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Frontal Theta Band Oscillations Predict Error Correction and Post Error
Slowing in Typing
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Elizabeth Milne
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Performance errors are associated with robust behavioural and EEG effects. However, there
is a debate about the nature of the relationship between these effects and implicit vs. explicit
error awareness. Our aim was to study the relationship between error related electrophysio-
logical effects, such as spectral perturbations in fronto-medial theta band oscillations (FMT),
and error awareness in typing. Typing has an advantage as an experimental paradigm in that
detected errors are quickly and habitually signalled by the participant using backspace, allow-
ing separation of detected from undetected errors without interruption in behaviour. Typing
is thought to be controlled hierarchically via inner and outer loops, which rely on different
sources for error detection. Touch-typist participants were asked to copy-type 100 sentences
as EEG was recorded in the absence of visual feedback. Continuous EEG data were analysed
using independent component analysis (ICA). Time-frequency and ERP analyses were applied
to emergent independent components. The results show that single-trial FMT parameters and
Error Related Negativity (ERN) amplitude predict overt, adaptive post-error actions such as
error correction via backspace; and, post-error slowing after errors, reflecting implicit error
awareness. In addition, we found that those uncorrected errors which were slowed down the
most were also the ones associated with a high level of FMT activity. Our results as a whole
show that FMT are related to neural mechanism involved in explicit awareness of errors, and
input from inner loop is sufficient for error correction in typing.

Public Significance

We investigated the patterns of brain activity which precede errors and error-correction during
skilled typing. This is interesting because it tests how theories of action and error-monitoring
apply in a domain where actions are made extremely rapidly (up to ten keys per second).
Electroencephalography (EEG) allows us to identify signature changes which have previously
been associated with error-related processes in the brain. We showed that two of these signa-
ture patterns, the “error related negativity” (ERN) and “fronto-medial theta band oscillations”
(FMT), both predict whether a typist is likely to notice and correct an error they make, as well
as predicting how much typing slows down after an uncorrected error. The results support the
idea - which has been contested - that the ERN reflects our explicit recognition that we have
made a mistake.

Keywords: Theta, ERN, Error Awareness, Hierarchical Control, Typing

Introduction

Performance monitoring is crucial for keeping ongoing
actions in-line with long term intentions. Errors lead to
consistent behavioural and electrophysiological changes de-
tectable by the electroencephalogram (EEG). These include
post-error slowing (PES Rabbitt, 1966a) in addition to event

related potential (ERP) components such as medio-frontal
error related negativity (ERN) and centro-parietal error re-
lated positivity (Pe, Falkenstein, Hohnsbein, Hoormann, &
Blanke, 1991; Gehring, Goss, Coles, Meyer, & Donchin,
1993) as well as medio-frontal oscillatory changes in theta
frequency range (Luu & Tucker, 2001). The current investi-
gation aims to study how changes in these parameters unfold
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over time on an everyday task, and their implications for cur-
rent theories of error awareness.

Error related negativity in particular is one of the most
reliable error related ERP components (Gehring, Liu, Orr,
& Carp, 2012). Even though ERN and Pe are strongly as-
sociated with error actions, they are independent of the mo-
tor effector used (Gehring & Fencsik, 2001; Holroyd, Dien,
& Coles, 1998), and thus are viewed as indices of corti-
cal activity associated with cognitive rather than motor con-
trol. In discrete trial tasks, ERN and Pe peaks appear 60-
80ms and 180-300ms after the error response, respectively
(Overbeek, Nieuwenhuis, & Ridderinkhof, 2005; van Veen
& Carter, 2002). It is worth noting that timing of the peaks
can be earlier in skilled actions. For example Herrojo-Ruiz,
Jabusch, and Altenmuller (2009) and Maidhof, Rieger, Prinz,
and Koelsch (2009) found that the ERN peak precedes the
error key-press in piano playing.

A number of factors might be contributing to the earlier
peak of ERN in such continuous tasks. Firstly, skilled ac-
tions such as typing and piano playing involve temporally
overlapping responses (Soechting & Flanders, 1992), such
that multiple key-presses are being prepared and executed at
a given moment. This may in some cases increase the tem-
poral gap between incorrect finger motion onset and its exe-
cution. Assuming that it is the onset of an error rather than
its execution that leads to error detection (Rabbitt, 1978), this
would lead to an earlier onset of error detection (and ERN)
relative to error execution.

Another potential factor bringing the onset of ERN closer
in time to the error action during continuous, skilled actions
is error slowing (Rabbitt, 1978). In discrete trial tasks such
as the flankers task (Eriksen & Eriksen, 1974), many errors
are executed faster than correct responses, leading to a con-
sistent difference in the average speed of errors and correct
key-presses (e.g. Laming, 1979; Rabbitt, 1968). However, in
continuous tasks like typing and piano playing, there is evi-
dence showing that performance often starts to break-down
before the error, and the error key-press itself is executed
more slowly and with less force on average (Herrojo-Ruiz et
al., 2009; Herrojo-Ruiz, Strubing, Jabusch, & Altenmuller,
2011; Kalfaoğlu & Stafford, 2014; Palmer, Mathias, & An-
derson, 2012; Rabbitt, 1978; Shaffer, 1975). It is plausible
that such error slowing is caused by a late and failed attempt
to cancel the initiated error action (Rabbitt, 1978). Such an
attempt, even if observed after a subset of errors, would be
enough to slow the average speed of errors beyond that of
correct key-presses. This would in turn push the average time
of error execution later in time and bring it closer to the time
of error detection and onset of ERN which are assumed to be
triggered by the onset of the error.

While ERN is well established as an ERP component as-
sociated with errors, and is one of the most common ERP
components used to study error detection, there is a relatively

weak consensus in the literature about exactly what neural
processes lead to ERN. While Pe is regarded as an index of
conscious error awareness and post-error behavioural adjust-
ment, there are different accounts linking ERN to different
processes (Gehring et al., 2012). Three of the most popu-
lar perspectives are the mismatch theory (Falkenstein et al.,
1991) which suggests ERN amplitude reflects the difference
between the intended and executed actions; reinforcement
learning theory (Holroyd & Coles, 2002), which proposes
that ERN amplitude depends on the learning signal which is
relayed from the subcortical structures (where the compari-
son of intended vs. executed actions is carried out) to the cor-
tical structures; and conflict monitoring theory (Botvinick,
Braver, Barch, Carter, & Cohen, 2001; Yeung, Bogacz, Hol-
royd, Nieuwenhuis, & Cohen, 2004) which proposes that
ERN amplitude reflects the amount of co-activation of the
intended and executed actions at the time of action execution.

There are studies which report that ERN amplitude is re-
lated to error awareness (e.g. Gehring et al., 1993; Hewig,
Coles, Trippe, Hecht, & Miltner, 2011; Scheffers & Coles,
2000; Shalgi & Deouell, 2012). However, many other stud-
ies show no relationship between ERN and error awareness
(e.g. Endrass, Franke, & Kathmann, 2005; Endrass, Reuter,
& Kathmann, 2007; Gehring & Fencsik, 2001; Nieuwenhuis,
Ridderinkhof, Blom, Band, & Kok, 2001; O’Connell et al.,
2007). Presence of a large number of studies failing to find
a relationship between error awareness and ERN amplitude
naturally leads to the conclusion that ERN is not strongly
linked to conscious error awareness (e.g. conflict monitor-
ing, Yeung, Botvinick, & Cohen, 2004). This lack of consis-
tency in findings regarding the relationship between the ERN
and error awareness is potentially due to the wide range of
methodologies used. For example, many of the studies cited
above use different motor responses including antisaccades,
finger presses and force production in different behavioural
paradigms such as flankers, go/no-go, digit entry, and time
estimation tasks (see Wessel, 2012, for a review of results of
studies using different methods).

The effect of methodological variability on inconsistent
findings is further exacerbated in speeded reaction time tasks
by the difficulty associated with distinguishing between sub-
jectively detected from undetected errors (not only by the ex-
perimenter but also by the participant) in an objective man-
ner. Using a non-habitual response to indicate error aware-
ness in such designs can be problematic for a number of rea-
sons: Even though error detection can take place very fast un-
der natural circumstances and in well practised tasks such as
typing (Logan, 1982; Rabbitt, 1978), remembering a briefly
presented stimulus, responding to it within several hundred
milliseconds, determining that the response was an error, and
programming a novel action to signal the error can be heavy
on working memory and attentional resources.

This means that trials in which errors are indicated are dis-
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tinguished not only by the presence of errors (or the belief in
error commission), but also by the evocation of a non-routine
action and the commensurate cognitive load. Additionally,
it is possible that this additional cognitive load of error sig-
nalling weakens the relationship with error-commission. For
example, it is not implausible that cognitively onerous er-
ror signalling causes participants to raise the criterion against
which they judge their confidence in having just made an er-
ror.

We reason that one parameter which can provide impor-
tant insights into inconsistent findings is another frontal EEG
measure: theta frequency band oscillations. Luu and Tucker
(2001) showed that ERN could be a partial manifestation
of an ongoing neural oscillation within the theta frequency
band. A later study by Luu, Tucker, and Makeig (2004)
showed quite convincingly that theta band oscillations (4Hz-
7Hz) and ERN are strongly aligned in time, using single trial
as well as grand average EEG traces: Phase of the theta os-
cillation was reset to more or less the same angle after each
error, irrespective of its pre-error phase (i.e. phase-locking,

Buzsaki, 2006). Even though it has been shown that ERN can
be generated without phase-locking in theta band oscillations
using simulated EEG data (Yeung, Bogacz, et al., 2004), a
number of studies using empirical data and different analyti-
cal methods have since replicated the finding that increases in
power of and partial phase-locking in theta band oscillations
underlie the appearance of ERN (Trujillo & Allen, 2007),
and predict post-error changes in performance (Cavanagh,
Cohen, & Allen, 2009; Cavanagh & Shackman, 2014; Cohen
& van Gaal, 2012; Cohen & van Gaal, 2014; Herrojo-Ruiz et
al., 2011), a finding also supported by fMRI studies (Hoff-
mann, Labrenz, Themann, Wascher, & Beste, 2013). Fronto
medial theta band (FMT) oscillations are strongly related to
higher level cognitive functions such as conflict (or even an-
ticipation of it, van Driel, Swart, Egner, Ridderinkhof, &
Cohen, 2015), novelty detection and realisation of the need
for increased control and thus are likely to underlie the asso-
ciated ERP components such as the N2, correct related nega-
tivity (CRN, Vidal, Burle, Bonnet, Grapperon, & Hasbroucq,
2003; Yeung, Botvinick, & Cohen, 2004) as well as the ERN
(Cavanagh & Frank, 2014).

Thus, the literature points to a strong link between ERN
and theta oscillations; and between error related higher level
cognitive processes and theta oscillations. From this perspec-
tive, it is possible that ERN (an ERP component driven by
theta) is also related to error awareness. However, it is diffi-
cult to assert that ERN is an index of error awareness since
it is observed after undetected as well as detected errors. We
believe one of the more important reasons for this inconsis-
tency in the literature is the difficulty in objectively separat-
ing subjectively detected errors from subjectively undetected
errors (Wessel, 2012).

Typing. Typing has a number of benefits as an exper-
imental paradigm for the study of psychological processes
(Lashley, 1951; Wells, 1916). First, typing has become an
integral part of many people’s professional and social lives,
making it highly ecologically valid. Further, results can be
compared and contrasted with those from experimental tasks
which involve essentially the same behaviour (i.e. button
presses) but in discrete trials rather than in ongoing typing
behaviour.

Second, and most importantly, error awareness is sig-
nalled by a highly-practised and objective response (i.e. the
backspace) in typing. The number of hours of practice an
ordinary person acquires over several years in typing is close
to that expert athletes or musicians acquire in their fields (Er-
icsson & Krampe, 1993). Because the association between
error awareness and pressing of backspace in typing is rein-
forced on a regular basis, error signalling response in typing
requires minimal cognitive effort (Gentner, 1984; Ohlsson,
1996) and thus makes it more likely that an error will be sig-
nalled in time.

Hierarchical Control in Typing and Implicit vs. Ex-

plicit Error Detection. One model which provides in-
sights regarding how error detection works in typing was
developed by Logan and Crump (2011). According to this
theory, typing is controlled hierarchically by two interacting
loops. Briefly, the outer loop serves to read, comprehend and
produce a word to be typed, which is then passed on to the
inner loop. Inner loop decomposes the word into individual
letters and prepares and executes the necessary key-strokes
on the keyboard. In a series of experiments, Logan and col-
leagues have convincingly showed that these two loops use
different sources to monitor the accuracy of typing and the
outer loop has no direct access to the performance of the in-
ner loop (e.g. Liu, Crump, & Logan, 2010; Logan & Crump,
2009, 2010). While the outer loop is sensitive to the ulti-
mate outcome of the performance (i.e. feedback from the
screen), inner loop relies on proprioceptive and kinesthetic
feedback from the fingers (see Logan & Crump, 2011, for a
review). Importantly, in this model slowing after errors (i.e.
post-error slowing, PES) is an indicator of monitoring in the
inner loop because it is observed even when false feedback
to the outer loop suggests no error was committed (Logan &
Crump, 2010).

One similar distinction in the neurophysiological error de-
tection literature is made between implicit and explicit error
detection (see Shalgi & Deouell, 2013, for a discussion). Im-
plicit error detection is thought to be indexed by error related
changes such as the ERN and PES in the absence of overt er-
ror reporting or signalling. On the other hand, explicit error
detection is indexed by ERP components such as the Pe (Ha-
jcak, McDonald, & Simons, 2003; Nieuwenhuis et al., 2001;
Overbeek et al., 2005) and overt error signalling or reporting.
Based on these findings, two hypotheses can be tested: A
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significant relationship between ERN and PES without error
correction would reinforce the idea that ERN is involved in
implicit error detection. On the other hand, if ERN was found
to be correlated to error correction this would suggest ERN is
an index of overt error awareness (Hewig et al., 2011; Shalgi
& Deouell, 2012). Both of these scenarios would indicate
that inner loop constitutes an important input channel to the
generic error detection mechanisms (Cohen, 2014; Miltner,
Braun, & Coles, 1997) involved in monitoring responses. It
also supports the idea that inner loop is not only capable of
disrupting behaviour (i.e. PES) but also triggering adaptive
post-error behaviours such as error correction in the absence
of feedback to the outer loop.

In order to be able to test the above hypotheses, instruct-
ing the participants to use backspace to correct their typing
errors was crucial. Using such a highly-practised error sig-
nalling response to separate explicitly detected errors from
undetected or implicitly detected errors while electrophysio-
logical data are concurrently recorded was a novel and neces-
sary aspect of our methodology to test the above hypotheses.

Error Detection and Slowing in Discrete Trial vs. Con-

tinuous Tasks. One measure frequently used in studies of
error detection is PES. Rabbitt (1966b) was one of the first
authors to show that trials that follow error responses were
associated with significant slowing compared to those fol-
lowing correct responses in discrete trial tasks. While it is
plausible that PES reflects a conscious attempt to avoid fur-
ther mistakes, or a shift in strategy to avoid errors by com-
promising speed for accuracy, Danielmeier and Ullsperger
(2011) shows that there is no strong relationship between
post error accuracy and PES in the literature (but also see
Hajcak et al., 2003). Notebaert et al. (2009), Castellar, Kuhn,
Fias, and Notebaert (2010) and Desmet et al. (2012) suggest
alternatively that PES is more likely to reflect an orientation
of attention triggered by low frequency events including but
not limited to errors (but also see Forster & Cho, 2014).

In typing, Crump and Logan (2013) found that PES is
associated with the inhibition of the urge to correct the er-
ror. In a series of experiments, Crump and Logan (2013)
asked typists to type text under two sets of instructions.
When the participants were asked to type without correct-
ing their mistakes, significant PES was observed. However,
when participants were instructed to correct their errors in
another condition, no reliable PES was observed. In con-
trast, in an earlier analysis, we found reliable PES after un-
corrected errors where participants were told to correct their
mistakes (Kalfaoğlu & Stafford, 2014). Thus, an inhibition
of backspacing can’t explain the PES observed in our study.
While there is no clear evidence about exactly what mental
processes are indexed by PES, the observation that post-error
behaviour often differs from post-correct behaviour suggests
that some property of undetected errors (e.g. mismatch be-
tween intended and executed action, low vs. high frequency,

or the amount of conflict) can be distinguished from correct
responses at some level.

Another behavioural parameter potentially associated
with error awareness is error slowing. As mentioned earlier,
errors in continuous tasks such as piano playing and typing
are on average slower than correct actions (Herrojo-Ruiz et
al., 2009; Kalfaoğlu & Stafford, 2014; Shaffer, 1975). It is
possible that such error slowing (ES) is caused by a perfor-
mance break down which foreshadows errors, or is caused by
error awareness. We have shown previously that while per-
formance breakdown is observable in uncorrected but not in
corrected errors, both corrected and uncorrected error key-
presses are slowed down in typing (Kalfaoğlu & Stafford,
2014). In fact, error slowing was found to be stronger in cor-
rected errors than uncorrected errors. This suggests that even
though ES might reflect both performance break down and
error awareness, error awareness is a more potent contributor
to ES than performance breakdown. If this claim is true, then
we would expect the onset of error related EEG parameters
to precede error execution. We would also expect the EEG
parameters to be predictive of error slowing in corrected er-
rors. Error slowing in corrected errors would be observed in
cases where the error detection is not quick enough to stop
the error key-press. In such cases, we would expect ES to be
larger when error detection (i.e. the time of EEG signals) is
closer to the time of error key-press, and smaller when error
detection is too early or too late. Thus, the more timely and
strong the EEG signals, the longer should ES be.

EEG Analysis in Typing. While typing is highly ad-
vantageous due to its high ecological validity, it can be po-
tentially problematic due to diminished lack of control over
the behaviour of the participant. Continuous copy typing in-
volves multiple concurrent mental processes such as those
associated with reading and eye movements, in addition to
programming and executing temporally overlapping finger-
presses (c.f. discrete trial tasks). Thus, EEG recorded at
the time of an error key-press will include such activations
associated with temporally overlapping pre- and post-error
actions in addition to processes specific to error detection.
ERN is an ERP component typically recorded at the fronto-
medial electrodes (Gehring et al., 2012), which are not di-
rectly above the hand area of the motor cortex (Boroojerdi et
al., 1999). However, any non-error detection related activity
associated with typing detectable at medio-frontal electrodes
would add potential noise to the error related EEG signals be-
yond that present in discrete trial tasks. One of the main mo-
tivations behind our choice of independent component analy-
sis (ICA) for our EEG analyses was this issue. ICA works by
separating signals which are temporally maximally indepen-
dent from each other into separate independent components
(see Groppe, Makeig, & Kutas, 2008, for a discussion of
ICA used in EEG analyses). ERN is shown to be specific
to errors and independent of the body part (e.g. the eyes,
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feet, fingers) involved in the error commission (Gehring et
al., 2012). Therefore, whereas the ERN is expected to appear
only after errors, the timing of non-error related activations
(i.e. motor or other medio-frontal processes) would be non-
specific with respect to the timing of the errors. Because of
this lack of temporal correlation between error and non-error
related signals, ICA would separate them into different inde-
pendent components, even if they are recorded by the same
electrode.

The aim of the current study is to use typing to investigate
error awareness in skilled actions. In typing, performance
speed can reach more than 10 finger presses every second. At
such speeds, typists probably have little conscious awareness
of where their fingers are in a given moment (e.g. Logan &
Crump, 2009). Yet, error detection rates remain high, even in
the absence of visual feedback (Kalfaoğlu & Stafford, 2014;
Rabbitt, 1978; Snyder, Logan, & Yamaguchi, 2014). By sep-
arating detected from undetected errors using backspace and
evaluating error related EEG parameters (ERN, FMT) and
behavioural (ES, PES) measures, we aimed to gain a bet-
ter understanding of how error awareness evolves in highly-
practised actions and how this is manifested in terms of the
parameters listed above. Specifically, we wanted to inves-
tigate the temporal relationship between error related EEG
and behavioural effects in continuous tasks (Herrojo-Ruiz et
al., 2009; Kalfaoğlu & Stafford, 2014) and to test predictions
regarding EEG reflections of implicit and explicit error de-
tection using behavioural data. For example, if ERN or FMT
parameters are predictive of error correction, they are likely
to reflect explicit error detection in typing. If they are re-
lated to implicit error detection, then they should be strong
predictors of PES but not necessarily for error correction.

Methods

Participants

Twenty one participants (9 men), mean age 29 years
(range: 18 to 45) were recruited using an institutional list of
volunteers. Participants included students and administrative
staff of the university. EEG data from two participants were
discarded because EEG equipment stopped working. One
participant was excluded from the analysis because she was
unable to keep her hands in the home position on the key-
board in the absence of visual feedback, which made it im-
possible to extract meaningful data from her typing. Of the
remaining 18 participants 5 were excluded due to excessive
EEG artifacts (i.e. more than 25% of channels removed due
to high noise) and one was removed because she had fewer
than 15 epochs of uncorrected errors after artifact removal.
One of the participants showed no error related activity (nei-
ther in EEG or ICA components, see offline data processing
and analysis section below) and thus was not included in the
EEG analyses. This left the number of participants in the

EEG analysis at 11 and the number of participants in the be-
havioural analysis at 19.

Typing Ability of the Participants. We only recruited
participants who reported being a trained touch-typist. All
participants included in the EEG analyses reported they
were trained in an undergraduate keyboarding course, trained
themselves with the help of typing software, or learned the
skill as part of their professional training and thus were as-
sumed to be able to type using 8-finger or 10 finger typing
method (but see, Logan, Ulrich, & Lindsey, 2016). All
our participants were able to locate the home row on the
keyboard and type fluently in the absence of visual feed-
back. In order to familiarise them to the keyboard used
and get baseline typing ability measures, we asked our par-
ticipants to type a paragraph from the website http://
www.typingtest.com/ for 2 minutes with full visual feed-
back. The average baseline typing speed of the 11 partici-
pants ranged from 60 to 94 words per minute (wpm) with an
average of 73.00wpm (SD = 11.44). Typing accuracy ranged
from 92% to 100% with a mean of 94.90% (SD = 2.17%).
All participants had normal or corrected to normal vision.

After being verbally explained how the experiment is to be
carried out step-by-step, each participant was asked to read
the same information written on an informed consent form
and sign it if she/he agreed to participate in the experiment.
Department of Psychology Ethics Committee approved all
procedures of this experiment including how the written in-
formed consent was obtained prior to the start of the exper-
iment, in line with university ethics regulations and British
Psychological Society (BPS) guidelines.

Procedure

Participants were seated in front of the testing computer
and asked to adjust their distance from the monitor and the
keyboard such that they could type comfortably. Participants
were asked to copy-type the first 100 sentences from the
book Cumulative Record (Skinner, 1959). Sentences were
presented one at a time, and the order of sentences was ran-
domised for each participant. Presentation of the sentences
was self-paced: When a participant finished typing one sen-
tence, they had to press the right arrow button on the key-
board to see the next sentence. In each trial the participant
was required to type the sentence from the beginning to the
end, and to type as fast and accurately as possible. Partic-
ipants were also told that it was crucial that they corrected
any mistakes they made using backspace.

Participants received no visual feedback about their typ-
ing. Their hands were covered using a card-box and the
monitor didn’t present the letters typed by the participant.
While the participants typed the sentences, the only informa-
tion presented on the monitor was the sentence to be typed.
One of the aims here was to replicate the results of a classic
study of error detection by Rabbitt (1978) by using a method-
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ology as similar to his as possible and extending it by EEG
analyses. Further, elimination of visual feedback allowed us
to study the control of typing without feedback of the outputs
produced (the so called ‘inner loop’, Logan & Crump, 2010,
2011; Snyder et al., 2014). Another important motivation for
the limitation of visual feedback in the current design was
to discourage participants from looking back and forth from
the monitor to their hands. Such muscular activity typically
leads to large unwanted artifacts in the EEG data. One ad-
ditional effect of lack of visual feedback recently shown in
typing is a reduction in explicit error detection (Snyder et al.,
2014) which is desirable since the high rate of error detec-
tion in typing (Crump & Logan, 2013; Kalfaoğlu & Stafford,
2014; Rabbitt, 1978) typically leads to uneven numbers of
observations in corrected vs. uncorrected errors.

Behavioural Analysis

Typing-data were acquired using a high speed key-
board (DirectIN PCB v2010 from Empirisoft, http://www
.empirisoft.com/directinkb.aspx) to ensure that the
delay between a participant pressing down a key and the
computer recording it is minimised. For each participant, we
excluded key-presses which were slower than the 99% per-
centile or slower than 1000ms as outliers. A key parameter
in our behavioural analyses was error slowing (ES). This was
calculated for each error- and post-error letter in a word that
was typed incorrectly.

Calculation of Error Slowing and Post-Error Slowing.

To calculate ES and PES, we used as baseline the average
inter-keystroke-interval (IKI) of correctly typed letters which
are matched for word length and letter position. This is dif-
ferent from many of the cited studies, where PES is calcu-
lated by subtracting IKI of the letter immediately before the
error from that of post-error key-presses (e.g. Crump & Lo-
gan, 2013; Logan & Crump, 2010). The latter approach is
particularly useful when natural fluctuations in typing speed
are considered. For example, if errors are more frequent
during slower (or faster) than average speed typing, such a
baseline would be more sensitive to ‘local’ changes in typing
speed. When participants try to type faster than their usual
typing speed (Yamaguchi, Crump, & Logan, 2013) or too
slowly, their chances of making mistakes may increase.

However, Salthouse (1986) shows that IKIs of 3 key-
presses before the error are no different from average IKIs.
Similarly, we showed earlier that when participants are in-
structed to type as fast and accurately as possible, typing
speed in 6 key-presses before the errors don’t differ from
that of key-presses matched for word length and letter posi-
tion (Kalfaoğlu & Stafford, 2014). Another relevant finding
from this study was that variability in IKIs preceding errors
was significantly larger before uncorrected errors than before
corrected errors. Thus, using pre-error IKI as the baseline for
calculating PES could potentially increase the variability in

PES and decrease the chances of finding subtle but reliable
changes in typing performance following uncorrected errors.

It is also plausible that word structure, and letter position
in a given word length might affect IKI and error likelihood.
In order to control for such potential confounds we used a
matching procedure where error and post-error slowing was
calculated in the following way: Error slowing value was
calculated by subtracting the IKI of the error key-press from
the average IKI of letters matched for word length and letter
position. For example, error slowing value for an error in
the 4th letter of a 5 letter word is calculated by subtracting
the IKI associated with that error key-press from the average
IKI of all 4th letters in correctly typed 5 letter words. Same
approach was used in calculation of slowing associated with
post-error key-presses.

As the measure of post-error slowing in our single trial
analysis, we used the average PES in the two keys follow-
ing corrected and uncorrected errors (E+1 & E+2). We
chose only 2 post-error key-presses because, “the [...] length-
ier interval after an error is nearly always on the immedi-
ately following keystroke, and seldom occurs on keystrokes
more than two removed from the error” (Salthouse, 1986,
p.310). Crump and Logan (2013) showed that the propor-
tion of post-error key-presses preceding backspace quickly
fell below 10% after the second post-error key-press. Re-
sults of Kalfaoğlu and Stafford (2014) further show that after
matching post-error key-presses to post-correct key-presses
for word length and letter position (as is the case in the cur-
rent study), the proportion of post-error key-presses preced-
ing the backspace got even smaller (13.65% for E+1, 1.82%
for E+2 and <1% for E+3). In light of the studies and obser-
vations summed above, we decided to use average slowing
in E+1 and E+2 as the measure of PES in the current study.

If the error was corrected by the backspace, PES would
be calculated using any correct post-error key-presses that
preceded the backspace.

EEG Data Acquisition and Analyses

The recording computer was connected to the Biosemi
USB Box (http://www.biosemi.com/), which received
signals from the EEG amplifier as well as key-press infor-
mation from testing computer. To make sure that the dif-
ference between latencies of key-presses as recorded by the
testing and recording computers was minimal, we contrasted
the IKIs as recorded by both. We found that this difference
was 0.11ms (SD = 0.11ms). Since the median IKI for our
typists was 155.81ms (SD = 19.43), the fastest typing at an
average IKI of 124.49ms, the lag of less than 0.15ms for the
transmission of signals was considered acceptable.

On-line Data Acquisition. EEG data were collected
from 128 channels at a sampling rate of 2048Hz using a 128
channel Biosemi Actiview system (http://www.biosemi
.com/). Data were analysed by custom Matlab scripts built
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on the open source EEGLAB toolbox (http://sccn.ucsd
.edu/eeglab/, Delorme and Makeig (2004)).

Independent Component Analysis. EEG recorded
over the scalp at any moment in time is a linear mix of multi-
ple co-existing neural processes (each of which will be acti-
vated to a different extent at different times), as well as other
sources of electrical activity such as the muscular activity
from the eyes or the scalp itself. In order to minimise the
effects of these confounding variables (especially in such a
dynamic task as typing), we used independent component
analysis (ICA) which is a statistical blind source separation
technique. Using ICA was also crucial in enabling us to
study single trial correlations between EEG parameters and
behavioural effects associated with error awareness. We con-
ducted all our statistical analyses on error related IC acti-
vations returned by ICA (see offline data processing section
below) for the reasons outlined above, and because channel
C23, which corresponds to electrode FCz in the Biosemi
EEG system we used, for one of the participants was re-
moved due to bad connectivity with the scalp. To enable a
visual comparison between error related independent compo-
nent (ErIC) activity and its projection to medial frontal elec-
trodes, we present data from these two sources during cor-
rected errors in figures 1 and 2 respectively. Figure 3 shows
the projection of the ErIC to all electrodes during the two
significant peaks of the ErIC (i.e. the ERN and the following
positivity). Figures 1, 2 and 3 are constructed using data from
the 11 participants involved in the EEG analyses. See Groppe
et al. (2008) for a review of the use of ICA in EEG anal-
ysis and Murphy, Robertson, Allen, Hester, and O’Connell
(2012) and Beldzik, Domagalik, Froncisz, and Marek (2015)
for similar uses of ICA in extracting EEG effects associated
with errors.

Figure 1. Figure showing the activity of the ErIC during cor-
rected errors. The units of this activation are arbitrary but
reflective of electrical potentials related with errors.

Off-line Data Processing and Analysis. EEG data were
down-sampled from 2048Hz to 256Hz using Biosemi BDF
Decimator software (http://www.biosemi.com/). Rest
of EEG data analysis followed the below steps in the order

Figure 2. Figure showing the across participant average pro-
jection of ErIC activity during corrected errors onto the most
medial frontal electrode available (closest to electrode FCz)
for each participant. In all but one of the participants, this
was electrode C23, location of which on the scalp corre-
sponds to that of FCz, and in one participant where C23
was removed, it is C22. Electrode C22 is a medial electrode
which is closest (more frontal) to C23 in the Biosemi EEG
system used.

Figure 3. Scalp maps showing the across participant average
projection of the ErIC to all electrodes at the time of ERN
peak (20ms before the error) and at the peak of the following
positivity (113ms after the error) in microvolts during cor-
rected errors.

they appear here: Data were digitally filtered to remove fre-
quencies above 60Hz and below 1Hz using a finite impulse
response filter, as implemented in EEGLAB. Correct key-
presses were matched to error key-presses in terms of IKI
and letter. A staircase procedure was applied to find the clos-
est IKI with a step size of 0.5ms to match the IKIs of the
correct key-presses to errors.

Key-press events in the EEG were labelled as corrected
error (CE), uncorrected error (UE), correct matched to cor-
rected error (CMC), and correct matched to uncorrected error
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(CMU). Continuous EEG data were cleaned of artefacts and
noisy channels by visual inspection. Artefacts were defined
as sudden and substantial ( > 3 standard deviations) changes
of amplitude in multiple electrodes at the same time. Blinks,
swallows and head movements are among the typical gener-
ators of such artefacts. If these substantial changes appeared
only in one electrode with no similar activations in spatially
adjacent electrodes, the electrode was identified as a noisy
channel. After removing noisy channels, an average of 109
channels (SD = 13.44, range = 80 - 124) were retained for
each participant. The data were re-referenced to the average
electrode. Continuous data were submitted to extended info-
max ICA Lee, Girolami, and Sejnowski (1999) using runica
function Makeig, Jung, Bell, Ghahremani, and Sejnowski
(1997) of the EEGLAB toolbox. The average number of
data points decomposed for each participant was 533,985 (34
min, 46 sec) (range = 451,739 - 644,737). Independent com-
ponent source locations were estimated by creating an equiv-
alent current dipole model for each component using dipfit
function from EEGLAB. This function estimates dipole lo-
cation by applying inverse source modelling methods to a
standard boundary element head model (Oostendorp & van
Oosterom, 1989). The ICs whose dipoles had a residual vari-
ance of more than 20%, or were outside the brain were re-
moved. Any remaining components that were considered
to reflect muscle activity, electrocardiogram, or eye move-
ments, on the basis of their dipole location, spectra and scalp
maps were considered artefacts and excluded from further
analysis. In total, 251 ICs were included in the analysis, each
participant contributing 23 (SD = 16) ICs on average (range
= 4 - 53). EEG data were then separated into epochs of CE,
UE, CMC, and CMU. Epoch length was 2 seconds (-1000 to
1000ms after the key-press) for ERP analyses; and 6 seconds
long for the time-frequency analyses (-5000 to 1000ms after
the key-press). ERSP and ITC values were computed for all
remaining ICs from all the participants using wavelet anal-
ysis using Morlet wavelets (Herrmann, Grigutsch, & Busch,
2005) as implemented by the newtimef function in EEGLAB
toolbox.

For the time-frequency analyses, ERSP and ITC were ex-
tracted from 10 linearly spaced frequencies from 3Hz to 6Hz.
We selected the lower half of the FMT oscillations because
the theta effect was found to be the strongest at these frequen-
cies in our earlier investigations (Kalfaoğlu (2012), see also
figure 4d). Baseline period used for ERSP and ITC calcula-
tions was from 5000ms to 200ms before the key-press. The
number of cycles in the wavelet used in the time-frequency
transformations was 3 for extracting ERSP and ITC values at
3Hz and increased linearly to 6 for extracting ERSP and ITC
values at 6Hz (with a sliding window length of 1113.28ms).

Once the ERP, FMT ERSP and ITC were extracted from
the ICs, we used k-means clustering algorithm of EEGLAB
to identify the ICs which represented error related activity.

It is already established that errors are closely associated
with ACC activity (Carter et al., 1998; Reinhart & Wood-
man, 2014), and are strongly associated with theta power
bursts and phase-locking (Luu & Tucker, 2001; Luu et al.,
2004). Thus, in the clustering algorithm, we defined impor-
tant parameters as the dipole location, and ERSP and ITC in
the 3-6Hz oscillations during corrected errors. The weight-
ings given to these parameters for clustering purposes were
not uniform (i.e. 1:1:1) but rather 2:2:1 for dipole location,
theta ERSP and theta ITC, respectively. The theta ERSP
and dipole location were given twice the weight compared
to theta ITC parameter because we expected i) the variability
in the location of error related neural activity to be smaller
than that in phase of theta oscillations (on which the ITC
measure relies) at the time of the error key-press, and ii) the
variability in the theta ERSP to be less than that in phase of
the theta oscillations at the time of error key-press.

Of the 8 clusters returned by the clustering algorithm one
was easily identifiable as an error related cluster based on the
activity of the ICs at the time of the error key-press. Figure 4
shows the average scalp map, dipole locations, ERSP, ERP,
and ITC measures of the error related cluster. This cluster
had ICs from 11 out of 12 participants. All of the EEG anal-
yses reported here are conducted on this cluster of 11 partic-
ipants. The participant who contributed no ICs to the error
related cluster showed no ERN in the EEG record (neither
before nor after the ICA).

Note on Number of Epochs

On average, participants contributed 71 CE (range 45-
108), 36 UE (range 20-55), 115 CMC (range 66-193), and
65 CMU (range 37-152) epochs to across participant ERP
analyses; and 59 CE (range 35 - 110), 32 UE, (range 17 -
73), 93 CMC (range 47 - 169), and 51 CMU (range 32 - 116)
epochs to across participant time-frequency analyses. The
reason for the smaller number of epochs in time-frequency
analysis was because we used a longer epoch length for these
analyses. The longer the epoch length, the larger the proba-
bility of a temporal overlap with artefacts and other epochs.
Such overlapping epochs are automatically discarded.

As shown above, there were considerable differences be-
tween the numbers of epochs of different key-press types.
In order to avoid the possibility that the observed effects
are driven by unequal sample sizes, the number of epochs
in all analyses reported below were matched using a boot-
strap based procedure: For each participant, first the key-
press type with the smallest number of epochs (denoted “ns”
for smallest n) was identified. Then, for each participant,
only ns randomly selected epochs were used in the between-
key-press comparisons of ERP and theta oscillatory mea-
sures. When calculating the ERP of a participant for a given
key-press type, 1000 bootstrapped samples of size “ns” were
taken and the average of these samples represented the ERPs
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Figure 4. a) The average scalp map of the error related cluster
(i.e. cluster 6). b) Dipole locations (average dipole in red) of
the error related cluster. c) A comparison of ERP activations
of the independent components (ICs) during corrected error
key-presses (blue line) to matched correct key-presses (green
line). d) and e) show the average event related spectral per-
turbation (ERSP) and Inter-trial coherence (ITC) values of
the Error related ICs in the error related cluster at the time
of corrected error key-presses, respectively. For d) and e) the
magnitude of ERSP and ITC are represented by the colour
scale.

of interest for that participant and key-press type. We fol-
lowed the same procedure for the time frequency analyses.

Correction for Multiple Comparisons

Event related potential and FMT differences between
corrected and uncorrected errors and matched correct key-
presses were tested using t-tests at each time point. A t-
score adjustment (tmax) based on permutations was used as
described by Groppe (2010); Groppe, Urbach, and Kutas
(2011a, 2011b). Briefly in this method, data points from two
conditions to be compared are randomly re-allocated to one
of two conditions (as in the null hypothesis) and a t-score is
calculated. This is repeated for each time point (i.e. each one
of n comparisons), and the maximum t-score (i.e. the tmax)
from these n comparisons is recorded. This is repeated 1000
(in our analyses) times, resulting in 1000 tmax values. Then,
the 95% confidence intervals of the distribution of the tmax

values are determined, and used as new critical t-scores.
For the theory driven predictions that ERN will peak be-

tween -100 to 100ms of key-press, (see Herrojo-Ruiz et al.,
2011; Maidhof et al., 2009, for timing of ERN in continu-
ous actions), FMT power burst (i.e. ERSP) and coherence
(ITC) will appear between -100 to 100ms after the key-press
(Herrojo-Ruiz et al., 2011; Luu & Tucker, 2001), we used a
critical t-score at an alpha of 0.05, such that any difference
with a t-score of larger than this critical value would be con-
sidered statistically reliable. For differences which are not
predicted by previous literature, we applied a critical t-score
adjusted for the number of multiple comparisons. Both of
these cut-off t-scores are presented in all figures presenting
EEG comparisons.

Results

Behavioural Results

The average IKI of the 11 participants included in the EEG
analysis was 161.19ms (SD = 22.91ms, range: 124.49ms
- 193.27ms). Average error detection rate across partici-
pants was relatively low (M= 63.99%, SD= 16.67), possi-
bly due to lack of visual feedback on the screen (Snyder et
al., 2014). Corrected error key-presses for these participants
were significantly slower than matched correct key-presses
by 35.86ms (SD = 12.28, t(10) = 9.68, p < 0.001 ). Similarly,
uncorrected errors were found to be significantly slower than
matched correct key-presses by 18.14ms (SD = 14.86, t(10)
= 4.05, p = 0.0023). Average PES for the 2 key-presses fol-
lowing corrected errors failed to reach statistical significance
(19.08ms, SD = 40.36, t(10) = 1.57, p = 0.15). Average
PES for the 2 key-presses following uncorrected errors was
statistically reliable (39.06ms, SD = 23.18, t(10) = 5.59, p
< 0.001). In summary, both corrected and uncorrected error
key-presses were significantly slower than matched correct
key-presses. Correct post-error key-presses following uncor-
rected errors were also reliably slower than matched correct
key-presses. For a whole analysis of the behavioural data
from all 19 participants, please see Kalfaoğlu and Stafford
(2014).

Across-trial ERP Results

Figure 5 shows the ERPs and difference waves associ-
ated with corrected and uncorrected errors in relation to
each other and matched correct key-presses. Corrected er-
rors were associated with a significant negativity compared
to matched correct key-presses between -152ms and 4ms af-
ter the key-press. Corrected errors were also associated with
a significant positivity peaking at 113ms after the key-press.
This post-ERN positivity is considered to be the early Pe (En-
drass et al., 2007; O’Connell et al., 2007; van Veen & Carter,
2002) based on its tight temporal coupling to ERN, topogra-
phy, onset and dipole location, rather than the late Pe which
is a centro-parietal ERP component shown to be functionally
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dissociable from the ERN (see Endrass, Klawohn, Preuss, &
Kathmann, 2012; Endrass et al., 2007).
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Figure 5. The plots above show ERPs associated with cor-
rected errors (CE, solid line), correct key-presses matched to
them (CMC, grey line); uncorrected error key-presses (UE,
dashed line) and correct key-presses matched to them (CMU,
grey line). The plots below show the t-values associated with
the comparison at each time point. Critical t-value adjusted
for multiple comparisons are marked by the bold dashed line;
and the critical t value at p = 0.05 (t(10)= ±2.228) is shown
by the thin dashed line.

Uncorrected errors were associated with a brief but sig-
nificant negativity compared to matched correct key-presses
between 63ms and 55ms before the error.

Importantly, the negativity associated with corrected er-
rors were significantly larger than those associated with un-
corrected errors. As figure 5 shows, this difference in magni-
tude was significant between -51ms and 20ms after the error.

Across-trial FMT Results

Error Related Spectral Perturbations. Figure 6 shows
FMT ERSPs associated with corrected and uncorrected er-
rors in relation to each other and matched correct key-
presses. Corrected errors were associated with a reliably
stronger FMT ERSP compared to both matched correct key-
presses (between -106ms and 426ms after the key-press) and
uncorrected error key-presses (between -4ms and 340ms af-
ter the key-press). Uncorrected error key-presses were also
associated with reliably stronger FMT ERSP than matched
correct key-presses between -121ms and 425ms after the
key-press.

Inter-trial Coherence. Figure 7 shows the FMT ITC as-
sociated with corrected and uncorrected errors in relation to
each other and matched correct key-presses. Corrected er-
rors were associated with significantly higher ITC than both
matched correct key-presses (between -51ms and 379ms af-
ter the key-press) and uncorrected error key-presses (between
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Figure 6. The plots above show theta band ERSP during cor-
rected errors (CE, solid line), correct key-presses matched to
them (CMC, grey line); uncorrected error key-presses (UE,
dashed line) and correct key-presses matched to them (CMU,
grey line). The plots below show the t-value associated with
the comparison at each time point.

-59ms and 277ms after the key-press). Uncorrected error
key-presses however, were associated with no higher ITC
than matched correct key-presses.
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Figure 7. The plots above show theta ITC during corrected
errors (CE, solid line), correct key-presses matched to them
(CMC, grey line); uncorrected error key-presses (UE, dashed
line) and correct key-presses matched to them (CMU, grey
line). The plots below show the t-value associated with the
comparison at each time point.

Table 1 shows the effect sizes and associated statistical
power for the sample size used (11) for comparisons re-
ported.
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Table 1
Table showing the effect sizes and associated statistical

power for the reported statistical comparisons for Error Re-

lated Negativity and Positivity (ERN and Pe, respectively),

Event Related Spectral Perturbation (ERSP), and Inter Trial

Coherence (ITC). The effect sizes were calculated at the time

points at which t-values reached the peak for the comparison

(Peak Time). Comparisons included corrected errors (CE),

uncorrected errors (UE) and matched correct key-presses to

corrected (CMC) and to uncorrected errors (CMU)

Comparison Peak Time Effect Size Power

ERN

CE vs. CMC -19.53 1.48 0.99
CE vs. UE -19.53 1.33 0.97
UE vs. CMU -58.59 1.06 0.89

ERSP

CE vs. CMC 125.0 1.53 1.00
CE vs. UE 117.2 1.17 0.94
UE vs. CMU 50.78 0.86 0.87

ITC

CE vs. CMC 158.4 1.53 0.99
CE vs. UE 136.7 1.47 0.99
UE vs. CMU 148.4 0.15 0.07

Single-trial ERN Results

The relationship between ERN amplitude and behavioural
variables were tested using regression analyses. In these
analyses, the predictor variables included were i) participant
number and ii) single trial standardised peak ERN amplitude
between -152 and 4ms after the error (this time window cor-
responds to the time points at which ERN amplitude was sig-
nificantly different than matched correct key-press). Separate
regression analyses were conducted for each dependent vari-
able: i) error correction ii) PES in all errors iii) PES in uncor-
rected errors iv) ES in all errors v) ES in uncorrected errors
and vi) ES in corrected errors. PES in corrected errors could
not be analysed because most corrected errors were followed
immediately by the backspace (only 109 data points were
available for this analysis). Results of all ERN regression
analyses are summarised in table 2.

ERN and Error Correction. This analysis showed that
standardised single trial peak ERN amplitude predicted error
correction better than chance (R2 = 0.19, F(12,995)= 20.85,
p < 0.001). The more negative the peak ERN, the more likely
the error correction (beta= -0.31, t(11)= -3.38, p < 0.001).

ERN and PES. Standardised single trial peak ERP am-
plitudes as sorted by ES and PES in corrected and uncor-
rected errors is shown in figure 8.1

We found that standardised single trial ERN amplitude re-
liably accounted for a small amount of variability in PES fol-

Table 2
Summary table for regression results assessing the relation-

ship between ERN and behavioural variables.

Peak ERN

Criterion Amplitude (b) t-value R2

Error Correction -0.31 -3.37*** 0.19

PESAll -0.07 -1.08 0.11

PESUncorrected -0.18 -2.19* 0.09

ESAll 0.02 0.51 0.001

ESUncorrected 0.07 0.92 0.01

ESCorrected 0.01 0.19 0.03

* − p < 0.05; ** − p < 0.01; *** − p < 0.001

lowing uncorrected errors (R2 = 0.09, F(12,196) = 1.95, p =
0.041). The more negative the ERN amplitude within -152
and 4ms of the key-press, the longer was the PES (beta =
-0.18, t(11) = -2.19, p = 0.030) in uncorrected errors (see
figure 8).

ERN and ES. Single trial amplitude of ERN was not
predictive of ES in corrected, uncorrected, or all errors com-
bined (p for all beta values > 0.35).

Single-trial FMT Results

Single trial FMT ERSP as sorted by ES and PES in cor-
rected and uncorrected errors is shown in figure 9. Because
our across trial analyses showed that significant differences
between errors and matched correct key-presses start no ear-
lier than 106ms before the error, we conducted our single
trial analyses using shorter epochs. Epochs started 1000ms
(instead of 5000ms) before and ending 1000ms after the error
key-press). This enabled us to include more epochs and thus
data points in the regression analyses as shorter epochs are
less likely to be discarded due to overlap with other epochs
and artefacts.

1Most corrected errors were immediately followed by a
backspace and many were followed by subsequent errors (i.e. no
correct post-error key-press and thus no PES value). Some errors
were letters incorrectly inserted to the ends of the words and hence
could not be matched to a correct key-press for letter position (no
ES value). This is the primary reason for the smaller number of
post-error than error trials in figures 8 and 9, and the differences in
degrees of freedom in different regression analyses.
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T
ri

a
ls

Corrected ES and ERP

 

 

−1000 −500 0 500

100

200

300

400

500

600
−1

−0.5

0

0.5

1

T
ri

a
ls

Corrected PES and ERP

 

 

−1000 −500 0 500

20

40

60

80

100

−1

−0.5

0

0.5

1

Time (ms)

T
ri

a
ls

Uncorrected ES and ERP

 

 

−1000 −500 0 500

50

100

150

200

250

300
−1

−0.5

0

0.5

1

Time (ms)

T
ri

a
ls

Uncorrected PES and ERP

 

 

−1000 −500 0 500

50

100

150

200
−1

−0.5

0

0.5

1

Student Version of MATLAB

Figure 8. Figure showing single trial ERPs sorted by ES
(plots on the left) and PES (plots on the right) for corrected
(plots on top) and uncorrected errors (plots on bottom) across
all participants. Colour bar shows the within trial standard
deviation in ERP (red - above average amplitude, blue below
average amplitude). Dashed vertical line shows the time of
error key-press. The S shaped solid line shows error (ES
- plots on the left) and PES (plots on the right) associated
with each error trial. This line is not referenced to the x-axis
in order to improve visualisation of ERP values at the time
of key-press (i.e. slowing values are not all negative). The
top-right tail of this line shows the largest amount of ES and
lower-left tail shows the least amount of ES. The dotted hor-
izontal lines mark the error response with the median value
of error or PES marked by the s-shaped line.
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Figure 9. Plots showing standardized single trial FMT
ERSP values sorted by ES (left) and PES (right) in cor-
rected (above) and uncorrected error key-presses (below).
Colour bar shows the within trial standard deviation in ERSP.
Dashed vertical line shows the time of error key-press and
the dotted horizontal lines mark the error response with the
median value of error or PES. The S shaped solid line shows
ES and PES associated with each error trial.

Table 3
Summary table showing the beta (b) values for regression

results assessing the relationship between FMT ERSP peak

time, FMT ERSP peak magnitude, their interaction predict-

ing the behavioural variables and the R2 value associated

with the regression model.

Peak Time Peak Interaction

Criterion (b) Magnitude (b) (b) R2

Error Correction -0.05 0.58*** 0.01 0.22

PESAll -0.13* 0.06 -0.03 0.13

PESUncorrected -0.25*** 0.12 -0.01 0.14

ESAll -0.03 -0.07* -0.07* 0.03

ESUncorrected -0.001 -0.09 -0.07 0.02

ESCorrected -0.04 -0.07 -0.09* 0.05

* − p < 0.05; ** − p < 0.01; *** − p < 0.001

To test if single trial amplitude and timing of the FMT
ERSP peak are predictive of error correction probability, we
conducted logistic regression analyses with the following
predictor variables: i) Standardised single trial peak FMT
ERSP (dB) within -106 and 426ms of the key-press (i.e. the
period when theta ERSP was significant, see figure 6); ii)
standardised squared difference between the time of the peak
theta band ERSP and the error key-press (ms); and iii) their
interaction. The temporal difference between error key-press
and theta ERSP peak was squared before standardising the
values in order to remove the sign of the difference value.

FMT Parameters and Error Correction. This regres-
sion analysis showed that ERSP parameters could predict er-
ror correction better than chance (R2 = 0.22, F(14,993) =
22.01, p < 0.001). The stronger the FMT ERSP, the more
likely the error correction (beta = 0.58, t(13) = 7.20, p <
0.0001, see table 3 for beta weights of ERSP predictors).

FMT Parameters and PES. Similarly, these FMT
ERSP predictors were found to predict PES in all errors bet-
ter than chance (R2 = 0.13, F(14,302) = 3.34, p < 0.001). It
was found that the smaller the temporal difference between
the error key-press and peak of FMT ERSP, the greater the
PES (beta=-0.13, t(13) = -2.25, p= 0.026, see figure 10).

A multiple regression analysis showed PES after uncor-
rected errors can be predicted by peak FMT ERSP and its
time (R2 = 0.14, F(14,194) = 2.63, p = 0.003). Time of FMT
ERSP peak amplitude relative to the key-press was found to
be predictive of PES in uncorrected errors (b= -0.25, t(13)=
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Figure 10. Figure showing the amount of PES following
all errors associated with above average FMT ERSP peak
magnitude (white bars) and below average FMT ERSP peaks
magnitude. Errors with longer than average temporal lag be-
tween FMT ERSP onset and error key-press onset are shown
on the left, and those with shorter than average lag are shown
on the right. PES values are standardized for each partici-
pant.

-3.43, p < 0.001).
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Figure 11. Figure showing the amount of PES following un-
corrected errors associated with above average FMT ERSP
peak magnitude (white bars) and below average FMT ERSP
peak magnitude. Errors with longer than average temporal
lag between FMT ERSP onset and error key-press onset are
shown on the left, and those with shorter than average lag
are shown on the right. PES values are standardized for each
participant.

FMT Parameters and ES. It was found that a small
amount of variance in ES could be reliably predicted by FMT
ERSP variables (R2 = 0.03, F(14,950) = 2.67, p = 0.002).
The time of FMT ERSP peak (beta= -0.06, t(13)= -2.04, p=
0.042) and interaction between the peak amplitude of FMT
ERSP and its time had a reliable effect on ES across all er-
rors (beta= -0.07, t(13)= -2.21, p= 0.027). This suggests that

whether the peak theta power burst will affect ES depends on
when this peak happens in relation to the key-press.

While FMT ERSP parameters were not found to predict
ES in uncorrected errors (R2= 0.02, p = 0.90), the model
with ERSP parameters could account for variability in ES in
corrected errors (R2= 0.05, F(14,625)= 2.29, p = 0.006). In-
teraction between peak amplitude of FMT ERSP and its time
was predictive of ES in corrected errors (beta= -0.089, t(13)
= -2.29, p = 0.023).

Discussion

The primary aim of our study was to test the relationship
between error awareness and error related behavioural and
EEG effects.

ERN. We found using 2 different analytical approaches
that ERN amplitude was related to overt error detection.
First, our ERP analyses showed that ERN amplitude during
corrected errors was greater than that during uncorrected er-
rors. Second, single trial peak ERN amplitude was found
predictive of error correction probability. In addition, mag-
nitude of ERN could reliably predict the amount of PES fol-
lowing uncorrected errors.

In the introduction we suggested that if ERN is predictive
of PES in uncorrected errors, this would support the claim
that ERN is associated with implicit error detection, but if
ERN was found to be correlated with explicit error correction
(i.e. pressing backspace after errors) probability, it would
support the claim that ERN is involved in overt error aware-
ness. Our results provide support for both of these hypothe-
ses, and neither can be unequivocally rejected based on the
current findings. One possible interpretation is that ERN am-
plitude reflects a process involved in implicit error detection
(PES following uncorrected errors) which is also necessary
for explicit error detection (backspacing). It is also possi-
ble that error awareness is one continuous variable where
very few errors are detected with absolute certainty and very
few escape error detection all together, and most errors lie
at some level between these two ends. We found that when
there is overt error correction, ERN amplitude is large; when
errors are undetected, ERN is significantly smaller but pre-
dictive of disruption in the performance following the error.
One claim that can be rejected based on our results is that
ERN is not related to overt error detection. The observation
that single trial ERN magnitude on its own is predictive of
explicit error correction in an every day task in particular has
important implications for the ERN - error awareness litera-
ture.

While the view that ERN is predictive of overt error
awareness is in line with many relatively recent reports (e.g.
Hewig et al., 2011; Navarro-Cebrian & Kayser, 2013; Roger,
Benar, Vidal, Hasbroucq, & Burle, 2010; Scheffers & Coles,
2000; Shalgi & Deouell, 2012; Wessel, Danielmeier, Mor-
ton, & Ullsperger, 2012), it contradicts the traditional view
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that ERN is related to implicit but not to explicit error aware-
ness (e.g. Ehlis, Herrmann, Bernhard, & Fallgatter, 2005;
Endrass et al., 2005, 2007; Hester, Foxe, Molholm, Shpaner,
& Garavana, 2005; Hughes & Yeung, 2011; Nieuwenhuis
et al., 2001; O’Connell et al., 2007; Overbeek et al., 2005;
Steinhauser & Yeung, 2010).

In a review, Wessel (2012) concluded that there are no sys-
tematic differences between the methods used by the studies
which found a significant relationship between ERN ampli-
tude and error awareness and those with a null result. Wessel
(2012) notes however that error signalling response used (e.g.
an awareness button vs. a forced choice rating of awareness)
can introduce a response bias towards reporting awareness
of an error. This in turn can lead to classification of certain
unsure errors as unaware errors, inflating the negativity as-
sociated with unaware errors. Similarly, in a review report
Shalgi and Deouell (2013) emphasise that the method of as-
sessing the participants subjective confidence in the accuracy
of their responses is a crucial factor in studying the relation-
ship between ERN and conscious error awareness.

From this perspective, primary strength of our study lies
in its methodology. Not only is typing highly ecological, cor-
rection of errors is beyond a simple error signalling response
in this task. The goal in typing is to produce a desired text
without error. Pressing of backspace after an error in this re-
spect is a crucial and integral part of the task and is required
for realisation of this goal. In almost all studies reviewed, er-
ror signalling serves as a secondary task in addition to the pri-
mary task where the participant should ‘respond as fast and
accurately as possible’. One exception to this is a study con-
ducted by Shalgi and Deouell (2012) where participants were
asked to bet on their accuracy and actually earned money.
Shalgi and Deouell (2012) showed that under these circum-
stances, ERN amplitude was strongly related to subjective
error awareness. Our results are in line with this conclusion
that ERN amplitude is related to awareness of performance
accuracy.

Another hypothesis we proposed in the introduction was
regarding the relationship between ERN and ES. In an ear-
lier report error slowing was found to be associated with er-
ror detection (Kalfaoğlu & Stafford, 2014). Supporting our
behavioural proposition that error slowing is related to er-
ror detection, ERN onset was found to precede corrected er-
ror execution by 156ms. The average IKI of participants
was 161ms, which suggests that participant became aware
of their errors around the time previous key-press was ex-
ecuted. In contrast, a related prediction of this hypothesis
was not supported by our data. Peak amplitude of ERN was
not predictive of ES in corrected error key-presses. It was
another fronto-medial EEG signal, fronto-medial theta band
oscillations, that was predictive of ES in corrected errors.

Fronto-Medial Theta Band Oscillations. Fronto-
medial theta oscillations were also found to be closely

related to error awareness in our study. As with ERN, FMT
ERSP was found to be stronger in corrected and uncorrected
errors than matched correct key-presses. Corrected errors
were associated with stronger FMT ERSP and ITC than
uncorrected errors. Further, the magnitude of FMT ERSP
was found to be predictive of error correction using
single trial analyses. These results reinforce the idea the
FMT activity reflects processes involved in explicit error
awareness. However, FMT parameters were also found to
predict the amount of PES in uncorrected errors, which is
typically assumed to be an index of implicit error detection.
Our interpretation of these findings is that activity in FMT
oscillations reflect processes involved in error awareness,
and further suggest that the distinction between implicit and
explicit error awareness might not be as clear cut (Shalgi
& Deouell, 2012, 2013) in typing as other tasks involving
non-habitual error signalling responses.

The interaction between the magnitude and timing of the
FMT peak relative to key-press was found to predict how
much errors are slowed compared to matched correct key-
presses in corrected errors. If ES was caused purely by
performance breakdown, we would expect no relationship
between FMT parameters and ES. Although a very small
amount of variability can be explained by FMT parameters,
this finding supports the hypothesis that error slowing is at
least partly driven by error awareness (Kalfaoğlu & Stafford,
2014). Cavanagh, Zambrano-Vazquez, and Allen (2012)
showed previously that theta band oscillations may under-
lie many frontal ERP components such as the N2, ERN, and
FRN (feedback related negativity), which are associated with
frontal lobe functions such as novelty, conflict, punishment
and error. Our results support this view of theta as the com-
mon thread to ERPs associated with many frontal functions,
and extend it to show that the theta band ERSP and phase-
locking are strong predictors of error awareness as well as
adaptive behavioural consequences of these neural processes
in continuous and skilled actions such as typing in addition
to discrete trial tasks. Time-frequency results showed that
phase-locking (ITC) in FMT oscillations was the variable
most specific to error correction that we measured (more
so than the magnitude of ERN or FMT ERSP). While both
ERN and FMT ERSP were found to be more pronounced
during uncorrected errors compared to matched correct key-
presses, phase-locking in FMT during uncorrected errors was
not significantly different than that during matched correct
key-presses. In other words, uncorrected errors were asso-
ciated with no increase in phase-locking but significant in-
creases in FMT ERSP (see uncorrected errors in figure 6 vs.
figure 7). On the other hand, increases in ERSP were found
to be reliably associated with slowed typing performance.

The observation that FMT ERSP is not as specific to error
correction as FMT phase-locking suggests that they might
be indexing similar (and highly overlapping) but not identi-
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cal neural processes (Cohen & Donner, 2013). For instance,
FMT ERSP is associated with response conflict and PES in
discrete trial tasks (Cavanagh et al., 2009; Cohen, 2014).
While response conflict might lead to slowing, it doesn’t nec-
essarily lead to error correction in typing2. Our results sug-
gest the timing of the theta response in relation to the error
response were essential for the spectral perturbations to have
an effect on the behaviour: phase-locking mediates its effect
on error correction, while timing of its peak mediates its ef-
fect on PES (figures 11, 10 and table 3).

Another implication of the finding that FMT phase-
locking is more specific to error correction than FMT ERSP
is that it underscores the proposition that theta band phase-
locking and phase-synchronization are plausible mechanisms
for synchronising the activities of multiple cortical and sub-
cortical areas involved in frontal functions when the need for
higher level control is needed (Cavanagh & Frank, 2014). Er-
ror correction in typing requires the typist to disengage from
the execution of externally guided actions (letters presented
on the screen), and execute an internally generated action
(i.e. the backspace), and after the performance is “cleared”
of the error (or “cured” using the terminology of Crump
& Logan, 2013), to reinstate external guidance of actions.
This would require coordinated activity of lots of neurons in
multiple cortical and sub-cortical areas which would be diffi-
cult without synchronisation (i.e. phase-locking) at the local
level in the beginning. The idea that phase-synchronisation
in theta band oscillations is a likely mechanism serving as the
‘lingua franca’ among involved structures has been proposed
earlier by Cavanagh et al. (2012).

Comment on timing of EEG effects. Our results suggest
that error related EEG changes could take place just before
or as the error action was completed in typing. A look at fig-
ures 6 and 5 shows that on average, the onset of EEG effects
shortly preceded the execution of error key-press. A similar
observation has been reported by Herrojo-Ruiz et al. (2009),
who showed that in piano-players ERN could precede the er-
ror action, by up to 3 key-presses. These authors concluded
error detection could be based on internal forward models
which serve to predict the outcome of an action before the
motor command is received by the effector muscles (Wolpert
& Miall, 1996).

Our interpretation of the early error related EEG effects
is different for a number of reasons. First, the EEG effects
reported here are not as early as those reported by Herrojo-
Ruiz et al. (2009). Second, we found that the pressing down
of the uncorrected (as well as corrected) error key-presses
was also slowed down, suggesting that slowing down is not
necessarily caused by the prediction of an upcoming error.
One possible explanation of our results then becomes: The
accuracy of an action can be detected as soon as it is initiated.
If it is an error, the action can be slowed down in an attempt
to cancel it. This attempted cancellation may lead to suc-

cessful cancellation of an error, or, if failed, to a delay (ob-
served as ES), an idea we borrow from Rabbitt (1978). In our
response-locked ERP analysis, time 0 was the time at which
the error key was physically pressed down. Pressing down
of the key takes place after the initiation of the action, which
can be further delayed due to ES. As mentioned before, if it
is the initiation of an action (or the proprioceptive feedback
from it) which leads to error awareness, error-related EEG
effects can indeed precede the time of error key-press. This
would be observed in the ERP analyses as a pre-error EEG
effect. Thus a simpler explanation for the observed pre-error
EEG effects is that error related EEG effects are caused by
the initiation and not the prediction of the error action. As
emphasized before, on average, onset of none of the error
related EEG effects observed preceded error key-press was
earlier than the average onset of the pre-error key-press. See
Kalfaoğlu and Stafford (2014) for a more detailed method-
ological comparison of our study to that of Herrojo-Ruiz et
al. (2009).

Comment on PES. Another point worth discussing is
our post-uncorrected-error slowing in relation to the find-
ings of Crump and Logan (2013). These authors suggest that
PES is caused by the inhibition of a well learned response to
“cure” errors (i.e. the backspace). They show that when this
inhibition is released, PES also disappears. In fact, corrected
errors in their study were associated with post-error speed-
ing where post-error key-presses were found to be faster than
pre-error key-presses. Our findings partially support their in-
terpretation in that PES following uncorrected errors in the
absence of inhibition of backspace was much smaller than
those reported in studies where participants are not allowed
to correct their errors (usually several hundred ms in Crump
& Logan, 2013; Logan & Crump, 2010; Snyder et al., 2014;
Wilbert & Haider, 2012; Yamaguchi et al., 2013, as opposed
to the current PES of 39ms). However, we did find that PES
was statistically significant even though our participants were
free, and in fact encouraged, to use the backspace to correct
their errors. Further, we observed significant ES and error re-
lated EEG effects in errors which were in fact corrected (i.e.
no inhibition of backspace), suggesting that inhibition of the
backspace on its own can’t explain PES. PES was found to
be correlated with EEG effects predictive of error correction,
such as theta band power bursts in many uncorrected errors,
suggesting that PES is at least partly associated with error
detection processes. However, since only a small amount
of variance in uncorrected errors was accounted for by theta
parameters and PES reported in the current study is much

2Quantification of the amount of response conflict in continuous
tasks such as typing is not as straightforward as it is in discrete trial
tasks. This is because multiple key-presses are being carried out at
any given moment and thus temporally overlap (Flanders & Soecht-
ing, 1992). Our study was not designed to manipulate or assess the
amount of response conflict.
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smaller than those where error correction via backspace was
not allowed, it is plausible that PES is also affected by other
factors including inhibition of error correction.

It is possible that the way we calculated PES affected its
magnitude and thus relationship with error detection. As the
baseline for calculating PES, we used the average IKI of cor-
rect key-presses matched to length of the error word and its
position in the error word. In contrast, Crump and Logan
(2013) used the pre-error key-press (E-1) as their baseline.
Although Kalfaoğlu and Stafford (2014); Salthouse (1986);
Wilbert and Haider (2012) report that pre-error typing speed
before errors is not different than that before errors, if, for ex-
ample the key-presses preceding errors were systematically
faster than the average speed of matched correct key-presses,
this would lead to a smaller PES when the average value
is used as a baseline. To check if using E-1 as a baseline
would affect our conclusions regarding the association be-
tween PES and error detection, we re-conducted our analysis
using E-1 as a baseline. We found that calculating slowing
this way resulted in significant error slowing in corrected er-
rors (30.20ms, p<0.05). Further, our regression model in-
cluding FMT ERSP peak amplitude and time still predicted
the amount of PES in all errors combined 3, and uncorrected
errors 4. This suggests slowing after errors is related to error
detection, even if PES is calculated using the IKI of E-1 as a
baseline.

Another observation that supports Crump and Logan
(2013) conclusion that PES is caused by an inhibition of er-
ror correction via backspace is post error speeding, which
we didn’t observe neither using the average of matched cor-
rect key-presses or E-1 as a baseline. The contrast be-
tween our PES results and those of Crump and Logan (2013)
might be caused by a difference in post-error key-presses in-
cluded in analysis. One possible reason also acknowledged
by Crump and Logan (2013) is the self-selection of fast
post-error key-presses in post-corrected-error slowing calcu-
lations. Majority of corrected errors are followed immedi-
ately by backspace presses (Crump & Logan, 2013; Sny-
der et al., 2014), suggesting that error correction is quite
fast. Thus it is likely that only the key-presses which are
fast enough to be pressed before the backspace is pressed
are executed in the time window between the error key-
press and error-correction key-press (i.e. backspace). Fur-
ther, these post-error key-presses could have been quick er-

ror key-strokes themselves. This would prevent the inclu-
sion of average and slower than average key-presses in post-
corrected-error slowing calculations, reducing average post-
corrected-error slowing. The same problem is present in our
analyses too and is a likely contributor to the very small num-
ber of post-corrected error key-presses (also see Kalfaoğlu
& Stafford, 2014, figure 2, which shows the large variability
in PES in post-corrected-error key-presses). Nevertheless,
our observation of reliable ES in corrected errors, and use of

matched correct key-presses as a baseline alleviates the con-
cerns about self-selection leading to diminished PES (unless
one would argue that the processes driving ES and PES are
distinct).

Other potential methodological differences (other than the
baseline used and lack of error correction inhibition) that
might explain why PES in the current study is smaller than
those reported in the literature include lack of visual feed-
back and our use of sentences as opposed to single words
(continuous vs. discrete typing of words). Snyder et al.
(2014) directly compared the effect of visual feedback on
PES in two typing experiments. Their within participants
analyses showed that the magnitude of PES was not affected
by visual feedback in typing single words. The amount PES
reported by these authors were also larger (∼ 150ms and
∼ 400ms in experiments 1 and 2 respectively) than reported
in the current study (43ms). Similarly Wilbert and Haider
(2012) also showed that in the absence of visual feedback
from the screen PES magnitude was ∼ 400ms. It is impor-
tant to note that participants were not able to correct their
mistakes using backspace in these experiments. Based on
these reports, we believe lack of visual feedback cannot ex-
plain the small PES on its own.

In many studies that report large PES values participants
were required to type single words in each trial. A look at
recent literature suggests that both when participants typed
single words (Logan & Crump, 2010; Snyder et al., 2014;
Wilbert & Haider, 2012; Yamaguchi et al., 2013, experiments
1, 2) or paragraphs (Crump & Logan, 2013; Yamaguchi et
al., 2013, experiments 3, 4), PES was considerably larger
than reported in the current study. In studies where single
words were used, PES ranged from 150 to 400ms, and in
those where paragraphs were used, the range was 120 to
337ms. Thus, it doesn’t seem plausible that our use of sen-
tences as opposed to words or paragraphs is an important fac-
tor in the diminished PES. Again, in all of experiments cited
above, participants were not allowed to press the backspace.
In light of the arguments above, we propose that PES reflects
a number of processes including error detection as well as an
inhibition of the natural tendency to press backspace.

Explicit vs. Implicit Error Detection. Whether a par-
ticipant will correct her typing error depends on whether she
is aware of that error. According to the hierarchical control
model of typing Logan and Crump (2011), a participant’s
awareness of typing errors depends on contributions from
both inner and outer loops. Since the outer loop has access
to no feedback about the performance, it can’t contribute to
error awareness in the current study. Assuming that error

3(R2 = 0.10, p < 0.01), beta for FMT ERSP timing = -0.22, p <
0.05)

4(R2 = 0.13, p < 0.01, beta for FMT ERSP timing = -0.21, p <
0.01, beta for FMT ERSP magnitude = 0.15, p < 0.05)
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correction responses in the current study rely on inner loop
monitoring only, our results show that inner loop can trigger
error correction (supporting those of Snyder et al., 2014).

However, many uncorrected errors were also associated
with PES. PES is typically associated with error monitoring
in inner loop and was shown to correlate significantly with
EEG indices of error detection in our study. This suggests
that inner loop error detection is not sufficient to cause error
correction in all cases. One plausible explanation for this
observation is that error awareness relies on input from mul-
tiple channels and its output is not binary (action was cor-
rect or incorrect), but continuous. For example, when feed-
back from different channels (e.g. inner and outer loops)
regarding the accuracy of an action are congruent, the out-
put of the error monitoring processes (possibly indexed by
theta band oscillations in the medial frontal areas which re-
ceive input from multiple cortical and subcortical structures
Cohen, 2014) would be strong and lead to swift and adap-
tive changes in observed behaviour such as pressing of the
backspace in case of errors or undisturbed execution of fol-
lowing key-presses in case of correct actions. In such cases,
the outcome would be binary (hit or correct rejection).

However, input from the inner loop can often be noisy, es-
pecially in tasks like copy-typing where multiple key-presses
are executed and monitored every second. Similarly, typists
may prefer to look at the text they are copying from instead
of the echo of their key-strokes on the screen, so that input
from the screen is not continuously available at the outer loop
level. When input from one channel is noisy, absent or in-
congruent with others, the output is likely to be slower and
weaker, leading to disruptions in behaviour which may not be
adaptive such as PES following uncorrected errors and higher
rates of misses and false alarms regarding error detection.
When Logan and Crump (2010) provided false feedback to
outer loop contradicting that from inner loop, many partic-
ipants incorrectly classified their errors as correct (misses)
and many correct key-presses as errors (false alarms). Sim-
ilarly, when Snyder et al. (2014) removed visual feedback
from the screen, error detection rates dropped from 89% to
63%. In the current study where there was no feedback, error
detection rates were also similarly low (64%). Crump and
Logan (2010) did the opposite by degrading the tactile feed-
back from the keyboard to the inner loop while participants
could see the outcome of their typing. These authors found
that both typing speed and error rate were worsened under
these conditions.

Thus a view where FMT ERSP reflects the outcome of
processes involved in error detection fits well with our data.
When input from multiple channels indicate presence of an
error, ‘explicit’ error detection takes place (error correction
via backspace). When the available input is suboptimal due
to incongruent or lack of sensory information, the strength is
weakened, behaviour appears disrupted (i.e. slowed) and the

probability of false alarms and misses increases.
One potential limitation of our study was the number of

participants included in the study (11). To provide a com-
parison with other studies assessing the relationship between
error awareness and EEG parameters we looked at the review
paper of Wessel (2012). A total of 15 studies of error aware-
ness are reported in this review and the participant numbers
range from 7 to 20 with a mean participant number of 14.27
and standard deviation of 3.94. We believe the sample size of
11 in our study is not a major limitation. First a comparison
with the studies reviewed in Wessel (2012) suggest that it is
possible to get reliable results with even a smaller sample
size. Second, the effect sizes for our across trial comparisons
were high, increasing the observed statistical power of our
analyses beyond the acceptable range (see table 1). Third,
even though the number of participants was relatively small,
the data points contributed by each participant was high (see
methods for the details - our participants had to type 100 sen-
tences which required 1580 key-presses).

Another problem we endured was the uneven number of
sample sizes in corrected and uncorrected errors. Comparing
the average values coming from samples of unequal sizes
has a number of potential undesired effects. To minimize
such undesired effects, we used a bootstrap based method
to match the sample sizes before making comparisons (see
section Note on Number of Epochs for details).

Conclusions

We present evidence to reinforce the proposition that error
awareness is not necessarily a binary variable (see Wessel,
2012, for a discussion) but there exists a continuum between
being maximally aware and absolutely unaware of ones er-
rors, with most errors lying somewhere in between. We show
using a number of statistical methods that some errors are
associated with very robust ERP and theta band oscillatory
EEG effects (strong ERN, phase-locking and ERSP in FMT),
and these are very likely to be the corrected ones; as well as
some errors which are associated with less prominent EEG
effects (no phase locking but reliable ERSP, weak ERN) and
these tend to be uncorrected errors. Among the uncorrected
errors, some are associated with some residual awareness ef-
fects such as PES and these again are much more likely to be
the ones with weak but timely theta effects. These findings
add more weight to the hypothesis that ERN is an index of
processes involved in explicit error awareness (Shalgi & De-
ouell, 2012) and suggest that the type of responses used to
signal the errors of performance are crucial factors to con-
sider when interpreting the relationship between the ERN
and error awareness.

To our knowledge, this is the first time fronto medial theta
oscillatory dynamics have been studied in relation to error
awareness using a well-learned error signalling response in
an ecologically valid task. Using this methodology, we show
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that timing of the FMT changes are important factors medi-
ating their effect on post-error (PES) adjustments in perfor-
mance. The fact that these observations are made during the
performance of an everyday task gives us confidence that the
neuro-physiological changes that we report here are repre-
sentative of those taking place in the fronto-medial areas of
thousands of typists’ brains every time they press (or fail to
press) the backspace in response to their errors.
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