

This is a repository copy of *Approaching the Hartree-Fock Limit Through the CABS Singles Correction and Auxiliary Basis Sets.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/113044/

Version: Supplemental Material

Article:

Shaw, R.A. and Hill, J.G. orcid.org/0000-0002-6457-5837 (2017) Approaching the Hartree-Fock Limit Through the CABS Singles Correction and Auxiliary Basis Sets. Journal of Chemical Theory and Computation, 13 (4). pp. 1691-1698. ISSN 1549-9618

https://doi.org/10.1021/acs.jctc.7b00140

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Chemical Theory and Computation, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.jctc.7b00140.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supporting information for: Approaching the Hartree-Fock Limit Through the CABS Singles Correction and Auxiliary Basis Sets

Robert A. Shaw* and J. Grant ${\sf Hill}^*$

Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K.

E-mail: rashaw1@sheffield.ac.uk; grant.hill@sheffield.ac.uk

VnZ-F12/OptRI+ABSs (n = D, T, Q) in MOLPRO For-

mat

VDZ-F12/OptRI+

Hydrogen

spd, H, vdz-f12/optri s, H, 1.88958225E+02, 1.19139490E+01

Helium

spd, He, vdz-f12/optri s, He, 1.53254776E+03, 4.44924927E+02

Lithium

spdfg, Li, vdz-f12/optri s, Li, 8.79687500E-02, 1.15820300E-02

Beryllium

spdfg, Be, vdz-f12/optri s, Be, 6.20038600E-01, 4.22988600E-02

Boron

spdfg, B, vdz-f12/optri
s, B, 1.22111330E+01
p, B, 3.33423281E+01, 7.23665237E+00

Carbon

spdfg, C, vdz-f12/optri
s, C, 1.27500000E+00
p, C, 7.12736930E+01, 8.58446662E+00

Nitrogen

spdfg, N, vdz-f12/optri
s, N, 1.67093750E-01
p, N, 1.01595821E+02, 1.23743305E+01

Oxygen

spdfg, O, vdz-f12/optri
s, O, 2.1500000E-01
p, O, 1.07012096E+02, 1.93073067E+01

Fluorine

spdfg, F, vdz-f12/optri
s, F, 1.97500000E-01
p, F, 1.69144542E+02, 2.03049664E+01

Neon

spdfg, Ne, vdz-f12/optri
s, Ne, 4.07531250E+00
p, Ne, 1.99543177E+02, 2.61472558E+01

Sodium

spdfg, Na, vdz-f12/optri
s, Na, 8.64599370E-01, 3.67064900E-02

Magnesium

spdfg, Mg, vdz-f12/optri s, Mg, 6.23168950E-01, 1.59001460E-01

Aluminium

spdfg, Al, vdz-f12/optri
s, Al, 8.34335940E-01
p, Al, 8.94738350E+00, 5.61410590E-01

Silicon

spdfg, Si, vdz-f12/optri
s, Si, 2.07812500E+00
p, Si, 1.43807876E+00, 6.16464840E-01

Phosphorous

spdfg, P, vdz-f12/optri
s, P, 2.62500000E+00
p, P, 2.93554115E+00, 1.61883260E-01

Sulfur

spdfg, S, vdz-f12/optri
s, S, 2.16709375E+00
p, S, 3.28315400E+00, 1.53598140E-01

Chlorine

spdfg, Cl, vdz-f12/optri
s, Cl, 4.52734375E+00
p, Cl, 2.48663783E+00, 1.82130400E-01

Argon

spdfg, Ar, vdz-f12/optri
s, Ar, 4.53125000E+00
p, Ar, 4.31267379E+00, 2.24786340E-01

VTZ-F12/OptRI+

Hydrogen

spdf, H, vtz-f12/optri
s, H, 5.54296875E+02, 1.63720703E+02

Helium

spdf, He, vtz-f12/optri
 s, He, 4.25791626E+04, 4.85682137E+03 \label{eq:eq:expectation}

Lithium

spdfg, Li, vtz-f12/optri s, Li, 8.60937500E-01, 1.77812500E-01

Beryllium

spdfg, Be, vtz-f12/optri s, Be, 4.57321780E-01, 8.71118200E-02

Boron

spdfg, B, vtz-f12/optri
s, B, 8.18750000E-01
p, B, 8.93880930E+01 1.00070847E+01

Carbon

spdfg, C, vtz-f12/optri
s, C, 1.26875000E+00
p, C, 1.42117850E+02, 1.52888249E+01

Nitrogen

spdfg, N, vtz-f12/optri s, N, 8.07812500E-01 p, N, 3.12951924E+02, 7.19422904E+00

Oxygen

spdfg, O, vtz-f12/optri
s, O, 1.11250000E+00
p, O, 2.62571009E+02, 2.82732220E+01

Fluorine

spdfg, F, vtz-f12/optri
s, F, 9.34375000E-01
p, F, 3.22111801E+02, 3.63535585E+01

Neon

spdfg, Ne, vtz-f12/optri
s, Ne, 4.00000000E+00
p, Ne, 6.31497291E+02, 9.93292809E+00

Sodium

spdfg, Na, vtz-f12/optri s, Na, 9.80660200E-02, 7.41110000E-03

Magnesium

spdfg, Mg, vtz-f12/optri
s, Mg, 5.86105720E-01, 3.47512010E-01

Aluminium

spdfg, Al, vtz-f12/optri
s, Al, 1.40000000E+00
p, Al, 6.66394790E-01, 8.47839900E-02

Silicon

spdfg, Si, vtz-f12/optri
s, Si, 8.2500000E-01
p, Si, 6.29579600E-01, 1.14727890E-01

Phosphorous

spdfg, P, vtz-f12/optri
s, P, 1.03183594E+00
p, P, 8.68517180E-01, 8.71428571E-02

Sulfur

spdfg, S, vtz-f12/optri
s, S, 1.22500000E+00
p, S, 8.69031840E-01, 1.16732300E-01

Chlorine

spdfg, Cl, vtz-f12/optri
s, Cl, 1.43750000E+00
p, Cl, 1.00922971E+00, 6.86495000E-02

Argon

spdfg, Ar, vtz-f12/optri
s, Ar, 1.70000000E+00
p, Ar, 1.15647888E+00, 8.13977100E-02

VQZ-F12/OptRI+

Hydrogen

spdfg, H, vqz-f12/optri s, H, 4.43041992E+03, 2.63564453E+02

Helium

spdfg, He, vqz-f12/optri s, He, 7.85156250E+03, 2.18847656E+03

Lithium

spdfgh, Li, vqz-f12/optri
 s, Li, 1.40625000E-01, 9.61875000E-03 $\,$

Beryllium

spdfgh, Be, vqz-f12/optri s, Be, 2.05100000E-01, 9.14332000E-03

Boron

spdfgh, B, vqz-f12/optri
s, B, 4.00000000E+00
p, B, 3.96421875E+02, 1.10332031E+01

Carbon

spdfgh, C, vqz-f12/optri
s, C, 1.24843750E-01
p, C, 5.90986328E+02, 1.71396484E+01

Nitrogen

spdfgh, N, vqz-f12/optri
s, N, 9.5000000E-02
p, N, 9.53906250E+02, 4.59062500E+00

Oxygen

spdfgh, O, vqz-f12/optri s, O, 1.05000000E-01 p, O, 1.28904383E+03, 1.08109380E+01

Fluorine

spdfgh, F, vqz-f12/optri
s, F, 9.22753910E-01
p, F, 1.60001887E+03, 8.92267546E+00

Neon

spdfgh, Ne, vqz-f12/optri
s, Ne, 1.75000000E-01
p, Ne, 1.98167868E+03, 1.14522548E+01

Sodium

spdfgh, Na, vqz-f12/optri s, Na, 1.65575700E-01, 3.99890000E-02

Magnesium

spdfgh, Mg, vqz-f12/optri s, Mg, 6.71549200E-02, 7.71279000E-03

Aluminium

spdfgh, Al, vqz-f12/optri
s, Al, 1.02187500E-01
p, Al, 9.00239920E-01, 1.19556390E-01

Silicon

spdfgh, Si, vqz-f12/optri
s, Si, 1.97382812E+00
p, Si, 4.34663130E-01, 9.86530100E-02

Phosphorous

spdfgh, P, vqz-f12/optri
s, P, 1.55156250E+00
p, P, 8.20601320E-01, 1.26218280E-01

Sulfur

spdfgh, S, vqz-f12/optri
s, S, 1.80000000E+00
p, S, 5.95339020E-01, 2.23235790E-01

Chlorine

spdfgh, Cl, vqz-f12/optri
s, Cl, 2.15000000E+00
p, Cl, 4.97312940E-01, 1.67328990E-01

Argon

spdfgh, Ar, vqz-f12/optri
s, Ar, 1.97343750E+00
p, Ar, 6.11229680E-01, 1.95179140E-01

CCSD(T)/cc-pCVTZ Optimised Geometries for Group

B Molecules

All coordinates are given in xyz format, in Angstrom.

CCl_2

CCSD(T)/CC-PCVTZ ENERGY=-957.39726052 C 0.000000000 0.000000000 -0.8539018056 Cl 0.000000000 1.4063883802 0.1446452287 Cl 0.0000000000 -1.4063883802 0.1446452287

CCIN

CCSD(T)/CC-PCVTZ ENERGY=-552.40717745 C 0.0000000000 -0.0000016535 -0.6801469737 Cl 0.0000000000 0.0000002326 0.9591116919 N 0.0000000000 0.0000008291 -1.8444131388

$\mathrm{CH}_2\mathrm{S}$

CCSD(T)/CC-PCVTZ ENERGY=-436.93983717 C 0.000000000 0.0000012481 -1.1002860045 S 0.000000000 0.0000007578 0.5175669632 H 0.000000000 0.9229557052 -1.6755604066 H 0.0000000000 -0.9229946822 -1.6754938627

SiH_2

CCSD(T)/CC-PCVTZ ENERGY=-290.17251268 Si 0.0000000000 0.000000000 -0.0704224494 H 0.0000000000 1.0964328130 0.9811346428 H 0.0000000000 -1.0964328130 0.9811346428

${\rm SiH}_4$

CCSD(T)/CC-PCVTZ ENERGY=-291.44025487 Si 0.0000000732 0.0000004227 -0.0000065945 H 0.0071862710 0.0555852411 1.4787710034 H 1.2407917082 0.6141404879 -0.5226848859 H -0.0754965990 -1.4108428386 -0.4401725199 H -1.1724834190 0.7411053304 -0.5157298477

SiHF

CCSD(T)/CC-PCVTZ ENERGY=-389.39671991 Si 0.000000000 -0.0602881770 -0.6307117405 F 0.000000000 0.0123129607 0.9795428020 H 0.0000000000 1.4478014611 -0.8888369555

SiHN

CCSD(T)/CC-PCVTZ ENERGY=-344.20576503 Si 0.000000000 -0.0000009665 -0.4806612399 N 0.0000000000 0.000009375 1.1053166202 H 0.0000000000 0.0000139042 -1.9666121505

$cis-H_2P_2$

CCSD(T)/CC-PCVTZ ENERGY=-682.99150055 P 0.000000000 -1.0265932986 -0.0442247753 P 0.0000000000 1.0265932986 -0.0442247753 H 0.0000000000 -1.2452350960 1.3590169811 H 0.0000000000 1.2452350960 1.3590169811

\mathbf{CS}_2

CCSD(T)/CC-PCVTZ ENERGY=-833.51733614 C 0.0000000000 -0.0000005987 0.0000000000 S 0.000000000 0.0000001122 1.5609946759 S 0.0000000000 0.0000001122 -1.5609946759

\mathbf{CS}

CCSD(T)/CC-PCVTZ ENERGY=-435.69816277 C 0.000000000 0.000000000 -1.1246850195 S 0.000000000 0.000000000 0.4213534551

Cl_2O

CCSD(T)/CC-PCVTZ ENERGY=-994.47192697 O 0.0000000000 0.000000000 -0.7890499501 Cl 0.000000000 1.4072170154 0.1780431243 Cl 0.0000000000 -1.4072170154 0.1780431243

Cl_2

CCSD(T)/CC-PCVTZ ENERGY=-919.43564066 Cl 0.000000000 0.000000000 -1.0037484281 Cl 0.0000000000 0.000000000 1.0037484281

ClHO

CCSD(T)/CC-PCVTZ ENERGY=-535.40321497 O 0.0000000000 -0.0626557274 -1.1442594248 Cl 0.0000000000 0.0034813130 0.5557045330 H 0.0000000000 0.8721065279 -1.3829479615

ClH

CCSD(T)/CC-PCVTZ ENERGY=-460.34151872 H 0.000000000 0.000000000 -1.2396566626 Cl 0.000000000 0.000000000 0.0352438309

CINO

CCSD(T)/CC-PCVTZ ENERGY=-589.45367898 N 0.000000000 0.5307095520 -0.8395195494 O 0.0000000000 -0.3330781585 -1.5843793743 Cl 0.0000000000 -0.0593585534 1.0466820250

H_2S_2

CCSD(T)/CC-PCVTZ ENERGY=-796.67944710 S 1.0352918446 -0.0343159740 0.0285257621 S -1.0352918446 0.0343159740 0.0285257621 H 1.2518271068 0.9027003469 -0.9073317180 H -1.2518271068 -0.9027003469 -0.9073317180

H_2S

CCSD(T)/CC-PCVTZ ENERGY=-398.93922803 S 0.000000000 0.000000000 -0.0548483725 H 0.000000000 0.9647540536 0.8722934008 H 0.000000000 -0.9647540536 0.8722934008

HPO

CCSD(T)/CC-PCVTZ ENERGY=-416.61938037 P 0.000000000 -0.0563374230 -0.4867384962 O 0.0000000000 0.0251724798 1.0010810671 H 0.0000000000 1.3316638361 -0.9331657253

iso-CClN

CCSD(T)/CC-PCVTZ ENERGY=-552.33787770 N 0.0000000000 -0.0000042105 -0.7091476384 Cl 0.0000000000 0.000006995 0.9212190634 C 0.0000000000 0.0000028454 -1.8921955896

$\mathbf{iso-CH_2S}$

CCSD(T)/CC-PCVTZ ENERGY=-436.86599161 C 0.000000000 -0.1179279866 -1.1881041790 S 0.000000000 0.0538588147 0.4668006564 H 0.000000000 0.9368855122 -1.5254552609 H 0.0000000000 -1.2447218445 0.8356227819

iso-SiHN

CCSD(T)/CC-PCVTZ ENERGY=-344.31259639 N 0.0000000000 -0.0000004836 -0.9921791120 Si 0.0000000000 0.000000943 0.5663234661 H 0.0000000000 0.0000040935 -1.9925020734

$iso\!-\!H_2P_2$

CCSD(T)/CC-PCVTZ ENERGY=-682.95636992 P 0.000000000 0.000000000 -0.9161389064 P 0.000000000 0.000000000 1.0332938640 H 0.0000000000 1.0970451108 -1.8000721954 H 0.0000000000 -1.0970451108 -1.8000721954

P_2O

CCSD(T)/CC-PCVTZ ENERGY=-756.92722052 P 0.000000000 -0.0000002890 -0.4532953111 P 0.0000000000 0.0000001262 1.4498648899 O 0.0000000000 0.0000003151 -1.9292915332

PH_3

CCSD(T)/CC-PCVTZ ENERGY=-342.69575332 P -0.0000534660 -0.0681099898 -0.0000000000 H 1.1911195867 0.6969634889 -0.0000000000 H -0.5947382945 0.6980202679 1.0313219925 H -0.5947382945 0.6980202679 -1.0313219925

$trans\!-\!H_2P_2$

CCSD(T)/CC-PCVTZ ENERGY=-682.99695768 P 0.000000000 -0.0515744134 -1.0203676959 P 0.000000000 0.0515744134 1.0203676959 H 0.0000000000 1.3614116200 -1.1878477885 H 0.0000000000 -1.3614116200 1.1878477885

SiO

CCSD(T)/CC-PCVTZ ENERGY=-364.20248216 Si 0.000000000 0.000000000 -0.5516606033 O 0.000000000 0.000000000 0.9683903068

SiO_2

CCSD(T)/CC-PCVTZ ENERGY=-439.33734313 Si 0.000000000 -0.0000007542 0.0000000000 O 0.000000000 0.000006619 1.5162936866 O 0.0000000000 0.000006619 -1.5162936866

$\mathbf{P_2}$

CCSD(T)/CC-PCVTZ ENERGY=-681.81210773 P 0.0000000000 0.000000000 -0.9547754176 P 0.0000000000 0.000000000 0.9547754176

Basis Set Compositions

	Н	He	Li - Be	B - Ne	Na-Mg	Al - Ar	
DZ/OptRI+	5s3p2d	6s4p2d	6s4p4d3f2g	5s6p4d3f1g	6s5p4d3f1g	5s6p4d3f1g	
TZ/OptRI+	5s3p3d2f	6s3p3d2f	6s4p4d3f2g	5s6p4d3f2g	6s4p4d3f2g	5s6p4d3f2g	
QZ/OptRI+	5s3p3d2f1g	6s3p3d2f1g	6s4p4d3f2g1h	5s6p4d3f2g1h	6s4p4d3f2g1h	5s6p4d3f2g1h	
${\rm Ref}/{\rm MP2FIT}$	24s18p14d12f10g8h6i		31s26p22d22f20g18h15i		32s27p23d20f18g17h15i		
Ref/RI	18s17p16d12f10g8h		18s17p16d1	12f10g8h7i	20s18p17d15f12g9h7i		

Table S1: Compositions of the New^a VnZ-F12/OptRI+ Sets and the Reference Even-Tempered RI and MP2FIT Sets

^a The original VnZ-F12/OptRI sets are the same, less 2s for H-Be, Na-Mg and 1s2p for B-Ne, Al-Ar.

Heats of Formation for Group A and B Molecules

Molecule	Reaction
FCN	$\mathrm{FCN} + \mathrm{CO}_2 \longrightarrow 2\mathrm{CO} + 0.5\mathrm{N}_2 + 0.5\mathrm{F}_2$
iso-FCN	$iso-FCN + CO_2 \longrightarrow 2 CO + 0.5 N_2 + 0.5 F_2$
CF_2	$CF_2^+CO_2 \longrightarrow 2CO^+F_2$
CHF	$\mathrm{CHF} + \mathrm{CO}_2 \longrightarrow 2\mathrm{CO} + 0.5\mathrm{H}_2 + 0.5\mathrm{F}_2$
HCN	$\mathrm{HCN} + \mathrm{CO}_2 \longrightarrow 2\mathrm{CO} + 0.5\mathrm{N}_2 + 0.5\mathrm{H}_2$
iso-HCN	$iso-HCN + CO_2 \longrightarrow 2 CO + 0.5 N_2 + 0.5 H_2$
CH_2	$CH_2 + CO_2 \longrightarrow 2 CO + H_2$
$\rm CH_2O$	$\rm CH_2O \longrightarrow \rm CO + \rm H_2$
$\rm iso-CH_2O$	$iso-CH_2O \longrightarrow CO + H_2$
CH_4	$CH_4 + CO_2 \longrightarrow 2 CO + 2 H_2$
C_2H_2	$C_2H_2 + 2 \operatorname{CO}_2 \longrightarrow 4 \operatorname{CO} + H_2$
FH	$\mathrm{FH} \longrightarrow 0.5 \mathrm{F_2} + 0.5 \mathrm{H_2}$
FHO	$\mathrm{FHO} + \mathrm{CO} \longrightarrow \mathrm{CO}_2 + 0.5 \mathrm{F}_2 + 0.5 \mathrm{H}_2$
FNO	$\mathrm{FNO} + \mathrm{CO} \longrightarrow \mathrm{CO}_2 + 0.5\mathrm{F}_2 + 0.5\mathrm{N}_2$
F_2O	$\mathrm{F_2O} + \mathrm{CO} \longrightarrow \mathrm{CO_2} + \mathrm{F_2}$
$cis\!-\!H_2N_2$	$cis-H_2N_2 \longrightarrow H_2 + N_2$
$trans\!-\!H_2N_2$	$trans-H_2N_2 \longrightarrow H_2 + N_2$
$\mathrm{iso}-\mathrm{H_2N_2}$	$iso-H_2N_2 \longrightarrow H_2 + N_2$
H_2O	$\mathrm{H_2O} + \mathrm{CO} \longrightarrow \mathrm{CO_2} + \mathrm{H_2}$
H_2O_2	$H_2O_2 + 2 CO \longrightarrow H_2 + 2 CO_2$
HNO	$\mathrm{HNO} + \mathrm{CO} \longrightarrow \mathrm{CO}_2 + 0.5\mathrm{H}_2 + 0.5\mathrm{N}_2$
NH_3	$\rm NH_3 \longrightarrow 0.5N_2 + 1.5H_2$
N_2O	$N_2O + CO \longrightarrow CO_2 + N_2$

Table S2: Reactions Used to Calculate Heats of Formation

Molecule	Reaction
O ₃	$O_3 + 3 CO \longrightarrow 3 CO_2$
CCIN	$\mathrm{CClN} + \mathrm{CO}_2 \longrightarrow 2\mathrm{CO} + 0.5\mathrm{N}_2 + 0.5\mathrm{Cl}_2$
iso-CClN	$iso-CClN + CO_2 \longrightarrow 2CO + 0.5N_2 + 0.5Cl_2$
CCl_2	$CCl_2 + CO_2 \longrightarrow 2CO + Cl_2$
SiHF	$\rm SiHF + SiO_2 \longrightarrow 2SiO + 0.5H_2 + 0.5F_2$
SiHN	$\rm SiHN + SiO_2 \longrightarrow 2SiO + 0.5N_2 + 0.5H_2$
iso-SiHN	$iso-SiHN + SiO_2 \longrightarrow 2SiO + 0.5N_2 + 0.5H_2$
SiH_2	$SiH_2 + SiO_2 \longrightarrow 2SiO + H_2$
$\rm CH_2S$	$CH_2S \longrightarrow CS + H_2$
$iso-CH_2S$	$iso-CH_2S \longrightarrow CS + H_2$
${ m SiH}_4$	$SiH_4 + SiO_2 \longrightarrow 2SiO + 2H_2$
ClH	$ClH \longrightarrow 0.5 Cl_2 + 0.5 H_2$
ClHO	$ClHO + CO \longrightarrow CO_2 + 0.5 Cl_2 + 0.5 H_2$
CINO	$\mathrm{ClNO} + \mathrm{CO} \longrightarrow \mathrm{CO}_2 + 0.5 \mathrm{Cl}_2 + 0.5 \mathrm{N}_2$
Cl_2O	$Cl_2O + CO \longrightarrow CO_2 + Cl_2$
$cis\!-\!H_2P_2$	$cis-H_2P_2 \longrightarrow H_2+P_2$
$trans\!-\!H_2P_2$	$trans - H_2 P_2 \longrightarrow H_2 + P_2$
$iso-H_2P_2$	$iso-H_2P_2 \longrightarrow H_2 + P_2$
H_2S	$H_2S + CS \longrightarrow CS_2 + H_2$
H_2S_2	$H_2S_2 + 2CS \longrightarrow H_2 + 2CS_2$
НРО	$\mathrm{HPO} + \mathrm{CO} \longrightarrow \mathrm{CO}_2 + 0.5 \mathrm{H}_2 + 0.5 \mathrm{P}_2$
PH_3	$\rm PH_3 + 0.5P_2 + 1.5H_2$
P_2O	$P_2O + CO \longrightarrow CO_2 + P_2$

	$\mathbf{V}n$	Z-F12/Op	otRI	VnZ-F12/OptRI+		
Molecule	DZ	ΤZ	QZ	DZ	ΤZ	QZ
FCN	307.09	306.63	306.39	306.03	306.27	306.38
iso-FCN	-228.79	-229.60	-229.78	-229.44	-229.84	-229.80
CF_2	40.61	39.91	39.73	39.66	39.63	39.71
CHF	-111.58	-111.67	-111.76	-111.86	-111.76	-111.77
HCN	411.52	411.61	411.56	411.29	411.51	411.56
iso-HCN	-80.51	-80.64	-80.79	-81.14	-80.87	-80.79
CH_2	123.81	123.53	123.38	123.34	123.36	123.37
$\rm CH_2O$	176.22	175.99	175.86	175.65	175.80	175.86
$\rm iso-CH_2O$	227.13	227.11	227.06	227.00	227.11	227.05
CH_4	37.65	37.82	37.90	38.08	37.98	37.90
C_2H_2	-109.31	-109.09	-109.10	-109.11	-108.97	-109.10
FH	-308.06	-308.22	-308.36	-308.48	-308.29	-308.37
FHO	-52.44	-52.15	-52.07	-51.86	-52.03	-52.07
FNO	-278.26	-278.18	-278.27	-278.24	-278.10	-278.27
F_2O	108.78	109.20	109.23	109.20	109.34	109.24
$cis\!-\!H_2N_2$	347.28	346.52	346.38	346.53	346.34	346.37
$trans\!-\!H_2N_2$	88.21	88.38	88.29	88.08	88.33	88.29
$iso\!-\!H_2N_2$	216.41	215.92	215.79	215.80	215.79	215.78
H_2O	276.88	276.61	276.40	276.51	276.58	276.40
H_2O_2	143.78	143.70	143.69	144.05	143.81	143.69
NH_3	-73.83	-73.89	-74.06	-74.15	-73.92	-74.06
N_2O	313.72	314.90	315.24	315.33	315.50	315.26
O_3	201.89	202.05	201.97	201.75	202.04	201.97

Table S3: Heats of Formation (kJ mol^{-1}) at the HF + CABS level

	Vn2	Z-F12/Op	m otRI	VnZ-F12/OptRI+			
Molecule	DZ	ΤZ	QZ	DZ	ΤZ	QZ	
CCIN	-294.60	-296.67	-297.01	-296.09	-297.00	-297.00	
iso-CClN	283.06	284.04	284.28	283.16	284.06	284.30	
CCl_2	202.28	202.27	202.26	201.71	202.13	202.26	
SiHF	87.24	86.78	86.64	86.78	86.67	86.64	
SiHN	279.89	279.83	279.91	280.01	279.84	279.91	
iso-SiHN	18.67	18.44	18.64	18.83	18.46	18.64	
SiH_2	-163.91	-165.23	-165.39	-164.11	-165.33	-165.39	
$\rm CH_2S$	612.38	612.43	612.39	612.69	612.44	612.39	
$iso\!-\!CH_2S$	106.55	106.45	106.46	106.73	106.45	106.47	
SiH_4	106.47	106.16	106.14	106.85	106.33	106.16	
ClH	-107.97	-107.37	-107.22	-107.88	-107.36	-107.20	
ClHO	117.29	118.38	118.69	118.06	118.55	118.70	
CINO	-52.36	-51.99	-52.08	-51.77	-51.93	-52.07	
Cl_2O	-68.81	-68.24	-68.22	-68.44	-68.22	-68.21	
$cis\!-\!H_2P_2$	-116.32	-117.10	-117.31	-115.93	-117.02	-117.30	
$trans\!-\!H_2P_2$	369.12	368.67	368.54	368.57	368.56	368.54	
$iso\!-\!H_2P_2$	259.84	259.58	259.50	259.72	259.52	259.50	
H_2S	231.91	231.26	231.16	231.61	231.24	231.17	
H_2S_2	189.75	189.60	189.63	189.92	189.60	189.63	
HPO	-39.37	-40.23	-40.48	-38.96	-40.11	-40.47	
PH_3	-45.55	-45.18	-45.08	-45.27	-45.18	-45.06	
P_2O	92.02	92.02	92.05	92.22	92.03	92.06	

	Vn	VnZ-F12/OptRI			VnZ-F12/OptRI+		
Molecule	DZ	ΤZ	QZ	DZ	ΤZ	QZ	
FCN	210.85	202.09	200.12	209.67	201.73	200.12	
iso-FCN	-209.76	-214.56	-216.38	-210.60	-214.81	-216.39	
CF_2	3.45	-1.97	-3.45	2.30	-2.26	-3.47	
CHF	-132.66	-135.21	-135.69	-132.95	-135.30	-135.69	
HCN	412.39	407.25	406.47	412.17	407.14	406.47	
iso-HCN	-122.68	-127.89	-128.96	-123.33	-128.12	-128.97	
CH_2	131.30	126.47	125.12	130.76	126.29	125.11	
$\rm CH_2O$	122.00	117.26	116.32	121.37	117.08	116.31	
$iso-CH_2O$	201.29	198.48	198.16	201.17	198.50	198.16	
CH_4	32.87	35.08	35.79	33.26	35.26	35.79	
C_2H_2	-96.26	-95.47	-95.29	-96.07	-95.34	-95.29	
FH	-287.49	-288.71	-289.42	-288.00	-288.77	-289.43	
FHO	-72.01	-68.89	-68.32	-71.43	-68.77	-68.32	
FNO	-262.23	-261.88	-261.97	-262.17	-261.79	-261.96	
F_2O	105.60	106.88	107.50	106.09	107.04	107.50	
$cis\!-\!H_2N_2$	304.43	299.41	298.11	303.49	299.23	298.10	
$trans\!-\!H_2N_2$	82.05	79.22	78.67	81.94	79.18	78.67	
$iso\!-\!H_2N_2$	183.35	178.23	176.97	182.70	178.10	176.96	
H_2O	280.99	276.83	275.87	280.63	276.83	275.87	
H_2O_2	101.63	103.03	103.35	101.93	103.16	103.35	
NH_3	-80.69	-84.08	-84.90	-81.01	-84.10	-84.91	
N_2O	206.15	215.70	219.19	207.88	216.33	219.20	
O_3	178.03	175.33	174.96	177.90	175.35	174.96	

Table S4: Heats of Formation (kJ mol^{-1}) at the CCSD-F12b level

	∇n	Z-F12/Op	m otRI	VnZ-F12/OptRI+			
Molecule	DZ	ΤZ	QZ	DZ	ΤZ	QZ	
CCIN	-350.29	-360.69	-363.71	-351.92	-361.17	-363.71	
iso-CClN	232.32	232.77	232.88	232.39	232.75	232.89	
CCl_2	134.87	132.99	132.57	134.18	132.81	132.57	
SiHF	83.54	79.91	79.21	83.04	79.78	79.22	
SiHN	291.67	285.15	284.46	291.78	285.08	284.45	
iso-SiHN	35.19	28.45	27.47	35.34	28.38	27.46	
SiH_2	-137.92	-145.08	-146.86	-138.21	-145.25	-146.86	
$\rm CH_2S$	505.07	497.99	497.15	505.38	497.94	497.15	
$\rm iso-CH_2S$	118.36	116.52	116.21	118.54	116.50	116.21	
SiH_4	85.99	90.03	91.75	86.39	90.20	91.76	
ClH	-98.91	-99.05	-99.18	-98.86	-99.04	-99.17	
ClHO	78.13	82.57	83.85	78.95	82.75	83.85	
CINO	3.98	4.80	4.94	4.57	4.95	4.96	
Cl_2O	-32.68	-32.42	-32.13	-32.29	-32.35	-32.11	
$cis{-}H_2P_2$	-97.20	-94.21	-93.89	-96.79	-94.13	-93.88	
${\rm trans}{\rm -}{\rm H_2P_2}$	316.78	314.61	314.15	316.11	314.47	314.15	
$iso-H_2P_2$	271.43	268.78	268.21	271.31	268.71	268.21	
H_2S	197.17	190.11	188.45	196.85	190.01	188.46	
H_2S_2	208.25	205.04	204.12	208.42	205.01	204.12	
НРО	-53.06	-52.41	-52.97	-52.65	-52.33	-52.96	
PH_3	-19.40	-20.61	-20.62	-19.12	-20.62	-20.62	
P_2O	103.54	102.02	101.77	103.74	102.00	101.77	