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BADLY APPROXIMABLE POINTS IN TWISTED

DIOPHANTINE APPROXIMATION AND HAUSDORFF

DIMENSION

PALOMA BENGOECHEA† AND NIKOLAY MOSHCHEVITIN∗

Abstract. For any j1, . . . , jn > 0 with
∑n

i=1
ji = 1 and any θ ∈

R
n, let Badθ(j1, . . . , jn) denote the set of points η ∈ R

n for which
max1≤i≤n(‖qθi − ηi‖1/ji) > c/q for some positive constant c = c(η)
and all q ∈ N. These sets are the ‘twisted’ inhomogeneous analogue
of Bad(j1, . . . , jn) in the theory of simultaneous Diophantine approx-
imation. It has been shown that they have full Hausdorff dimension
in the non-weighted setting, i.e provided that ji = 1/n, and in the
weighted setting when θ is chosen from Bad(j1, . . . , jn). We generalise
these results proving the full Hausdorff dimension in the weighted setting
without any condition on θ. Moreover, we prove dim(Badθ(j1, . . . , jn) ∩
Bad(1, 0, . . . , 0) ∩ . . . ∩ Bad(0, . . . , 0, 1)) = n.

1. Introduction

The classical result due to Dirichlet: for any real number θ there exist

infinitely many natural numbers q such that

(1) ‖qθ‖ ≤ q−1,

where ‖ ·‖ denotes the distance to the nearest integer, has higher dimension

generalisations. Consider any n-tuple of real numbers (j1, . . . , jn) such that

(2) j1, . . . , jn > 0 and
n∑

i=1

ji = 1.

Then, for any vector θ = (θ1, . . . , θn) ∈ R
n, there exist infinitely many

natural numbers q such that

(3) max
1≤i≤n

(‖qθi‖1/ji) ≤ q−1.

The two results above motivate the study of real numbers and real vectors

θ ∈ R
n for which the right hand side of (1) and (3) respectively cannot be im-

proved by an arbitrary constant. They respectively constitute the sets Bad
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2 P. BENGOECHEA AND N. MOSHCHEVITIN

of badly approximable numbers and Bad(j1, . . . , jn) of (j1, . . . , jn)-badly ap-

proximable numbers. Hence

Bad(j1, . . . , jn) :=

{
(θ1, . . . , θn) ∈ R

n : inf
q∈N

max
1≤i≤n

(qji‖qθi‖) > 0

}
.

In the 1-dimensional case, it is well known that the set of badly approximable

numbers has Lebesgue measure zero but maximal Hausdorff dimension. In

the n-dimensional case, it is also a classical result that Bad(j1, . . . , jn) has

Lebesgue measure zero, and Schmidt proved in 1966 that the particular

set Bad(1/2, 1/2) has full Hausdorff dimension. But the result of maximal

dimension in the weigthed setting hasn’t been proved until almost 40 years

later, by Pollington and Velani [21]. In the 2-dimensional case, An showed

in [1] that Bad(j1, j2) is in fact winning for the now famous Schmidt games

-see [22]. Thus he provided a direct proof of a conjecture of Schmidt stating

that any countable intersection of sets Bad(j1, j2) is non empty -see also [2].

Recently, interest in the size of related sets, usually referred to as the

‘twists’ of the sets Bad(j1, . . . , jn), has developed. The study of these new

sets started in the 1-dimensional setting: we fix θ ∈ R and consider the twist

of Bad:

Badθ :=

{
η ∈ R : inf

q∈N
q‖qθ − η‖ > 0

}
.

The set Badθ has a palpable interpretation in terms of rotations of the

unit circle. Identifying the circle with the unit interval [0, 1), the value qθ

(modulo 1) may be thought of as the position of the origin after q rotations

by the angle θ. If θ is rational, the rotation is periodic. If θ is irrational, a

classical result of Weyl [25] implies that qθ (modulo 1) is equidistributed, so

qθ visits any fixed subinterval of [0, 1) infinitely often. The natural question

of what happens if the subinterval is allowed to shrink with time arises.

Shrinking a subinterval corresponds to making its length decay according

to some specified function. The set Badθ corresponds to considering, for any

ǫ > 0, the shrinking interval (η − ǫ/q, η + ǫ/q) centred at the point η and

where the specified function is ǫ/q. Khintchine showed in [14] that

(4) ‖qθ − η‖ <
1 + δ√

5q
(δ > 0)

is satisfied for infinitely many integers q, and Theorem III in Chapter III of

Cassels’ book [5] shows that the right hand side of (4) cannot be improved by

an arbitrary constant for every irrational θ and every real η. This motivates

the study of the set Badθ. Kim [16] proved in 2007 that it has Lebesgue

measure zero, and later it was shown by Tseng [23] that it has full Hausdorff
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dimension (actually Tseng proved that Badθ has the stronger property of

being winning for any θ ∈ R).

By generalising circle rotations to rotations on torus of higher dimen-

sions, i.e. by considering the sequence qθ (modulo 1) in [0, 1)n where θ =

(θ1, . . . , θn) ∈ R
n, we obtain the ‘twists’ of the sets Bad(j1, . . . , jn):

(5)

Badθ(j1, . . . , jn) =

{
(η1, . . . , ηn) ∈ R

n : inf
q∈N

max
1≤i≤n

(qji‖qθi − ηi‖) > 0

}
.

In [3] Bugeaud et al proved that the non-weighted set Badθ(1/n, . . .

. . . , 1/n) has full Hausdorff dimension. Recently, Einsiedler and Tseng [8]

extended the results [3] and [23] by showing, among other results, that

Badθ(1/n, . . . , 1/n) is also winning. It was shown in [18] that such results

may be obtained by classical methods developed by Khintchine [15] and

Jarńık [12, 13] and discussed in Chapter V of Cassels’ book [5]. Unfortu-

nately, these methods cannot be directly extended to the weighted setting.

For the weighted setting, less has heretofore been known. Harrap did the

first contribution [10] in the 2-dimensional case, by proving that Badθ(j1, j2)

has full Hausdorff dimension provided that the fixed point θ ∈ R
2 belongs

to Bad(j1, j2), which is a significantly restrictive condition. Recently, under

the hypothesis θ ∈ Bad(j1, . . . , jn), Harrap and Moshchevitin have extended

to weighted linear forms in higher dimension and improved to winning the

result in [10] (see [11]).

In this paper, we prove that the weighted set Badθ(j1, . . . , jn) has full

Hausdorff dimension for any θ ∈ R
n. Moreover, the following theorem holds.

Theorem 1.1. For any θ ∈ R
n and all j1, . . . , jn > 0 with

∑n
i=1 ji = 1,

dim(Badθ(j1, . . . , jn) ∩ Bad(1, 0, . . . , 0) ∩ . . . ∩ Bad(0, . . . , 0, 1)) = n.

The same type of theorem holds in the classical not twisted setting; it

constitutes the work done in [21] (see Theorem 2).

Note that if 1, θ1, . . . , θn are linearly dependent over Z, then Theorem

1.1 is obvious. Indeed, in this case {qθ : q ∈ Z} is restricted to a hyperplane

H of Rn, so Badθ(j1, . . . , jn) ⊃ R
n\H is winning. Hence Badθ(j1, . . . , jn) ∩

Bad(1, 0, . . . , 0)∩ . . .∩Bad(0, . . . , 0, 1) is winning and in particular has full

dimension 1. Therefore we suppose throughout the paper that 1, θ1, . . . , θn

are linearly independent over Z.

1We recall that winning sets in R
n have maximal Hausdorff dimension, and that countable

intersections of winning sets are again winning. We refer the reader to [22] for all necessary
definitions and results on winning sets.
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The strategy for the proof of Theorem 1.1 is as follows. We start by

defining a set V ⊂ Badθ(j1, . . . , jn) related to the best approximations to

the fixed point θ ∈ R
n. Then we construct a Cantor-type set K(R) inside

V∩Bad(1, 0, . . . , 0)∩ . . .∩Bad(0, . . . , 0, 1). Finally we describe a probability

measure supported on K(R) to which we can apply the mass distribution

principle and thus find a lower bound for the dimension of K(R).

Best approximations are defined in Section 2. In Section 3 we define V
and give the proof of the inclusion V ⊂ Badθ(j1, . . . , jn). We constructK(R)

in Section 4 and describe the probability measure in Section 5. Finally we

compute the lower bound for the dimension of K(R) in Section 6.

In the following, we let n ∈ N, fix an n-tuple (j1, . . . , jn) ∈ R
n satisfying

(2) and a vector θ = (θ1, . . . , θn) ∈ R
n such that 1, θ1, . . . , θn are linearly

independent over Z. We denote by x · y the scalar product of two vectors x

and y in R
n, and by ‖ · ‖ the distance to the nearest integer.

2. Best approximations

Definition 2.1. An n-dimensional vector m = (m1, . . . ,mn) ∈ Z
n\ {0} is

called a best approximation to θ if for all v ∈ Z
n\ {0,−m,m} the following

implication holds:

max
1≤i≤n

(|vi|1/ji) ≤ max
1≤i≤n

(|mi|1/ji) =⇒ ‖v · θ‖ > ‖m · θ‖.

Note that the condition 1, θ1, . . . , θn are Z-linearly independent allows

us to demand a strict inequality in the right hand side of the implication

above.

Note also that when n = 1 the best approximations to a real number x

are, up to the sign, the denominators of the convergents to x.

Since 1, θ1, . . . , θn are Z-linearly independent, we have an infinite number

of best approximations to θ. They can be arranged up to the sign -so that

two vectors of opposite sign do not both appear- in an infinite sequence

(6) mν = (mν,1, . . . ,mν,n) ν ≥ 1,

such that the values

(7) Mν = max
1≤i≤n

(|mν,i|1/ji)

form a strictly increasing sequence, and the values

(8) ζν = ‖mν · θ‖
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form a strictly decreasing sequence. Hence each value Mν corresponds to a

single best approximation mν . The quantity Mν can be referred to as the

‘height’ of mν .

Best approximations vectors have often been used in proofs, but not al-

ways explicitly. In particular, Voronoi [24] selected some points in a lattice

that correspond exactly to the best approximation vectors (see also [7]).

Similar constructions were introduced in [17] or Section 2 of [4]. Some im-

portant properties of the best approximation vectors are discussed in [19,20]

and a recent survey on the topic is due to Chevallier [6].

For each ν ≥ 1, it is easy to see that the region{
(x0, . . . , xn) ∈ R

n+1 : max
1≤i≤n

(|xi|1/ji) < Mν+1,
∣∣∣x0 +

n∑

i=1

xiθi

∣∣∣ < ζν

}

does not contain any integer point different from 0. Since this region has

volume 2n+1Mν+1ζν (see Lemma 4 in Appendix B of [5]), it follows from

Minkowski’s convex body theorem that

(9) ζνMν+1 ≤ 1.

The inequality above will be used later as well as the following lemma,

stating that the sequence of heights Mν is lacunary.

Lemma 2.2. For every ν ≥ 1, we have

Mν+2·3n ≥ 2Mν .

Proof. Given ν ≥ 1, we show that we have at most 2 · 3n vectors mν+r with

r ≥ 0 and Mν+r < 2Mν . The goal is to see that the 0-symmetric region

(10)

{
(x0, . . . , xn) ∈ R

n+1 : max
1≤i≤n

(|xi|1/ji) < 2Mν ,
∣∣∣x0 +

n∑

i=1

xiθi

∣∣∣ ≤ ζν

}

contains at most 4·3n integer points other than 0. The region (10) is covered

by sets of the form

T (ξ) =

{
(x0, . . . , xn) ∈ R

n+1 : max1≤i≤n(|xi − ξi|1/ji) ≤ Mν ,

and
∣∣∣x0 − ξ0 +

∑n
i=1(xi − ξi)θi

∣∣∣ ≤ ζν

}
,

with

(11) ξi ∈
{
−2M ji

ν , 0, 2M
ji
ν

}
, ξ0 = −

n∑

i=1

ξiθi.

Each region T (ξ) is the translate by (ξ0, . . . , ξn) of the set
{
(x0, . . . , xn) ∈ R

n+1 : max
1≤i≤n

(|xi|1/ji) ≤ Mν ,
∣∣∣x0 +

n∑

i=1

xiθi

∣∣∣ ≤ ζν

}
,
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which contains exactly three integer points: 0 and two best approximations

with opposite sign. Hence each T (ξ) contains at most four integer points.

Since there are 3n possible choices for (ξ0, . . . , ξn) satisfying (11), the set

(10) contains at most 4 · 3n integer points. �

3. The set V included in Badθ(j1, . . . , jn)

The following proposition allows us to work with a set defined by the

best approximations to θ instead of working directly with Badθ(j1, . . . , jn).

Proposition 3.1. If η ∈ R
n satisfies

(12) inf
ν
‖mν · η‖ > 0,

then η ∈ Badθ(j1, . . . , jn).

Proof. Let η = (η1, . . . , ηn) ∈ R
n satisfy

‖mν · η‖ > γ ∀ν ≥ 1

for some γ > 0. For all q ∈ N and ν ≥ 1, we have the identity

mν · η = mν · (η − qθ) + q mν · θ,
from which we obtain the inequalities

(13) γ < ‖mν · η‖ ≤ n max
1≤i≤n

(|mν,i| · ‖ηi − qθi‖) + qζν .

Since ζν is strictly decreasing and ζν → 0 as ν → ∞, there exists ν ≥ 1

such that

(14)
γ

2ζν
≤ q ≤ γ

2ζν+1

.

On the one hand, from the inequalities (13) and the upper bound in (14),

we deduce that

(15) max
1≤i≤n

(‖ηi − qθi‖ · |mν+1,i|) >
γ

2n
.

On the other hand, from the lower bound in (14) and the inequality (9), it

follows that

q ≥ γ

2
Mν+1.

We deduce that

(16) qji ≥ c|mν+1,i| ∀i = 1, . . . , n,

where

c = min
1≤i≤n

((γ
2

)ji)
.

Finally, by combining (15) and (16), we have that

max
1≤i≤n

(‖ηi − qθi‖qji) >
γc

2n
.
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This concludes the proof of the proposition. �

We define the set

V :=

{
η ∈ R

n : inf
ν≥1

‖mν · η‖ > 0

}
.

Clearly

(17) V ⊂ Badθ(j1, . . . , jn).

4. The Cantor-type set K(R)

In this section we construct the Cantor-type set K(R) inside

Badθ(j1, . . . , jn)∩Bad(1, 0, . . . , 0)∩ . . .∩Bad(0, . . . , 0, 1). In order to lighten

the notation, throughout this section we denote by M the set of best ap-

proximations in the sequence (6), and for each m ∈ M, by Mm the quantity

defined by (7), i.e.

Mm = max
1≤i≤n

(|mi|1/ji).
Hence

V =

{
η ∈ R

n : inf
m∈M

‖m · η‖ > 0

}
.

We define the following partition of M:

(18) Mk :=
{
m ∈ M : Rk−1 ≤ Mm < Rk

}
(k ≥ 0).

Note that M0 = ∅. We have that M =
⋃∞

k=0 Mk.

We also need, for each 1 ≤ i ≤ n, the following partitions of N:

(19) Q(i)
k :=

{
q ∈ N : R(k−1)ji/2 ≤ q < Rkji/2

}
(k ≥ 0).

Note that Q(i)
0 = ∅ and for each 1 ≤ i ≤ n, we have that N =

⋃∞

k=0 Q
(i)
k .

At the heart of the construction of K(R) is constructing a collection Fk

of hyperrectangles Hk inside the hypercube [0, 1]n that satisfy the following

n conditions:

(0) |m · η + p| ≥ ǫ ∀η ∈ Hk, ∀m ∈ Mk−1, ∀p ∈ Z;

(1) q|qη1 − p| ≥ ǫ ∀η ∈ Hk, ∀q ∈ Q(1)
k−1, ∀p ∈ Z;

...

(n) q|qηn − p| ≥ ǫ ∀η ∈ Hk, ∀q ∈ Q(n)
k−1, ∀p ∈ Z

for some ǫ > 0.

We start by constructing a collection (G(0)
k )k≥0 of hyperrectangles satis-

fying condition (0). This construction is done by induction. Then we define

a subcollection G(1)
k ⊂ G(0)

k of hyperrectangles that also satisfy condition

(1), a subcollection G(2)
k ⊂ G(1)

k that also satisfies condition (2), etc. This
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process ends with a subcollection G(n)
k that satisfies the n conditions above.

We would like to quantify #G(n)
k . We can give a lower bound, but we cannot

quantify the exact cardinal. So we refine the collection G(n)
k by choosing a

right and final subcollection Fk that we can quantify.

Let

jmin = min
1≤i≤n

(ji), jmax = max
1≤i≤n

(ji).

Let R > 41/jmin and ǫ > 0 be such that

(20) ǫ <
1

2R2jmax
.

The parameter R will be chosen later to be sufficiently large in order to

satisfy various conditions.

4.1. The collection G(0)
k . For each m ∈ M and p ∈ Z, let

∆(m, p) := {x ∈ R
n : |m · x+ p| < ǫ} .

Geometrically, ∆(m, p) is the thickening of a hyperplane of the form

(21) L(m, p) := {x ∈ R
n : m · x+ p = 0}

with width 2ǫ/mi in all the xi-coordinate directions.

Next we describe the induction procedure in order to define the collection

(G(0)
k )k≥0. We work within the closed hypercube H0 = [0, 1]n and set G(0)

0 =

{H0}. For k ≥ 0, we divide each Hk ∈ G(0)
k into new hyperrectangles Hk+1

of size

R−(k+1)j1 × . . .×R−(k+1)jn .

Note that if Rji 6∈ Z for some 1 ≤ i ≤ n, the division will not be exact, in

the sense that the new hyperrectangles will not cover Hk. This division gives

at least
∏n

i=1[R
ji ] > R −∑n

i=1 R
ji new hyperrectangles. Among these new

hyperrectangles, we denote by G(0)(Hk) the collection of hyperrectangles

Hk+1 ⊂ Hk satisfying

Hk+1 ∩∆(m, p) = ∅ ∀m ∈ Mk, ∀p ∈ Z.

We define

G(0)
k+1 :=

⋃

Hk∈G
(0)
k

G(0)(Hk).

Hence G(0)
k+1 is nested in G(0)

k and it is a collection of ‘good’ hyperrectan-

gles with respect to all the best approximations m satisfying Mm < Rk

and all the integers p. The collection G(0)(Hk) is the collection of ‘good’

hyperrectangles that we obtain from the division of Hk.
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Next we give a lower bound for #G(0)
k . Actually, for a fixed hyperrect-

angle Hk ∈ G(0)
k , we give a lower bound for the number of hyperrectangles

Hk+1 ∈ G(0)(Hk). Alternatively, we give an upper bound for the number of

‘bad’ hyperrectangles in Hk; these are the hyperrectangles Hk+1 ⊂ Hk that

intersect the thickening ∆(m, p) of some hyperplane L(m, p) with m ∈ Mk.

Fact 1 and Fact 2 bound the number of thickenings ∆(m, p) with m ∈ Mk

and p ∈ Z that intersect Hk. Fact 3 bounds the number of hyperrectangles

Hk+1 ⊂ Hk that are intersected by a thickening ∆(m, p) with m ∈ Mk and

p ∈ Z.

Fact 1. We show that for each k ≥ 1, the set Mk contains at most

2 · 3n(1 + log2(R)) best approximations. Indeed, lemma 2.2 implies that

Mν+2·3n(1+log2(R)) ≥ 21+log2(R)Mν

(18)

≥ 21+log2(R)Rk−1

> Rk.

Therefore, there are at most 2 · 3n(1+ log2(R)) best approximations in Mk.

Fact 2. Fix m ∈ Mk. We show that there are at most 2nn thickenings

∆(m, p) that intersect Hk. Indeed, suppose that two different thickenings

∆(m, p) and ∆(m, p′) intersect the same edge of Hk. This edge of Hk is a

segment of a line which is parallel to an xl-axis. Let P = (y1, . . . , yn) and

P ′ = (y′1, . . . , y
′
n) denote the points of intersection of this line parallel to

the xl-axis with L(m, p) and L(m, p′) respectively. The fact that P and P ′

respectively belong to L(m, p) and L(m, p′) is described by the equations

(22) m · y + p = 0, m · y′ + p′ = 0.

The fact that P and P ′ both belong to a line parallel to the xl-axis implies

that yi = y′i ∀i 6= l. Hence, by substracting the second equation in (22) to

the first one, we have that

(23) |yl − y′l| −
2ǫ

|ml|
≥ |p− p′|

|ml|
− 2ǫ

|ml|
>

1

Rkjl
− 1

2Rkjl
=

1

2
R−kjl .

Since the length size of Hk in the xl-direction is R−kjl , the inequality (23)

implies that there are not more than two thickenings intersecting the same

edge of Hk. Thus the number of thickenings ∆(m, p) that intersect Hk is at

most twice the number of edges of Hk, and this is 2nn.
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Fact 3. Given a thickening ∆(m, p), we give an upper bound for the

number of hyperrectangles Hk+1 ⊂ Hk that intersect ∆(m, p). Fix m ∈ Mk

and p ∈ Z. Denote by l the index such that Mm = |ml|1/jl . Consider the

projection of ∆(m, p)∩Hk onto one of the faces of Hk parallel to the plane

given by the xl-axis and an xi-axis. We split this projected of ∆(m, p)∩Hk

into right triangles with perpendicular sides of length 2ǫ/|ml| and 2ǫ/|mi|
respectively. From this splitting and the inequality

2ǫ

|ml|
<

1

2Rjl(k+1)
,

we deduce that ∆(m, p) intersects at most 2[R1−jmin ] hyperrectanglesHk+1 ⊂
Hk.

Conclusion. There are at most [2n+23nn(1 + log2(R))R1−jmin ] hyper-

rectangles Hk+1 ⊂ Hk that intersect some ∆(m, p) with m ∈ Mk, p ∈ Z.

Hence

#G(0)(Hk) ≥ R−
n∑

i=1

Rji − [2n+23nn(1 + log2(R))R1−jmin ].

4.2. The subcollections G(i)
k . For each q ∈ N and p ∈ Z, consider the sets

(24) Γi(q, p) := {x ∈ R
n : q|qxi − p| < ǫ} (1 ≤ i ≤ n).

Geometrically, each Γi(q, p) is a thickening of a hyperplane described by the

equation xi = p/q with width 2ǫ/q2 in the xi-coordinate direction.

We construct a tower of subcollections

G(n)
k ⊂ G(n−1)

k ⊂ . . . ⊂ G(1)
k ⊂ G(0)

k ,

where each G(i)
k consists of hyperrectangles in G(i−1)

k which points avoid each

thickening Γi(q, p) for q ∈ Q(i)
k−1. More precisely, for 1 ≤ i ≤ n, we form G(i)

k

by letting

G(i)(Hk) :=
{
Hk+1 ∈ G(i−1)(Hk) : Hk+1 ∩ Γi(q, p) = ∅ ∀q ∈ Q(i)

k

}

and

G(i)
k+1 :=

⋃

Hk∈G
(i−1)
k

G(i)(Hk).

Clearly the hyperrectangles in G(i)
k+1 satisfy the conditions (0),(1),...,(i), so

the collection G(n)
k satisfies the n conditions (0),...,(n).
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Next, for each 1 ≤ i ≤ n and Hk ∈ G(i−1)
k , we give a lower bound of

#G(i)(Hk). Suppose that there are two pairs (q, p) and (q′, p′) in Q(i)
k × Z

such that

Hk ∩ Γi(q, p) 6= ∅, Hk ∩ Γi(q
′, p′) 6= ∅.

In other words, suppose there exist η, η′ in Hk such that

(25) q|qηi − p| < ǫ, q′|q′η′i − p′| < ǫ.

Then, by (19) and (20), we have

(26)

∣∣∣∣
p

q
− p′

q′

∣∣∣∣−
ǫ

q2
− ǫ

q′2
≥ 1

qq′
− ǫ

q2
− ǫ

q′2
>

1

Rkji
− 1

2Rkji
=

1

2
R−kji .

Since the length sides of Hk in the xi-direction is R−kji , the inequality (26)

implies that at most two thickenings of the form (24) can intersect Hk.

Now, from (19) and (20), it follows that if η ∈ Γi(q, p), then∣∣∣∣ηi −
p

q

∣∣∣∣ <
ǫ

q2
<

1

2
R−kji ,

which implies that each thickening Γi(q, p) intersects at most

2[Rj1 ]× . . .× [̂Rji ]× . . .× [Rjn ] ≤ 2[R1−ji ]

hyperrectangles Hk+1 ⊂ Hk.

Therefore, there are at most 4[R1−jmin ] hyperrectangles Hk+1 ⊂ Hk that

do not satisfy condition (i). Hence

(27) #G(i)(Hk) ≥ R−
n∑

i=1

Rji− [2n+23nn(1+log2(R))R1−jmin ]−4i[R1−jmin ].

4.3. The right subcollection Fk. We choose a subcollection of G(n)
k that

we can exactly quantify in the following way. Let F0 := G(0)
0 . Choose R

sufficiently large so that [R −∑n
i=1 R

ji − 2n+23nn(1 + log2(R)) · R1−jmin −
4nR1−jmin ] > 1. For k ≥ 0, for each Hk ∈ Fk, we choose exactly [R −∑n

i=1 R
ji − 2n+23nn(1 + log2(R))R1−jmin − 4nR1−jmin ] hyperrectangles from

the collection G(n)(Hk) and denote this collection by F(Hk). Trivially,

(28)

#F(Hk) = [R−
n∑

i=1

Rji − 2n+23nn(1 + log2(R))R1−jmin − 4nR1−jmin ] > 1,

so each hyperrectangle Hk ∈ Fk gives rise to exactly the same number of

hyperrectangles Hk+1 in F(Hk). Finally, define

Fk+1 :=
⋃

Hk∈Fk

F(Hk).
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This completes the construction of the Cantor-type set

K(R) :=
∞⋂

k=0

Fk.

By construction, we have K(R) ⊂ V∩Bad(1, 0 . . . , 0)∩. . .∩Bad(0, . . . , 0, 1).
Moreover, in view of (28), we have

#Fk+1 = #Fk #F(Hk)

(29)

= [R−
n∑

i=1

Rji − 2n+23nn(1 + log2(R))R1−jmin − 4nR1−jmin ]k+1.(30)

5. The measure µ on K(R)

We now describe a probablity measure µ supported on the Cantor-type

set K(R) constructed in the previous section. The measure we define is

analogous to the probability measure used in [21] and [2] on a Cantor-type

set of R2. For any hyperrectangle Hk ∈ Fk we attach a weight µ(Hk) which

is defined recursively as follows: for k = 0,

µ(H0) =
1

#F0

= 1

and for k ≥ 1,

µ(Hk) =
1

#F(Hk−1)
µ(Hk−1) (Hk ∈ F(Hk−1)).

This procedure defines inductively a mass on any hyperrectangle used in

the construction of K(R). Moreover, µ can be further extended to all Borel

subsets X of Rn, so that µ actually defines a measure supported on K(R),

by letting

µ(X) = inf
∑

H∈C

µ(H)

where the infimum is taken over all coverings C of X by rectangles H ∈
{Fk : k ≥ 0}. For further details, see [9], Proposition 1.7.

Notice that, in view of (29), we have

µ(Hk) =
1

#Fk

(k ≥ 0).

A classical method for obtaining a lower bound for the Hausdorff dimen-

sion of an arbitrary set is the following mass distribution principle (see [9]

p. 55).
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Lemma 5.1 (mass distribution principle). Let δ be a probability measure

supported on a subset X of Rn. Suppose there are positive constants c, s and

l0 such that

(31) δ(S) ≤ cls

for any hypercube S ⊂ R
n with side length l ≤ l0. Then dim(X) ≥ s.

The goal in the next section is to prove that there exist constants c and

l0 satisfying (31) with δ = µ, X = K(R) and s = n−λ(R), where λ(R) → 0

as R → ∞. Then from the mass distribution principle it will follow that

dim(K(R)) = n.

6. A lower bound for dim(K(R))

Recall that

jmin = min
1≤i≤n

(ji).

Let k0 be a positive integer such that

(32) R−kji < R−(k+1)jmin ∀ji 6= jmin and k ≥ k0.

Consider an arbitrary hypercube S of side length l ≤ l0 where l0 satisfies

(33) l0 < R−(k0+1)jmin

together with a second inequality to be determined later. We can choose

k > k0 so that

(34) R−(k+1)jmin < l < R−kjmin .

From the inequality (32) it follows that

(35) l > R−kji ∀ji 6= jmin.

Then it is easy to see that S intersects at most 2nln−1
∏

ji 6=jmin
Rkji hyper-

rectangles Hk ∈ Fk, so

µ(S) ≤ 2nln−1
∏

ji 6=jmin

Rkjiµ(Hk) = 2nln−1Rk−kjmin
1

#Fk

.

Since R(k+1)jmin > l−1 (see (34)), we have that

µ(S) ≤ 2nlnRjminRk 1

#Fk

.

Remember that we mentioned in Section 3 that later we would choose the

parameter R big enough so that it satisfies various conditions. We choose

R so that

R−1

n∑

i=1

Rji − 2n+23nn(1 + log2(R))R−jmin − 4nR−jmin −R−1 ≤ 2−1.
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Then, by (29) we have that

µ(S) ≤ 2nlnRjmin2k.

We choose

k ≥ log(R) and λ(R) =
1 + log(2)

jmin log(R)
,

so

µ(S) ≤ 2nlnRkjminλ(R).

Since Rkjmin < l−1 (see (34)), it follows that

µ(S) ≤ 2nln−λ(R).

Finally, by applying the mass distribution principle we obtain

dimK(R) ≥ n− λ(R) → n as R → ∞.
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[14] A. Ya. Khinchine, Sur le problème de Tchebycheff, Izv. Akad. Nauk

SSSR, Ser. Math. 10 (1946), 281-294 (in Russian).

[15] A. Ya. Khintchine, Regular systems of linear equations and general

Tchebysheff problem, Izv. Akad. Nauk SSSR Ser. Math. 12 (1948), 249

- 258 (in Russian).

[16] D.H. Kim, The shrinking target property of irrational rotations, Non-

linearity 20 (2007), 7, 1637-1643.

[17] J.C. Lagarias, Best Diophantine approximations to a set of linear

forms, J. Austral. Math. Soc. Ser. A 34 (1983), 114-122.

[18] N. G. Moshchevitin, A note on badly approximable affine forms and

winning sets, Mosc. Math. J., 11:1 (2011), 129-137.

[19] N. G. Moshchevitin, Best Diophantine approximations: the phenom-

enon of degenerate dimension, London Math. Soc. Lecture Note Ser.

338, Cambridge Univ. Press, Cambridge (2007), 158 - 182.

[20] N.G. Moshchevitin, Khintchine’s singular Diophantine systems and

their applications, Russian Mathematical Surveys. 65:3 (2010), 433-

511.

[21] A. Pollington and S. Velani, On simultaneously badly approximable

numbers, J. London Math. Soc. (2) 66 (2002), 29-40.

[22] W.M. Schmidt, On badly approximable numbers and certain games,

Trans. Amer. Math. Soc. 123 (1966), 178-199.

[23] J. Tseng, Badly approximable affine forms and Schmidt games, J. Num-

ber Theory 129 (2009), 3020-3025.

[24] G. F. Voronoi, On one generalization of continued fractions’ algorithm,

Warsaw, 1896 (in Russian).

[25] H. Weyl, Uber die Gleichverteilung von Zahlen mod. Eins, Math. Ann.

77 (1916), 3, 313-352.



16 P. BENGOECHEA AND N. MOSHCHEVITIN

Department of Mathematics, University of York, York, YO10 5DD,

United Kingdom

E-mail address: paloma.bengoechea@york.ac.uk

Department of Mathematics and Mechanics, Moscow State University,

Leninskie Gory 1, GZ MGU, 119991 Moscow, Russia

E-mail address: moshchevitin@rambler.ru


