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Abstract

Although cancers are considered stem cell diseases, mechanisms involving stem cell alter-

ations are poorly understood. Squamous cell carcinoma (SQCC) is the second most com-

mon lung cancer, and its pathogenesis appears to hinge on changes in the stem cell

behavior of basal cells in the bronchial airways. Basal cells are normally quiescent and dif-

ferentiate into mucociliary epithelia. Smoking triggers a hyperproliferative response resulting

in progressive premalignant epithelial changes ranging from squamous metaplasia to dys-

plasia. These changes can regress naturally, even with chronic smoking. However, for

unknown reasons, dysplasias have higher progression rates than earlier stages. We used

primary human tracheobronchial basal cells to investigate how copy number gains in SOX2

and PIK3CA at 3q26-28, which co-occur in dysplasia and are observed in 94% of SQCCs,

may promote progression. We find that SOX2 cooperates with PI3K signaling, which is acti-

vated by smoking, to initiate the squamous injury response in basal cells. This response

involves SOX9 repression, and, accordingly, SOX2 and PI3K signaling levels are high dur-

ing dysplasia, while SOX9 is not expressed. By contrast, during regeneration of mucociliary

epithelia, PI3K signaling is low and basal cells transiently enter a SOX2LoSOX9Hi state, with

SOX9 promoting proliferation and preventing squamous differentiation. Transient reduction

in SOX2 is necessary for ciliogenesis, although SOX2 expression later rises and drives

mucinous differentiation, as SOX9 levels decline. Frequent coamplification of SOX2 and

PIK3CA in dysplasia may, thus, promote progression by locking basal cells in a SOX2Hi-

SOX9Lo state with active PI3K signaling, which sustains the squamous injury response

while precluding normal mucociliary differentiation. Surprisingly, we find that, although later

in invasive carcinoma SOX9 is generally expressed at low levels, its expression is higher in

a subset of SQCCs with less squamous identity and worse clinical outcome. We propose
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that early pathogenesis of most SQCCs involves stabilization of the squamous injury state

in stem cells through copy number gains at 3q, with the pro-proliferative activity of SOX9

possibly being exploited in a subset of SQCCs in later stages.

Author Summary

Squamous cell carcinoma (SQCC) is a deadly and common form of lung cancer. How it

develops from stem cells is poorly understood. SQCCs predominantly arise in bronchial

epithelia, likely from basal cells, stem cells that normally generate mucinous and ciliated

cells. Smoking, however, causes normally quiescent basal cells to proliferate and generate

protective squamous epithelia. Continuous smoking eventually causes precancerous

changes and, ultimately, SQCC. However, some precancerous changes regress to normal

epithelia, suggesting that the natural stem cell injury response is not sustainable indefi-

nitely. Here, we describe how the SOX2 transcription factor and PI3K signaling, which is

activated by smoking, induce the squamous injury response in basal cells. We also provide

evidence that regeneration of mucociliary epithelia after injury requires basal cells to enter

a period of low SOX2 expression and PI3K signaling. Ninety-four percent of SQCCs have

copy number gains in chromosome 3 that affect SOX2 and PIK3CA, a catalytic PI3K sub-

unit. These gains occur at a point when precancerous tissue has an increased likelihood of

progressing to SQCC. Our data suggest that SQCC is genetically initiated by events that

sustain a normally self-limiting injury state, which forces stem cells to proliferate indefi-

nitely in the presence of smoking-associated mutagens.

Introduction

It has been suggested that most cancers arise from normal stem cells [1,2]. Mounting evidence

supports this being the case for certain leukemias, in which stem cell/progenitor-specific

mechanisms are emerging that involve blocks in differentiation and enhanced self-renewal

[3,4]. However, for many carcinomas, it has been challenging to elucidate similar mechanisms,

as the normal stem cell biology of many tissues is not well characterized. Thus, to a large

extent, the mechanisms through which human stem cells are transformed are poorly

understood.

Lung cancer is the worldwide leading cause of cancer mortality [5], and, in general, patho-

genesis of all types is poorly understood. Squamous cell carcinoma (SQCC) is the second most

common form [6], and its pathogenesis appears to depend on a critical change in the behavior

of the stem cells from which the disease likely initiates. Most SQCCs arise in the bronchial epi-

thelium [7], which is part of a contiguous epithelium that extends from the nasopharynx

through the trachea and bronchi. The major cell types include basal, ciliated, and secretory/

mucinous cells, with basal cells being the stem cells for these lineages [8–12]. Basal cells are

also thought to be the main origin for SQCCs because virtually all SQCCs express basal cell

markers [13–15]. Under homeostatic conditions, most cells in the epithelium are quiescent,

with only 1% cycling [16]. However, vitamin A deficiency, denudation, or smoking—the great-

est SQCC risk factor [17,18]—induces a stereotypical metaplastic response in basal cells, which

causes replacement of the mucociliary epithelium with a hyperproliferative squamous epithe-

lium [19–26]. This response is reversible, as vitamin A resupplementation or injury/smoking

cessation restores mucociliary differentiation [20,24,27]. Many squamous metaplasias also
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regress in chronic active smokers [28–30], suggesting that the squamous response cannot nat-

urally be maintained indefinitely.

Longitudinal studies have shown, however, that some squamous metaplasias progress to

SQCC in a stepwise manner through low and high grade dysplasia and through carcinoma in

situ [28,31]. Although low grade dysplasias regress at a high rate, high grade dysplasia and car-

cinoma in situ mark a different phase of progression, as these later stages have more genetic

alterations, lower rates of regression, and higher rates of progression to SQCC [28,32–36].

Thus, SQCCs appear to arise through phenotypic progression of the squamous injury

response, with genetic events possibly stabilizing a dysregulated injury state and preventing

regression. One of the earliest genetic events is SOX2 amplification, which is common in high

grade dysplasias and is associated with greater progression to SQCC [37–40]. Ultimately,

SOX2 copy number gains are found in 94% of SQCCs (54% amplification/40% lower copy

number gain only, provisional TCGA (The Cancer Genome Atlas) data, www.cbioportal.org)

[41,42]. Although several studies support SOX2 being a driver [41,43,44], it resides in a broad

amplicon spanning 3q26-28, which includes other oncogenes such as PIK3CA [41,42]. How

SOX2 amplification may specifically promote progression of premalignant squamous lesions

at the expense of mucociliary differentiation is a mystery, especially considering its wide-rang-

ing roles in a variety of stem cells [45–49].

Although there have been several attempts to genetically model SQCC pathogenesis in mice

[44,50,51], it is unclear to what extent these models faithfully recapitulate human disease path-

ogenesis, and a stem cell-based mechanism is still lacking. In all cases, which included func-

tionally distinct drivers such as Sox2 overexpression, Pten loss, and Kras mutation, Lkb1
inactivation was necessary for SQCC generation, and in one model, SQCC was generated in

distal airways through transdifferentiation of adenocarcinoma (ADC) [50]. However, in

human lung cancer, LKB1 DNA alterations are infrequent in SQCCs and more common in

ADCs (3% of SQCCs and 19% of ADCs, provisional TCGA data, www.cbioportal.org) [42,52],

and SQCCs generally do not arise in distal airways. These findings question whether differ-

ences between human and mouse airway epithelia affect mechanisms of SQCC pathogenesis.

Indeed, although in the murine tracheal epithelium, basal cells are stem cells [11,12], 50% of

their progeny are club cells (previously known as Clara cells) [53]. Club cells are secretory cells

that are the major stem cell population in the bronchiolar epithelium, but they can also con-

tribute to renewal in the tracheal epithelium, especially after injury [12,54,55]. However, in

human bronchial epithelia, the main site of SQCC carcinogenesis [7], club cells are not found

(although they are found in human bronchiolar epithelia) [56]; instead, there are many more

mucinous cells [53,57].

We thus modeled SQCC pathogenesis in the putative stem cell origin of the disease, using

primary human tracheobronchial basal cell cultures. These cultured human basal cells regener-

ate normal ciliated and mucinous lineages when grown in denuded rat tracheal xenografts or

on porous filters in air-liquid-interface (ALI) cultures, where they are fed basolaterally and api-

cally exposed to air [8,58–62]. In ALI cultures, differentiated epithelia recapitulate in vivo

ultrastructure and functional properties, including mucous production, ion transport, bacte-

rial defense, and movement of airway surface liquid by cilia. Using these cultures, we describe

a mechanism by which SOX2 amplification and PI3K signaling cooperate to stabilize a hyper-

proliferative stem cell injury state that promotes squamous metaplasia at the expense of normal

mucociliary differentiation. This mechanism potentially explains selection of SOX2 and

PIK3CA coamplification during SQCC pathogenesis and how it may promote progression of

high-grade dysplasias by altering the behavior of stem cells.
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Results

In Normal Quiescent Mucociliary Epithelia, Tracheobronchial Basal Cells

Express Similar Levels of SOX2 as SQCCs

In SQCCs, SOX2 copy number gains are correlated with increased SOX2 expression (S1A Fig)

[41,42,63]. However, the extent to which SOX2 is overexpressed relative to normal basal cells

has not been reported. Surprisingly, we found that SOX2-amplified SQCC primary patient

tumors and patient-derived xenografts (PDXs) expressed similar levels of SOX2 protein as

normal cells in native human tracheobronchial epithelia, including basal cells (Figs 1A and

S1B). In support of this finding, quantitative reverse transcription-polymerase chain reaction

(qRT-PCR) analysis indicated that freshly harvested cell suspensions from tracheobronchial

tissue, as well as FACS-purified basal cells from these suspensions, expressed equivalent levels

of SOX2 mRNA as SOX2-amplified SQCC PDXs (Fig 1B). These normal levels of expression

were also much higher than in non-SOX2-amplified SQCC and ADC PDXs (Fig 1B).

During Regeneration of Mucociliary Epithelia, SOX2 Levels Transiently

Decline

The similar levels of SOX2 expression between basal cells in normal mucociliary epithelia and

SOX2-amplified SQCCs raise several considerations. First, at some point during SQCC pro-

gression, SOX2 promoter activity may decline, necessitating amplification to sustain high levels

of expression. Second, because amplification would be expected to raise expression of a driver

to levels higher than in the normal cell of origin, if SOX2 is, indeed, a driver, there should be a

period during SQCC pathogenesis when SOX2 is expressed at lower levels in normal basal

cells. However, this period may not have been captured in our snapshot analysis of healthy tra-

cheobronchial epithelium. Notably, SQCCs do not spontaneously arise in healthy epithelia,

but do arise after years of smoking, and SOX2 amplification is commonly detected in dysplasia,

in which it is associated with a higher rate of progression to SQCC [37–40]. These data suggest

that a decline in SOX2 expression may be part of the mechanism of regenerating mucociliary

epithelia following injury, and that SOX2 amplification may be selected to counteract this

decline and, hence, prevent regression.

To determine if SOX2 expression varies during mucociliary differentiation, we used ALI

cultures. Although in denuded tracheas, basal cells first undergo squamous differentiation

before regenerating mucociliary epithelia [20], ALI culture conditions, which include retinoic

acid, promote mucociliary differentiation without a prior phase of squamous metaplasia [58].

Thus, these cultures can be used to study basal cells as they synchronously undergo mucocili-

ary differentiation. To establish such cultures, we first isolated basal cells from normal tracheo-

bronchial tissue and expanded them on plastic dishes in an undifferentiated state. We

confirmed that these plastic cultures consisted only of basal cells by quantifying basal cell line-

age marker expression (TP63 [64], KRT5 [65], and CD44 [66]) (S2A and S2B Fig). They also

retained stem cell activity, as evidenced by morphological and molecular differentiation into

mucinous (MUC16+ [67]) and ciliated (FOXJ1+ [68]) cells when placed in ALI culture and

denuded rat tracheal xenografts (Figs 1C and S2C). During expansion on plastic, SOX2 expres-

sion dramatically declined relative to the quiescent state in normal tissue (Fig 1B, “vector” plas-

tic cultures). This low level of SOX2 expression persisted during the early proliferative phase of

ALI culture (Fig 1D). However, during mucociliary differentiation after the onset of quies-

cence, SOX2 expression in ALI culture returned to normal tissue levels (Fig 1B–1D). Thus, in

ALI culture, a SOX2Lo state precedes mucociliary differentiation. Based on these data, we re-

examined SOX2 expression in native human tracheobronchial tissue to see if SOX2Lo cells
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might also be present in vivo. By immunohistochemistry (IHC), rare SOX2Lo basal cells were

present in mucociliary epithelia, and appeared to be enriched in non-columnar areas, which

could be undergoing mucociliary differentiation (Fig 1E). We confirmed that these SOX2Lo

cells were, indeed, basal cells by costaining for the basal cell marker KRT5 (S1C Fig). Thus,

SOX2 amplification could prevent regression of dysplasias by preventing generation of a

SOX2Lo state that might be necessary for normal mucociliary differentiation.

Precocious SOX2 Expression in Proliferating Basal Cells Induces

Hyperproliferative Squamous Metaplasia and Inhibits Ciliogenesis

To investigate whether precocious SOX2 expression, which would be caused by SOX2 amplifi-

cation, affects mucociliary differentiation, we expressed SOX2 in proliferating basal cell ALI

cultures before its normal time of expression. SOX2 was expressed from a lentiviral vector at

the same mRNA levels seen in normal native tissue and SOX2-amplified SQCCs (Fig 1B,

Lenti-SOX2). Proliferating basal cells were infected on plastic dishes overnight, seeded subcon-

fluently into ALI cultures, and differentiated over 5 wk (Fig 2A). Histological analyses of the

5-wk cultures indicated that precocious SOX2 expression enhanced mucinous differentiation

and induced squamous metaplasia (Fig 2B). Lenti-SOX2 induced ectopic gland-like structures

that were confirmed mucinous by periodic acid-Schiff (PAS) reactivity (Fig 2C). It also

increased MUC16 expression relative to control cultures (Fig 2D), wherein endogenous SOX2

expression was naturally correlated with MUC16 expression (Fig 1C and 1D). Although

MUC16+ cells have been noted in the tracheal epithelium [67], we now show that these cells

do not express the canonical goblet cell marker MUC5AC (Fig 2D and 2E) and, hence, are a

distinct subtype of mucinous lineage that is induced by SOX2.

Although squamous differentiation is normally suppressed in ALI cultures [58], Lenti-

SOX2 induced squamous metaplasia in some epithelial regions, as evidenced by histological

stratification and expression of high molecular weight keratins (Fig 3A and 3B), which are nor-

mally abundant in upper layers of squamous, but not columnar, epithelia [69]. Squamous

metaplasias also expressed TMPRSS11B (Fig 3C), a marker of squamous epithelia [70], and

contained hyperplastic basal cells (Fig 3D and 3E). The latter phenotype recapitulates the

hyperproliferation of squamous metaplasias in smokers [21] and was correlated with reduced

expression of cell cycle inhibitors that include a SOX2 target in SQCCs, CDKN1A (Fig 3F)

[71]. When maintained on plastic, which does not normally support mucinous or squamous

differentiation, Lenti-SOX2 was sufficient to induce expression of MUC16 and well-established

markers of the cross-linked envelopes of squamous epithelia, including involucrin (IVL) and

small proline-rich proteins (SPRRs) (Fig 3G). In plastic cultures, Lenti-SOX2 also induced

expression of genes correlated with SOX2 levels in patient SQCCs (Fig 3H) [41], providing

Fig 1. During mucociliary differentiation of tracheobronchial basal cells, SOX2 expression varies from low to high. (A) SOX2 immunohistochemistry

(IHC) in normal native human tracheobronchial epithelia and SOX2-amplified primary patient lung SQCCs and SQCC patient-derived xenografts (PDXs).

Arrows point to some basal cells. (B) qRT-PCR quantification of SOX2 expression in normal tracheobronchial epithelial cells and SQCCs. Tracheobronchial

cell suspensions and FACS-purified basal cells from these suspensions were derived from tissue without culturing. ADC = primary patient lung

adenocarcinoma. All data, with the exception of “Proliferating basal cells on plastic” (green), are from individual biological replicates, which were generated

from duplicate qRT-PCR technical replicates. Tracheobronchial basal cells proliferating on plastic were infected with Lenti-SOX2 or empty vector, with mean

expression ± standard error of the mean (SEM) from three biological replicate experiments shown. Control empty vector did not alter SOX2 expression

relative to untransduced basal cells (not shown). LRR = log likelihood ratio quantification of SOX2 gene copy number. Expression is normalized to normal

tracheal suspension #1, which was assigned a value of 100. (C, D) SOX2 and mucociliary lineage marker expression during tracheobronchial basal cell

differentiation in air-liquid-interface (ALI) cultures. (C) Immunofluorescence staining of SOX2 and lineage marker expression. White arrows point to some

basal cells and green arrows mark FOXJ1+ cells. (D) qRT-PCR analysis of SOX2 and lineage marker expression. Data are plotted relative to the time point

with the maximal expression of the gene, which was given a value of 100. Means ± SEM from three replicates are shown. (E) SOX2 IHC in metaplastic areas

of native human tracheobronchial epithelia. Scale bars are 20 μm. All plotted numerical data are in S1 Data.

doi:10.1371/journal.pbio.1002581.g001
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Fig 2. Precocious SOX2 expression in proliferating tracheobronchial basal cells enhances mucinous differentiation. (A) Experimental design.

SOX2Lo tracheobronchial basal cells proliferating on plastic were infected overnight with Lenti-SOX2 or empty vector, seeded subconfluently at ALI, and

examined after 5 wk. (B) Hematoxylin and eosin (H&E) staining showing ectopic induction of glandular-like areas and squamous metaplasia by Lenti-

SOX2. (C) PAS-D (periodic acid Schiff-diastase) staining for mucins. Glandular differentiation was quantified by scoring 6–7 cm of epithelia from multiple

sections derived from three replicates. Mean ± SEM is shown. Plotted numerical data are in S1 Data. (D) MUC16 and MUC5AC mucin staining. Arrows

point to non-glandular cells with increased MUC16 expression relative to vector control cultures. Due to high MUC16 expression in Lenti-SOX2 cultures,

Role of SOX2 and PI3K in SQCC Pathogenesis from Lung Stem Cells
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further evidence that the squamous response on plastic recapitulates features of SQCC

pathogenesis.

Precocious SOX2 expression also affected ciliogenesis. In ALI culture, Lenti-SOX2 reduced

the number of ciliated cells, as evidenced by fewer BTUB4-expressing cells, and decreased

FOXJ1 expression (Fig 3I). Given that SOX2 expression is ultimately seen in ciliated cells

(e.g., S1B Fig), there appears to be an early period when SOX2 levels must be below a certain

threshold for ciliated cell fate commitment to occur. Notably, by the time control epithelia had

completed mucociliary differentiation, they expressed similar levels of SOX2 as Lenti-SOX2-

transduced epithelia (Fig 3J). This finding supports squamous metaplasia in ALI culture being

driven by an alteration in the timing of SOX2 expression rather than by supraphysiologic lev-

els, and suggests that distinct cellular contexts (e.g., associated with proliferation versus quies-

cence) may alter the stem cell response to similar levels of SOX2.

PI3K Signaling Is Necessary for the Squamous Response to SOX2

Since squamous metaplasia is not observed in ALI cultures when SOX2 levels naturally rise

after quiescence but occurs if SOX2 is precociously expressed during the proliferative phase of

culture, a signal associated with this phase may cooperate with SOX2 to induce the squamous

response. Cigarette smoke extract and nicotine induce activation of AKT, a downstream effec-

tor of PI3K signaling, in tracheobronchial basal cell cultures [72,73], and PI3K signaling is ele-

vated in dysplasias when SOX2 amplification is common [37,38,74–77]. Furthermore, AKT

can phosphorylate SOX2 [78,79], and PIK3CA, which encodes the p110α catalytic subunit of

PI3K, is in the 3q amplicon, with gains co-occurring in 99% of SQCCs with SOX2 gains (Fig

4A) [42]. To investigate the role of PI3K signaling in squamous differentiation, we first exam-

ined its activity in proliferating versus quiescing basal cell cultures. To assess PI3K signaling,

we initially focused on phosphorylation of the S6 ribosomal subunit on sites regulated by a

PI3K-mTOR-S6 kinase axis [80–82]. In control ALI cultures, P-S6 was high during the prolif-

erative SOX2Lo phase but declined at initial confluence, before SOX2 levels normally rise and

mucociliary differentiation occurs (Figs 4B, 1C and 1D for SOX2 expression). Nuclear accu-

mulation of phospho-Thr308-AKT, which is PI3K-dependent [83], tracked with P-S6 and pro-

vided additional evidence that PI3K signaling is more active in proliferating rather than

quiescing basal cells (Fig 4B). Consistent with the ALI data, P-S6 and nuclear P-AKT staining

were also low in basal cells of quiescent native tracheal epithelia (S3 Fig). Thus, PI3K signaling

is specifically active during the period when SOX2 levels are normally low and precocious

SOX2 expression causes later manifestation of squamous metaplasia. Notably, by contrast to

control differentiated cultures, in 5-wk Lenti-SOX2-transduced ALI cultures, PI3K signaling

was active, but only in squamous metaplasias and not adjacent glandular areas (Fig 4B). This

finding is consistent with premalignant squamous lesions having elevated PI3K signaling [74–

77]. It also suggests that SOX2 may be able to amplify PI3K signaling in certain cell contexts

such as squamous-committed cells, which has been observed in esophageal SQCC cell lines

[84].

To determine if PI3K signaling is necessary for the squamous response to SOX2, we treated

proliferating basal cell cultures on plastic with pan-class I/II/III and class I-specific PI3K inhib-

itors LY294002 and BKM120, respectively [85,86], concurrently with Lenti-SOX2 infection.

Due to growth suppression by these drugs (Fig 5A), assays were limited to short-term plastic

cultures. Both drugs inhibited AKT activation and suppressed squamous, but not mucinous,

the exposure time was shorter than in Fig 1C. (E) MUC16 and MUC5AC mucin staining in native human tracheobronchial tissue. Scale bars are 100 μm

(B), 50 μm (C), and 20 μm (D, E). Significance was calculated using a two-tailed t test. *p = 0.006.

doi:10.1371/journal.pbio.1002581.g002
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Fig 3. Precocious SOX2 expression in proliferating tracheobronchial basal cells induces hyperplastic squamous metaplasia and inhibits

ciliogenesis. (A–F, I, J) For all ALI data, SOX2Lo proliferating tracheobronchial basal cells were infected with Lenti-SOX2 or control vector and grown as
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differentiation, without affecting Lenti-SOX2 expression (Fig 5B and 5C). Notably, in some

experiments, the class I (p110α, β, δ, γ)-specific drug, BKM120, enhanced MUC16 expression.

We corroborated these findings with shRNA knockdown of PIK3CA, which is in the 3q ampli-

con. shPIK3CA reduced SOX2-dependent squamous differentiation and enhanced MUC16
expression (Fig 5E), suggesting p110α may not only promote squamous differentiation but

may also dampen the mucinous response to SOX2.

To determine if PI3K is necessary for squamous metaplasia in vivo, we seeded basal cells

into denuded rat tracheas and engrafted them into immunocompromised mice (Fig 6A). In

this setting, basal cells undergo squamous differentiation before regenerating a mucociliary

epithelium [20], which can be recognized by expression of squamous markers such as IVL (Fig

6B). This response was associated with high Ki-67 and SOX2 expression and PI3K signaling

(Fig 6B). Consistent with the in vitro data, when basal cells were seeded with BKM120, even

though PI3K signaling was only partially inhibited, IVL expression was suppressed (Fig 6C).

Finally, additional support for involvement of PI3K signaling in the squamous injury response

of basal cells in vivo, as well as its importance to smoking-induced squamous lesions, comes

from a phase I clinical trial with myo-inositol [87]. In this trial, myo-inositol, a natural precur-

sor to second messengers in the phosphatidylinositol cycle, enhanced regression of low-grade

squamous dysplasias in current and former smokers while reducing PI3K signaling [74,87,88].

SOX2 and PI3K Signaling Cooperatively Repress Expression of SOX9,

a Gene that Is Expressed Inversely to SOX2 during Mucociliary and

Squamous Differentiation

To characterize the mechanism by which SOX2 induces squamous metaplasia from stem cells,

we searched for basal cell target genes whose regulation by SOX2 is PI3K-dependent. We first

established a time window during which stem cells might be undergoing SOX2-dependent

changes that affect lineage determination. For these experiments, we used a FLAG-tagged

SOX2 construct that retained the ability to induce mucinous and squamous differentiation

(S4A Fig). By 36 hr post-Lenti-SOX2 infection of plastic basal cell cultures, most cells

expressed SOX2 protein, as well as the basal cell marker TP63, but did not yet express markers

of overt mucinous or squamous differentiation (S4B and S4C Fig). We therefore used 36 hr as

an early time point to identify functionally important genes. SOX2 targets were identified by

comparing gene expression between Lenti-SOX2 and vector-transduced cultures, with PI3K-

dependency being established with Lenti-SOX2/BKM120 co-treatment. Using this strategy, we

described in Fig 2A. All ALI epithelia were analyzed after 5 wk of ALI culture. (A) PAS-D staining showing absence of mucin expression in areas of

squamous metaplasia. Squamous metaplasia was quantified by scoring 6–7 cm of epithelia from multiple sections derived from three replicates.

Mean ± SEM is shown. Significance was calculated by a two-tailed t test. *p = 0.03. (B) HMWCK (high molecular weight cytokeratin) staining, whose

expression in upper layers marks squamous stratifying epithelia. (C) Staining for TMPRSS11B, a marker of squamous epithelia. (D, E) Lenti-SOX2

induces hyperplasia. ALI sections were stained for Ki-67 and TP63. At least eight sections were scored per replicate from three replicates. Means ± SEM

are shown. Significance was calculated by two-tailed t tests. *p = 0.01, **p = 0.0007. (F) qRT-PCR analysis of CDKN expression in ALI cultures.

Means ± SEM from four replicates are shown. Data are normalized to expression in vector-transduced cultures, which was assigned a value of 1.

Significance was calculated by paired two-tailed t tests. *p = 0.012 (CDKN1A), 0.03 (CDKN1C). (G, H) Enforced SOX2 expression is sufficient to induce

mucinous, squamous, and SQCC-like differentiation in tracheobronchial basal cells growing on plastic. Basal cells were infected with Lenti-SOX2 or

control empty vector and marker expression was measured by qRT-PCR after 5 d. Data are normalized to expression in vector-transduced cultures, which

was assigned a value of 1. Means ± SEM from three to five replicates are shown. Significance was calculated by paired two-tailed t tests. (G) *p = 0.02

(MUC16), 0.02 (TMPRSS11B), 0.05 (SPRR3), 0.02 (IVL), 0.04 (SPRR1A), 0.02 (SPRR2A). (H) *p = 0.01 (ADH7), 0.01 (FGFR2), **p = 0.003,

***p = 0.00003. (I) Lenti-SOX2 inhibits ciliogenesis. ALI cultures were stained enface for BTUB4 (a component of cilia), and expression of the ciliogenic

FOXJ1 transcription factor was quantified by qRT-PCR, with means ± SEM from four replicates shown. For BTUB4 expression, significance was

calculated by a two-tailed t test. ***p = 0.000007. For FOXJ1 expression, data are normalized to levels in vector-transduced cultures, which was assigned

a value of 100, and significance was calculated by a paired two-tailed t test. ***p = 0.00007. (J) SOX2 IHC in lentivirally-infected ALI cultures. Scale bars

are 50 μm (A, B, E) and 20 μm (C, I, J). All plotted numerical data are in S1 Data.

doi:10.1371/journal.pbio.1002581.g003
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identified 32 SOX2-dependent changes in gene expression (1.5-fold or more), with 11 being

PI3K-dependent and some targets being induced while others were repressed (Fig 7).

SOX9 was one target that was repressed by SOX2 only when BKM120 was omitted from the

culture media, which we confirmed by qRT-PCR (S5A Fig). In the absence of Lenti-SOX2,

BKM120 treatment was sufficient to increase SOX9 expression (S5B Fig), suggesting that PI3K

signaling might act parallel to SOX2 in repressing SOX9 expression. However, we did identify

a SOX2 binding site in the SOX9 promoter region (S5C Fig), supporting SOX9 being a direct

target of SOX2. Because ectopic SOX9 expression was reported to inhibit squamous differenti-

ation of esophageal and skin basal cells [89,90], its natural expression in tracheobronchial basal

cells might be a way of preventing squamous differentiation when mucociliary epithelia are

required. In native human tracheal mucociliary epithelia, SOX9 expression was not detected,

although it was expressed in submucosal glands (Fig 8A). Since the proliferative phase of ALI

culture identifies a transient state when stem cells are initially committing to mucociliary fates,

and transcription factors such as SOX2 show a different expression pattern relative to the dif-

ferentiated quiescent state, we examined SOX9 expression in ALI cultures. In these cultures,

SOX9 was expressed oppositely to SOX2 (Fig 8B and 8C versus Fig 1C and 1D). Highest

expression of SOX9 was in proliferating basal cells and declined during mucociliary differenti-

ation, explaining its absence in native quiescent mucociliary epithelia.

In agreement with our data indicating that SOX2 and PI3K cooperatively repress SOX9
expression, SOX9 was not detected in squamous metaplasias of rat tracheal xenografts, which

had high SOX2 expression and PI3K signaling (Figs 8D and 6B, day 3). However, SOX9 was

expressed later, during regeneration of mucociliary epithelia when PI3K signaling was not

active (Figs 8D and 6B, >30 d). In these epithelia, SOX9 expression was higher in areas that

appeared incompletely differentiated and was absent in the most well-differentiated areas (Fig

8D, compare green and pink insets). This observation is consistent with the ALI data that

shows a temporal decline in SOX9 expression during mucociliary differentiation and suggests

that the SOX9-positive areas in the xenograft epithelia are at an earlier stage of differentiation.

Given the transient association of SOX9 expression with early generation of mucociliary

epithelia, we re-examined SOX9 expression in native human tracheobronchial epithelia, focus-

ing on areas that might be newly formed. In agreement with our observations in ALI and

xenograft epithelia, we identified some areas where TP63-positive basal cells retained nuclear

SOX9 expression, which was otherwise generally excluded from nuclei (Fig 8E). Thus, SOX9

appears to be transiently expressed when basal cells are initially committing to mucociliary

fates.

Murine Tracheal Basal Cells Transiently Enter a SOX2LoSOX9Hi State

during Regeneration of Mucociliary Epithelia following Injury

To better capture a potential transient SOX2LoSOX9Hi state that precedes mucociliary differ-

entiation in vivo, we used a murine tracheal isograft model of epithelial regeneration (Fig 9A).

When murine tracheas are subcutaneously isografted into recipient mice, ischemic damage is

repaired without histologic signs of squamous differentiation or IVL expression (day 3 epithe-

lia) (Fig 9B). During the early proliferative phase of repair (day 3), basal cells expressed

Fig 4. PI3K signaling is high in proliferating basal cells and in squamous differentiating epithelia. (A) PIK3CA is co-amplified with SOX2 at

3q26-28 in lung SQCCs. SOX2 and PIK3CA copy number variation data for 177 primary patient SQCCs from the TCGA. Numerical data are in S1 Data.

(B) PI3K activity in ALI cultures of tracheobronchial basal cells. Basal cells were infected with Lenti-SOX2 or control vector and grown at ALI, as

described in Fig 2A. Cultures were stained for phospho-Ser240/244-S6 (P-S6) or phospho-Thr308-AKT (P-AKT) at the indicated times. Dotted lines

outline areas of squamous metaplasia, including upper differentiated layers that had detached during sectioning. Orange arrows mark basal cells in

squamous metaplasia that are stained positive for nuclear P-AKT. Scale bars are 20 μm.

doi:10.1371/journal.pbio.1002581.g004
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Fig 5. PI3K signaling is necessary for the squamous response to SOX2. (A) The PI3K inhibitor BKM120 inhibits growth of tracheobronchial basal

cells. Basal cells were grown on plastic over 7 d with fresh media and drug added every other day. Growth was quantified by alamarBlue and is
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uniformly high SOX9 but low levels of SOX2 and PI3K activity (Fig 9B). Later, after 30 d,

SOX2 expression increased throughout the columnar-differentiating epithelium, while SOX9

levels declined in basal cells and became restricted to some columnar cells (see insets), which

could be secretory club cells that are not found in the human tracheobronchial epithelium.

PI3K was transiently activated, but peaked in basal cells when SOX2 levels were low and

declined as SOX2 expression rose (Fig 9C). Thus, both human and murine tracheobronchial

basal cells appear to transiently enter a SOX2LoSOX9Hi state prior to generation of mucociliary

epithelia.

SOX9 Promotes Basal Cell Growth and Its Repression Is Necessary for

SOX2 to Induce Squamous Metaplasia

Given that SOX9 expression is highest during the earliest stages of mucociliary differentiation,

SOX9 may affect pre-differentiation properties of stem cells such as proliferation and lineage

commitment. To determine how SOX9 affects the stem cell behavior of tracheobronchial basal

cells, we first used a constitutively expressing lentiviral vector to raise its expression in plastic

cultures of SOX2Lo basal cells. Lenti-SOX9 increased basal cell growth while elevating expres-

sion of SOX2 and MUC16, but not markers of squamous differentiation (Fig 10A). The

increase in SOX2 mRNA expression did not translate to a detectable increase in SOX2 protein

levels (S6 Fig), and the MUC16 induction was generally weaker than observed with Lenti-

SOX2. These data suggest that SOX9 may have a role in promoting columnar lineage commit-

ment, which is associated with a limited ability to increase MUC16 mRNA expression. Analysis

of the effects of reduced SOX9 expression was problematic, as SOX9 shRNA lentiviruses sup-

pressed basal cell growth. However, in short-term plastic cultures, partial SOX9 knockdown

increased squamous marker, but not MUC16 expression (Fig 10B). The amount of squamous

marker induction was also generally weaker than observed for Lenti-SOX2, supporting the

concept that SOX9 is an early determinant of columnar versus squamous lineage commitment,

rather than a strong inducer of differentiation.

Because SOX9 expression is repressed by SOX2, we next determined the consequences of

sustained SOX9 expression on SOX2-induced basal cell differentiation. When co-infected with

Lenti-SOX2 in plastic cultures, Lenti-SOX9 suppressed squamous differentiation while

enhancing MUC16 expression (Fig 10C). Similarly, in ALI cultures, coinfection of Lenti-SOX9

with Lenti-SOX2 inhibited histologic squamous metaplasia, but not MUC16 differentiation

(Fig 10D). Thus, SOX9 repression is part of the mechanism through which SOX2 and PI3K

promote squamous metaplasia from stem cells.

normalized to control cells treated with the DMSO vehicle, which was given a value of 100%. The means ± SEM from three replicates are shown. (B-E)

Inhibition of PI3K signaling prevents SOX2-driven squamous differentiation. Tracheobronchial basal cells growing on plastic were infected with Lenti-

SOX2 or empty vector, co-treated with the indicated drugs or shRNA viruses for 5 d, and then assayed for lineage marker expression by qRT-PCR. Fold

inductions were first calculated by comparing marker expression between Lenti-SOX2 and control vector (non-SOX2)-transduced cells. Because the

magnitudes of inductions sometimes varied between biological replicate experiments, fold-inductions were directly compared between matched pairs of

Lenti-SOX2 (with DMSO or shluc) and PI3K-inhibited (chemical inhibitor or shPIK3CA) Lenti-SOX2-transduced cultures. The amount of marker induction

in inhibitor-treated cultures was then plotted as a percentage of the induction response seen without inhibitor treatment, which was given a value of 100.

(B) Schematic for the PI3K chemical inhibitor experiments. White cells represent undifferentiated basal cells. Yellow and purple depict squamous and

mucinous-differentiating cells, respectively. Red denotes cells that have been transduced with Lenti-SOX2. (C) Summary of PI3K chemical inhibitor data.

Lentivirally infected cultures were co-treated with 2.5 μM BKM120, 4 μM LY294002, or DMSO vehicle. Means ± SEM of three replicates are shown.

Significance was calculated using paired two-tailed t tests. BKM120-treated p-values include *p = 0.04, **p = 0.004 (IVL), ***p = 0.0001 (TMPRSS11B),

0.0002 (SPRR1A), and 0.000002 (SPRR3). LY294002-treated p-values include **p = 0.0006 (TMPRSS11B), 0.001 (IVL), ***p = 0.0004 (SPRR1A), and

0.0002 (SPRR3). For AKT immunoblotting, lysates were prepared at 2 hr (LY294002) and 24 hr (BKM120) post-drug addition, while for SOX2

immunoblotting, at 4 d post-drug addition. (D) Schematic for the shPIK3CA experiments. Cell colors are as described in (B). (E) Summary of shPIK3CA

data. Means ± SEM of three replicates are shown. Significance was calculated using paired two-tailed t tests. *p = 0.01, **p = 0.003 (SOX2), 0.002

(SPRR1A), ***p = 0.0004 (PIK3CA), 0.0001 (TMPRSS11B), 0.00001 (IVL), 0.0002 (SPRR2A). All plotted numerical data are in S1 Data.

doi:10.1371/journal.pbio.1002581.g005
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Fig 6. PI3K is necessary for squamous metaplasia in rat tracheal xenografts. (A) Schematic for rat tracheal xenograft procedure. Human

tracheobronchial basal cells were seeded into denuded rat tracheas, which were then implanted subcutaneously into immunocompromised mice. (B)

Staining for Ki-67, SOX2, phospho-Ser240/244-S6 (P-S6), and phospho-Thr308-AKT (P-AKT) during the initial phase of squamous metaplasia (3 d) and
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SOX9 Is Not Expressed in High Grade Dysplasia when SOX2

Expression and PI3K Signaling Are High

To further investigate if the mechanism regulating squamous differentiation in stem cells

might contribute to progression through early stages of SQCC pathogenesis, we characterized

SOX2, SOX9, and P-S6 expression during preneoplasia (Fig 11). We analyzed an SQCC resec-

tion from a smoker that included normal respiratory epithelium, squamous metaplasia, and

high-grade dysplasia, in addition to frank carcinoma. As expected, most cells in the normal

mucociliary epithelium expressed SOX2, while SOX9 was not detected, and P-S6 expression

was confined to some columnar, but not basal cells (Fig 11). In squamous metaplasia, SOX2

was expressed in most cells, but heterogeneously in the basal and suprabasal layers. The hetero-

geneity in basal cells would be consistent with ongoing squamous differentiation of some basal

cells (SOX2Hi cells), while other basal cells are poised to regenerate columnar cells during

later regression (SOX2Lo cells). SOX9 was not expressed in most basal cells of squamous meta-

plasia, which supports these cells either being squamous-committed or in an early stage of

transitioning to columnar fates. Surprisingly, however, SOX9 was heterogeneously expressed

in suprabasal cells, possibly signifying a non-stem cell function for SOX9 in some squamous

differentiated progeny (see also S7 Fig). P-S6 staining was intense in the uppermost layers of

squamous metaplasia but varied in the basal cell compartment. In the centermost basal region,

P-S6 staining was low, while its intensity increased in basal cells as they approached areas of

dysplasia (lowermost panels). By contrast, in high-grade dysplasia, expression of SOX2, SOX9,

and P-S6 was uniform. SOX2 and P-S6 were expressed at high levels, while SOX9 expression

was lost (see also S7 Fig), supporting most dysplastic cells being stem cell-like and committed

to the squamous fate. The dysplastic expression patterns were maintained in the invasive carci-

noma (S7 Fig).

SOX9 Is Generally Expressed at Low Levels in SQCCs, with Highest

Expression Associated with Different Clinical and Molecular Phenotypes

We next characterized SOX2, SOX9, and P-S6 expression in a panel of 132 SQCCs using tissue

microarrays. First, we evaluated SOX2 and SOX9 expression by IHC using an H-score.

Because the basal-most cells could be more stem cell-like and, hence, better recapitulate

expression patterns we observed during normal stem cell differentiation, basal and suprabasal

layers were scored independently. Overall, 94% of SQCCs expressed SOX2, with most tumor

cells expressing moderate to high levels, and 73% had detectable levels of SOX9, although in

the majority of cases SOX9 was expressed in very few tumor cells and at low levels (S8A and

S8B Fig, Table 1). While SOX2 and SOX9 expression were expected to be inversely correlated,

we did not observe a strong negative correlation between their H-scores (S8C Fig). We also

expected that SOX9 levels might vary inversely to the extent of squamous differentiation.

Although there was a tendency for histologically well-differentiated tumors to have lower

SOX9 and higher SOX2 H-scores (Table 1), this trend was not significant. Similarly, when

focusing on the highest quartile of SOX9-expressing tumors, there was no difference in differ-

entiation, as compared to the 75% of cases with lower SOX9 expression (S8D Fig). Given that

SOX2 and SOX9 H-scores were not that different between basal and suprabasal layers, for

P-S6, we only scored the fraction of tumor cells that stained positive. In 92% of SQCCs, some

later period of mucociliary differentiation (>30 d). (C) Basal cells were seeded ± 5 μM BKM120 into denuded rat tracheas, and epithelia were

immunostained after 1 d. Representative images from duplicate experiments are shown. Arrows point to areas of squamous differentiation, as evidenced

by involucrin (IVL) expression. Dotted line indicates underlying tracheal tissue that moved into the lumen during sectioning. Scale bars are 20 μm (B) and

50 μm (C).

doi:10.1371/journal.pbio.1002581.g006
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Fig 7. SOX2 and PI3K coregulate gene expression in tracheobronchial basal cells. Tracheobronchial basal cells growing on plastic were infected

with Lenti-SOX2-FLAG or control vector ± 2.5 μM BKM120. After 36 hr, when most basal cells express high levels of SOX2 protein (S4B Fig), gene
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P-S6 staining was detectable, and 91% of SQCCs that expressed SOX2 also expressed P-S6,

although in many cases, few tumor cells expressed P-S6 (S9A and S9B Fig). As with SOX2 and

SOX9, we did not detect strong negative correlations between P-S6 and SOX9 expression (S9C

Fig). However, the narrow spreads in the majority of SOX2, SOX9, and P-S6 expression data

may have limited the power of our statistical analyses, and histological tumor grade might not

have been sensitive enough to detect differences in the extent of squamous differentiation.

Nevertheless, the generally high and low expression of SOX2 and SOX9, respectively, are con-

sistent with SOX2 inhibiting SOX9 expression and SOX9 potentially interfering with squa-

mous differentiation in SQCCs.

As a potentially more sensitive way of characterizing SOX2 and SOX9 expression in SQCCs,

we also examined their mRNA levels as quantified by RNAseq in the TCGA SQCC cohort

[42]. Consistent with our IHC data, in most SQCCs, SOX9 was expressed at much lower levels

than SOX2, and there was a weak negative correlation between their expression (S10A and

S10B Fig, Table 1). Although SOX9 expression was generally low across SQCCs, given its abil-

ity to promote basal cell proliferation (Fig 10A), we hypothesized that highest expressors

might have distinct characteristics. In support of this possibility, the upper quartile of cases,

which, on average, had 4-fold higher SOX9 expression than the remaining 75% of cases, were

associated with fewer high copy number SOX2 gains (amplification) (S10C Fig). Furthermore,

when using publicly available data from nine SQCC cohorts and stratifying by approximately

the upper quartile, there was a tendency for high SOX9 expression to be associated with a

lower probability of survival (Fig 12A). This association was significant when restricting analy-

sis to patients with stage I disease and a smoking history (Fig 12B), suggesting that SOX9

might promote more aggressive behavior in early stage SQCCs.

Finally, we used gene set enrichment analysis to explore phenotypic differences between

SQCCs that expressed low or high levels of SOX9. We first used the TCGA SQCC RNAseq

data to characterize SOX9-low and -high expressors by compiling lists of the top 200 genes that

were either most anti-correlated or correlated with SOX9 expression (S1 and S2 Tables). We

then used these lists to identify related cell lines in the Cancer Cell Line Encyclopedia (CCLE).

Consistent with absence of SOX9 promoting squamous differentiation, genes anti-correlated

with SOX9 only showed significant associations with SQCC cell lines (S3 Table). Conversely,

in agreement with SOX9 inhibiting squamous differentiation, genes correlated with SOX9 did

not show associations with any SQCC cells lines (S3 Table). However, genes correlated with

SOX9 did show relationships to cell lines derived from neural crest (melanoma, glioblastoma)

and breast tumors, whose normal tissue and cancer origins are affected by SOX9 [91–99].

Discussion

SQCCs have been grouped into four subtypes based on differences in gene expression, which

have been proposed to arise through different mechanisms involving distinct cells of origin

[42,100]. While at some point transformation mechanisms may diverge, most SQCCs likely

originate in basal cells through their natural squamous injury response [20,25]. TP63 protein,

a hallmark of basal cells, is expressed in virtually all SQCCs, with 96% of cases having strong

expression [13–15], and it is generally accepted that most SQCCs arise following squamous

metaplasia [101]. How the squamous injury response is initiated and exploited to promote

SQCC pathogenesis has been a mystery.

expression was analyzed by microarrays. In the schematic, white cells represent undifferentiated basal cells. Yellow and purple depict squamous and

mucinous-differentiating cells, respectively. Red denotes cells that have been transduced with Lenti-SOX2. Results are shown from triplicate

experiments.

doi:10.1371/journal.pbio.1002581.g007
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Here, we show that SOX2 and PI3K cooperate to induce the squamous injury response in

basal cells. Although in the normal tracheobronchial epithelium SOX2 is expressed at high lev-

els in most basal cells, its expression can vary during injury and regeneration, with a SOX2Lo

state preceding new mucociliary differentiation. The SOX2Lo state appears to facilitate cilio-

genesis, while high levels of SOX2 induce distinct types of lineage differentiation, depending

on the signaling context. SOX2 can induce a specific type of mucinous differentiation marked

by MUC16, or it can drive basal cells into a hyperplastic state that differentiates into squamous

epithelia. The squamous response specifically requires PI3K signaling, which cooperates with

SOX2 to repress SOX9, an inhibitor of squamous differentiation in several stratifying epithelia

[89,90]. In embryonic stem (ES) cells, AKT directly regulates SOX2 through phosphorylation

at Thr116, which increases SOX2 stability and, thus, generally promotes its activity [78,79].

However, upon PI3K inhibition in basal cells, SOX2 protein expression is not reduced, and

one differentiating activity of SOX2 (squamous) is much more affected than the other (mucin-

ous). We also find that PI3K signaling inhibits SOX9 expression even in the absence of Lenti-

SOX2 transduction. Hence, PI3K may act parallel to SOX2, possibly through chromatin modi-

fications, which can be modulated by PI3K signaling [102,103]. PI3K may also help establish

the squamous fate as the dominant SOX2 response by antagonizing mucinous differentiation,

since shPIK3CA enhances SOX2-dependent induction of MUC16 expression.

Under uninjured conditions, turnover is low in the tracheobronchial epithelium [16]. Most

basal cells express high levels of SOX2, while in rare cells, SOX2 expression is low. SOX2Lo

cells may be committed to the ciliated fate, or they may be in a naïve state that has not yet com-

mitted to a particular columnar lineage. By contrast, SOX2Hi cells could be committed to a

mucinous fate or a ciliated fate, if SOX2 expression increased after ciliated cell commitment.

Further work will be required to address these questions as well as to determine at what point

initial lineage commitments become irreversible. However, given that PI3K signaling is low in

basal cells in the uninjured state, squamous differentiation should not occur.

Smoking is the major initiating factor for SQCC pathogenesis [17,18]. Cigarette smoke con-

densate induces squamous differentiation in vivo and in cultures of tracheobronchial basal

cells [24,25]. Furthermore, cigarette smoke extract and nicotine increase AKT activation in tra-

cheobronchial basal cells [72,73], and cytologically normal epithelia from smokers with dyspla-

sia have elevated PI3K activity [74]. Thus, smoking likely triggers squamous metaplasia at least

partly through PI3K activation in basal cells. Although SOX2Lo basal cells should be able to

adopt a squamous fate in response to PI3K activation, SOX2 expression would first have to

increase, which is not yet known to be a response to smoking. Alternatively, if some of the

many SOX2Hi basal cells are not irreversibly committed to columnar fates, PI3K activation in

these cells might be sufficient to trigger a rapid widespread squamous response. Ultimately,

SOX2 is expressed in many basal cells of smoking-associated squamous metaplasia, supporting

its role in driving metaplasia. However, SOX2, as well as P-S6, are heterogeneously expressed

amongst these basal cells. Because functional PI3K activity may be below our detection limits

in some cells, and because it is not certain where the stem cells in the metaplasia reside (e.g.,

Fig 8. SOX9 is a repressed target of SOX2 and PI3K that is expressed oppositely to SOX2. (A) SOX9 protein expression is not detected in the

surface epithelium of native human tracheal tissue, but is observed in submucosal glands. (B, C) Analysis of SOX9 expression during mucociliary

differentiation of tracheobronchial basal cell ALI cultures. (B) qRT-PCR quantification of SOX9 mRNA expression. Data are plotted relative to the time

point with maximal expression, which was given a value of 100. Means ± SEM from three replicates are shown. Plotted numerical data are in S1 Data. (C)

SOX9 immunostaining. Arrows show positions of some basal cells. (D) Immunostaining of SOX9 expression in rat tracheal xenografts that have

reconstituted a human tracheal epithelium. Grafts were generated as described in Fig 6A. Arrows point to basal cells in different epithelial regions that

appear less (green) or more (orange, pink) columnar-differentiated and have differing amounts of SOX9 expression. Magnified images from these areas

are shown and are bordered with colors matching the arrow colors. (E) SOX9 expression is occasionally detected in TP63-expressing basal cells in non-

fully mucociliary differentiated human tracheal surface epithelia. Arrows point to basal cells with high SOX9 expression. All scale bars are 20 μm.

doi:10.1371/journal.pbio.1002581.g008
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center: low P-S6 versus edges: high P-S6, Fig 11), the significance of the P-S6 heterogeneity is

not clear. On the other hand, regarding heterogeneity in SOX2 expression, it might be that

SOX2Hi basal cells are actively involved in ongoing squamous differentiation, while SOX2Lo

basal cells are poised to later regenerate mucociliary epithelia, as we observed during regenera-

tion in various injury models. It is not clear why SOX9 is expressed in suprabasal metaplastic

layers, but it may relate to an unknown function in squamous differentiated progeny. Impor-

tantly, because squamous metaplasia basal cells are hyperproliferative [21], the longer they

remain in this state, the greater the risk of acquiring genetic driver events from genotoxic dam-

age. Some of the hyperproliferation may be an intrinsic property of the squamous-committed

state. In Lenti-SOX2 ALI cultures that contained adjacent squamous and non-squamous epi-

thelia, only basal cells associated with squamous metaplasia were hyperproliferative, and in the

absence of smoke.

High-grade dysplasia is a turning point in SQCC pathogenesis in that it appears to mark a

transition from an environmentally reactive pathology to one with a strong genetic compo-

nent. It is the earliest stage when common focal genetic changes are detected [36], and it is less

prone to regression than earlier stages [28,33,34]. During this stage, we find that SOX2 and

P-S6 are highly expressed in most cells. These observations agree with previous reports that

noted high levels of SOX2 and P-AKT in dysplasia [75–77,104]. The high expression levels

could signify a largely stem cell-like population with strong commitment to the squamous fate.

Because some high-grade dysplasias regress [29,32,33,105], the dysplastic phenotype is not

likely to be strictly dependent on genetic alterations. We propose, however, that in order to

regress, SOX2 and PI3K signaling levels must decline (Fig 13). This reduction would be hin-

dered in dysplasias that acquire SOX2 and PIK3CA coamplification. Such 3q-amplified dyspla-

sias would be more prone to progression due to the sustained hyperproliferative squamous-

committed stem cell state and the inability to regress to quiescent mucociliary differentiated

epithelia. As such, we would predict that 3q amplification would be a biomarker for non-

regressing dysplasias.

While in theory, as long as there is regular exposure to smoke, a squamous injury state

should be sustainable without 3q amplification, this may not actually be the case. First, our

finding that tracheobronchial basal cells in normal tissue express similar levels of SOX2 as

SOX2-amplified SQCCs suggests that SOX2 promoter activity may decline during SQCC path-

ogenesis. Second, premalignant squamous lesions regress in smokers [28–30], and, intrigu-

ingly, regression follows the reverse steps of progression [28,105], supporting waning of the

squamous injury response over time. This is not surprising, as many cellular responses desen-

sitize after chronic stimulation. Moreover, the squamous injury response involves the same

stem cells that perpetually renew the epithelium. Hence, it would be important for stem cells

to have a natural mechanism that limits the duration of the squamous injury response and

exposure of replicating stem cells to genotoxic stress.

Targeting the squamous injury response as early as possible would minimize accrual of

genetic drivers and, hence, potentially be chemopreventative. One approach could involve

PI3K inhibition. Notably, myo-inositol, a natural sugar alcohol, enhanced regression of low-

Fig 9. Murine tracheal basal cells transiently enter a SOX2LoSOX9Hi state during regeneration of mucociliary epithelia. (A) Murine tracheas were

excised from donor mice and transplanted subcutaneously into recipient mice. (B) Following the initial ischemic injury, marker expression was examined

by immunostaining at the indicated time points during tracheal epithelial regeneration. Insets show magnified areas denoted by the dashed boxes. Note

that the SOX9-positive cells in the mature columnar-differentiated epithelium are not basal cells. (C) Maximal SOX2 expression and PI3K activity are

mutually exclusive during regeneration of the columnar epithelium in murine tracheal isografts. Isograft epithelia from day 7 of regeneration were

immunostained with the indicated antibodies. Left panel shows an immature cuboidal epithelium with uniformly high P-S6 and low SOX2 expression.

Right panel shows an area transitioning from cuboidal to columnar epithelium. Arrows point to the basal cells underneath the columnar cells that have

gained SOX2 expression and have lost much of the P-S6 signal. P-S6 = α-phospho-Ser240/244-S6. Scale bars are 20 μm.

doi:10.1371/journal.pbio.1002581.g009
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grade dysplasias in a phase I clinical trial [87]. Although myo-inositol can affect multiple sig-

naling pathways [106], in the phase I trial, regression was accompanied with PI3K pathway

inhibition [74,88], which our data support as being part of the mechanism of regression. Thus,

natural and targeted PI3K inhibitors should continue to be investigated. We would also sug-

gest that even dysplasias with 3q amplification might respond to anti-PI3K therapy. We and

others have found that PI3K signaling is high in dysplasia [74–77], and our stem cell data sug-

gest that 3q amplification is initially selected to maintain a waning squamous injury response,

which together, support 3q-amplified dysplastic cells being dependent on PI3K signaling.

However, such basal cells would be prone to returning to a squamous injury state if therapy

was discontinued.

Growth of many cancers is dependent on mechanisms that specify developmental lineages

(e.g., [107, 108]), including SQCCs being dependent on SOX2 [41,71,109]. Because most

SQCCs express high levels of SOX2 and low levels of SOX9 and show evidence of PI3K activity

in at least some tumor cells (which could be stem cells), the mechanism we uncovered in stem

cells may continue to promote squamous identity in SQCCs. Accordingly, PI3K may be a vul-

nerability in invasive carcinoma. However, in a clinical trial involving SQCC patients,

BKM120 was ineffective [110]. This could reflect a problem with the therapeutic index, in

which case co-targeting additional components of the squamous injury response mechanism

might improve PI3K inhibitor effectiveness. Alternatively, failure of BKM120 could indicate

that many SQCCs have lost the dependency on PI3K that is likely prevalent during early stages

of progression. Notably, as compared to dysplasia, which had uniformly high SOX2 and P-S6

expression, in 50% of SQCCs, P-S6 expression was observed in 10% or less of tumor cells. On

the other hand, in 20% of cases, P-S6 was expressed in at least 70% or more of tumor cells. Fur-

ther work will be necessary to assess the roles of SOX2, SOX9, and PI3K in maintaining the

squamous identity of SQCCs and to determine whether sensitivity to PI3K inhibitors varies

with P-S6 expression.

We also discovered that although SOX9 was generally expressed at low levels and in few

tumor cells, its expression varied among SQCCs. SOX9Hi SQCCs were associated with fewer

high copy number SOX2 gains and a lower probability of survival, suggesting that they repre-

sent a distinct SQCC subclass that may at least partly be driven by SOX9. First, by gene set

Fig 10. SOX9 promotes basal cell proliferation and inhibits squamous differentiation. (A) Elevation of SOX9 expression in tracheobronchial basal

cells promotes growth and induces MUC16 expression. Basal cells proliferating on plastic were infected with Lenti-SOX9 or control vector. The red color

in all of the schematics indicates Lenti-SOX2-transduced cells. For growth assays, 5 d after infection, cells were replated at low density and cell number

quantified after 7 d by alamarBlue. Data are normalized to the amount of growth in control vector cultures, which was given a value of 100. Means ± SEM

from quadruplicate cultures are shown. Significance was calculated using a two-tailed t test. ***p = 0.0000005. For lineage marker expression analysis,

mRNA was isolated 5 d following Lenti-SOX9 infection and quantified by qRT-PCR. Data are normalized to expression in control vector cultures, which

was given a value of 1. Means ± SEM of three replicates are shown. Significance was calculated using paired two-tailed t tests. *p = 0.02. (B) shSOX9

spontaneously increases expression of squamous markers in plastic cultures of tracheobronchial basal cells. Basal cells growing on plastic were

infected with shlacz or shSOX9; after 5 d, lineage marker expression was measured by qRT-PCR. Data are plotted relative to expression in shlacz

control cultures, which was given a value of 1. Means ± SEM from three replicates are shown. Significance was calculated using two-tailed t tests.

*p = 0.05 (SOX9), 0.03 (SOX2), 0.02 (TMPRSS11B), 0.01 (IVL), 0.003 (SPRR1A). (C) Constitutive SOX9 expression suppresses SOX2-induced

squamous differentiation in plastic cultures of tracheobronchial basal cells. Basal cells were infected with empty vector, Lenti-SOX2 alone, or Lenti-

SOX2 + Lenti-SOX9; after 5 d, lineage marker expression was measured by qRT-PCR and analyzed as described in Fig 5B. Fold inductions were first

calculated by comparing marker expression between Lenti-SOX2 and control vector (non-SOX2)-transduced cells. The fold-inductions were then

compared between matched pairs of Lenti-SOX2 and Lenti-SOX2 + Lenti-SOX9 coinfected cultures. The amount of marker induction in coinfected

cultures was then plotted as a percentage of the induction observed with Lenti-SOX2 alone, which was given a value of 100. Means ± SEM of three

replicates are shown. Significance was calculated using paired two-tailed t tests. **p = 0.0006 (IVL), 0.002 (SPRR3), ***p = 0.0002 (TMPRSS11B),

0.00004 (SPRR1A). (D) Constitutive SOX9 expression suppresses SOX2-induced histologic squamous metaplasia in tracheobronchial basal cell

cultures grown at ALI. Basal cells were infected with control vector or Lenti-SOX2 ± Lenti-SOX9 and grown at ALI for 5 wk. Squamous differentiation

was quantified by scoring 10 cm of epithelium per replicate. Significance was calculated using a two-tailed t test relative to Lenti-SOX2 alone.

***p = 0.000001. MUC16 expression was not affected by Lenti-SOX9 coinfection with Lenti-SOX2, as assessed by immunostaining. Scale bars are

20 μm. All plotted numerical data are in S1 Data.

doi:10.1371/journal.pbio.1002581.g010
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enrichment analysis, these tumors have less of a squamous phenotype, which could reflect the

anti-squamous differentiation properties of SOX9. Second, we also found that SOX9 drives

proliferation of normal basal cells and that, in several injury models, basal cells enter a tran-

sient SOX2LoSOX9Hi proliferative state prior to mucociliary differentiation. Thus, during later

stages of pathogenesis, in a subset of SQCCs, genetic or epigenetic alterations may be selected

that promote this natural, SOX9Hi non-squamous-committed stem cell state. This basal cell

state may share phenotypic and functional similarities with states established by SOX9 in sev-

eral other cellular contexts. For example, our gene set enrichment analysis found similarity

between SOX9Hi SQCCs and certain breast cancers (especially triple negative) and neural

crest-derived tumors, whose genesis and malignant properties are affected by SOX9. SOX9

promotes the mammary stem cell state, is associated with poor prognosis in breast cancer, and

is thought to be especially active in triple negative tumors, where it enhances the tumorigenic

phenotype [93,95,99]. SOX9 also induces neural crest identity and promotes generation of

downstream melanocyte and glial lineages [92,94,96,97]. In addition, SOX9 promotes malig-

nant properties of melanoma and glioblastoma cell lines and is associated with lower rates of

survival for both cancers [91,98]. Interestingly, SOX9Hi SQCCs also had similarity to several

small cell lung cancer (SCLC) cell lines. However, the role of SOX9 in SCLC has not been

examined. Further work should be done to better characterize SQCCs expressing different lev-

els of SOX9 and how they may have distinct clinical outcomes and sensitivities to different

treatment strategies.

Basal cells are also stem cells in other stratifying epithelia, where they make similar deci-

sions regarding squamous and non-squamous fates [111]. As in the lung, homeostatic deci-

sions can be altered by injury to induce hyperproliferative metaplasias that increase cancer

risk, especially in the bladder, cervix, and esophagus [112–117]. These decisions may analo-

gously be driven by SOX2 and SOX9, with injury-induced changes in their expression causing

metaplasia. For example, SOX9 inhibits squamous differentiation of esophageal basal cells

Fig 11. SOX2, SOX9, and phospho-S6 (P-S6) expression during SQCC pathogenesis. Stage 2A lung resection from a 45 packs/year

smoker showing normal respiratory epithelium, squamous metaplasia, high grade dysplasia, and invasive squamous carcinoma. Met =

squamous metaplasia, Dys = high grade dysplasia, Ca = carcinoma. Arrows point to representative basal cells (Ba). Insets show magnified

areas within the dashed boxes. In squamous metaplasia (including basal cells), the percentage of P-S6-positive cells and the intensity of

staining per cell increased towards areas of dysplasia. All scale bars are 50 μm.

doi:10.1371/journal.pbio.1002581.g011

Table 1. Characterization of SOX2 and SOX9 expression in primary patient SQCCs.

Tumor differentiation H-scorea RNAseqb

Basal Suprabasal

SOX2 SOX9 SOX2 SOX9 SOX2 SOX9

Well 175 ± 20.5 33.7 ± 14.9 157 ± 21.0 31.3 ± 7.4 NA NA

Moderate 147 ± 7.9 37.1 ± 6.2 149 ± 7.4 41.0 ± 5.8 NA NA

Poor 142 ± 12.2 35.7 ± 10.4 143 ± 11.1 37.3 ± 10.1 NA NA

Overall 149 ± 6.4 36. 4 ± 5.0 148 ± 5.9 39.1 ± 4.5 4,081 ± 289 906 ± 64

aH-score: The H-score was derived from SOX2 and SOX9 IHC of a tissue microarray constructed from a cohort of 132 SQCC patients. The H-score was

calculated for each core by summing: [(0 x % cells with no stain) + (1 x % cells with weak stain) + (2 x % cells with moderate staining) + (3 x % cells with

intense staining)]. The H-score scale ranged from 0 to 300. Basal and suprabasal layers were scored separately with the hypothesis that in moderate and

well-differentiated tumors, stem cells might reside in the basal layers and more differentiated progeny would be found in suprabasal areas. Means ± SEM

are shown. The individual patient tumor H-score data are in S2 Data.
bSOX2 and SOX9 mRNA expression data were obtained from the TCGA analysis of 177 primary patient SQCCs. Data are in RPKM (reads per kilobase of

transcript per million mapped reads), with the means ± SEM shown. The TCGA patient data are in S2 Data.

doi:10.1371/journal.pbio.1002581.t001
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[89], and during development, the esophageal epithelium transitions from a columnar epithe-

lium that coexpresses SOX2 and SOX9 to a squamous epithelium where only SOX2 is

expressed [118–120]. Injury induced by chronic acid reflux reactivates SOX9 expression [119],

and triggers Barrett’s esophagus, a gastric/intestinal metaplasia that increases the risk of devel-

oping adenocarcinoma in the formerly squamous epithelium [114]. Conversely, copy number

gains at 3q are associated with SQCCs in different tissues (see also TCGA data, www.

cbioportal.org) [41,121,122]. In some cases, such as in the lung and cervix, gains at 3q may be

used to stabilize a more proliferative squamous metaplastic injury state in stem cells that do

not normally exclusively generate a squamous epithelium. However, in other cases such as in

the esophagus, where stem cells are already squamous-committed and quite proliferative

[112], there is evidence that coamplification of SOX2 and PIK3CA stabilize a non-metaplastic

injury state that increases squamous stem cell self-renewal [123–125]. It thus appears that early

steps of carcinogenesis in stratifying epithelia may generally involve environment-induced

activation of stem cell injury states, with subsequent selection of genetic driver events that sta-

bilize these states.

Materials and Methods

Ethics Statement

Normal human tracheobronchial (carinal) tissue and primary lung SQCC tissue were obtained

with written informed consent from patients and with approval of the University Health Net-

work Research Ethics Board (08-0318-T for normal tracheal tissue; 04-0557-T and 10-0158T

for SQCC tissue). All animal work was carried out with the approval of the University Health

Network Animal Care Committee, was registered and licensed under the province of Ontario’s

Animals for Research Act, and was compliant with the humane policies and guidelines of the

Fig 12. SOX9 mRNA expression is associated with poor probability of survival for SQCC patients. Univariate Kaplan-Meier survival analysis of

SQCC patients, stratified by SOX9 mRNA expression. (A) Analysis using data pooled from nine cohorts and not filtered by grade or smoking history.

(B) Analysis filtering on Stage I and smoking history (three cohorts). All plotted numerical data are in S1 Data.

doi:10.1371/journal.pbio.1002581.g012
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Canadian Council on Animal Care. Rat tracheas were obtained from deceased rats following

CO2 asphyxiation using AUP1556. Primary patient SQCC tissue and rat tracheal xenografts

were implanted into NOD/SCID mice that had been anesthetized with ketamine, following

AUPs 603 and 1557, respectively. For murine tracheal isograft experiments, tracheas were har-

vested from donor mice following CO2 asphyxiation, and were subcutaneously transplanted

into recipient mice that had been anesthetized with ketamine, following AUP 3480. At the

experimental endpoints, mice were sacrificed by CO2 asphyxiation.

Fig 13. Stem cell model for the role of SOX2 and PIK3CA coamplification in SQCC pathogenesis. SOX2 (red nuclei), SOX9 (blue nuclei), and

PI3K signaling (yellow cytoplasm) levels are highlighted in basal cells of normal and metaplastic epithelia and in all cells of dysplasia and SQCC. In basal

cells of uninjured mucociliary epithelia, SOX9 and PI3K signaling levels are low, and most, but not all, cells express SOX2. Smoking induces PI3K

activation, which may cause SOX2Hi basal cells that have not irreversibly committed to mucociliary fates to enter a hyperproliferative squamous

metaplastic state. Alternatively, PI3K signaling may trigger an increase in SOX2 expression in SOX2Lo basal cells, which also drives entry into the

hyperproliferative squamous metaplastic state. In squamous metaplasia basal cells, SOX2 and PI3K signaling levels are heterogeneous. This

heterogeneity may signify the presence of both squamous-committed basal cells, as well as basal cells that are poised to regenerate mucociliary

epithelia once injury has subsided. With continued smoking, squamous metaplasia progresses to high-grade dysplasia, in which most cells are in a

SOX2HiSOX9Lo state, with high levels of PI3K signaling. In this state, the majority of cells are hyperproliferative and committed to a squamous fate,

although they do not undergo extensive differentiation. In non-3q-amplified dysplasia and metaplasia, the squamous injury state in basal cells subsides

as SOX2 expression and PI3K signaling naturally decline over time. Basal cells then enter a proliferative SOX2LoSOX9Hi state, which promotes columnar

over squamous fates. From this state, ciliated cell commitment occurs while SOX2 levels are low, and later, as SOX9 expression decreases and SOX2

levels increase, quiescence and mucociliary differentiation occur (with SOX2 inducing the MUC16 mucinous fate [purple]). By contrast, in high-grade

dysplasias that have acquired copy number gains at 3q26-28, SOX2 expression and PI3K signaling are maintained and prevent the squamous injury

response from waning. Eventually, additional genetic events accrue in clones such that transformation to invasive carcinoma occurs. SQCCs diverge in

the level of PI3K signaling and SOX9 expression. While in most SQCCs, SOX9 is expressed at low levels, a subset of SQCCs have higher SOX9

expression, which inhibits the squamous phenotype and may drive more aggressive tumor behavior.

doi:10.1371/journal.pbio.1002581.g013
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Primary Human Tracheal Basal Cells

Normal human tracheobronchial (carinal) tissue was obtained as discard from lung transplant

operations. Basal cells were isolated from tracheobronchial tissue as described [126] and

expanded in LHC-9 medium [127] on Petri dishes coated with 48 μg/ml PureCol (Advanced

BioMatrix). For subculturing, cells were treated with 0.025% trypsin/EDTA, followed by Tryp-

sin Neutralizing Solution (Lonza). For air-liquid-interface (ALI) growth, 10,000 cells/well were

seeded onto 0.4 μm 12 mm polyester Transwell-Clear membranes (Corning) coated with Pure-

Col. Both chambers were initially incubated with LHC basal: DMEM (1:1) that was supple-

mented as described [59], which included 0.33 nM retinoic acid and 5 ng/ml EGF. Cultures

typically took 7–10 d to reach confluence. After confluence, cells were only fed basolaterally,

with retinoic acid and EGF concentrations changed to 50 nM and 0.5 ng/ml, respectively, to

induce differentiation. ALI cultures were typically maintained for an additional 4–5 wk once

the basolateral feeding regimen was begun. Cultures were grown at 37˚C in 5% CO2, with

media changed every other day. Cells were not expanded beyond two passages. The data pre-

sented in the manuscript were derived from multiple strains of basal cells that were isolated

from more than 20 different donor carinas.

SQCC Tissue Microarrays

Construction of the SQCC tissue microarrays (TMAs) was previously described [128]. The

demographics and clinical characteristics of the SQCC cohort are summarized in S4 Table.

Animal Work

Primary patient SQCC tissue was implanted subcutaneously into NOD/SCID mice as

described [129]. Rat tracheal xenograft experiments involving isolation of rat tracheas and

their denudation, seeding with human tracheobronchial basal cells, and subsequent implanta-

tion into immunocompromised mice, were performed as described [130]. Briefly, rat tracheas

were harvested from Wistar male rats (226–250 g) after CO2 asphyxiation. Tracheas were

denuded by three rounds of freeze/thaw and were seeded with 7.5 x 105 human tracheobron-

chial basal cells. Seeded tracheas were then implanted subcutaneously into NOD/SCID male

mice (7–8 wk old, ~18 g) that had been anesthetized with ketamine. For short-term experi-

ments involving the PI3K inhibitor BKM120, rat tracheas were closed at both ends with surgi-

cal sutures rather than assembling them into cassettes as described in [130]. For murine

tracheal isograft experiments, Balb/c mice (7–9 wk, 18 g) were used. Tracheas were excised

from donor mice after CO2 asphyxiation, flushed with saline, and transplanted subcutaneously

into recipient mice that had been anesthetized with ketamine. At the experimental endpoints,

mice were sacrificed by CO2 asphyxiation.

Genomic Profiling of Primary Patient-Derived SQCC Xenografts (PDXs)

Xenograft genomic copy number was measured on the HumanOmni 2.5 Beadchip SNP array

platform (Illumina). The total signal intensity (LogR) and B-allele frequency (BAF) values

were reported at each genomic locus that was profiled by the SNP array. Relative copy number

gain or loss of genomic regions was identified using the ASCAT segmentation algorithm [131]

with the assumption that the reference genome is diploid. We mapped each gene to a genomic

region if more than 50% of the gene overlaps with the region. The average log likelihood ratio

(LRR) for each gene was determined, which quantifies the relative copy number gain in the

tumor. An LRR of 0.5 was considered as at least one copy number gain.
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For exome sequencing, exomes were captured with the Agilent SureSelect Human 50Mbp

kit and subjected to paired-end sequencing using the Illumina HiSeq platform. Xenome [132]

was used to remove contaminating reads from the mouse stroma, and basic alignment and

sequence quality control were done using Novoalign v3 and Picard v1.78. Mapped exomes

were then processed by the standard GATK pipeline to perform additional quality control, var-

iant calling, and mutational significance analysis. Somatic mutation calling with matched nor-

mal samples was also performed using Strelka v1.0 [133]. Mutations called by both GATK and

Strelka were validated using targeted exome capture with the Agilent SureSelect Custom 2Mbp

kit and the same pipeline. High confidence variants in PDXs included only mutations called

by both exome and targeted sequence analysis or called in only exome sequence analysis but

also found in the COSMIC database v70.

FACS Analysis of Normal Human Tracheobronchial Basal Cell Cultures

First passage tracheobronchial cells were removed from plastic with 0.025% trypsin, incubated

with trypsin neutralization solution (Lonza), pelleted, and resuspended in HBSS/2% FBS. 5 x

105 cells were stained on ice for 30 min in 50 μL HBSS/2% FBS with APC-conjugated α-CD44

(eBioscience, 17-0441-81, 1:200). Cells were then washed three times in HBSS/2% FBS and

analyzed.

Tracheobronchial Basal Cell Growth Assays

Basal cells were seeded in triplicate at 2200 cell/cm2 into 12-well dishes (~15% confluence).

Media was changed every other day and experiments terminated when control wells had

reached ~80% confluence (typically 7–10 d). At the end point, cell growth was quantified by

alamarBlue (ThermoFisher), as per the manufacturer’s instructions.

Antibody Staining

Human tracheobronchial tissue, rat tracheal xenograft tissue, and ALI cultures were fixed in

10% buffered formalin, soaked in 70% ethanol, and then paraffin embedded. ALI filters were

embedded in 3% agar prior to paraffin embedding. All immunohistochemistry was performed

using the Vantana Benchmark XT autostainer with the iVIEW DAB detection kit (Vantana

Medical Systems).

For immunofluorescence staining of tissue, sections were deparaffinized through successive

incubations in xylene, and decreasing concentrations of ethanol and antigens were retrieved in

10 mM citrate buffer, pH 6.0, using the 2100 Retriever (Aptum Biologics, Ltd.). For immuno-

fluorescence staining of tracheobronchial basal cells growing in plastic cultures, cells were

cytospun onto charged glass slides and fixed in 4% paraformaldehyde. After fixation and anti-

gen retrieval (for tissue sections), cells were permeabilized with 0.1% Triton X-100/PBS,

blocked with 3% bovine serum albumin (BSA)/ 0.1% Triton X-100/PBS, and incubated with

primary antibody diluted in 3% BSA/ 0.1% Triton X-100/PBS overnight at 4˚C. Cells were

then washed three times with 0.1% Triton X-100/PBS and incubated with secondary antibody

in 3% BSA/ 0.1% Triton X-100/PBS for 2 hours at room temperature. Secondary antibodies

were Alexafluor 488 goat anti-rabbit (Invitrogen, 1:500) and Alexafluor 568 goat anti-mouse

(Invitrogen, 1:500). After secondary antibody staining, cells were washed three times with

0.1% Triton X-100/PBS and mounted in Vectashield mounting media containing DAPI (Vec-

tor Laboratories). For en face α-BTUB4 staining, after antibody staining, cells were dehydrated

through a series of washes in increasing concentrations of ethanol (70%–100%). Filters were

then cut from the Transwell insert and were mounted. For quantification of ciliogenesis by en
face BTUB4 staining, images were taken on an Olympus IX81 microscope using a Rolera MGi
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Plus camera (QImaging) and were tiled and quantified using MetaMorph software (Molecular

Devices). Primary antibodies for immunofluorescence staining were α-BTUB4 (#T7941, Sigma,

1:100), α-IVL (#ab68, Abcam, 1:1000), α-KRT5 (#ab24647, Abcam, 1:100), α-MUC5AC (Santa

Cruz, #sc-20118, 1:100), α-MUC16 (#ab693, Abcam 1:100), α-SOX2 (#MAB2018, R&D sys-

tems, 1:50), α-TMPRSS11B (#HPA042951, Sigma, 1:600), α-TP63 (#sc-56188, BC4A4, Santa

Cruz, 1:100), α-phospho-S6 (Ser240/244, #5364, Cell Signaling, 1:800), α-KRT5 (ab24647,

Abcam, 1:1000), α-phospho-AKT (Thr308) (#2965, Cell Signaling, 1:200). Primary antibodies

for immunohistochemistry were α-Ki-67 (#MIB-1, Dako, 1:150), α-HMWCK (#34BE12, Dako,

1:100), α- SOX9 (#AB5535, Millipore, 1:1,200), and α-SOX2 (#AF2018, R&D Systems, 1:2,000).

Western Blotting

Whole-cell lysates were prepared in lysis buffer (1% SDS, 10% glycerol, 80 mM Tris-HCl, pH

6.8) that had been pre-heated to 95˚C. Proteins were transferred to Immobilon-FL PVDF

membranes (Millipore) in transfer buffer (50 mM Tris base, 40 mM glycine, 0.04% SDS, 10%

methanol) with an Owl semidry transfer apparatus (Thermo Scientific). Membranes were

incubated with primary antibodies overnight at 4˚C in 3% skim milk in Tris-Buffered Saline

Tween-20 (TBST) (50 mM Tris–HCl, 150 mM NaCl, 0.05% Tween-20 [pH = 8.0]). Primary

antibodies were α-phospho-AKT (Thr308) (#2965, Cell Signaling, 1:1000), α-phospho-AKT

(Ser473) (#4060, Cell Signaling, 1:1000), α-AKT (#2920, Cell Signaling, 1:1000), α-phospho-S6

(Ser240/244) (#5364, Cell Signaling, 1:1000), α-S6 (#2317, Cell Signaling, 1:1000), α-SOX2

(MAB2018, R&D systems, 1:500), and α-SHP2 (C-18, Santa Cruz, 1:2000). After primary anti-

body binding, membranes were washed three times with TBST and probed with anti-rabbit

(IRDye 800RS, LI-COR Biosciences, 1:10,000) and goat anti-mouse (Alexa Fluor 680, Invitro-

gen, 1:15,000) secondary antibodies in TBST for 1 hour at room temperature. After washing

three times in TBST, proteins were visualized using an Odyssey Infrared Imaging System

(LI-COR Biosciences).

Chemical Inhibitors

BKM120 was purchased from Selleckchem and LY294002 from Sigma.

Plasmids

A full-length human SOX2 cDNA in the pOTB7 cloning vector was purchased from the

TCAG Genome Resource Facility (The Hospital for Sick Children). This cDNA was used to

make two untagged expression constructs in the pMA1 lentiviral vector [134], which were

indistinguishable in their biological activity. In this vector, a minimal CMV promoter drives

GFP expression, while the PGK promoter drives constitutive expression of the gene of interest.

pLenti-SOX2G was constructed by digesting pOTB7-SOX2 with EcoRI, blunting the 50 end of

SOX2 with Klenow, then releasing SOX2 by XhoI digestion and cloning the fragment into

SmaI/SalI-digested pMA1. pLenti-SOX2B was constructed by cloning SOX2 into pMALB, a

variant of pMA1 in which GFP was replaced with TagBFP, and pMA1 was converted into a

Gateway destination vector [135]. For this construct, SOX2 was first cloned into the Gateway

entry vector, pCR8/GW/TOPO (Life Technologies), after PCR amplification from pOTB7-

SOX2 with SOX2-2 (50-ctag tctaga cat gtg tga gag ggg cag tgt g-30) and SOX2-6 (50-actg gaat tca

cat gtg tga gag ggg cag tg-30). SOX2 was then transferred to pMALB from pCR8 by Gateway

Cloning (Life Technologies).

pLenti-SOX2-FLAG was constructed through a series of steps beginning with the PCR-

based TA-cloning of SOX2 into pGem-T-easy (Promega) using pOTB7-SOX2 as a template

and the primers SOX2-1 (5’- Ccg gaattc ggc atg tac aac atg atg gag acg gag-3’) and SOX2-2 (5’-
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ctag tctaga cat gtg tga gag ggg cag tgt g-3’). An in-frame 3x FLAG tag was then added to the C-

terminus of SOX2 by cloning SOX2 from pGemSOX2 into p3xFLAG-CMV-14 (Sigma) via

EcoRI and XbaI digestion and ligation. The FLAG-tagged SOX2 cDNA was then amplified

using primers CMVFLAG14-1 (5’-5’-TCCAG AGA TCT AGA GCT CGT TTA GTG AAC

CGT CAG-3’) and CMVFLAG14-2 (5’-ATAGTA GAT CTG GGG AGG GGT CAC AGG

GAT GCC-3’) and cloned into the Gateway entry vector, pCR8/GW/TOPO. SOX2-FLAG was

then transferred to pMALB from pCR8 by Gateway cloning.

pLenti-SOX9 were constructed by Gateway cloning of the human SOX9 cDNA from a

Gateway entry vector (GeneCopoeia) into pMAL, a pMA1 derivative that was modified into a

Gateway destination vector that still coexpresses GFP [135].

Lentiviral Infection

VSV-G-pseudotyped lentiviruses were generated by cotransfection of lentiviral vector and

standard packaging plasmids into 293T cells by calcium phosphate. At 48 and 72 hr post-trans-

fection, viruses were concentrated with Lenti-X (Clontech), resuspended in LHC-9, and stored

at -80˚C. For infections, basal cells were seeded at 2,100 cells/cm2 on plastic and 36 hours post-

seeding, infected in 8 μg/ml polybrene. Cells were infected overnight and either maintained on

plastic or seeded after 36 hours into ALI culture. Generally, ~90% transduction was achieved.

Puromycin was used at 3 μg/ml to select for shRNA lentiviruses. Lentiviral packaging plasmids

included pCMVΔR 8.91, pRSV-Rev, and pMD.G [136]. Lentiviral shRNA constructs were

obtained from Open Biosystems and included shPIK3CA (TRCN0000196795), shSOX9

(V3LHS_396211), shluc (TRCN0000072246), and shlacz (TRCN0000072235).

RNA Analysis

RNA was isolated using a Micro RNA kit (Ambion) followed by DNAse I treatment. cDNA

was prepared using a High Capacity cDNA Reverse Transcriptase kit (ABS), and qRT-PCR

was performed with either SYBR green (Bio-Rad) or Taqman probes (ABI). Gene expression

was quantified by the ΔΔCt method with TBP normalization [137]. Primers are listed in

S5 Table.

Microarrays

Three biological replicate experiments were set up, with each one consisting of an empty vec-

tor and two Lenti-SOX2-FLAG-transduced conditions. At the time of virus addition, the

empty vector and one of the Lenti-SOX2 conditions were treated with 0.1% DMSO, while the

other Lenti-SOX2 condition was treated with 2.5 μM BKM120. After overnight virus incuba-

tion, cells were washed in Hepes-buffered saline and refed with LHC-9 containing either

BKM120 or DMSO. Thirty-six hours post virus addition, RNA was harvested. The Illumina

TotalPrep-96 RNA Amplification Kit was used to generate biotinylated, amplified cRNA for

hybridization with Illumina Human HT-12 v4.0 Expression BeadChips. Quantile normalized

data were analyzed in R and Genespring (Agilent). Genes significantly changed by SOX2/

DMSO or SOX2/BKM120 were identified by comparing the replicates of each condition with

the control vector/DMSO replicates using a one-way ANOVA test and a Benjamini-Hoch-

berg-corrected p< 0.05 cutoff and a post-hoc Tukey’s HSD test. Genes that were significantly

changed by SOX2 in the same direction regardless of BKM120 treatment were classified as

PI3K-independent. Genes that were significantly changed with SOX2/DMSO, but were not

significantly changed or were significantly changed in the opposite direction by BKM120 treat-

ment, were classified as PI3K-dependent. A minimum 1.5-fold change in response to SOX2/
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DMSO was used as another cut-off. Data have been deposited to GEO (http://www.ncbi.nlm.

nih.gov/geo/) with the accession number GSE59866.

TCGA Data

Provisional lung SQCC TCGA data were used and were downloaded from www.cbioportal.

org [138].

Gene Set Enrichment Analysis

The top 200 SOX9 correlated or anti-correlated genes (S1 and S2 Tables) were searched for

enrichment of gene sets annotated for cell lines contained in the CCLE, using the Enrichr tool

(http://amp.pharm.mssm.edu/Enrichr/) [139,140]. Statistical significance of the enrichment

was assessed by a “q-value,” which is a p-value that has been adjusted using the Benjamini-

Hochberg method for correction for multiple hypotheses testing. Only cell lines yielding q-

values� 0.05 were deemed to have enrichment of the test genes.

Kaplan-Meier Survival Analysis

The data used in Fig 12A are derived from nine lung SQCC cohorts. Eight cohort datasets can

be downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/) with the accession numbers

GSE14814, GSE19188, GSE29013, GSE30219, GSE3141, GSE37745, GSE4573, and GSE50081.

The ninth cohort is from the TCGA and can be downloaded from the NIH Genomic Data

Commons https://gdc.cancer.gov/. The data used in Fig 12B are derived from three lung

SQCC cohorts, which can be downloaded from GEO with the accession numbers GSE4573,

GSE50081, and GSE29013. All of the data were mined through the web tool Kaplan-Meier

Plotter (http://kmplot.com/analysis/) [141]. Both analyses used the SOX9 202935_s_at Affyme-

trix probe, and the “auto-select” mode was used to determine the optimal cut-off for high and

low SOX9 expression, which was approximately the upper quartile. The numerical data used to

generate the plots are in S1 Data.

Supporting Information

S1 Data. Data values plotted in main figures.

(XLSX)

S2 Data. Data values plotted in supplemental figures.

(XLSX)

S3 Data. CD44.fcs file for FACS analysis shown in S2B Fig.

(FCS)

S4 Data. Unstained control.fcs file for FACS analysis shown in S2B Fig.

(FCS)

S5 Data. Flowjo.jo file for CD44 FACS analysis shown in S2B Fig.

(JO)

S1 Fig. Characterization of SOX2 expression in native human tracheobronchial epithelia

and SQCCs. (A) Box plot analysis of TCGA SOX2 RNAseq data from 177 primary patient

SQCCs. Numerical data are in S2 Data. RPKM = Reads Per Kilobase of transcript per Million

mapped reads. (B) SOX2 IHC in native human tracheobronchial epithelia and SOX2-amplified

primary patient lung SQCC xenografts (PDXs). Arrows point to some basal cells. Note the

abundance of cilia in the normal tracheal epithelium and hence, high SOX2 expression in
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ciliated cells. (C) SOX2Lo basal cells are rare in well-differentiated columnar epithelia, but are

more common in non-columnar epithelia. Native human tracheal tissue was costained with α-

SOX2 and α-KRT5 antibodies. Arrows point to rare SOX2Lo basal cells in well-differentiated

columnar epithelia. Insets are magnified areas marked by dashed line boxes. All scale bars are

20 μm.

(TIF)

S2 Fig. Characterization of normal human tracheobronchial basal cells. (A, B) Basal cell

lineage marker expression in primary P0 tracheobronchial cell cultures growing on plastic.

Data are from one representative strain. (A) Immunostaining for TP63 and KRT5 expression.

(B) FACS analysis of CD44 expression. FACS data files are available as S3 Data, S4 Data, and

S5 Data. (C) Evidence for retention of multipotent stem cell activity by tracheobronchial basal

cells growing on plastic. Passage 2 basal cells were transplanted into denuded rat tracheas,

which were implanted subcutaneously into immunocompromised mice, and examined histo-

logically after 55 days. Regenerated mucociliary surface epithelia and submucosal glands are

highlighted with dashed lines. Data are from one representative strain. Scale bars are 20 μm

(A) and 50 μm (C).

(TIF)

S3 Fig. PI3K signaling is low in basal cells in columnar differentiated native human tra-

cheal epithelia. Tracheal tissue was stained for phospho-Ser240/244-S6 (P-S6) or phospho-

Thr308-AKT (P-AKT). Insets correspond to magnified areas bounded by dashed boxes. White

and black arrows point to representative basal cells (Ba). Representative columnar cells (Co)

with nuclear P-AKT are indicated by red arrows. Scale bars are 20 μm.

(TIF)

S4 Fig. Characterization of SOX2-FLAG activity and kinetics of lineage marker expression

after Lenti-SOX2-FLAG transduction of tracheobronchial basal cells. (A–C) Tracheobron-

chial basal cells growing on plastic were infected with control vector or Lenti-SOX2-FLAG and

analyzed as indicated. (A) SOX2-FLAG induces markers of mucinous and squamous differen-

tiation in basal cells. Five days following Lenti-SOX2-FLAG transduction, lineage marker

expression was measured by qRT-PCR. Data are plotted relative to uninfected controls, which

were assigned a value of 1 and generally had the same baseline marker expression as empty-

vector infected cells. Means ± standard error of the mean (SEM) from three replicates are

shown. Significance was calculated using paired two-tailed t tests. � p = 0.008 (MUC16), 0.04

(TMPRSS11B), 0.01 (IVL), 0.05 (SPRR1A). (B) Kinetic analysis of SOX2 and TP63 protein

expression after Lenti-SOX2-FLAG transduction. Positive cells were identified by immunoflu-

orescence staining, with 150–250 cells counted. (C) Time course of lineage marker induction

following Lenti-SOX2-FLAG transduction. Marker expression was quantified by qRT-PCR.

Data are plotted relative to the time point with the greatest amount of marker expression,

which was assigned a value of 100. All plotted numerical data are in S2 Data.

(TIF)

S5 Fig. SOX9 expression is repressed by SOX2 and PI3K signaling. (A) Tracheobronchial

basal cells growing on plastic were infected with control vector or Lenti-SOX2-FLAG ± 2.5 μM

BKM120, and SOX9 levels quantified by qRT-PCR 36 hours post-infection. Data were normal-

ized to expression in vector-transduced cells, which was assigned a value of 100. Means ± SEM

from four replicates are shown. Significance was calculated using paired two-tailed t tests.
��p = 0.003. (B) Tracheobronchial basal cells growing on plastic were treated with control

DMSO vehicle or 2.5 μM BKM120. After 3 d, SOX9 expression was analyzed by qRT-PCR.

Data were normalized to expression in DMSO-treated cultures, which was assigned a value of
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1. Means ± SEM from three replicates are shown. Significance was calculated using a paired

two-tailed t test. �p = 0.05. (C) Analysis of the human SOX9 promoter for SOX2 binding sites.

3,000 bp of genomic sequence upstream of the first SOX9 exon was scanned for the SOX2

motif MA0143.3 using the search tool at the JASPAR database (http://jaspar.genereg.net). A

strong match was identified approximately 1,200 bp upstream of the first exon. All plotted

numerical data are in S2 Data.

(TIF)

S6 Fig. Lenti-SOX9 does not induce SOX2 protein expression in tracheobronchial basal

cells. Basal cells proliferating on plastic were infected with control vector or Lenti-SOX9, and

after 5 d, SOX2 expression was examined by immunoblotting 30 μg of lysate. The H520 SQCC

cell line was used as a positive control.

(TIF)

S7 Fig. Additional characterization of SOX2, SOX9, and phospho-S6 (P-S6) expression in

SQCC preneoplasia and invasive disease. Larger areas of preneoplasia and representative

areas of invasive disease from the lung resection shown in Fig 11. Sections were stained with

the indicated antibodies. P-S6 = phospho-Ser240/244-S6. Dotted lines denote basolateral

boundaries of metaplasia (Met) and dysplasia (Dys). Scale bars are 50 μm.

(TIF)

S8 Fig. Characterization of SOX2 and SOX9 protein expression in SQCCs. (A–C) IHC for

SOX2 and SOX9 expression in a tissue microarray (TMA) derived from an SQCC cohort of

132 patients. (A) Representative SOX2 and SOX9 IHC in the TMA. Scale bars are 50 μm. (B)

Distribution of SOX2 and SOX9 H-scores in the SQCC cohort. Data were derived from the

TMA and each patient core was given an H-score for SOX2 and SOX9 expression (see also

Table 1). The H-score was calculated for each core by summing: [(0 x % cells with no stain) +

(1 x % cells with weak stain) + (2 x % cells with moderate staining) + (3 x % cells with strong

staining)]. The H-score scale thus ranged from 0–300. Basal and suprabasal layers were scored

separately with the hypothesis that in moderate and well-differentiated tumors, stem cells

might reside in the basal layers and more differentiated progeny would be found in suprabasal

areas. (C) Relationship between SOX2 and SOX9 protein expression in SQCC patients. (D)

Comparison of number of cases by tumor grade in high versus low SOX9-expressors. All plot-

ted numerical data are in S2 Data.

(TIF)

S9 Fig. Characterization of phospho-Ser240/244-S6 expression in SQCCs. (A) Representa-

tive images of P-S6 IHC in a tissue microarray (TMA) derived from an SQCC cohort of 132

patients (same as S8 Fig). Scale bar is 50 μm. (B) Distribution of P-S6 expression data in the

SQCC cohort. (C) Relationship between P-S6 and SOX9 expression in SQCC patients. All

plotted numerical data are in S2 Data.

(TIF)

S10 Fig. Characterization of SOX2 and SOX9 mRNA expression in SQCCs. (A–C) All

mRNA expression and copy number variation data are from the TCGA analysis of 177 pri-

mary SQCCs and are in S2 Data. (A) Distribution of mRNA expression across the patient

cohort. RPKM = Reads Per Kilobase of transcript per Million mapped reads. (B) Relationship

between SOX2 and SOX9 mRNA expression in SQCC patients. (C) Comparison of SOX9-high

versus SOX9-low SQCCs and their associations with SOX2 amplification. Statistical signifi-

cance was calculated using a two-tailed Fisher’s exact test.

(TIF)
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S1 Table. Top 200 genes anti-correlated with SOX9 mRNA expression in SQCCs. Data were

obtained from the TCGA analysis of 177 primary patient SQCCs. Genes are ranked by the neg-

ative Pearson correlation coefficients.

(XLSX)

S2 Table. Top 200 genes correlated with SOX9 mRNA expression in SQCCs. Data were

obtained from the TCGA analysis of 177 primary patient SQCCs. Genes are ranked by the pos-

itive Pearson correlation coefficients.

(XLSX)

S3 Table. Identification of cell lines with associations to genes either anti-correlated or cor-

related with SOX9 expression in SQCCs. The top 200 SOX9 anti-correlated or correlated

genes (S1 and S2 Tables) were searched for enrichment in gene sets annotated for cell lines

contained in the CCLE (Cancer Cell Line Encyclopedia), using the Enrichr tool (http://amp.

pharm.mssm.edu/Enrichr/). a Statistical significance of the enrichment, as assessed by a calcu-

lated “q-value,” which is a p-value that has been adjusted using the Benjamini-Hochberg

method for correction for multiple hypotheses testing. Only cell lines yielding q-values� 0.05

are shown. b SCLC = small cell lung cancer.

(XLSX)

S4 Table. Demographics and clinical characteristics of the SQCC cohort used in the tissue

microarray studies.

(XLSX)

S5 Table. Primers used for qRT-PCR.

(XLSX)
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