present the MHD Shallow Water equa-
tions for a given toroidal magnetic field and linearise the system of equations. Solutions are
developed as expansions of Associated Legendre polynomials, which are reduced to a set
of eigenvalue matrix equations as detailed in section 3. Section 4 is a summary of the hy-
drodynamic case, when the magnetic field is zero, which has been extensively studied by
Longuet-Higgins (1968). In section 5 we discuss the new numerical results in the magneto-
hydrodynamic case, and in section 6 asymptotic theories are developed for cases when either
the ǫ or α parameters are large and the waves are either equatorially or polar trapped. The
conclusions are in section 7.

2. Mathematical Formulation of the Problem

2.1. Shallow water equations in magnetohydrodynamics

The classical shallow water approximation of geophysical fluid dynamics, mentioned in the
introduction above, can also be applied to a stratified layer of electrically conducting fluid.
Gilman (2000) established the shallow water MHD equations with a strong toroidal magnetic
field,

∂B

∂t
+ (u·∇)B = (B·∇)u, (1a)

∂u

∂t
+ (u·∇)u + 2Ω × u =

1

µ0ρ
(B·∇)B − g∇H, (1b)

∂H

∂t
+ ∇·(Hu) = 0, (1c)

∇·(HB) = 0. (1d)

In these equations u and B represent the horizontal components of the velocity and magnetic
field respectively. The operator ∇ is the horizontal gradient, ρ is the density of the fluid, µ0

is the permeability of free space and H is the thickness of the layer.
There are a number of choices that need to be made to define a basic state on which the

waves can propagate. Among these are the latitudinal profile for the magnetic field, height
field, effective gravity, mean zonal flows and stresses on the layer from adjacent convecting
layers. A range of mean profiles has been examined for both wave and instability problems in
both the continuously stratified and shallow water models. For example, Tayler (1973, 1980)
and Pitts and Tayler (1985) have considered the stability of magnetic fields in a continuously
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stratified layer where the force balance is maintained by imposing a position dependent gravity
and pressure field. Within the hydrodynamic continuously stratified setting a basic state may
be maintained via a latitudinal temperature gradient and a radial shear (often termed a
thermal wind) (Rashid et al. 2008). Magnetohydrostatic balance may also be maintained by
imposing a zonal jet in the stably stratified layer (Rempel et al. 2000). Within the confines of
the shallow water MHD approximation a basic state may also be achieved by balancing the
magnetic stress by an externally imposed stress that keeps the axisymmetric (average) part
of the height field constant (Zaqarashvili et al. 2007) or by modifying the basic state height or
effective gravity (Dikpati and Gilman 2001, Dikpati et al. 2003). All of these ingredients may
be chosen in a plausible manner, though there is a great deal of latitude in the construction
of the model.

For this reason we consider a simple model for which analytical progress may be made in
asymptotic limits. We follow Zaqarashvili et al. (2007) in considering an unperturbed toroidal
magnetic field

B = Bφêφ,

and its perturbation is

b
′ = bθêθ + bφêφ.

The velocity perturbation corresponds to

u = uθêθ + uφêφ,

and the perturbed layer thickness is

H = H0 + h,

where H0 the basic state height is constant. We are therefore ignoring possible departures
from sphericity of the constant pressure surfaces, and variations of H0 with latitude, which
might be significant when the field is very strong. We note also that the imposition of a purely
toroidal magnetic field requires the presence of an imposed current; in the Earth’s core this
current would connect to dynamo generated currents deep in the core and close in a thin
diffusive layer near the core-mantle boundary. In the tachocline case, currents associated with
a strong belt of field in the tachocline might close in the radiative interior and the base of the
convection zone. However, modelling these more complicated currents would greatly increase
the complexity of the problem, and so they are not addressed here.

The linearised equations in spherical coordinates are, Zaqarashvili et al. (2007), but note a
typographic error in their equation(31),

∂uθ

∂t
− 2Ω0 cos θuφ +

g

R0

∂h

∂θ
− Bφ

µ0ρR0 sin θ

∂bθ

∂φ
+ 2

Bφ

µ0ρR0

cos θ

sin θ
bφ = 0, (2a)

∂uφ

∂t
+ 2Ω0 cos θuθ +

g

R0 sin θ

∂h

∂φ
− bθ

µ0ρR0

∂Bφ

∂θ
− Bφ

µ0ρR0 sin θ

∂bφ

∂φ
− Bφ

µ0ρR0

cos θ

sin θ
bθ = 0, (2b)

∂h

∂t
+

H0

R0 sin θ

∂

∂θ
(sin θuθ) +

H0

R0 sin θ

∂uφ

∂φ
= 0, (2c)

∂bθ

∂t
− Bφ

R0 sin θ

∂uθ

∂φ
= 0, (2d)

∂bφ

∂t
+

1

R0

∂

∂θ
(uθBφ) =

Bφ

R0 sin θ

{

∂

∂θ
(uθ sin θ) +

∂uφ

∂φ

}

. (2e)
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In the above set of equations a toroidal magnetic field Bφ = B0 sin θ was proposed by
Zaqarashvili et al. (2007), and we adopt this here. This field can be generated in a full sphere
by a uniform current in the z-direction, parallel to the rotation axis. The MHD waves for this
field were studied by Malkus (1967) in the case of a full unstratified sphere.

The energy of our small perturbations comprises kinetic, potential and magnetic energy, so

E =

∫ 2π

0

∫ π

0

{

ρ

2
(u2

θ + u2
φ) +

gρ

2H0
h2 +

1

2µ0
(b2

θ + b2
φ)

}

sin θ dθ dφ, (3)

and we can deduce from equations (2a-2e) that

∂E

∂t
=

∫ 2π

0

∫ π

0

{

2B0 cos θ

µ0R0
[uφbθ − uθbφ]

}

sin θ dθ dφ. (4)

In the nonmagnetic case, the disturbance energy is constant, and since it has a positive definite
form, it is not possible for unstable growing modes to occur. However, in the magnetic case it
is possible for the disturbance energy to grow, so unstable modes are possible in this system.
As we shall see below, for some parameter values only wave-like disturbances are possible, but
for other values instability can occur.

3. Method for determining the Eigenvalues and Eigenvectors

The solutions are in the form eimφ−iωt, where φ is the longitude, m is the azimuthal wave
number and t is the time, which leads to a set of five coupled ordinary differential equations
with θ as the independent variable. We express these in dimensionless form, using 2Ω0R0 as
the velocity scale and B0 as the magnetic field scale, to obtain, defining µ = cos θ and the
differential operator D = − sin θ∂/∂θ = (1 − µ2)∂/∂µ,

−λũθ + µũφ + Dη − mα2b̃θ − 2α2µb̃φ = 0, (5a)

λũφ − µũθ − mη + mα2b̃φ + 2α2µb̃θ = 0, (5b)

λǫ(1 − µ2)η + Dũθ − mũφ = 0, (5c)

λb̃θ + mũθ = 0, (5d)

λb̃φ + mũφ = 0. (5e)

Here these scaled variables, which are now functions of θ only, are related to the dimensional
variables by

uθ = Re

{

2iΩ0R0ũθ

sin θ
ei(mφ−λt)

}

, uφ = Re

{

2Ω0R0ũφ

sin θ
ei(mφ−λt)

}

,

h = Re

{

4Ω2
0R

2
0η

g
ei(mφ−λt)

}

, bθ = Re

{

iB0b̃θ

sin θ
ei(mφ−λt)

}

, bφ = Re

{

B0b̃φ

sin θ
ei(mφ−λt)

}

(6)

and the dimensionless parameters and the dimensionless frequency are

ǫ =
4Ω2

0R
2
0

gH0
, α2 =

v2
A

4Ω2
0R

2
0

, where v2
A =

B2
0

µ0ρ
, λ =

ω

2Ω0
. (7)

From equations (5d) and (5e) we see that for axisymmetric m = 0 modes, the magnetic field
perturbations are zero, so that there is no difference between the magnetic and non-magnetic
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case for m = 0 modes. Since the m = 0 modes are discussed in Longuet-Higgins (1968), we
do not consider them further here.

The solutions for the dependent variables are taken as expansions of Associated Legendre
Polynomials, following Longuet-Higgins (1968), remembering that each expansion must have
n ≥ m because the polynomials are not defined for n < m,

ũθ =

∞
∑

n=m

Am
n Pm

n (µ), b̃θ =

∞
∑

n=m

Bm
n Pm

n (µ),

ũφ =

∞
∑

n=m

Cm
n Pm

n (µ), b̃φ =

∞
∑

n=m

Dm
n Pm

n (µ), η =

∞
∑

n=m

Em
n Pm

n (µ). (8)

Some properties of associated Legendre polynomials are used:

µPm
n =

(n + m)

(2n + 1)
Pm

n−1+
(n − m + 1)

(2n + 1)
Pm

n+1, DPm
n =

(n + 1)(n + m)

(2n + 1)
Pm

n−1−
n(n − m + 1)

(2n + 1)
Pm

n+1.

Substituting the expansions of the dependent variables into the equations (5a–5e), and then
using the properties of the associated Legendre Polynomials, we obtain a set of equations. In
each equation we must set the coefficient of Pm

n (µ) to zero, and we then obtain the following
equations for the coefficients in our expansion, Am

n , Bm
n , Cm

n , Dm
n , Em

n :

−λAm
n = mα2Bm

n − qn−1C
m
n−1 + 2α2qn−1D

m
n−1 + (n − 1)qn−1E

m
n−1

− pn+1C
m
n+1 + 2α2pn+1D

m
n+1 − (n + 2)pn+1E

m
n+1, (9a)

λCm
n = mEm

n − mα2Dm
n + qn−1A

m
n−1

− 2α2qn−1B
m
n−1 − 2α2pn+1B

m
n+1 + pn+1A

m
n+1, (9b)

λ
[

ǫ(1 − pnqn−1 − qnpn+1)E
m
n − ǫpn+2pn+1E

m
n+2 − ǫqn−1qn−2E

m
n−2

]

= mCm
n − (n + 2)pn+1A

m
n+1 + (n − 1)qn−1A

m
n−1, (9c)

λBm
n = −mAm

n , (9d)

λDm
n = −mCm

n , (9e)

where qn = (n − m + 1)/(2n + 1) and pn = (n + m)/(2n + 1).

3.1. Parity of the modes

Equations (9a–9e) have a special parity. For a given m, the coefficients Am
n and Bm

n with n
even are related only to the Cm

n , Dm
n and Em

n coefficients with n odd. Similarly, the coefficients
Am

n and Bm
n with n odd are related only to the Cm

n , Dm
n and Em

n coefficients with n even. The
equations therefore form two distinct sets. We solve each set separately using a MATLAB
eigenvalue and eigenvector solver, designed to solve the system of equations Av = λBv.

The associated Legendre polynomials are symmetric about the equator if n − m is even,
and antisymmetric if n − m is odd. Of the two sets of modes with different parities, we call
the set with ũθ and b̃θ symmetric about the equator the sinuous modes, since fluid will flow
northwards at the equator in some locations and southward in others. For a sinuous (or kink)
mode η, ũφ and b̃φ are antisymmetric about the equator, and the expansions for ũθ and b̃θ in

equation (17) start with Am
m, and Bm

m , while the expansions for ũφ, b̃φ and η start with Cm
m+1,

Dm
m+1 and Em

m+1 respectively. The other set of modes are the varicose (or sausage) modes.
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These have ũθ and b̃θ antisymmetric about the equator, so no flow or field crosses the equator
for varicose modes. The varicose modes have η, ũφ and b̃φ symmetric about the equator, and

the expansions for ũθ and b̃θ in equation (17) start with Am
m+1 and Bm

m+1, while the expansions

for ũφ, b̃φ and η start with Cm
m , Dm

m and Em
m .

3.2. Normalisation and numerical method

In our dimensionless units the energy (3) takes the form

E = 2πρΩ2
0R

4
0

∫ π

0

{

|ũθ|2 + |ũφ|2
sin2 θ

+ α2 |b̃φ|2 + |b̃θ|2
sin2 θ

+ ǫ|η|2
}

sin θ dθ. (10)

For a purely wave-like disturbance this energy is constant in time. Following Longuet-Higgins
(1968), we set the energy

E ≡ 2πρHoΩ
2
0R

4
0.

Substituting this into equation (10) we obtain
∫ π

0

{

|ũθ|2 + |ũφ|2
sin2 θ

+ α2 |b̃φ|2 + |b̃θ|2
sin2 θ

+ ǫ|η|2
}

sin θdθ = 1. (11)

This equation (11) defines the way in which our eigenfunctions are normalised.
In the case when there are unstable waves, the energy is not constant, but nevertheless

(11) continues to provide a convenient normalisation. We let λ = λr + iσ, where σ is the
dimensionless growth rate, and in terms of the dimensionless variables we can write (4) as

σ

∫ π

0

{

|ũθ|2 + |ũφ|2
sin2 θ

+ α2 |b̃φ|2 + |b̃θ|2
sin2 θ

+ ǫ|η|2
}

sin θdθ =

α2

∫ π

0
i(ũ∗

θ b̃φ + ũ∗
φb̃θ − ũθ b̃

∗
φ − ũφb∗θ)

cos θ

sin θ
dθ. (12)

For neutrally stable waves, the scaled (tilde) variables are pure real, so the right hand side is
zero, consistent with σ = 0. We can use (5d) and (5e) to simplify (12) to obtain

σ

∫ π

0

{

|ũθ|2 + |ũφ|2
sin2 θ

+ α2 (|b̃φ|2 + |b̃θ|2)
sin2 θ

+ ǫ|η|2 +
α2 cos θ

m sin2 θ
(b̃∗θ b̃φ + b̃∗φb̃θ)

}

sin θdθ = 0 (13)

It is clear that for growing modes, the last magnetic term in the integral in this equation must
be negative, to balance the other positive definite terms coming from the disturbance energy.

The numerical procedure to solve the eigenvalue problem is to truncate the expansions in
(17) and to then derive a matrix eigenvalue equation which is solved using MATLAB. We
illustrate using the sinuous mode case, the program for the varicose mode case being similar.
We set

ũθ =

N−1
∑

n=0

Am
m+2nPm

m+2n(µ) eimφ−iωt, b̃θ =

N−1
∑

n=0

Bm
m+2nPm

m+2n(µ) eimφ−iωt,

ũφ =
N
∑

n=1

Cm
m+2n−1P

m
m+2n−1(µ) eimφ−iωt, b̃φ =

N
∑

n=1

Dm
m+2n−1P

m
m+2n−1(µ) eimφ−iωt,

η =

N
∑

n=1

Em+2n−1n
mPm

m+2n−1(µ) eimφ−iωt. (14)
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We then use equations (9a-9e) to derive a 5N ×5N algebraic eigenvalue problem to obtain 5N
approximate eigenvalues λ. The eigenvectors emerging from our MATLAB must be normalised
to satisfy (11), so we use the unnormalised eigenvectors to evaluate

E′ =

N
∑

n=1

N
∑

k=1

[Am
m+2n−2A

m
m+2k−2 + α2Bm

m+2n−2B
m
m+2kn−2]I

m
m+2n−2,m+2k−2

+[Cm
m+2n−1C

m
m+2k−1 + α2Dm

m+2n−1D
m
m+2n−1]I

m
m+2n−1,m+2k−1

+

N
∑

n=1

ǫEm
m+2n−1E

m
m+2n−1

2(2m + 2n − 1) !

(2m + 4n − 11)(2n − 1) !
, (15)

where ¯ denotes complex conjugate. The integral in the last equation has an exact formula
given by

Im
nk =

∫ 1

−1

Pm
n (x)Pm

k (x)

(1 − x2)
dx =

(n + m) !

m(n − m) !
,

for n < k when n and k have the same parity,

Im
nk =

∫ 1

−1

Pm
n (x)Pm

k (x)

(1 − x2)
dx =

(k + m) !

m(k − m) !
,

for k < n when n and k have the same parity, and Im
nk = 0 when n and k have different parity.

We then divide the eigenvectors by
√

E′ to obtain normalised eigenvectors that satisfy (11).
We then use (14) to construct the eigenfunctions corresponding to each eigenvalue. Only the
eigenvalues corresponding to eigenvectors which drop off rapidly as n increases are reliable
converged solutions. We therefore constructed a criterion based on the relative magnitude of
the sum of the squares of components above and below n = N/2. Only solutions with the great
majority of the power in the lower half of the spectrum were accepted. For these acceptable
solutions increasing N did not change the eigenvalue significantly.

For the sinuous modes, the values of n for the coefficients Am
n and Bm

n are n = m,m +
2,m + 4, ...., and for Cm

n , Dm
n and Em

n they are n = m + 1,m + 3,m + 5, ..... For the varicose
modes, the index runs in the opposite way, following the parity rules in section 3.1.

3.3. Second order ODE formulation

When using asymptotic methods, it is convenient to start with the system in the form of a
single second order equation. Two equations proved useful, one for the variable ũθ, the other
for the variable η. Although these are both complicated, they are useful because they can be
simplified in a number of limits to give well-known equations. The equation for ũθ can be
written

(1 − µ2)
d2ũθ

dµ2
+

2m2

(λ2 − α2m2)ǫ(1 − µ2) − m2
µ

dũθ

dµ
+
{

ǫ(λ2 − α2m2)

− m(λ + 2mα2)

(λ2 − α2m2)
− ǫ

(λ + 2mα2)2

(λ2 − α2m2)
µ2 − m2

1 − µ2
− 2ǫm(λ + 2mα2)µ2

(λ2 − α2m2)ǫ(1 − µ2) − m2

}

ũθ = 0, (16)
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and the equation for η is

(1 − µ2)
d2η

dµ2
+ 2

(

(λ + 2mα2)2(1 − µ2)

(λ2 − m2α2)2 − (λ + 2mα2)2µ2
− 1

)

µ
dη

dµ
+

{−m(λ + 2mα2)

(λ2 − m2α2)
− m2

1 − µ2

+ ǫ
[

(λ2 − m2α2) − (λ + 2mα2)2µ2

λ2 − m2α2

]

+
2m(λ + 2mα2)(λ2 − m2α2)

(λ2 − m2α2)2 − (λ + 2mα2)2µ2

}

η = 0. (17)

We note here that if one defines

L =
(λ2 − m2α2)

(λ + 2mα2)
, E = ǫ

(λ2 − m2α2)

L2

then this equation reduces to

(1 − µ2)
d2η

dµ2
+ 2

(1 − L2)

(L2 − µ2)
µ

dη

dµ
+

{−m

L
− m2

1 − µ2
+ E(L2 − µ2) +

2mL

L2 − µ2

}

η = 0. (18)

This is an apparent simplification from four to three independent parameters. However L and
E can not be considered as input parameters as they both depend on the eigenvalue λ.

4. Hydrodynamic Case

In the absence of magnetic field, the set of five equations reduces to three equations, the
Laplace tidal equations which have been extensively studied by Longuet-Higgins (1968). He
found two different kind of waves when ǫ is small: gravity waves and Rossby waves. Gravity
waves are produced by the action of gravity on the interface giving the restoring force in
the system. They are common in stably stratified layers of fluid and can propagate either
vertically or horizontally, Gill (1982). Note that though our model has a sharp interface at the
boundary of the stable layer, the horizontal propagation of gravity waves in a continuously
stratified system behaves similarly. In the limit ǫ → 0 their dispersion relation has the form

ω = ±
√

n(n + 1)gH0

R0
, and so λ = ±

√

n(n + 1)

ǫ
(19)

and the eigenfunctions become surface spherical harmonics (Longuet-Higgins 1968), i.e. the
coupling between adjacent harmonics becomes negligible. The parameter n is the degree of
the spherical harmonic, and so gives the number of nodes in the latitudinal direction. As ǫ
increases, rotation becomes important and the gravity modes turn into inertia-gravity waves,
and the eigenfunctions are no longer simple spherical harmonics, but the parameter n is still
useful in classifying the eigenfunctions, and we continue to use it as did Longuet-Higgins
(1968).

The Rossby waves are produced by the effect of the rotation of the fluid system. In the
Earth, they arise from the latitudinal variation of the Coriolis force, 2Ω × u. The dispersion
relation of these waves is

ω = − 2Ω0m

n(n + 1)
and λ = − m

n(n + 1)
. (20)

From the minus sign it is clear that these waves travel to the west. Their frequency is inde-
pendent of ǫ.

When ǫ is large, the solution is confined to the neighbourhood of the equator where the
limit µ2 ≪ 1 is valid, Longuet-Higgins (1968). Then, there are three dispersion relations for

Page 9 of 36

URL: http:/mc.manuscriptcentral.com/ggaf  Email: andrew.soward@newcastle.ac.uk

Geophysical & Astrophysical Fluid Dynamics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

10 X.Márquez-Artavia, C.A.Jones and S.M.Tobias

the approximated solutions. The dispersion relation for gravity waves is

λ = ±(2ν + 1)1/2

ǫ1/4
+

m

ǫ1/2(4ν + 2)
for integer ν ≥ 0. (21)

The parameter ν is the eigenvalue of the parabolic cylinder function, see Longuet-Higgins
(1968) and section 6.1.1 below. ν gives the number of nodes in the latitudinal direction in the
trapped case.

The dispersion relation of Rossby waves at large ǫ has the formula

λ = − m

ǫ1/2(2ν + 1)
for integer ν ≥ 1. (22)

As noted by Longuet-Higgins (1968) the ν = 0 case does not lead to a valid asymptotic
solution. Finally, the Kelvin waves have the dispersion relation given by

λ ∼ m

ǫ1/2
. (23)

Kelvin waves have the property that the northward velocity ûθ tends to zero rapidly as ǫ
increases, and the waves are equatorially trapped.

An interesting question is how the different n modes in the small ǫ theory connect to the
different ν modes in the large ǫ theory as ǫ is gradually increased. For eastward propagating
gravity modes, the frequencies evolve continuously from the n value in (19) with the + sign
to the

ν = n − m − 1 eastward propagating gravity waves (24)

solution with the plus sign in (21). An exceptional case is the n = m mode in (19), which
evolves into the Kelvin mode at large ǫ. The westward gravity waves given by (19) evolve into
the equatorially trapped gravity waves given by (21) with

ν = n − m + 1 westward propagating gravity waves (25)

for all n ≥ m. The westward Rossby waves given by (20) at small ǫ evolve into large ǫ
equatorially trapped Rossby wave solutions given by (22) with ν = n − m. However, since
ν = 0 is not available in (22), the n = m Rossby mode at small ǫ evolves continuously into the
ν = 0 gravity mode given by (21). This exceptional mode is known as a mixed Rossby-gravity
wave. In this way, there is one-to-one matching between the solutions at small ǫ given by (19)
and (20) and the large ǫ solutions given by (21), (22) and (23).

Generally, there was good agreement between our numerical results and those of Longuet-
Higgins (1968), except for some slight differences in the trapped cases, where a resolution
higher than that available to Longuet-Higgins (1968) was required to get full accuracy. Gen-
erally the solutions converge when the expansions are truncated at N = 40.

5. Magnetohydrodynamic Case: numerical solutions

We now consider the effect of the magnetic field using our eigenvalue code. The parameters
we can vary are ǫ, the azimuthal wavenumber m, and the parameter α which measures the
magnetic field strength. A truncation parameter N = 70 was found to be adequate to resolve
all the modes displayed in our figures. The effect of the magnetic field is to split the hydrody-
namic Rossby waves into two modes: slow and fast magnetic Rossby modes. The Kelvin waves
and the gravity are also affected by the magnetic field. We call the branch that develops from
the gravity waves Magneto-Inertial Gravity waves (MIG waves), as they are inertio-gravity
waves, in which Coriolis and gravity forces are important, combined with the magnetic Lorentz
force.

Page 10 of 36

URL: http:/mc.manuscriptcentral.com/ggaf  Email: andrew.soward@newcastle.ac.uk

Geophysical & Astrophysical Fluid Dynamics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Magnetic Shallow Water Waves 11

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

1/ǫ1/2

λ
=

ω
/
2
Ω

0

(a) Eastward

10
−1

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

1/ǫ1/2

−λ
=

ω
/
2
Ω

0

(b) Westward

Figure 1. Dispersion relation λ = ω/2Ω0 as a function of 1/ǫ1/2 =
√

gH0/2Ω0R0, for α = 0.1 and m = 1. (a) Waves
travelling eastward: the red dotted curves are Magneto-Inertial-Gravity waves, the green dashed line is the Kelvin mode,
whereas the blue solid lines correspond to slow magnetic Rossby modes.(b) Waves travelling westwards: the red dotted
curves are two Magneto-Inertial-Gravity modes. The higher solid black curve is the mixed Rossby-gravity wave, and the
lower black solid curve is a fast magnetic Rossby wave (Colour online).

Numerical dispersion diagrams computed for α = 0.1 and m = 1 are shown in figure 1, with
λ = ω/2Ω0 plotted against ǫ−1/2 =

√
gH0/2Ω0R0. Figure 1(a) shows the eastward propagating

waves: the MIG waves in dotted-red, the Kelvin mode in dashed-green and the slow magnetic
Rossby waves in solid blue. The MIG waves form an infinite sequence with increasing frequency
and a corresponding increase in the number of nodes in the latitudinal direction. Only the
lowest two MIG modes are shown in figure 1(a).

0 50 100 150
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(a) MIG waves
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(b) Kelvin wave

Figure 2. Eigenfunctions ũθ/ sin θ against co-latitude, for m = 1, N = 50, α = 0.1 and ǫ = 1 . (a) MIG waves travelling
eastwards, the fastest and slowest being sinuous modes, the intermediate frequency wave being a varicose mode. When
the frequency increases the number of nodes increases too. (b) Kelvin mode which is a varicose mode (Colour online).

The MIG eigenfunction sequence is shown in figure 2(a) where ũθ/ sin θ is plotted as a
function of co-latitude. The lowest frequency mode (solid blue) is a sinuous mode, the next is
a varicose mode (dashed green), and the next sinuous mode (dotted red) is also shown. From
figure 1(a) we see that as ǫ → 0 the MIG wave frequencies scale linearly with ǫ−1/2 showing
that their frequency in this low rotation limit scales with

√
gH0/R0 indicating their gravity

wave character. The Kelvin mode is exceptional, only a single varicose mode, and it too scales
with

√
gH0/R0 at small rotation, as do non-magnetic Kelvin waves. The eigenfunction for

the Kelvin mode is shown in figure 2(b). The eastward propagating slow magnetic Rossby
waves are shown in solid blue in figure 1(a). These waves have no counterpart in the non-
magnetic case, and their frequency tends to zero as α → 0. In the slow rotation limit ǫ → 0
the slow magnetic Rossby wave dispersion curve levels out, showing that the frequency scales
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(a) Fast Magnetic Rossby waves
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(b) Slow Magnetic Rossby waves

Figure 3. Eigenfunctions ũθ/ sin θ against co-latitude (m = 1, N = 50, α = 0.1 and ǫ = 1). (a) Fast Magnetic Rossby
waves travelling westwards, the blue solid curve represents the fastest sinuous mode, the green dashed curve being the
fastest varicose mode. The red dotted curve is a slower sinuous mode. The number of nodes increases when the frequency
decreases in magnitude. (b) Slow Magnetic Rossby waves travelling eastwards. Note that solid blue and dotted red modes
are varicose modes with one and three nodes respectively,the green dashed curve is a sinuous mode with two nodes. Slow
Rossby waves increase in frequency as the number of nodes increases (Colour online).

with rotation rate for these waves. The eigenfunctions for the slow magnetic Rossby waves
are shown in figure 3(b). The sequence alternates between sinuous modes and varicose (or
sausage) modes with the slowest mode being a varicose mode, the next slowest a sinuous
mode, and then comes a second varicose mode. As is shown in figure 2(a), the blue solid curve
has two nodes in latitude, the green dashed line three nodes and the dotted red one four nodes.
There is, of course, a complete sequence of increasing number of nodes as well as increasing
frequencies.

In figure 1(b) we show some westward propagating waves. The MIG waves behave similarly
to the eastward propagating MIG waves, and as ǫ → 0 the frequencies occur in pairs, one
eastward, one westward as expected since rotation plays no role for MIG waves in this limit.
The two black solid curves are fast magnetic Rossby waves. In the limit as α → 0 these merge
into the hydrodynamic Rossby waves found by Longuet-Higgins (1968).

Figure 3(a) shows the first three fast magnetic Rossby modes, a sinuous mode without nodes
is the blue solid curve, the fastest of these waves, the green dashed line is a varicose mode with
one node and the red dotted curve is a second sinuous mode with two nodes. Slow magnetic
Rossby waves plotted in 3(b) have the following sequence: the slowest first mode shown in
solid blue is a varicose mode with one node, the next in dashed green is a sinuous mode with
two nodes and the third (dotted red) varicose mode has three nodes.

5.1. Magneto-Inertial Gravity Waves

Solving the eigenvalue problem with a MATLAB code, we found numerically that the high-
est frequencies correspond to Magneto-Inertial Gravity waves. These waves are essentially
Longuet-Higgins (1968) class 1 waves, interfacial gravity waves, modified by the magnetic
field. Using equation (17) for η, we let ǫ → 0, with λ ∼ O(ǫ−1/2), the gravity wave scaling.
Then provided α is not too large, α = O(ǫ−1/2), the η-equation (17) reduces to the associated
Legendre equation, with solutions η = Pm

n (cos θ) and λ is governed by (19). So in the ǫ → 0
limit, provided the magnetic field is not too strong, the solutions for η are spherical harmonics.

In figure 4, the top two panels show η for the P1
2 MIG wave with ǫ = 1. The P1

2 mode
is not the slowest m = 1 mode, that is the P1

1 varicose mode gravity wave, but it is the
lowest frequency sinuous mode and is representative of the behaviour of the general case. At
small ǫ, even for α as large as 5 the solutions are very similar to figure 4(a). However, the
two top panels of figure 4 at ǫ = 1 show a marked difference between the α = 10−3 and
α = 5 cases. The small magnetic field solution is still essentially a P1

2 spherical harmonic,
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Figure 4. Contour plots of the scaled height η with ǫ 1 and 100. These are numerical solutions for Magneto-Inertial
Gravity waves travelling eastward, and the sequence corresponds to the P1

2
spherical harmonic at small ǫ and α. The

left column corresponds to α = 10−3 with N = 50 and the right column to α = 5 with N = 70.The bottom right panel
shows strong equatorial trapping (Colour online).

but the stronger magnetic field has caused the mode to concentrate near the equator, so it is
becoming an equatorially trapped mode. At ǫ = 100, the bottom two panels, we see in figure
4(c) that even when the magnetic field is too weak to affect the solution the wave becomes
equatorially trapped. The α = 5, ǫ = 100 case is completely trapped at the equator, and
required a truncation level of N = 70 to resolve it. It is clear from these results that as either
ǫ → ∞ or as α → ∞ MIG waves become equatorially trapped. In section 6 below we develop
an asymptotic theory which sheds light on the behaviour in both these limits. An interesting
feature of these solutions is that the amplitude of the η disturbance becomes small compared
to unity as ǫ increases. This means that most of the energy of the disturbance is kinetic and
magnetic energy at large ǫ with very little in the form of potential energy.

In tables 1 (eastward propagating waves) and 2 (westward propagating waves) we set m = 1
and looked for the solution that corresponds to the P1

2 solution in the low ǫ, low α limit. As ǫ
or α are increased, this mode evolves continuously, giving the results shown in the two tables.
At large ǫ and small α we know that the table 1 results must agree asymptotically with the
ν = 0 (21) formula, recalling from section 4 that eastward gravity waves have the connection

Table 1. Eigenvalues λ for different values of α and ǫ, N = 50 and m = 1. Numerical

solutions for Magneto-Inertial Gravity waves: waves travelling eastward. These are the

n = 2 solutions with eigenfunctions as in figure 4. The starred entry at ǫ = 0.1, α = 103

required N = 80.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 24.419 24.419 24.419 24.434 26.269 117.86 1037.1
ǫ = 0.1 7.6851 7.6851 7.6856 7.7409 14.357 108.09 1017.2∗

ǫ = 1 2.4316 2.4316 2.434 2.6913 11.839 103.72 ****
ǫ = 10 0.8459 0.84601 0.85661 1.5451 10.833 **** ****
ǫ = 100 0.37963 0.37989 0.40424 1.2342 10.383 **** ****
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Table 2. Eigenvalues λ for different values of α and ǫ, N = 50 and m = 1. Numerical

solutions for Magneto-Inertial Gravity waves: waves travelling westward. These are the n = 2

solutions with eigenfunctions as in figure 4. The starred entry at ǫ = 0.1, α = 103 required

N = 80.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 -24.586 -24.586 -24.586 -24.598 -26.227 -117.74 -1037.1
ǫ = 0.1 -7.8533 -7.8533 -7.8536 -7.8858 -14.102 -108.03 -1017.2∗

ǫ = 1 -2.6129 -2.6129 -2.6131 -2.6718 -11.719 -103.7 ****
ǫ = 10 -1.1119 -1.1118 -1.1088 -1.2956 -10.779 **** ****
ǫ = 100 -0.67845 -0.67845 -0.67891 -1.1118 -10.358 **** ****
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Figure 5. Northward and azimuthal velocities against co-latitude for different values of ǫ and α. These are Magneto-
Inertial Gravity Waves with N = 50, m = 1 and n = 2, the slowest sinuous mode. (a) is ũθ/ sin θ and (b) is ũφ/ sin θ for
the eastward propagating waves. (c) and (d) are similar for the westward propagating waves. (e) and (f) are for eastward
propagating waves at much larger α = 5, showing equatorial trapping. The westward propagating MIG waves at this
value of α look almost identical (Colour online).

formula ν = n − m − 1, and the table 2 results must agree with the ν = 2 (21) formula,
as westward gravity waves connect ν with n − m + 1. Since only the rotation distinguishes
between the magnitude of the frequencies of eastward and westward propagating waves, the
differences (apart from the sign) are only significant at large values of ǫ. Even then, when α
becomes large the waves take the form of Alfvén waves which have the same form whether
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travelling eastward or westward. As α is increased, the MIG waves in both directions merge
smoothly into Alfvén waves. These Alfvén wave modes become increasingly trapped at the
equator as α increases. The entries for large α and large ǫ are not shown, because these modes
are so equatorially trapped they need a very high truncation N to resolve them. Fortunately,
in this limit we have an asymptotic theory (see section 6) which gives these missing frequencies
to a high level of accuracy.

In figure 5 we plot the corresponding eigenfunctions for ũθ/ sin θ and ũφ/ sin θ for the east-
ward and westward propagating modes. The modes shown here are sinuous modes continued
from the solution which at small ǫ and α had η of the form P1

2, as in figure 4. The values shown
are at a particular azimuthal angle φ, chosen so that the value at the equator of uθ/ sin θ is
maximal. The behaviour at other longitudes may be inferred from the simple exp imφ de-
pendence. Recall that the unscaled variable uθ is 90◦ out of phase with ũθ. These plots also
show clearly the equatorial trapping that occurs both for eastward and westward propagating
waves. This equatorial trapping is reminiscent of that found by Zaqarashvili et al. (2009) who
considered an antisymmetric basic state field with zero toroidal field at the equator. In that
case the trapping was associated primarily with the variation of the magnetic field across the
equator rather than the asymptotic nature of the parameters. The corresponding plots for the
westward propagating MIG waves at large α (not shown) are almost identical to the eastward
modes, because the rotation is only playing a very minor role. At large α it is the magnetic
field that is trapping the wave at the equator.
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Figure 6. (a) Frequency of the magnetic Rossby waves at ǫ = 1 as a function of α. The lowest modes are shown for
m = 1, 2, 3. The upper branches are the slow magnetic Rossby waves, and the lower branch the fast magnetic Rossby
waves. The two m = 1 branches merge near α = 0.956 and a pair of complex modes branch off there. The dashed curve
is the real part of the frequency of these complex modes. (b) The m = 1, n = 2 modes are shown for a range of different
ǫ. The real parts of the frequency of the complex modes are shown as dashed lines (Colour online).

5.2. Magnetic Rossby Waves and Instability

The small ǫ limit for magnetic Rossby waves is best derived from (16) rather than (17),
(Zaqarashvili et al. 2007). Unlike in the MIG wave case, we now take the limit ǫ → 0 with λ
and α constant. Then equation (16) reduces to

(1 − µ2)
d2ũθ

dµ2
− 2µ

dũθ

dµ
+ {−(λ + 2mα2)m

(λ2 − m2α2)
− m2

(1 − µ2)
}ũθ = 0. (26)
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This is again the Legendre differential equation, whose solutions are the associated Legendre
polynomials, ũθ = Pm

n (cos θ). The dispersion relation of these waves is

n(n + 1) = −(λ + 2mα2)m

(λ2 − m2α2)
(27)

where n is the latitudinal wave number and the degree of the Legendre polynomial. We have
the following quadratic formula in λ,

n(n + 1)λ2 + mλ + m2α2[2 − n(n + 1)] = 0. (28)

The solutions are

λ =
−m ± m

√

1 − 4α2n(n + 1)[2 − n(n + 1)]

2n(n + 1)
(29)

where the positive sign corresponds to slow magnetic Rossby waves, which travel eastward,
and the negative sign gives the fast magnetic Rossby waves travelling westward. When α = 0,
the equation for the fast Rossby modes reduces to λ = −m/n(n + 1) which are the hydro-
dynamic Rossby waves, (Longuet-Higgins 1968). Note that n = 1 gives a zero frequency for
the slow magnetic Rossby mode, but we see in section 6.2.3 that at finite ǫ there is a very
slow westward Rossby mode corresponding to m = n = 1, which we call the anomalous slow
magnetic Rossby wave, as it travels in the opposite direction to all the other slow magnetic
Rossby waves. So for each m there is a family of both slow and fast magnetic Rossby waves
with n increasing from m to ∞. In figure 6(a) we show how the frequencies of the magnetic
Rossby waves evolve as α increases. Interestingly the m = 1 fast and slow magnetic Rossby
branches merge together and a complex unstable branch emerges at this point. This means
there are unstable growing modes in this model. Figure 6(a) is for the lowest frequency sinuous
mode, but instability occurs for a whole family of m = 1 modes with increasingly complex θ
structure. In figure 6(b), which is for m = 1 but has n = 2, the first varicose mode, we show
how merging to instability occurs at all values of ǫ, though for small rotation (small ǫ) a very
large α is required before instability onsets. Even for large ǫ, it is necessary to have α > 0.5
for instability to occur. Figure 7 shows the domain of instability as a function of ǫ and α for
the m = 1 mode both for n = 1 and the more stable n = 2 solutions. For small ǫ the critical
α for instability appears to scale as ǫ−1/4 in the n = 1 case and ǫ−1/2 in the n ≥ 2 cases.
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Figure 7. Domain of instability in the ǫ − α plane. The instability occurs for parameter values above the lines (Colour
online).

This instability can be related to the current driven instabilities of Tayler (1973, 1980)
and Pitts and Tayler (1985) who determine the conditions under which a toroidal magnetic

Page 16 of 36

URL: http:/mc.manuscriptcentral.com/ggaf  Email: andrew.soward@newcastle.ac.uk

Geophysical & Astrophysical Fluid Dynamics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Magnetic Shallow Water Waves 17

field can become unstable to non-axisymmetric disturbances, both in cylindrical and spher-
ical geometries; see also the extensive discussion in Spruit (1999). For these current-driven
instabilities the instability draws its energy from the imposed current via the magnetic cur-
vature force. The role of the magnetic field in this case is therefore that it acts as an energy
source (with a strong magnetic field being required for the instability to proceed). For these
current-driven instabilities the role of rotation is simply to mediate the rate at which energy
can be extracted from the mean field. This type of instability should be distinguished from
a different class of instabilities that emerge in the presence of both differential rotation and
current (see e.g. Gilman and Fox 1997, Gilman and Dikpati 2002, Cally 2003, Cally et al.

2008, Hollerbach and Cally 2009). These joint instabilities occur for relatively weak magnetic
fields (such as those that may occur in the stable layers of planets and stars) in differentially
rotating layers. For these systems the axisymmetric differential rotation and magnetic field,
which in isolation would be linearly stable, are together jointly unstable. Here the toroidal
magnetic field acts as a conduit to allow the extraction of energy from the differential rotation
— though some energy may also be extracted from the current.

This new instability can also be compared with previously known m = 1 instabilities in
related geophysical problems. Malkus (1967) found an m = 1 instability using the same
magnetic field as us, B = B0 sin θêφ. However, in his problem there was no stable stratification,
he considered homogeneous rotating fluid in a full sphere. Interestingly, he found a criterion
for instability equivalent in our notation to α > 0.5. It can be seen from figure 7 that in
the limit ǫ → ∞ his criterion reduces to ours. This is consistent with the fact that the
limit ǫ → ∞ corresponds to the effect of gravity dropping out of our problem, which is
equivalent to the buoyancy frequency being small compared to the rotation frequency. Diffusive
m = 1 instabilities have also been found in spherical models. Roberts and Loper (1979) also
considered the Malkus field with homogeneous fluid in cylindrical and spherical containers
and found that the m = 1 modes could become destabilised when Ohmic diffusion is added.
Sharif and Jones (2005) considered the fully two-dimensional problem in a spherical shell,
which corresponds to very large buoyancy frequency, ǫ → 0. They considered the case with
a basic state zonal flow and a magnetic field, but they found an m = 1 instability in the
presence of ohmic diffusion even with zero zonal flow, but no instability without magnetic
diffusion in this case. They had a slightly more complicated basic state magnetic field, but
their result is consistent with ours, because with no magnetic diffusion and small ǫ our critical
α for instability goes to infinity.

Figures 6(a) and 6(b) show some very remarkable features. The westward propagating mag-
netic Rossby waves all pass through α = 0.5, λ = −m/2 exactly. The fast magnetic Rossby
waves are westward propagating super-Alfvénic waves at small α, that is the modulus of their
phase speed, |λ/m| > α, so the wave speed exceeds the Alfvén speed. However, as α increases,
they become sub-Alfvénic. Inspection of (16) shows that at transition between the two regimes
to avoid singularity we must have both

λ2 − α2m2 = 0, and λ + 2mα2 = 0 ⇒ α = 0.5 and λ = −0.5m (30)

so transition can only occur at α = 0.5 whatever the value of ǫ. So all the fast magnetic
Rossby waves have frequency −m/2 at α = 0.5, whatever ǫ, so all the curves in figure 6(b)
pass through this point. An asymptotic analysis near α = 0.5 is given in section 6.2.2, showing
that near the Alfvénic point the solutions are spherical harmonics.

Another interesting feature of figure 6(b) is that for the m = 1 eastward propagating Rossby
waves, there is a point where the frequency is zero, i.e. they travel eastwards for α below a
critical value and westward above it. This means there is a linear stationary solution which is
an equilibrium between the Lorentz, Coriolis and Buoyancy forces.
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5.3. Fast Magnetic Rossby Waves
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(c) α = 0.49
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(d) α = 0.49
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(e) α = 10
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Figure 8. Northward and azimuthal velocities against co-latitude for different values of ǫ and α. These are westward
fast magnetic Rossby waves. (a-d) are for N = 50, m = 1 and n = 1, the fastest sinuous mode, which is the mixed
Rossby-gravity mode. (a) is ũθ/ sin θ and (b) is ũφ/ sin θ with α = 0.1. The larger ǫ values show equatorial trapping.
(c) and (d) are at α = 0.49 close to the Alfvénic transition point. (e) and (f) are m = 2 n = 2 modes for α = 10, into
the polar trapping regime. The eastward slow magnetic Rossby waves have very similar at this large value of α (Colour
online).

Table 3. Eigenvalues λ for the fast magnetic Rossby wave for different values of α and ǫ and with m = n = 1. This is the fastest

sinuous mode, the mixed Rossby-gravity mode: waves travelling westward. The modes become complex (unstable) at larger values

of α.
α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 −0.4999 −0.4999 −0.4999 −0.4989 −0.301 − 3.19i −0.482 − 92.67i −0.498 − 992.90i
ǫ = 0.1 −0.4988 −0.4988 −0.4989 −0.4883 −0.442 − 7.48i −0.494 − 97.73i −0.499 − 997.76i
ǫ = 1 −0.4880 −0.4880 −0.4889 −0.294 − 0.12i −0.482 − 9.25i −0.498 − 99.29i −0.500 − 999.29i
ǫ = 10 −0.4140 −0.4141 −0.4202 −0.435 − 0.60i −0.494 − 9.76i −0.499 − 99.77i −0.500 − 999.75i
ǫ = 100 −0.2710 −0.2711 −0.2877 −0.480 − 0.79i −0.498 − 9.92i −0.500 − 99.91i −0.500 − 999.81i

Figure 8 shows the westward propagating fast magnetic Rossby waves at various α and
ǫ. Figures 8(a) and 8(b) show the mixed Rossby-gravity mode, which is the fastest sinuous
mode, m = n = 1 in the notation of (22), for a small value of α = 0.1. The frequencies
of the plotted modes are given in table 3. We see that at large ǫ, the fast magnetic Rossby
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Figure 9. Contour plots of the scaled height η for fast magnetic Rossby waves. These illustrate the polar trapping of
the Rossby waves at large α. The fastest sinuous mode is shown for (a) m = 2, (b) m = 3.(Colour online)

Table 4. Eigenvalues λ for the fast magnetic Rossby waves for different values of α and ǫ, and with m = 1, n = 2. Second

lowest (varicose) mode: waves travelling westward.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 −0.1665 −0.1669 −0.1999 −0.9034 −5.297 −0.482 − 92.67i −0.498 − 992.90i
ǫ = 0.1 −0.1652 −0.1656 −0.1987 −0.8971 −0.443 − 7.47i −0.494 − 97.74i −0.499 − 997.76i
ǫ = 1 −0.1530 −0.1534 −0.1886 −0.8086 −0.482 − 9.25i −0.498 − 99.29i −0.500 − 999.29i
ǫ = 10 −0.0950 −0.0956 −0.1408 −0.437 − 0.60i −0.494 − 9.76i −0.499 − 99.77i −0.500 − 999.75i
ǫ = 100 −0.033 −0.0346 −0.1054 −0.480 − 0.79i −0.498 − 9.92i −0.500 − 99.91i −0.500 − 999.81i
ǫ = 1000 −0.0106 −0.0145 −0.1006 −0.494 − 0.84i −0.499 − 9.97i −0.500 − 99.93i −0.500 − 999.82i

Table 5. Eigenvalues for the fast magnetic Rossby waves for different values of α and ǫ, n = 2

and m = 2: waves travelling westward.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 −0.3333 −0.3341 −0.4000 −1.8080 −15.9209 −63.655 −200.50
ǫ = 0.1 −0.3323 −0.3338 −0.3997 −1.8066 −11.5124 −36.058 −112.97
ǫ = 1 −0.3299 −0.3307 −0.3971 −1.7906 −6.81047 −20.504 ****
ǫ = 10 −0.3056 −0.3065 −0.3771 −1.5864 −4.0822 −11.757 ****
ǫ = 100 −0.2300 −0.2312 −0.3189 −1.2615 −2.5584 **** ****

mode is equatorially trapped, and an asymptotic analysis is given in section 6.2.1 below, but
it becomes delocalised as α → 0.5. In the neighbourhood of α = 0.5, the asymptotic theory of
section 6.2.2 shows that the solutions are spherical harmonics. This can be seen in figures 8(c)
and 8(d), which are for α = 0.49. Even the ǫ = 100 case shows very little equatorial trapping,
and the frequencies are all very close to λ = −0.5. In table 4 the frequencies of the m = 1,
n = 2 varicose magnetic Rossby wave are given. This mode is a full Rossby mode rather than
a mixed Rossby-gravity mode; at large ǫ and small α the frequency follows the asymptotic
behaviour of ν = 1 in (22).

The m = 1 case is exceptional, because of the appearance of unstable modes beyond α = 0.5,
so as α is increased it is replaced by unstable modes. It is still possible to trace the higher m
modes which are still wave-like, but at large α the unstable modes may well change the basic
state significantly. However, in figures 8(e) and 8(f) we show m = 2, n = 2 varicose modes at
large α. The frequencies of these modes can be found in table 5. We see that the frequencies
increase with α, and the modes become trapped at the poles. An asymptotic theory is possible,
see section 6.2.4 below. Polar trapping occurs for modes with m ≥ 2 as αǫ1/2 → ∞ provided
the waves are sub-Alfvénic. This means that the fast westward waves are polar trapped for
any α > 0.5 if ǫ is sufficiently large. In figure 9 we show the scaled surface displacement η for
two polar trapped modes, m = 2 and m = 3, illustrating the nature of these modes.
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Table 6. Eigenvalues for different values of α and ǫ, with m = 1, and n = 1, the anomalous westward slow magnetic Rossby

mode.
α 10−2 10−1 1 101 102 103

ǫ = 0.01 **** −2.000 × 10−7 −2.005 × 10−3 −0.301 + 3.19i −0.482 + 92.67i −0.498 + 992.90i
ǫ = 0.1 **** −2.000 × 10−6 −0.02053 −0.442 + 7.48i −0.494 + 97.73i −0.499 + 997.76i
ǫ = 1 **** −2.000 × 10−5 −0.294 + 0.12i −0.482 + 9.25i −0.498 + 99.29i −0.500 + 999.29i
ǫ = 10 −2.000 × 10−8 −0.000197 −0.435 + 0.60i −0.494 + 9.76i −0.499 + 99.77i −0.500 + 999.75i
ǫ = 100 −2.000 × 10−7 −0.00172 −0.480 + 0.79i −0.498 + 9.92i −0.500 + 99.91i −0.500 + 999.81i

Table 7. Eigenvalues for different values of α and ǫ, with n = 2, and m = 1. Slow magnetic Rossby modes: waves travelling

eastward.
α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 4 × 10−6 0.000399 0.033322 0.73319 4.7293 −0.482 + 92.67i −0.498 + 992.90i
ǫ = 0.1 4 × 10−6 0.000399 0.033222 0.69392 −0.443 + 7.47i −0.494 + 97.74i −0.499 + 997.76i
ǫ = 1 4 × 10−6 0.000399 0.032244 0.28655 −0.482 + 9.25i −0.498 + 99.29i −0.500 + 999.29i
ǫ = 10 4 × 10−6 0.000397 0.024642 −0.437 + 0.60i −0.494 + 9.76i −0.499 + 99.77i −0.500 + 999.75i
ǫ = 100 4 × 10−6 0.00038 0.004171 −0.4940 + 0.84i −0.499 + 9.97i −0.500 + 99.93i −0.500 + 999.82i

Table 8. Eigenvalues for different values of α and ǫ, with m = 2, and n = 2, an eastward slow

magnetic Rossby mode. Modes all real in this m = 2 case.

α 10−3 10−2 10−1 1? 101 102?? 103

ǫ = 0.01 7.9998 × 10−6 0.0007981 0.06667 1.4738 15.480 62.705 199.50
ǫ = 0.1 7.9998 × 10−6 0.0007981 0.06664 1.4649 10.677 35.073 111.97
ǫ = 1 7.9998 × 10−6 0.0007980 0.06641 1.3557 5.8606 19.508 ****
ǫ = 10 7.9998 × 10−6 0.0007976 0.06407 0.7645 3.0980 10.759 ****
ǫ = 100 7.9994 × 10−6 0.0007936 0.04446 0.3153 1.5634 **** ****

5.4. Slow Magnetic Rossby Waves

At small α, the smallest frequencies correspond to slow magnetic Rossby waves generally
propagating eastward. The only exception is the anomalous m = n = 1 mode, which travels
westward as seen in table 6, and for which the eigenfunctions are shown in figures 10(a) and
10(b). Note that b̃θ/ sin θ and b̃φ/ sin θ are shown, because the energy of a slow magnetic
Rossby mode is mainly magnetic, rather than kinetic or potential energy. Note that in table
6 at larger α all the modes are complex, corresponding to instability.

The frequencies of the slow magnetic Rossby waves (except at m = n = 1) can all be
approximated at small ǫ and α by (29) with the plus sign. The anomalous m = n = 1 mode
gives λ = 0 in this approximation; the asymptotics of this anomalous mode are given in
Appendix A. In table 7 the eigenvalues for the eastward propagating m = 1, n = 2 slow
magnetic Rossby wave are given. The eigenfunctions for this varicose mode are shown for
α = 0.1 in figures 10(c) and 10(d). The mode m = 1, n = 2 also becomes unstable at larger
α. Although in table 7 we see eastward propagation for low α for this mode, we know from
figure 6b that the mode becomes westward shortly before it goes unstable, and the frequency
of the unstable modes is not far from -0.5. The asymptotics of this mode at large α is given
in section 6.2.4 below.

The m = 2 mode never becomes unstable even at large α, see table 8. At large α the mode
become trapped at the poles, and behaves very similarly to the fast magnetic Rossby mode
shown in figure 9, though it travels eastward rather than westward. The asymptotics at large
α for m ≥ 3 are also given in section 6.2.4. They are always sub-Alfvénic. The m = 2 mode
is again somewhat anomalous, and is dealt with in Appendix B.

5.5. Unstable Rossby Waves

The eigenfunctions associated with the unstable m = 1 modes are shown in figure 10. At
moderate ǫ and α they form the usual sequence of alternating sinuous and varicose modes,
filling the whole spherical surface, but these unstable modes also become polar trapped at
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(d) α = 0.1 m = 1 n = 2

Figure 10. Meridional and azimuthal magnetic fields for slow magnetic Rossby waves. (a) and (b) are for α = 0.1, m = 1
and is the anomalous westward propagating slow sinuous mode. (c) and (d) are for the eastward propagating n = 2,
m = 1 varicose mode (Colour online).

large α or ǫ, and can be analysed asymptotically in these limits, see section 6.2.4.

5.6. Kelvin Waves

For the non-magnetic case, Longuet-Higgins found just one eastward propagating wave corre-
sponding to the Kelvin mode, and he established that at small ǫ, the Kelvin mode corresponds
to the first eastward propagating gravity wave, (n − m = 0), with dispersion relation (19).
When ǫ is large, the waves are equatorially trapped and the dispersion relation becomes
(23). He also noted that when ǫ is large the northward velocity ũθ is much smaller than the
azimuthal velocity.

When a toroidal magnetic field is introduced into the system, Kelvin waves become trapped
at the equator for both large α and large ǫ, as can be seen in figures (13) and (14). From
the numerical results, we note that on increasing ǫ or α the northward velocity goes to zero
quickly, which is a useful property of this magneto-Kelvin mode. The original set of equations,
when ũθ = 0, reduces to

(λ + 2mα2)µũφ + λ(1 − µ2)
∂η

∂µ
= 0, (31a)

(λ2 − m2α2)ũφ − λmη = 0, (31b)

λǫ(1 − µ2)η − mũφ = 0. (31c)
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Figure 11. Eigenfunctions for unstable modes. m = 1. (a) shows the real part of ũθ/ sin θ and (b) shows its imaginary
part. Note the co-latitude goes from north to south pole. (c) and (d) are the real and imaginary parts of ũφ/ sin θ. The
blue solid curve at α = 0.96 has ǫ = 1 and the red dotted curve at α = 0.638 has ǫ = 10. Both these cases are close to
marginal stability. The green dashed and magenta dash-dot curves are for α = 10, ǫ = 1 and ǫ = 10 respectively and are
strongly supercritical polar trapped modes (Colour online).
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Figure 12. Contour plots of the scaled height η for unstable waves. The mode on the left (a) is close to the onset of
instability, on the right (b) the mode is strongly unstable and trapped at the poles. Note that the contours of zero η are
no longer lines of longitude, but slope on the θ-φ surface (Colour online).

Eliminating η between (31a) and (31b) gives

(1 − µ2)
dũφ

dµ
+

m(λ + 2mα2)

(λ2 − m2α2)
µũφ = 0, (32)

with solution

ũφ = C1(1 − µ2)q/2, q =
m(λ + 2mα2)

(λ2 − m2α2)
, (33)
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Figure 13. Numerical solution for different values of α for the Magneto Kelvin Mode with m = 1, ǫ = 100 and N = 50.
(a) Northward velocity, (b) Azimuthal velocity (Colour online).
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Figure 14. Numerical solution for the scaled height η increasing α = 0.001 in (a) and α = 1 in (b), for Magneto Kelvin
mode with m = 1, ǫ = 100 and N = 50 (Colour online).

where C1 is a constant associated with the normalisation. When the waves are equatorially
trapped, q is large and the solution is close to zero except when µ is small, so using (33) and
(31b),

ũφ ∼ C1(1 − qµ2

2
), η ∼ C1

(λ2 − m2α2)

λm
(1 − qµ2

2
). (34)

Substituting these expressions for η and ũφ into equation (31c), and taking the limit, 1−µ2 ∼ 1
appropriate for equatorially trapped waves, the dispersion relation is found

λ2 − m2α2 =
m2

ǫ
giving λ = ±m

√

1

ǫ
+ α2. (35)

Note that if α = 0, the dispersion relation coincides with Longuet-Higgins formula for equa-
torially trapped Kelvin waves. An interesting issue is whether both signs in the dispersion
relation give meaningful solutions. When α is small, the negative sign gives q < 0 in (33),
which does not correspond to an equatorially trapped mode. Longuet-Higgins therefore found
only eastward propagating Kelvin waves. In the magnetic case, the situation is different, be-
cause provided

α >
1

2

(

1

2
+

√

1

4
+

4

ǫ

)1/2

(36)

the negative root gives positive q. Of course, α must exceed this inequality by some margin,
as we require q large, not just positive, for trapped waves, but nevertheless this shows that
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westward propagating Kelvin waves can be found at large α, which is not possible in the
nonmagnetic case.

Table 9. Numerical results for eigenvalues λ that correspond to the Kelvin mode for m = 1.

Waves travelling eastward.

α 10−3 10−2 10−1 1 101 102 103

ǫ = 0.01 13.9 13.9 13.9 13.9012 15.2263 100.5000 ****
ǫ = 0.1 4.2452 4.2452 4.2453 4.2649 10.4999 100.0500 ****
ǫ = 1 1.2307 1.2307 1.2323 1.4782 10.0050 **** ****
ǫ = 10 0.34457 0.34468 0.35618 1.0496 10.0050 **** ****
ǫ = 100 0.10263 0.10309 0.14257 1.005 **** **** ****

Table 10. Numerical results for eigenvalues λ that correspond to the Kelvin mode for m = 1.

Waves travelling westward.

α 1 101 102

ǫ = 0.01 **** -15.3966** -100.5000
ǫ = 0.1 **** -10.5013 ****
ǫ = 1 -1.6888** -10.050 ****
ǫ = 10 -1.0516 -10.0050 ****
ǫ = 100 -1.0050 **** ****

The frequencies for some eastward propagating magneto-Kelvin waves are shown in table
9. For small α the results are consistent with the Longuet-Higgins nonmagnetic formulae,
while for large α the results are in good agreement with (35). The starred entries are when
the equatorially trapping is so strong our numerical program could not accurately resolve the
solution. As usual, these are precisely the cases where the asymptotic formula (35) becomes
very accurate.

In table 10, some westward propagating magneto-Kelvin waves are shown. Naturally, there
are no such waves for small α, and for small ǫ even the α = 1 case gives no westward magneto-
Kelvin wave. Again, at large α there are resolution problems, but for moderately large α we
have good agreement with the predictions of (35) with the negative sign. The starred entries
at α = ǫ = 1 and α = 10, ǫ = 0.01 are on the westward propagating Kelvin branch, but
because q is not very large at these values, they are not strongly trapped at the equator, so
the asymptotic theory does not give accurate frequencies for these two points.

6. Asymptotic theory at large ǫ or large α

An attractive feature of this problem is that many of the key results can be derived using
asymptotic theory, which give simple formulae for the eigenvalues in many cases. Here we
describe these asymptotic theories. Numerical comparisons between the asymptotics and the
numerical results, many of which are remarkably close, are given in Appendix C.

6.1. Magneto-Inertial gravity waves

The asymptotics at large ǫ and α are best dealt with starting from equation (16). Magneto-
inertial gravity waves are trapped near the equator when ǫ is large even if α is small (Longuet-
Higgins 1968), and from figures 4 and 5 we see that even at moderate ǫ MIG waves become
trapped as α get large. Also, the fast magnetic Rossby wave can be equatorially trapped at
small α and large ǫ, but for these large ǫ waves equatorial trapping is lost as α → 0.5. The
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slow magnetic Rossby wave is not equatorially trapped. We first treat the equatorially trapped
MIG waves,

6.1.1. Equatorially trapped MIG waves

As α increases, the frequency λ increases and for these fast waves λ2 > m2α2. For waves
which are non-zero only near the equator, we can take µ = cos θ to be small. Since µ is small,
and either ǫ or α is large the factor [ǫ(λ2 −α2m2)(1−µ2)−m2] tends to ∼ ǫ(λ2 −α2m2), and
the first derivative term in (16) is negligible.

Then the equation (16) becomes

d2ũθ

dµ2
+

{

(λ2 − α2m2)ǫ − m(λ + 2mα2)

(λ2 − α2m2)

}

ũθ −
ǫ(λ + 2mα2)2

(λ2 − α2m2)
µ2ũθ = 0. (37)

We rescale µ = sµ̂ where the scale factor

s =
1√
2

[

(λ2 − α2m2)

ǫ(λ + 2α2m)2

]1/4

µ̂, (38)

and the rescaled equation becomes

d2ũθ

dµ̂2
+

1

2

[

(λ2 − α2m2)

ǫ(λ + 2α2m)2

]1/2{

(λ2 − α2m2)ǫ − m(λ + 2mα2)

(λ2 − α2m2)

}

ũθ −
1

4
µ̂2ũθ = 0. (39)

This equation is a parabolic cylinder equation, which has solutions which decay as µ̂ → ±∞
provided

1

2

[

(λ2 − α2m2)

ǫ(λ + 2α2m)2

]1/2{

(λ2 − α2m2)ǫ − m(λ + 2mα2)

(λ2 − α2m2)

}

= ν +
1

2
, (40)

where ν = 0, 1, 2... is a non-negative integer. The regular solution ũθ for this differential
equation is given by Dν(µ̂), the parabolic cylinder function (Abramowitz and Stegun 1965).
The lowest order solutions are, for ν = 0, 1, 2 : ũθ = e−1/4µ̂2

(sinuous mode), ũθ = µ̂e−1/4µ̂2

(varicose mode) and ũθ = (µ̂2 − 1)e−1/4µ̂2

respectively. Equation (40) can be squared and
written as an 8th order polynomial in λ, which can be solved using standard numerical poly-
nomial solvers. However, some care is needed because not every root of the 8th order equation
corresponds to an acceptable solution of (39).

For equation (39) to be a valid approximation, it is clearly necessary that the scale factor s be
small. In the limit α → 0 we know that at large ǫ the gravity waves have λ ∼ ±(2ν+1)1//2ǫ−1/4,
so s is indeed small. Also, we note that at ǫ ∼ O(1), s becomes small at large α.

We now look at the asymptotic behaviour of (40) first in the limit ǫ → ∞ with α small. We
recover the (Longuet-Higgins 1968) result, that

λ = ±(2ν + 1)1/2

ǫ1/4
+

m

ǫ1/2(4ν + 2)
, (41)

the plus sign being for the eastward propagating MIG waves and the minus sign for the
westward propagating waves. Note that from (24) the n = 2 eastward mode connects with
ν = 0, so ν = 0 in (41) to get approximations to the table 1 results, while from (24) the n = 2
westward mode connects with ν = 2, so in (41) we need ν = 2 as well as the minus sign to
get agreement with table 2 in this limit. Note also that because this expansion is in powers
of ǫ1/4, these approximations are not very accurate unless ǫ is very large.

We now consider the limit of (40) in which ǫ remains of order unity as α → ∞. From the
results in tables 1 and 2 we see that |λ| exceeds mα in this limit but only by a relatively small
amount at large α. We therefore let λ = δ+mα and expand in powers of the small parameters
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δ/λ and 1/α, to obtain the dispersion relation at large α and ǫ ∼ O(1)

λ = ±mα±(2ν+1)2/3

(

α

2mǫ

)1/3

± (2m)1/3

(2ν + 1)2/3α1/3ǫ2/3

[

1

3
− (2ν + 1)2

4m2

]

+
(2ν + 1)2/3

3(2mǫα2)1/3
, (42)

which is accurate to O(α−2/3), terms of order α−1 and smaller being omitted. Here the plus
sign refers to waves propagating eastwards, the minus sign to waves propagating westwards.
In Appendix C we see that (42) gives accurate estimates of λ at large α.

6.2. Fast and slow magnetic Rossby waves

We now consider the asymptotics of the fast and slow magnetic Rossby waves. We start by
considering small α and monitor developments as α gradually increases. At small ǫ, the fast
magnetic Rossby waves are simply spherical harmonics, but at large ǫ the fast magnetic Rossby
waves are equatorially trapped (Longuet-Higgins 1968), and so the same theory based on (39)
can be applied, and asymptotic approximations obtained from (40).

6.2.1. Equatorially trapped fast magnetic Rossby waves

Equatorially trapped fast westward magnetic Rossby waves are found when ǫ is large and
α < 0.5. Since ǫ is large, the analysis of (37) - (40) is valid here, but now on the left hand side
of (40)

(λ2 − α2m2)ǫ ≪ −m(λ + 2mα2)

(λ2 − α2m2)
. (43)

Note that as the waves are westward and super-Alfvénic (λ < −mα) for α < 0.5, the factor
λ + 2mα2 is negative, while λ2 − α2m2 > 0. The dispersion relation (40) therefore becomes

λ2 = α2m2 +
m2

(2ν + 1)2ǫ
, so λ = −mα

(

1 +
1

(2ν + 1)2ǫα2

)1/2

. (44)

It can now be verified that at large ǫ (43) holds in the range 0 < α < 0.5 provided α is not too
close to 0.5. In the limit α → 0 this dispersion relation reduces to the Longuet-Higgins result
(22), as expected. Recall that the integer ν ≥ 1 for a valid solution. When 0.5 > α ≫ ǫ−1/2,
a binomial expansion is valid, and

λ ∼ −mα − m

2ǫα(2ν + 1)2
, (45)

which gives good agreement with the numerical results at large ǫ and α in this range. The
factor λ + 2mα2 ∼ −2mα(0.5 − α), so it is clear that as α → 0.5 the magnetic Rossby
waves, unlike the MIG waves, become delocalised, no longer trapped at the equator. The fast
magnetic Rossby waves are westward propagating super-Alfvénic waves at small α, that is
the modulus of their phase speed, |λ/m| > α, so the wave speed exceeds the Alfvén speed.
However, as α increases, they become sub-Alfvénic. From (30) we know that the transition
can only occur at α = 0.5 whatever the value of ǫ. So all the fast magnetic Rossby waves have
frequency −m/2 at α = 0.5. We now detail the asymptotic analysis in the neighbourhood of
α = 0.5.

6.2.2. Fast magnetic Rossby waves near α = 0.5

Let α = 0.5 + α̂, λ = −m/2 + δ where α̂ is small and δ ∼ O(α̂) and insert into (16), noting
that ǫ(λ2 − α2m2)(1 − µ2) ≪ m2, the ODE becomes

(1 − µ2)
d2ũθ

dµ2
− 2µ

dũθ

dµ
+

{

δ + 2mα̂

δ + mα̂
− m2

1 − µ2

}

ũθ = 0, (46)
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which is just the associated Legendre equation, so the solutions are spherical harmonics of
degree n where

n(n + 1) =
δ + 2mα̂

δ + mα̂
⇒ δ = mα̂

[2 − n(n + 1)]

n(n + 1) − 1
(47)

giving a simple formula for the frequency which agrees excellently with our numerical solutions
of the full equation (16). This solution is valid for all ǫ and m 6= 0, showing that at large ǫ
the fast magnetic Rossby waves delocalise from their equatorially trapped state at α ≈ 0.5,
the opposite behaviour from the MIG waves, which concentrate further at the equator as α
increases. Once the fast magnetic Rossby waves have become sub-Alfvénic another asymptotic
regime develops as α increases beyond 0.5, and the waves become trapped at the poles.
However, before developing this theory we consider the slow magnetic Rossby waves.

6.2.3. Slow magnetic Rossby waves at small α

These waves have a frequency which goes to zero as α → 0 and so do not appear in the
non-magnetic theory. The normal behaviour of these modes is that λ ∼ O(α2) as α → 0 and
we again have that in (16) ǫ(λ2−α2m2)(1−µ2) ≪ m2 leading to a great simplification. Noting

that now λ2 ≪ m2α2, and writing λ = λ̂α2 the equation becomes

(1 − µ2)
d2ũθ

dµ2
− 2µ

dũθ

dµ
+

{

2 +
λ̂

m
− m2

1 − µ2

}

ũθ = 0 (48)

which is again the associated Legendre equation, but this time with

λ̂ = m[n(n + 1) − 2], for positive integer n, (49)

from which we deduce that slow magnetic Rossby waves travel eastwards at small α. Clearly
the case n = 1, which implies m = 1, is exceptional, and in Appendix A we show that this mode
has the very slow frequency λ = −ǫα4/5 at small α. Remarkably, this is the only westward
propagating slow magnetic Rossby wave that occurs at small α. We also note that since the
frequency vanishes at small ǫ, it was not picked up in the small ǫ analysis of Zaqarashvili et al.

(2007).
We now consider what happens to slow magnetic Rossby modes as α increases, and the

behaviour of fast magnetic Rossby waves beyond α = 0.5 where they become sub-Alfvénic.
All the Rossby modes remain sub-Alfvénic as α increases beyond 0.5. As we saw in section 5,
the m = 1 slow and fast magnetic Rossby waves collide at a particular value of α and beyond
this value there are unstable complex modes. For m ≥ 2 the slow and fast magnetic Rossby
waves remain distinct, and correspond to purely wavelike solutions. An asymptotic theory at
large α is possible, as the waves become trapped at the poles. Interestingly, this theory can
be developed for the m = 1 unstable modes as well as the wave like solutions. The case m = 2
is exceptional, and is dealt with in Appendix B.

6.2.4. Magnetic Rossby waves at large α

We start with the m = 1 case, because this establishes the existence of unstable modes in
this problem independently of any numerical analysis. We seek solutions that are trapped at
the pole, and since the behaviour is essentially identical at both poles we focus on µ = 1, the
north pole. We assume α is large and ǫ is order unity. A double limit analysis is possible, but
for simplicity we keep to ǫ ∼ O(1). The numerics suggested that the eigenvalues have the form

λ = −1

2
+ i(α − κ), (50)

where κ is a constant of order unity to be determined. This is the growing mode; the decaying
mode λ = −1

2 − i(α − κ) behaves very similarly and can be treated in the same way. There
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are two relevant scalings of (16), the first being

(i) µ = 1 − γ1µ̂

α
, (51)

where γ1 is a constant of order unity, to be determined later. µ̂ is an order one variable, and we
seek solutions with ũθ → 0 as µ̂ → ∞. Because α is large these correspond to solutions with
significant amplitude only near the pole. We now insert (50) and (51) into (16) and retain
only the terms of order α, which give the leading order equation. At first sight it appears
that the terms with factors ǫ(λ2 −α2m2) and −ǫµ2(λ + 2mα2)2/(λ2 −α2m2) are of order α2;
however, because µ is close to 1, these order α2 terms cancel out. The condition for this to
happen in the sub-Alfvénic case is that

λ2 − α2m2 = −(λ + 2mα2) ⇒ λ = −1

2
±
√

1

4
+ α2m(m − 2) (52)

which if m = 1 gives λ ≈ ±iα as expected, see (50), but gives only real solutions for all
other m. This type of growing mode solution can only exist if m = 1. Taking account of this
cancellation of the O(α2) terms, and making the convenient choice γ1 = (8ǫ)−1/2, (16) reduces
to Whittaker’s equation

d2ũθ

dµ̂2
+

{

−1

4
+

√

ǫ

2

κ

µ̂
+

1

4µ̂2

}

ũθ = 0, (53)

(Abramowitz and Stegun 1965). There is a solution

ũθ = e−
µ̂

2 µ̂1/2Ln(µ̂) provided κ = (n +
1

2
)

√

2

ǫ
, n being a non-negative integer, (54)

which decays as µ̂ → ∞, and has ũθ → µ̂1/2 as µ̂ → 0. Ln(µ̂) are the Laguerre polynomials of
degree n, so L0 = 1 and L1 = 1 − x. The predicted values of κ agree well with the numerical
solution, indicating that (54) is the desired solution with eigenvalue

λ = −1

2
+ i

(

α − (n +
1

2
)

√

2

ǫ

)

. (55)

However, this is not quite conclusive, as in the course of this asymptotic analysis the term
ǫ(λ2 − α2m2)(1 − µ2) has been assumed of order α, which led to the first derivative term
being considered asymptotically negligible. However, this quantity tends to zero as µ̂ → 0, so
the neglect of this term cannot be justified over the whole domain of interest. We therefore
consider a second scaling

(ii) µ = 1 − γ2µ̃

α2
, (56)

which removes this singularity as now ǫ(λ2 − α2m2)(1 − µ2) has the same order as the m2

term. Making the convenient choice γ2 = 1/4ǫ We obtain

µ̃
d2ũθ

dµ̃2
+

1

1 + µ̃

dũθ

dµ
− ũθ

4µ̃
+

2ǫγ2ũθ

1 + µ̃
= 0. (57)

Remarkably, this unpromising looking equation 57 has the simple exact general solution

ũθ = C1µ̃
1/2 + C2

µ̃ ln µ̃ − 1

µ̃1/2
. (58)

To obtain a solution that decays as µ̃ → 0 we must choose C2 = 0. The solution µ̃1/2 is
then valid right through this transition region of thickness O(1/α2) and matches correctly
as µ̃ → ∞ onto the Whittaker equation solution as µ̂ → 0, showing that the leading order
asymptotic expansions match correctly.
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The stable case for m ≥ 3 behaves similarly, though m = 2 is stable but somewhat excep-
tional (see Appendix B). We now have

λ = α
√

m(m − 2) + κ+ (59)

as the leading order approximation for the eastward propagating mode. The analysis is very
similar to the unstable m = 1 case above, the Whittaker equation now being

d2ũθ

dµ̂2
+

{

−1

4
+

√

ǫ(m − 2)

8

(2κ+ + 1)

µ̂
+

(

m

2
− m2

4

)

1

µ̂2

}

ũθ = 0. (60)

The solution is

ũθ = e−
µ̂

2 µ̂m/2L(m−1)
n (µ̂) provided κ+ = −1

2
+
(

n +
m

2

)

√

2

ǫ(m − 2)
, (61)

where n is a non-negative integer, the lowest mode being n = 0. The generalized Laguerre

polynomials L
(s)
n (µ̂) are related to the usual Laguerre polynomials (Abramowitz and Stegun

1965) by

L(s)
n (µ̂) = (−1)s

ds

dµ̂s
Ln+s(µ̂). (62)

These solutions decay as µ̂ → ∞, and have ũθ → µ̂m/2 as µ̂ → 0. For the westward propagating
fast magnetic Rossby wave, we write

λ = −α
√

m(m − 2) − κ− (63)

and the Whittaker equation is the same except the factor (2κ+ + 1) is replaced by (2κ− − 1)
so the condition for κ− is

κ− = +
1

2
+
(

n +
m

2

)

√

2

ǫ(m − 2)
, (64)

so the magnitude of the frequency of the ‘fast’ westward propagating Rossby wave is one
greater than that of the ‘slow’ eastward propagating Rossby wave, though at large α the form
of the waves becomes very similar.

We have here considered ǫ to be of order unity, but actually the parameter that needs to
be large for polar trapping is α

√
ǫ. To get to the polar trapped limit for the Rossby waves,

they must be sub-Alfvénic, so for the westward wave we must have α > 0.5, but provided
this holds, the wave becomes trapped at the poles for large ǫ as well as for large α. For the
eastward slow Rossby wave, the mode can be trapped at the pole even for small α provided
ǫ is large enough.

7. Summary and Conclusions

Using numerical and asymptotic methods a fairly complete picture of the waves and insta-
bilities in this MHD shallow water model has been obtained, extending the work of Longuet-
Higgins (1968). These results are specific to the case where the basic state magnetic field is
azimuthal and has the simple sin θ form, and variations in the basic state height profile are
ignored. This case may not be a realistic representation of the complicated scenario in planets
and stars, where the magnetic fields have a complicated morphology and zonal flows, thermal
wind shears may be important and isosurfaces of pressure may not be spherical. However it
does provide a platform from which to explore more realistic field configurations.
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The waves can be divided into magneto-inertial gravity (MIG) waves, Kelvin waves, fast
magnetic Rossby waves and slow magnetic Rossby waves. With no magnetic field, the fast MIG
waves are inertial-gravity waves which become equatorially trapped in the rapid rotation limit
of large ǫ. With magnetic field, the MIG waves become equatorially trapped as α increases
even at moderate ǫ. These waves, which can travel eastward or westward, are always super-
Alfvénic, that is their phase speed exceeds the Alfvén speed. However, at large α the phase
speed is close to the Alfvén speed so these waves turn into equatorially trapped Alfvén waves
when the field becomes strong.

The Rossby waves found in the non-magnetic case turn into westward fast magnetic Rossby
waves in the MHD case. They are initially super-Alfvénic, but become sub-Alfvénic at α = 0.5
and remain sub-Alfvénic at higher α. At large α they become trapped at the poles, and
can be asymptotically described using the Whittaker equation, similar to the behaviour in
the radial field model of Heng and Spitkovsky (2009). The slow magnetic Rossby waves are
an entirely distinct branch, with no counterpart in the non-magnetic problem. Mostly they
propagate eastward at small α, but there is one anomalous very slow m = 1 mode which
travels westward. As α is increased, the other m = 1 waves go through a zero frequency
and then travel westward, ultimately colliding with the fast magnetic Rossby wave to give
complex unstable waves. For m ≥ 2 the slow magnetic Rossby waves continue going eastward
as α increases and become trapped at the pole. These waves are also governed by a Whittaker
equation in the large α limit.

The eastward propagating Kelvin wave in the non-magnetic case continues to travel east-
ward as α is increased, becoming more equatorially trapped. These waves keep their ’Kelvin’
character in that the fluid motion is mainly east-west with very little latitudinal flow. The
new feature introduced by magnetic field is that at sufficiently strong α a westward Kelvin
mode, with very little latitudinal motion, comes into existence.

In planetary applications the results on wave propagation are of interest: for example in the
adiabatically stratified outer core of the Earth slow magnetic Rossby waves travel westward,
but in the stably stratified layer they travel eastward, apart from the anomalous m = 1 mode.
This change in the direction of propagation could therefore potentially be used to determine
the location of any wave modes that might be detectable in the geomagnetic field. We note
that signals in the secular variation of the geomagnetic field have recently been interpreted
as magnetic Rossby waves propagating in a stable layer just below the core-mantle boundary,
Chulliat et al. (2015). We stress again that, before applying this work to geomagnetic problems,
it would be helpful to repeat the analysis for a more realistic basic state magnetic field, but
the present work gives clues to the likely outcome of such studies.

For sufficiently large magnetic field (α > 0.5), we found that the m = 1 slow and fast mag-
netic Rossby wave branches coalesce when the magnetic field is sufficiently strong, leading to
the onset of unstable growing modes. This is a current driven instability of the type previously
studied by Tayler (1973, 1980) and Pitts and Tayler (1985) in the astrophysical context and
Malkus (1967) and others in the geophysical context. Interestingly, as the field strength is
increased, the unstable eigenfunctions become trapped at the poles and are well described by
an asymptotic model. We stress here that it is likely that in stars and planets the presence of
differential rotation may lead to the presence of joint instabilities of the type introduced by
Gilman and Fox (1997) for field strengths that are significantly lower than those required for
current driven instabilities. Moreover the simple nature of the basic state means that as the
magnetic field is increased the nature of the assumptions included in the force balance will
play a more important role in determining the stability of the field (as noted by Pitts and
Tayler (1985)). We are currently investigating this.

There are a number of ways in which the study of waves in spherical shallow water MHD
could be extended. More realistic azimuthal fields could be considered, and magnetic diffusion
could be added, which would be relevant to the Earth’s core. It would also be of interest to
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explore the effects of a radial field. There is a difficulty here to be overcome, which is that
if there is radial field at the interface, magnetic energy can be carried out of the layer. The
Gilman azimuthal field model avoids this difficulty because the interface remains a field line.

We conclude by issuing a note of caution for the direct application of our results to stars
and planets. Here we echo the sentiments of Pitts and Tayler (1985) who state ‘...because we
have been discussing model problems and because in several cases we have only been able
to provide a very approximate discussion, the results which we have obtained are suggestive
rather than rigorous’. Clearly the direct application of such results to a star or planet must
take into account the assumptions that have gone into formulating the model. The model
presented here is convenient, as it allows the analytic derivation of many results in a number
of asymptotic limits. We are currently investigating the robustness of these results to changes
in the nature of the model, such as varying the ingredients in the latitudinal force balance.
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Appendix A: The anomalous slow magnetic Rossby mode n=m=1

In section 5.2 we showed that in the limit α → 0 the slow magnetic Rossby waves have
frequency given by

λ = mα2(n(n + 1) − 2), (A.1)

for integer n and m with n ≥ m, see (29), where ũθ = Pm
n (cos θ). This predicts eastward

propagating waves, but it clearly breaks down when n = 1. In this case, the numerical results
suggested a formula of the form

λ = λ̂ǫα4 (A.2)
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where λ̂ is a constant to be determined. In this asymptotic treatment, we are assuming that
ǫ remains of order unity as α → 0. Our starting point is equation (16) with m = 1 and (A.2)
inserted. Expanding in powers of α2 and discarding terms of O(α4) and higher we obtain

(1 − µ2)
d2ũθ

dµ2
− 2µ

dũθ

dµ
+ 2ũθ −

ũθ

1 − µ2
+ ǫα2{2µ(1 − µ2)

dũθ

dµ
+ λ̂ + 8µ2 − 1}ũθ. (A.3)

The leading order solution is ũθ = (1−µ2)1/2 but this does not determine λ̂. We therefore let
ũθ = (1 − µ2)1/2 + ǫα2y, and obtain the equation for y

(1 − µ2)
d2y

dµ2
− 2µ

dy

dµ
+ 2y − y

1 − µ2
= (1 − λ̂ − 6µ2)(1 − µ2)1/2. (A.4)

The particular integral which satisfies the boundary conditions is y = A(1 − µ2)3/2, which
when inserted into (A.4) gives

A(10µ2 − 2) = 1 − λ̂ − 6µ2, leading to A = −3

5
, λ̂ = −1

5
. (A.5)

This value of λ̂ agrees excellently with our numerical solutions for small values of α. The
anomalous slow magnetic Rossby mode therefore travels westward, whereas all other magnetic
Rossby waves at small α travel eastward. The leading order solution for this wave is simply
ũθ = P1

1(cos θ).

Appendix B: Polar trapped Rossby waves at large α with m = 2

We now consider an exceptional case arising from the large α theory for the magnetic Rossby
waves. Recall that for m = 1 unstable modes occur, and for m ≥ 3 stable waves are found
with frequency λ proportional to α. It is clear from equation (59) that the case m = 2 must
behave differently, and the numerical results indicate that when m = 2 the frequency is real,
and increases with α, but more slowly than for m ≥ 3. Asymptotic analysis suggests that for
m = 2

λ = βα1/2 + κ, (B.1)

where β and κ are constants to be determined. The two scalings for µ,

(i) µ = 1 − γ1µ̂

α
, (ii) µ = 1 − γ2µ̃

α2
(B.2)

still hold, and we begin with scaling (i). Inserting (i) and (B.1) into (16) and retaining only the
terms of order α and α1/2, omitting terms of order unity, we get the leading order equation.
As before, the terms with factors ǫ(λ2 − α2m2) and −ǫµ2(λ + 2mα2)2/(λ2 − α2m2) are of
order α2; however, because µ is close to 1, the order α2 terms cancel out. In this m = 2 case,
a further cancellation occurs between the terms with factors

− m2

1 − µ2
− 2ǫm(λ + 2mα2)µ2

[(λ2 − α2m2)ǫ(1 − µ2) − m2]

which is O(1) rather than the expected O(α). Making the convenient choice γ1 = 1/4ǫ1/2, we
obtain as our leading order equation

d2ũθ

dµ̂2
+

{

−1

4
+

β2ǫ1/2

4µ̂
+

βǫ1/2(1 + 2κ)

4α1/2µ̂

}

ũθ = 0, (B.3)
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which is a Whittaker equation (Abramowitz and Stegun 1965). We remove the α−1/2 term by
setting κ = −1

2 . There is then a solution

ũθ = e−
µ̂

2 µ̂L(1)
n (µ̂) provided β2 =

4(n + 1)

ǫ1/2
. (B.4)

where L
(1)
n (µ̂) is the generalized Laguerre function, see (62). The lowest mode is n = 0, i.e.

L
(1)
0 (µ̂) = 1. These solutions decay as µ̂ → ∞ and are proportional to µ̂ as µ̂ → 0. This is

consistent with the second scaling (ii), as this gives

µ̃
d2ũθ

dµ̃2
+

1

1 + µ̃

dũθ

dµ
− ũθ

µ̃
+

ũθ

1 + µ̃
= 0 (B.5)

when we choose γ2 = 1/(2ǫ). ũθ = µ̃ is an exact solution of this equation, verifying that the
solution (B.4) is uniformly valid. The frequencies of the m = 2 magnetic Rossby modes are
therefore given by

λ = βα1/2 − 1

2
, where β = ±2(n + 1)1/2

ǫ1/4
, n = 0, 1, 2 · · · (B.6)

the plus and minus signs giving the eastward and westward propagating waves respectively.
As with the m ≥ 3 case, the magnitude of the westward travelling wave is one larger than the
magnitude of the eastward propagating wave.

Appendix C: Comparison of asymptotic and numerical results

In table C1 we compare the results of tables 1 and 2 with the asymptotic formula (42) for some
larger values of α, with m = 1. Also shown are the results from solving the 8th order equation
derived from squaring (40). Note that the connection for both the eastward and westward
waves and the small α, small ǫ theory of (19) is that ν in (42) corresponds to ν = n − m − 1
(unlike the connection in (25)), so that ν = 0 has been used here to compare with both tables
1 and 2, which have n = 2, m = 1. Recall that the m = n eastward and westward gravity
mode evolves into the magneto-Kelvin modes, which have different asymptotics.

Table C1. Comparison between numerical and asymptotic estimates of

the eigenvalues: MIG waves

α ǫ Numerical Asymptotic (42) Asymptotic (40)

Eastward propagating waves
10 0.1 14.357 14.033 13.896
10 1.0 11.839 11.816 11.799
10 10 10.833 10.831 10.828
100 0.1 108.09 108.068 108.047
100 1.0 103.72 103.719 103.716
1000 0.01 1037.1 1037.079 1037.055
1000 0.1 1017.2 1017.154 1017.152

Westward propagating waves
10 0.1 -14.102 -13.787 -13.621
10 1.0 -11.719 -11.702 -11.679
10 10 -10.779 -10.778 -10.775
100 0.1 -108.03 -108.016 -107.992
100 1.0 -103.7 -103.694 -103.692
1000 0.01 -1037.1 -1037.054 -1037.031
1000 0.1 -1017.2 -1017.143 -1017.140

Table 12 compares the numerical results in table 4 for equatorially trapped fast magnetic
Rossby waves with the asymptotic formula (44). This is comparison is for the varicose m = 1,
n = 2 mode travelling westwards, as do all fast magnetic Rossby modes. We therefore use
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ν = 1 in formula (44) since the relation ν = n−m holds for these modes. Recall that equatorial
trapping of Rossby waves can only occur for fast magnetic Rossby waves, and then only for
α < 0.5 at large ǫ. Note the excellent agreement at the largest values of ǫ, but recall that this
asymptotic theory must break down as α → 0.5.

Table C2. Comparison between numerical and

asymptotic estimates of the eigenvalues: equatorially

trapped fast magnetic Rossby waves

α ǫ Numerical Asymptotic (44)

0.001 10 −0.095 −0.1054
0.001 100 −0.033 −0.0333
0.001 1000 −0.0106 −0.0106
0.01 10 −0.0956 −0.1059
0.01 100 −0.0346 −0.0348
0.01 1000 −0.0145 −0.0145
0.1 10 −0.1408 −0.1453
0.1 100 −0.1054 −0.1054
0.1 1000 −0.1006 −0.1006

Table 13 compares the numerical results for the unstable polar trapped magnetic Rossby
waves in tables 3,4 6 and 7 with the asymptotic results given by (55) with m = 1. Recall
there is no distinction between slow and fast waves as the two branches collide to give the
unstable waves. The eigenvalues come as a complex conjugate pair, here we just give the
unstable positive imaginary part case. Generally the agreement is good. At α = 1000, ǫ = 100
the agreement is not as good as might be expected. This is due to difficulty resolving the very
thin boundary layers with the numerical code. The asymptotic solution will be more accurate
for these parameter values.

Table C3. Comparison between numerical and asymptotic

estimates of the eigenvalues: unstable m = 1 polar trapped

magnetic Rossby waves

α ǫ Numerical Asymptotic (44)

100 0.01 −0.482 + 92.67i −0.5 + 92.929i
100 0.1 −0.494 + 97.73i −0.5 + 97.764i
100 1 −0.498 + 99.29i −0.5 + 99.293i
100 10 −0.499 + 99.77i −0.5 + 99.776i
100 100 −0.500 + 99.91i −0.5 + 99.929i
1000 0.01 −0.498 + 992.90i −0.5 + 992.929i
1000 0.1 −0.499 + 997.76i −0.5 + 997.764i
1000 1 −0.500 + 999.29i −0.5 + 999.293i
1000 10 −0.500 + 999.75i −0.5 + 999.776i
1000 100 −0.500 + 999.81i −0.5 + 999.929i

Table 14 compares the numerical results for the stable polar trapped magnetic Rossby waves
in tables 5 and 8 which have m = 2 and n = 2 with the asymptotic results given by (B.6) with
m = 2 and n = 0. The sinuous m = 2 n = 2 and varicose n = 3 modes both have the same
asymptotic structure at large α because the eigenfunctions are tiny in the equatorial regions.
In the cases α = 1000, ǫ = 1 and α = 100, ǫ = 100, the thin boundary layer was not fully
resolved in the numerical code.
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Table C4. Comparison between numerical and asymptotic estimates of the eigen-

values: stable m = 2 polar trapped magnetic Rossby waves

α ǫ Numerical Asymptotic Numerical Asymptotic
westward westward (B.6) eastward eastward (B.6)

100 0.01 −63.65 −63.746 62.71 62.746
100 0.1 −36.06 −36.066 35.07 35.066
100 1 −20.50 −20.500 19.51 19.500
100 10 −11.76 −11.747 10.76 10.747
100 100 −6.919 −6.825 5.919 5.825
1000 0.01 −200.50 −200.50 199.50 119.500
1000 0.1 −112.97 −112.97 111.97 111.968
1000 1 −64.50 −63.746 63.50 62.746
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