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CABS Singles Correction and Auxiliary Basis Sets
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E-mail: grant.hill@sheffield.ac.uk

Abstract

Auxiliary basis sets for use in the resolution of the identity (RI) approximation in

explicitly correlated methods are presented for the elements H–Ar. These extend the

cc-pVnZ-F12/OptRI (n = D–Q) auxiliary basis sets of Peterson and coworkers by the

addition of a small number of s- and p-functions, optimized so as to yield the great-

est complementary auxiliary basis set (CABS) singles correction to the Hartree-Fock

energy. The new sets, denoted OptRI+, also lead to a reduction in errors due to the

RI approximation and hence an improvement in correlation energies. The atomization

energies and heats of formation for a test set of small molecules, and spectroscopic

constants for 27 diatomics, calculated at the CCSD(T)-F12b level, are shown to have

improved error distributions for the new auxiliary basis sets with negligible additional

effort. The OptRI+ sets retain all of the desirable properties of the original OptRI,

including the production of smooth potential energy surfaces, whilst maintaining a

compact nature.
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1 Introduction

Electronic structure methods rely heavily on the expansion of the wavefunction in a finite

basis of one-electron functions,1 usually Gaussian-type orbitals.2,3 In doing so, a basis set

incompleteness error is introduced, whereby the basis does not completely span the first

Sobolev space associated with the Hamiltonian.4,5 Whilst it has only been proven that it is

possible to form a complete basis,4 not that any given basis will tend to completion, it is

generally assumed that the electronic energy will converge with increasing basis size.6 The

fundamental problem therein is that this convergence is very slow for correlated methods7

and the steep scaling1 of such methods precludes reaching convergence on any reasonable

timescale. This is largely attributed to the poor description of the electron cusp, where

the wavefunction derivative should be linear in the interelectronic distance.8,9 Explicitly

correlated (F12) methods10 solve this problem by including geminals that explicitly depend

upon this distance, thereby substantially increasing the rate of convergence. However, doing

so comes at the cost of the need to evaluate many 3-, 4-, and even 5-centre integrals. To avoid

this potential bottleneck, the resolution of the identity (RI) approximation was introduced.11

This rests on the fact12 that, for any complete, not necessarily orthogonal, basis {|λ〉},

1̂ =
∑

λµ

|λ〉 〈λ|µ〉−1 〈µ| (1)

and so multi-centre integrals can be expanded over this basis, reducing their dimensionality.

For example, the four-centre integral for some operator Â becomes

〈pq|Â|rs〉 =
∑

λµ

〈pq|λ〉 〈λ|µ〉−1 〈µ|Â|rs〉 (2)

where p, q, r, s denote orbitals. Further details of F12 methods can be found in a recent

review.13

As already noted, in practice any finite basis used will not be complete, thus the above
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equality becomes an approximation. The original formulations of the RI approach utilised

the orbital basis as the expansion basis.11 Such a choice was found to be inefficient,14 as these

bases are generally optimized to best describe the occupied subspace; the virtual subspace

often has significant overlap with the orthogonal complement of the space spanned by the

orbital basis.15 As such, auxiliary bases were introduced specifically for the RI approxima-

tion.14 The most commonly used approach is that of the complementary auxiliary basis set15

(CABS, also sometimes referred to as CABS+). In this, an auxiliary basis is formed so as to

span the orthogonal complement of the space spanned by the orbital basis, by purification

of the overlap matrix between the two sets such that their resulting overlap is zero. The

CABS is then constructed as the union of the orbital and auxiliary bases.

The improvements in convergence gained by the above scheme, together with several

other adaptations such as density fitting techniques,3,16 are such that highly accurate elec-

tron correlation energies can be calculated using relatively small basis sets. At this point,

the incompleteness error in the Hartree-Fock (HF) energy often outweighs that of the corre-

lation energy.17 In an attempt to rectify this, a perturbative correction scheme - the CABS

singles correction - was proposed.18,19 Effectively, the Fock matrix is expanded to include

the auxiliary basis, and the HF orbitals allowed to relax in the larger space. The new Fock

matrix F is constructed using the density calculated in the smaller basis, essentially aug-

menting the molecular orbital (MO) virtual space with the auxiliary set. The usual Roothan

equations FC = CE (assuming canonical HF orbitals) can then be solved for coefficients C

and energies E. Each matrix is blocked into the MO occupied orbitals (subscript O) and the

MO+ABS virtual orbitals (subscript V ). The energy lowering due to this single Roothan

step is then given by

δE = Tr {EOO − FOO} = Tr {FOVXV O} (3)

where XV O = CV OC
−1
OO can be found through iterative solution of

FV O + FV VXV O −XV OFOO −XV OFOVXV O = 0 (4)
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Most implementations, including that of molpro used here,20,21 neglect the quadratic term

in equation 4, as in most cases this will be small and doing so permits non-iterative solution

without diagonalization. Using the fact that the occupied-occupied block of the Fock matrix

is diagonal with orbital energies ǫi, and transforming the virtual-virtual block to also be

diagonal with energies ǫα, the above becomes

(XV O)αi ǫi − ǫα (XV O)αi = Fαi (5)

Rearranging and inserting into Equation 3 gives the CABS singles correction:

ECABS =
∑

iα

|Fiα|
2

ǫi − ǫα
=

∑

iα

Fiαt
α
i (6)

where tαi is the single excitation amplitude from occupied orbital i into virtual orbital α.

Therefore this is equivalent to the inclusion of single excitations perturbatively, possible due

to the Brillouin condition-violating occupied-virtual mixings in the expanded Fock matrix.

The inclusion of the CABS correction leads to a greatly improved reference energy for the

subsequent correlated treatment.

Auxiliary basis sets for use in the RI approximation have been specifically matched to

correlation consistent basis sets by optimization against the objective function

δRI =
∑

ij

(

V RI
ij,ij − V RIref

ij,ij

)2

∣

∣

∣
V RIref
ij,ij

∣

∣

∣

+

(

BRI
ij,ij − BRIref

ij,ij

)2

∣

∣

∣
BRIref

ij,ij

∣

∣

∣

(7)

where the V and B matrices are taken from MP2-F12 calculation determined from the ap-

proximated integrals,20 and the ref script refers to values from a calculation performed in a

very large (so as to be near-complete) reference basis.22,23 The resulting auxiliary sets are

suffixed OptRI and were designed to be compact, minimize errors due to the RI approxima-

tion, and result in smooth potential energy surfaces.22,24,25 The choice of δRI was inspired

by the 2∗A MP2-F12 energy, and unlike direct minimization of the error in the MP2-F12
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energy compared to the reference calculation, it led to well-behaved optimizations. How-

ever, as noted by Köhn and Tew,26 when the OptRI auxiliary sets are used in the CABS

approach the resulting basis is not sufficient to reach the implicit accuracy of the CABS

singles correction.

The aim of the present contribution is to extend the cc-pVnZ-F12/OptRI (n=D, T,

Q) auxiliary basis sets of Peterson and coworkers22,25 with additional functions in order

to maximize the magnitude of ∆ECABS. The number of functions added is small in order

to preserve the OptRI design philosophy of compact sets with well-controlled RI errors.

Improvements in the CABS singles correction and correlation energies are verified for a

number of molecules comprising first and second row elements, and the suitability of the

resulting sets for generating smooth potential energy surfaces tested.

2 Basis set optimization

All auxiliary basis set optimizations were carried out in a locally modified version of the

molpro 2012.1 suite of programs,27,28 with all other calculations carried out in molpro

2015.1.29 For simplicity, basis sets from the correlation consistent series shall be shortened

to VnZ herein. Exclusively pure spherical harmonic basis functions were used and only

valence electrons were correlated in the post-HF calculations. For the explicitly correlated

calculations, a geminal beta exponent of 1.0 a−1
0 was used, with the 3C(FIX) ansatz.30 The

orbital basis sets used are the correlation consistent VnZ-F12 sets optimized specifically

for use in F12 calculations.25,31 Additionally, the Fock and exchange integrals in these were

density-fitted using the aV5Z/JKFit or general-purpose def2-QZVPP/JKFit auxiliary basis

sets of Weigend.32,33 As the fitting does not impact on the calculation of the CABS singles

correction, this held no relevance to the basis set optimization. It was instead chosen so as to

match the reference calculations done by Köhn and Tew26 for the molecular tests presented

later. For the remaining two-electron integrals, the matching VnZ-F12/MP2Fit sets23,34
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for each zeta were used. In the reference calculations needed for determining the RI errors

(Equation 7), the large even-tempered35 MP2Fit auxiliary basis sets of Hill et al.36 were

extended by an additional three tight s functions. As these reference sets did not exist for

some elements, the exponents for helium were taken from hydrogen and multiplied by 1.56,

beryllium and magnesium used those of boron and aluminum divided by 1.56, respectively,

as did lithium and sodium, but divided by a further factor of 1.56. The reference RI set

was formed in the same way, taking the most diffuse exponent of each angular momenta

from the relevant aV6Z37,38 set (aV5Z39 for group 1 and 2 elements) and dividing by 1.3.

Even-tempered expansions with base 1.8 were used in all instances. The compositions for

both sets are given in Table S1; all are uncontracted.

The VnZ-F12/OptRI sets, specifically matched to the VnZ-F12 orbital basis sets, were

used as a starting point. The exponents of this parent set were held fixed while additional

functions were added. The value of δRI (Equation 7) was calculated for all sets optimized in

this work, but it was found that including it (or rather its square root, due to its negligible

size) in a weighted objective function with the CABS singles energy (ECABS, Equation 6)

made no significant difference to the resulting exponents. In all cases, the magnitude of

the change in δRI was orders smaller than the change in ECABS. As this process is simply

adding additional functions and not removing any, it is mathematically impossible12 for

the new basis to be ‘less complete’ than the previous sets, and so the error due to the RI

approximation should only ever decrease. The possible exception is the case when there is

linear dependency present in the basis, where most implementations will delete functions;

this did not occur in any of the optimizations. Spuriously, in some instances it was found that

δRI slightly increased (by, at most, tens of nEh), suggesting that it is not in fact a concrete

measure of the error due to the RI approximation. As such, the exponents were instead

optimized solely by maximizing the magnitude of ECABS. To mitigate the aforementioned

possibility of linear dependency, a steep penalty function was applied such that the ratio

of any new exponent to that of any existing exponent (in the union of the orbital and
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auxiliary bases) must be greater than or equal to 1.4. It should be noted that the default

molpro implementation of equation 6 does not include excitations from core orbitals, under

the assumption that the amplitudes for these excitations are negligibly small. Inclusion of

these ‘core singles’ contributions for the molecular tests described later resulted in changes

to ECABS of on average two percent, and changes to heats of formation of approximately 0.1

kJ mol−1, regardless of which ABS was used. As such, we have chosen not to include them

in calculations presented herein.
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Figure 1: Contributions of additional auxiliary basis set functions to the CABS singles
correction using the cc-pVDZ-F12 orbital basis for the atoms hydrogen (top left), lithium
(top right), oxygen (bottom left), and sulfur (bottom right)

Exponents were optimized using the general purpose Nelder-Mead simplex algorithm in

molpro, with a convergence criterion of 10−8 Eh for the double- and triple-zeta basis sets.

This was reduced to 10−10 for the quadruple-zeta sets as the energy changes were significantly
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smaller. In order to determine the number of functions to add to the parent OptRI bases,

MP2-F12 calculations were carried out on neutral ground-state atoms to calculate the value

of ∆ECABS as the number of functions and their angular momentum shell was incremented.

Figure 1 shows the incremental CABS singles correction recovered by the addition of extra

auxiliary basis set functions for H, Li, O, and S with a cc-pVDZ-F12 orbital basis. The

pattern of the incremental improvements in CABS singles with angular momentum was

surprisingly similar for all zeta-levels of orbital basis, with only the total magnitude of

the contributions changing; the relative contributions of different shells remained roughly

constant.

For the atoms H–Be, Na, and Mg the only significant gains came from adding two s-type

functions to the VnZ-F12/OptRI sets. For the remaining first and second row elements it is

clear that p-type functions are the most important in terms of increasing the CABS singles

correction, and that adding a third set of p-functions recovers substantially less energy

than the first two. For the first row p-block elements a single additional s-function also

contributes a relatively large amount. This s-function is significantly less important for the

second row p-block elements, but it was included in order to preserve the same auxiliary

basis composition for both first and second row elements. The inclusion of higher angular

momentum functions, or further s- or p-functions, generally resulted in changes to the CABS

singles energy of less than 1%, usually on the order of 1µEh. The exception is in the case of

symmetry-broken solutions, discussed in the next section, where a single f -function was often

found to be mildly significant. In the case of sulfur, this was approximately 10 µEh, the same

as for the first additional s-function. However, this is an artefact of the symmetry-broken

nature of these cases (as evidenced by the lack of such contributions for the non-symmetry

broken atoms), and in general it is not expected that higher angular momentum functions

will contribute significantly at the HF level. Hence one s-function and two sets of p-type

functions are added for the atoms B–Ne and Al–Ar. It is noted that this should also result

in the least possible extra computational cost, as integrals over s- and p-shells are the least
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time consuming, and agrees with the suggestion that the addition of a few low angular

momentum functions should make the biggest difference to the CABS singles correction.26

The resulting total compositions of the new auxiliary basis sets are listed in Table S1 in the

supporting information, and herein these sets are suffixed OptRI+ to signify the addition of

extra functions to the existing OptRI sets.

2.1 Approaching the Hartree-Fock limit

Table 1 shows the mean percentage of total possible ECABS recovered by both the old and

new basis sets across all atoms. The limiting ECABS value was determined by performing the

calculation in the large even-tempered reference RI set described above (assuming that this

is large enough to be essentially complete), but using the same VnZ-F12 orbital basis. In

addition, it shows the average deviation of both the HF and HF+CABS energies from the HF

limit, as calculated by Froese-Fischer.40 For some atoms (B, C, O, F and their second-row

equivalents), broken symmetry solutions are possible,41 in which case HF calculations using

an uncontracted aV6Z orbital basis were used to approximate the HF limit. The difference

between the reference HF+CABS and HF limit is then entirely due to deficiencies in the

orbital basis. It is common in high-accuracy calculations to try and reach the complete basis

set limit via an ad hoc extrapolation, but attempts to do so here are essentially unnecessary

for the HF energy: the QZ/OptRI+ HF+CABS values are already on average 32 µEh better

than aV5Z and within 10 µEh of aV6Z. The latter values are themselves within 5 µEh of the

Froese-Fischer limit (where available), suggesting that any attempts at extrapolation of HF

energies would lead to overestimates.

Most notably, the new sets recover well over 50% of the total possible CABS energy

in all cases, compared to considerably under 50% for the old sets; in fact, for each zeta,

the percentages more than double. As can be seen from the deviations from the HF limit,

this corresponds to absolute improvements in the energy of on average approximately 1130,

210, and 20 µEh (for double-, triple-, and quadruple zeta, respectively). This substantially
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Table 1: Mean Percentage of Total Possible CABS Energy Recovered, Mean δRI, and Mean
Absolute Deviations from HF Limit of HF (∆1) and HF+CABS (∆2) Energies for the Ele-
ments H-Ar

OptRI Basis % ECABS ∆1 (µEh) ∆2 (µEh) δRI (µEh)

DZ/OptRI 39 3325.37 2692.60 0.31
DZ/OptRI+ 88 3325.37 1558.14 0.33
TZ/OptRI 35 673.72 550.46 0.04
TZ/OptRI+ 78 673.72 336.24 0.08
QZ/OptRI 29 84.99 78.66 0.02
QZ/OptRI+ 67 84.99 61.86 0.03

reduces the incompleteness errors present in the HF energy. Generally, the performance is

uniform across all elements considered. For example, the percentage CABS singles energy

recovered for the DZ sets is between 81.1% (Mg) and 96.6% (Si) for all elements except

hydrogen (72.6%) and helium (46.1%). These are expected to be problem cases, as their

function space is already saturated, and so only small gains are made in absolute energy

terms. This is to be compared with the original OptRI sets, which have a vastly wider

spread: from 21.6% for B up to 94.4% for Si (with 0.7 and 5% for hydrogen and helium). As

such, the sets developed in this paper yield better reference energies for explicitly correlated

calculations, and in a more consistent fashion. It can also be seen that the change in δRI,

whilst paradoxically positive, is minimal and approximately four orders of magnitude smaller

than the change in ECABS.

3 Molecular tests

To test the performance of the new basis sets, a series of calculations were carried out on

small molecules. These are split into three groups, A, B and C, listed in Table 2. The choices

for group A were taken from Köhn and Tew,26 which form a small subset of the molecules

that were used originally to test explicitly correlated methods.17,42 As these only include first

row elements, group B was chosen by taking second row equivalents of those in group A. In

keeping with the reference paper, equilibrium geometries were optimized at the CCSD(T)/cc-
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Figure 2: Normal distributions for the deviations (from the reference value) in the total
CCSD-F12b energy of the molecules in groups A and B, for both the new OptRI+ (red) and
existing (blue) OptRI auxiliary sets, at the DZ (top), TZ (middle) and QZ (bottom) levels.
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Table 2: Groups of Small Molecules Used in Test Calculations

Group Aa C2H2, CF2, CFN,CH2O,CH2, CH4, CHF,CHN, cis–H2N2, CO2, CO, F2O,F2,
FHO, FH, FNO,H2O2, H2, HNO, iso–CFN, iso–CH2O, iso–CHN, iso–H2N2,
N2O,N2, NH3, O3, trans–H2N2

Group Bb CCl2, CClN,CH2S, SiH2, SiH4, SiHF, SiHN, cis–H2P2, CS2, CS, Cl2O,Cl2,
ClHO,ClH,ClNO,H2S2, H2S,HPO, iso–CClN, iso–CH2S, iso–SiHN,
iso–H2P2, P2O,PH3, trans–H2P2, SiO, SiO2, P2

Group Cc AlN,AlP,Ar2, BeO,BeS, BN,Cl2, CO,CS, F2, FCl, H2, HCl, He2, HF, LiCl,
LiF,MgO,MgS,N2, NaCl, NaF,Ne2, O2, P2, S2, SiO

a Heats of formation and atomization energies calculated.
b Only heats of formation calculated, as reference atomization energies were not available.
c Spectroscopic constants calculated.

pCVTZ level43,44 and are listed in the supporting information. For the heats of formation and

atomization energies, CCSD-F12 calculations were performed using both the existing VnZ-

F12/OptRI ABS, and the OptRI+ from the current work, matched with the corresponding

VnZ-F12 orbital and MP2Fit bases. Benchmark values were determined for the former using

an uncontracted aV6Z orbital basis, with density fitting using the aV5Z/JKFit and large

even-tempered MP2Fit bases described in the previous section, whilst the RI auxiliary basis

was chosen to match the aforementioned paper as aV5Z/MP2Fit. For the spectroscopic

constants, the same approach was used but with added perturbative triples. The benchmark

calculations used a contracted aV6Z orbital basis for all atoms except lithium, beryllium,

sodium and magnesium, for which aV5Z sets were used instead, as the former do not exist.

The RI basis for these was the even-tempered reference RI described earlier and overall this

combination will be referred to as aV6Z for simplicity.

Normal distributions of the errors in the total energies of the molecules from groups A

and B are shown in Figure 2 for the OptRI and OptRI+ sets, whilst summary statistics for

the errors in the correlation energy are given in Table 3. These correlation energies do not

include the CABS singles correction and thus act as a guide to the improvement in the RI

12



Table 3: Errors (and Standard Deviations of Errors, σ) due to Resolution of the Identity
Approximation (Relative to Reference ABS) in the CCSD-F12b Correlation Energy (µEh,
per Correlated Electron), and Basis Set Incompleteness Errors (Relative to aV6Z)

Basis Error Mean σ Max

VDZ-F12 BSIE 1133.90 339.72 1927.59
RI (OptRI) 12.14 9.03 39.23
RI (OptRI+) 7.37 8.34 29.57

VTZ-F12 BSIE 295.11 90.22 462.12
RI (OptRI) 2.86 4.58 14.82
RI (OptRI+) 0.70 3.11 8.81

VQZ-F12 BSIE 43.01 24.15 100.94
RI (OptRI) 1.71 2.03 9.91
RI (OptRI+) 0.29 2.20 7.06

approximation itself. It is clear from Figure 2 that the change in CABS energy is yielding

a significant improvement, with energies being both closer to the benchmark aV6Z energies

and being a more consistent distance away. This is most drastic for n = D, T - which are

the most likely to be of practical use - whilst for n = Q, there is a much smaller, but still

significant, difference. Interestingly, whilst the primary gain comes from the new HF+CABS

reference energy, it can be seen from Table 3 that there are also improvements in the pure

correlation energy, suggesting that the new sets have reduced the error associated with the

RI approximation. Both the mean and spread of the RI errors decrease substantially in all

cases, on the order of 42% (70%) and 11% (33%), respectively, for the double (triple) zeta

sets. This is what should be expected, as the larger basis should be at least as complete as

the smaller one, but it is in contrast with the results noted earlier with respect to the change

in δRI (see Table 1). Either way, Table 3 demonstrates that the RI errors in the correlation

energy are consistently two orders of magnitude smaller than the basis set incompleteness

errors.
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3.1 Heats of formation

The heats of formation for groups A and B were determined, with respect to H2, CO, CO2,

N2, F2, Cl2, P2, CS, SiO, and SiO2, using the reactions listed in the supporting information.

Note that, for group A, these are the same as used in Ref.,26 and the current benchmark

energies agree with those in the literature to within the precision of the printed values.

Normal distributions of the deviations of the enthalpies calculated using both the OptRI

and OptRI+ sets compared to the benchmark values are shown in Figure 3, whilst summary

statistics are given in Table 4. In most cases, at both the HF+CABS and CCSD-F12b levels,

the overall distribution of errors moves closer to the datum and narrows. In particular, for

the double zeta sets, the maximum error decreases by around 1 – 2 kJ mol−1. However, as

might be expected, the quadruple zeta sets show negligible improvement, as the CABS basis

is increased by a much smaller percentage, and they were already much closer to completion.

F -tests indicate that the error distributions for the OptRI and OptRI+ sets (both DZ and

TZ) are different at the 5% significance level (under the assumption that they are normally

distributed), whilst for QZ, there is no significant difference.

Table 4: Mean Absolute (MAE) and Maximum Absolute (Max) Basis Set Incompleteness
Errors in HF+CABS and CCSD-F12b Heats of Formation (kJ mol−1) for Molecules in Groups
A and B, and Standard Deviations (σ)

Level RI basis MAE σ Max

HF+CABS DZ/OptRI 0.417 0.562 2.263
DZ/OptRI+ 0.339 0.409 1.491
TZ/OptRI 0.199 0.258 1.171
TZ/OptRI+ 0.194 0.268 1.332
QZ/OptRI 0.200 0.250 1.071
QZ/OptRI+ 0.199 0.250 1.092

CCSD-F12b DZ/OptRI 3.556 3.190 13.489
DZ/OptRI+ 3.272 2.959 11.759
TZ/OptRI 0.768 0.760 3.931
TZ/OptRI+ 0.678 0.665 3.301
QZ/OptRI 0.132 0.130 0.610
QZ/OptRI+ 0.130 0.130 0.632
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Figure 3: Normal distributions of the deviations (from benchmark values) in the heats of
formation for the molecules in groups A and B, calculated at the CCSD-F12b level. Those
for the OptRI (blue) and OptRI+ (red) sets are shown, for DZ (top), TZ (middle), and QZ
(bottom).
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3.2 Atomization energies

Atomization energies were determined for all of the molecules in group A, as benchmark-

quality active thermochemistry table (ATcT) results were available for these from Ref.;42

molecules with second row elements were not considered there, and so no data for group B

was available. The errors compared to these benchmark values are summarized in Table 5.

From this, it is clear that improvements on the order of 1 (0.2) kJ mol−1 are achieved for the

DZ (TZ) quality sets presented here. It appears that there is again no significant difference

for the QZ sets. Figure 4 demonstrates something stronger than this, however. The new DZ

sets gave atomization energies closer (in absolute terms) to the benchmark value for all but

four (out of 29) molecules: F2, F2O, FNO, and O3. In the case of TZ, all were closer (or

the same) except for F2 and O3, whilst for QZ the only exception was F2. This indicates

that the errors for VnZ-F12/OptRI and the equivalent OptRI+ set are not drawn from the

same distribution, at each n. This is also confirmed by F -tests at the 5% significance level.

Thus, modest improvements are achieved consistently, as was also the case with the heats of

formation. The key point is that this comes at negligible extra cost, as will be shown in the

next section.

Table 5: Mean Absolute (MAE) and Maximum Absolute (Max) Errors in CCSD-F12b At-
omization Energies (kJ mol−1, Relative to ATcT Values from Ref.42) for Molecules in Group
A, and Standard Deviations (σ)

RI basis MAE σ Max

DZ/OptRI 49.81 24.61 118.76
DZ/OptRI+ 49.08 24.70 119.26
TZ/OptRI 44.37 24.03 118.95
TZ/OptRI+ 44.12 24.04 119.02
QZ/OptRI 42.26 23.77 117.72
QZ/OptRI+ 42.24 23.76 117.71
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Figure 4: Errors in atomization energies for the molecules in group A calculated at the
CCSD-F12b level using both OptRI and OptRI+ auxiliary sets, at DZ (blue dots), TZ (red
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3.3 Spectroscopic constants

One of the key qualities of the original OptRI sets is that they produce smooth potential

energy surfaces.22 As mentioned above, the CABS procedure usually involves purification

of the overlap matrix, via application of a singular value decomposition and discarding the

functions with near-zero singular values.15 In general, this deletion may not be the same

at each point on the potential surface, resulting in small discontinuities. The way to avoid

this is to keep the ABS compact (which is in conflict with the desire for it to be complete)

and by constraining the exponents such that they are not too close. As OptRI+ adds ad-

ditional functions, albeit very few, it is important to check that the resulting calculated

surfaces are smooth. This is most reasonably achieved through the calculation of spectro-

scopic constants for a set of diatomics, group C in Table 2. The CCSD(T)-F12b energies

were calculated at seven points centered around the calculated equilibrium bond distance,

followed by a sixth-order polynomial fit with the derivatives of this fit used in the usual

second-order perturbation theory calculations.45 From this, the bond dissociation energy,

equilibrium bond distance, and principal harmonic frequency are determined. Table 6 shows

the errors, compared to the reference calculations described above, in these constants. There

are no substantial differences between the values calculated with the original OptRI ABS

compared to those presented here, although slight improvements are seen, particularly in the

frequencies. However, the fact that they are almost the same or marginally better demon-

strates that linear dependencies are not being introduced, and the potential surfaces are

smooth; this is an essential quality in terms of practical use.

Equally important is that the addition of functions has not introduced significant compu-

tational cost. Table 7 shows the average processing time required for a point on a potential

energy curve, and the percentage change in time taken. Even at the double zeta level -

where the percentage increase in basis size is at its largest - this difference equates to on

average less than a second, or just under 3%. For the triple zeta sets, the calculations taken

on average roughly 2 seconds less, which is remarkable. A possible explanation is that the
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proportional change in basis size is small enough to be outweighed by the improvements in

reference energy, which as has been noted earlier are still substantial at this level. As such,

the new basis can result in fewer coupled-cluster iterations (roughly half an iteration on av-

erage), the time-savings from which are greater than the penalty associated with additional

integrals and marginally larger matrices. For reference, the mean wall time for calculations

in the large reference basis used as a benchmark was approximately 22,000 seconds.

Table 6: Mean Absolute Errorsa (with Standard Deviations in Parentheses) for HF+CABS
and CCSD(T)-F12b Bond Dissociation Energies (De), Equilibrium Bond Distances (Re),
and Principal Harmonic Frequencies (ωe), for Molecules in Group C

De error (kJ mol−1) Re error (10
−3Å) ωe error (cm

−1)
RI basis HF CC HF CC HF CC

DZ/OptRI 1.27 (2.43) 8.32 (8.21) 4.1 (11.0) 6.6 (18.0) 1.26 (1.19) 3.58 (4.36)
DZ/OptRI+ 1.35 (2.94) 8.23 (7.91) 2.8 (9.2) 6.0 (16.0) 0.76 (0.92) 3.34 (4.25)
TZ/OptRI 0.22 (0.22) 2.74 (1.96) 1.2 (3.3) 7.3 (26.0) 0.42 (0.64) 1.87 (2.11)
TZ/OptRI+ 0.19 (0.19) 2.70 (1.94) 1.2 (3.6) 7.3 (26.0) 0.36 (0.55) 1.78 (2.16)
QZ/OptRI 0.17 (0.30) 1.61 (1.58) 0.5 (1.5) 3.0 (9.0) 0.17 (0.28) 0.71 (1.04)
QZ/OptRI+ 0.16 (0.30) 1.61 (1.57) 0.4 (1.7) 3.0 (9.0) 0.17 (0.29) 0.71 (1.10)

a Relative to those determined using the even-tempered reference RI basis.

Table 7: Mean Wall Time a (t̄, seconds) for a Single CCSD(T)-F12 Calculation on the
Diatomics in Group C, and Mean Number of Coupled-Cluster Iterationsb (n̄iter)

OptRI OptRI+
t̄ n̄iter t̄ n̄iter % Change

DZ 29.8 22.5 30.6 22.5 2.7
TZ 70.6 22.5 68.7 22 −2.7
QZ 226.4 22 226.2 22 0.0

a Determined from the average over 7 steps in a potential energy surface scan. All calculations were done
on a single processor.
b Rounded to the nearest half iteration.
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4 Conclusions

The VnZ-F12/OptRI (n =D–Q) auxiliary basis sets for the atoms H–Ar have been aug-

mented with a small number of s- and p-functions in such a way as to maximize the CABS

singles correction to the reference energy in explicitly correlated calculations. The result-

ing OptRI+ sets produce HF+CABS reference energies that are substantially closer to the

Hartree-Fock limit. Additionally, the error in the correlation energy due to the RI approxi-

mation of the three- and four-centre integrals can be seen to be reduced, with errors compared

to the large basis limit both closer to zero and more narrowly distributed. The improve-

ments for relative energies are less striking but still noticeable, with the new DZ and TZ

sets resulting in more accurate heats of formation and atomization energies, quantities that

are traditionally very difficult to determine accurately. These improvements are modest but

significant due to their consistency and overall distribution. Crucially, the small number of

additional functions means that any increases in calculation time are negligible, and in some

cases compute times decrease due to a reduction in the number of coupled-cluster iterations

required for convergence. The new bases share with their predecessors the ability to generate

smooth potential energy surfaces, offering slightly superior spectroscopic constants.

The benchmarking of the new OptRI+ sets indicates that they retain all of the desirable

properties of the parent OptRI sets; compact, well-controlled errors, and smooth surfaces.

When this is combined with the improvements in absolute and relative energies, at essentially

no additional computational cost, there is no reason why they should not be routinely used

in place of the original OptRI. The new auxiliary basis sets are provided in machine readable

form as part of the supporting information, and will also be made available to download from

ccRepo, a correlation consistent basis set repository.46
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Palmieri, P.; Peng, D.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.;

Stone, A. J.; Tarroni, R.; Thorsteinsson, T.; Wang, M. molpro, version 2015.1, a

package of ab initio programs. 2015.

(30) Ten-no, S. Initiation of explicitly correlated Slater-type geminal theory. Chem. Phys.

Lett. 2004, 398, 56–61.

(31) Peterson, K. A.; Adler, T. B.; Werner, H.-J. Systematically convergent basis sets for

explicitly correlated wavefunctions: The atoms H, He, B-Ne, and Al-Ar. J. Chem. Phys.

2008, 128, 084102.

24



(32) Weigend, F. A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis

sets, demonstration of accuracy and efficiency. Phys. Chem. Chem. Phys. 2002, 4,

4285–4291.

(33) Weigend, F. Hartree-Fock exchange fitting basis sets for H to Rn. J. Comput. Chem.

2008, 29, 167–175.
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