University of York

This is a repository copy of Badly approximable points in twisted Diophantine approximation and Hausdorff dimension.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/112930/
Version: Accepted Version

Article:

Bengoechea, Paloma and Moshchevitin, Nikolay (2017) Badly approximable points in twisted Diophantine approximation and Hausdorff dimension. Acta Arithmetica. ISSN 17306264
https://doi.org/10.4064/aa8234-11-2016

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

BADLY APPROXIMABLE POINTS IN TWISTED DIOPHANTINE APPROXIMATION AND HAUSDORFF DIMENSION

PALOMA BENGOECHEA ${ }^{\dagger}$ AND NIKOLAY MOSHCHEVITIN*

Abstract

For any $j_{1}, \ldots, j_{n}>0$ with $\sum_{i=1}^{n} j_{i}=1$ and any $\theta \in$ \mathbb{R}^{n}, let $\operatorname{Bad}_{\theta}\left(j_{1}, \ldots, j_{n}\right)$ denote the set of points $\eta \in \mathbb{R}^{n}$ for which $\max _{1 \leq i \leq n}\left(\left\|q \theta_{i}-\eta_{i}\right\|^{1 / j_{i}}\right)>c / q$ for some positive constant $c=c(\eta)$ and all $q \in \mathbb{N}$. These sets are the 'twisted' inhomogeneous analogue of $\operatorname{Bad}\left(j_{1}, \ldots, j_{n}\right)$ in the theory of simultaneous Diophantine approximation. It has been shown that they have full Hausdorff dimension in the non-weighted setting, i.e provided that $j_{i}=1 / n$, and in the weighted setting when θ is chosen from $\operatorname{Bad}\left(j_{1}, \ldots, j_{n}\right)$. We generalise these results proving the full Hausdorff dimension in the weighted setting without any condition on θ. Moreover, we prove $\operatorname{dim}\left(\operatorname{Bad}_{\theta}\left(j_{1}, \ldots, j_{n}\right) \cap\right.$ $\operatorname{Bad}(1,0, \ldots, 0) \cap \ldots \cap \operatorname{Bad}(0, \ldots, 0,1))=n$.

1. Introduction

The classical result due to Dirichlet: for any real number θ there exist infinitely many natural numbers q such that

$$
\begin{equation*}
\|q \theta\| \leq q^{-1} \tag{1}
\end{equation*}
$$

where $\|\cdot\|$ denotes the distance to the nearest integer, has higher dimension generalisations. Consider any n-tuple of real numbers $\left(j_{1}, \ldots, j_{n}\right)$ such that

$$
\begin{equation*}
j_{1}, \ldots, j_{n}>0 \quad \text { and } \quad \sum_{i=1}^{n} j_{i}=1 . \tag{2}
\end{equation*}
$$

Then, for any vector $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n}$, there exist infinitely many natural numbers q such that

$$
\begin{equation*}
\max _{1 \leq i \leq n}\left(\left\|q \theta_{i}\right\|^{1 / j_{i}}\right) \leq q^{-1} . \tag{3}
\end{equation*}
$$

The two results above motivate the study of real numbers and real vectors $\theta \in \mathbb{R}^{n}$ for which the right hand side of (1) and (3) respectively cannot be improved by an arbitrary constant. They respectively constitute the sets Bad

[^0]of badly approximable numbers and $\operatorname{Bad}\left(j_{1}, \ldots, j_{n}\right)$ of $\left(j_{1}, \ldots, j_{n}\right)$-badly approximable numbers. Hence
$$
\operatorname{Bad}\left(j_{1}, \ldots, j_{n}\right):=\left\{\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n}: \inf _{q \in \mathbb{N}} \max _{1 \leq i \leq n}\left(q^{j_{i}}\left\|q \theta_{i}\right\|\right)>0\right\}
$$

In the 1-dimensional case, it is well known that the set of badly approximable numbers has Lebesgue measure zero but maximal Hausdorff dimension. In the n-dimensional case, it is also a classical result that $\operatorname{Bad}\left(j_{1}, \ldots, j_{n}\right)$ has Lebesgue measure zero, and Schmidt proved in 1966 that the particular set $\operatorname{Bad}(1 / 2,1 / 2)$ has full Hausdorff dimension. But the result of maximal dimension in the weigthed setting hasn't been proved until almost 40 years later, by Pollington and Velani [21]. In the 2-dimensional case, An showed in [1] that $\operatorname{Bad}\left(j_{1}, j_{2}\right)$ is in fact winning for the now famous Schmidt games -see [22]. Thus he provided a direct proof of a conjecture of Schmidt stating that any countable intersection of sets $\operatorname{Bad}\left(j_{1}, j_{2}\right)$ is non empty -see also [2].

Recently, interest in the size of related sets, usually referred to as the 'twists' of the sets $\operatorname{Bad}\left(j_{1}, \ldots, j_{n}\right)$, has developed. The study of these new sets started in the 1-dimensional setting: we fix $\theta \in \mathbb{R}$ and consider the twist of Bad:

$$
\operatorname{Bad}_{\theta}:=\left\{\eta \in \mathbb{R}: \inf _{q \in \mathbb{N}} q\|q \theta-\eta\|>0\right\} .
$$

The set $\operatorname{Bad}_{\theta}$ has a palpable interpretation in terms of rotations of the unit circle. Identifying the circle with the unit interval $[0,1)$, the value $q \theta$ (modulo 1) may be thought of as the position of the origin after q rotations by the angle θ. If θ is rational, the rotation is periodic. If θ is irrational, a classical result of Weyl [25] implies that $q \theta$ (modulo 1) is equidistributed, so $q \theta$ visits any fixed subinterval of $[0,1)$ infinitely often. The natural question of what happens if the subinterval is allowed to shrink with time arises. Shrinking a subinterval corresponds to making its length decay according to some specified function. The set $\operatorname{Bad}_{\theta}$ corresponds to considering, for any $\epsilon>0$, the shrinking interval $(\eta-\epsilon / q, \eta+\epsilon / q)$ centred at the point η and where the specified function is ϵ / q. Khintchine showed in [14] that

$$
\begin{equation*}
\|q \theta-\eta\|<\frac{1+\delta}{\sqrt{5} q} \quad(\delta>0) \tag{4}
\end{equation*}
$$

is satisfied for infinitely many integers q, and Theorem III in Chapter III of Cassels' book [5] shows that the right hand side of (4) cannot be improved by an arbitrary constant for every irrational θ and every real η. This motivates the study of the set $\operatorname{Bad}_{\theta}$. Kim [16] proved in 2007 that it has Lebesgue measure zero, and later it was shown by Tseng [23] that it has full Hausdorff
dimension (actually Tseng proved that $\operatorname{Bad}_{\theta}$ has the stronger property of being winning for any $\theta \in \mathbb{R}$).

By generalising circle rotations to rotations on torus of higher dimensions, i.e. by considering the sequence $q \theta$ (modulo 1) in $[0,1)^{n}$ where $\theta=$ $\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n}$, we obtain the 'twists' of the sets $\operatorname{Bad}\left(j_{1}, \ldots, j_{n}\right)$:

$$
\begin{equation*}
\operatorname{Bad}_{\theta}\left(j_{1}, \ldots, j_{n}\right)=\left\{\left(\eta_{1}, \ldots, \eta_{n}\right) \in \mathbb{R}^{n}: \inf _{q \in \mathbb{N}} \max _{1 \leq i \leq n}\left(q^{j_{i}}\left\|q \theta_{i}-\eta_{i}\right\|\right)>0\right\} \tag{5}
\end{equation*}
$$

In [3] Bugeaud et al proved that the non-weighted set $\operatorname{Bad}_{\theta}(1 / n, \ldots$
$\ldots, 1 / n$) has full Hausdorff dimension. Recently, Einsiedler and Tseng [8] extended the results [3] and [23] by showing, among other results, that $\operatorname{Bad}_{\theta}(1 / n, \ldots, 1 / n)$ is also winning. It was shown in [18] that such results may be obtained by classical methods developed by Khintchine [15] and Jarník [12,13] and discussed in Chapter V of Cassels' book [5]. Unfortunately, these methods cannot be directly extended to the weighted setting. For the weighted setting, less has heretofore been known. Harrap did the first contribution [10] in the 2-dimensional case, by proving that $\operatorname{Bad}_{\theta}\left(j_{1}, j_{2}\right)$ has full Hausdorff dimension provided that the fixed point $\theta \in \mathbb{R}^{2}$ belongs to $\operatorname{Bad}\left(j_{1}, j_{2}\right)$, which is a significantly restrictive condition. Recently, under the hypothesis $\theta \in \operatorname{Bad}\left(j_{1}, \ldots, j_{n}\right)$, Harrap and Moshchevitin have extended to weighted linear forms in higher dimension and improved to winning the result in [10] (see [11]).

In this paper, we prove that the weighted set $\operatorname{Bad}_{\theta}\left(j_{1}, \ldots, j_{n}\right)$ has full Hausdorff dimension for any $\theta \in \mathbb{R}^{n}$. Moreover, the following theorem holds.

Theorem 1.1. For any $\theta \in \mathbb{R}^{n}$ and all $j_{1}, \ldots, j_{n}>0$ with $\sum_{i=1}^{n} j_{i}=1$,

$$
\operatorname{dim}\left(\operatorname{Bad}_{\theta}\left(j_{1}, \ldots, j_{n}\right) \cap \operatorname{Bad}(1,0, \ldots, 0) \cap \ldots \cap \operatorname{Bad}(0, \ldots, 0,1)\right)=n
$$

The same type of theorem holds in the classical not twisted setting; it constitutes the work done in [21] (see Theorem 2).

Note that if $1, \theta_{1}, \ldots, \theta_{n}$ are linearly dependent over \mathbb{Z}, then Theorem 1.1 is obvious. Indeed, in this case $\{q \theta: q \in \mathbb{Z}\}$ is restricted to a hyperplane H of \mathbb{R}^{n}, so $\operatorname{Bad}_{\theta}\left(j_{1}, \ldots, j_{n}\right) \supset \mathbb{R}^{n} \backslash H$ is winning. Hence $\operatorname{Bad}_{\theta}\left(j_{1}, \ldots, j_{n}\right) \cap$ $\operatorname{Bad}(1,0, \ldots, 0) \cap \ldots \cap \operatorname{Bad}(0, \ldots, 0,1)$ is winning and in particular has full dimension ${ }^{1}$. Therefore we suppose throughout the paper that $1, \theta_{1}, \ldots, \theta_{n}$ are linearly independent over \mathbb{Z}.

[^1]The strategy for the proof of Theorem 1.1 is as follows. We start by defining a set $\mathcal{V} \subset \operatorname{Bad}_{\theta}\left(j_{1}, \ldots, j_{n}\right)$ related to the best approximations to the fixed point $\theta \in \mathbb{R}^{n}$. Then we construct a Cantor-type set $K(R)$ inside $\mathcal{V} \cap \operatorname{Bad}(1,0, \ldots, 0) \cap \ldots \cap \operatorname{Bad}(0, \ldots, 0,1)$. Finally we describe a probability measure supported on $K(R)$ to which we can apply the mass distribution principle and thus find a lower bound for the dimension of $K(R)$.

Best approximations are defined in Section 2. In Section 3 we define \mathcal{V} and give the proof of the inclusion $\mathcal{V} \subset \operatorname{Bad}_{\theta}\left(j_{1}, \ldots, j_{n}\right)$. We construct $K(R)$ in Section 4 and describe the probability measure in Section 5. Finally we compute the lower bound for the dimension of $K(R)$ in Section 6 .

In the following, we let $n \in \mathbb{N}$, fix an n-tuple $\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{R}^{n}$ satisfying (2) and a vector $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathbb{R}^{n}$ such that $1, \theta_{1}, \ldots, \theta_{n}$ are linearly independent over \mathbb{Z}. We denote by $x \cdot y$ the scalar product of two vectors x and y in \mathbb{R}^{n}, and by $\|\cdot\|$ the distance to the nearest integer.

2. Best approximations

Definition 2.1. An n-dimensional vector $m=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{Z}^{n} \backslash\{0\}$ is called a best approximation to θ if for all $v \in \mathbb{Z}^{n} \backslash\{0,-m, m\}$ the following implication holds:

$$
\max _{1 \leq i \leq n}\left(\left|v_{i}\right|^{1 / j_{i}}\right) \leq \max _{1 \leq i \leq n}\left(\left|m_{i}\right|^{1 / j_{i}}\right) \Longrightarrow\|v \cdot \theta\|>\|m \cdot \theta\|
$$

Note that the condition $1, \theta_{1}, \ldots, \theta_{n}$ are \mathbb{Z}-linearly independent allows us to demand a strict inequality in the right hand side of the implication above.

Note also that when $n=1$ the best approximations to a real number x are, up to the sign, the denominators of the convergents to x.

Since $1, \theta_{1}, \ldots, \theta_{n}$ are \mathbb{Z}-linearly independent, we have an infinite number of best approximations to θ. They can be arranged up to the sign -so that two vectors of opposite sign do not both appear- in an infinite sequence

$$
\begin{equation*}
m_{\nu}=\left(m_{\nu, 1}, \ldots, m_{\nu, n}\right) \quad \nu \geq 1 \tag{6}
\end{equation*}
$$

such that the values

$$
\begin{equation*}
M_{\nu}=\max _{1 \leq i \leq n}\left(\left|m_{\nu, i}\right|^{1 / j_{i}}\right) \tag{7}
\end{equation*}
$$

form a strictly increasing sequence, and the values

$$
\begin{equation*}
\zeta_{\nu}=\left\|m_{\nu} \cdot \theta\right\| \tag{8}
\end{equation*}
$$

form a strictly decreasing sequence. Hence each value M_{ν} corresponds to a single best approximation m_{ν}. The quantity M_{ν} can be referred to as the 'height' of m_{ν}.

Best approximations vectors have often been used in proofs, but not always explicitly. In particular, Voronoi [24] selected some points in a lattice that correspond exactly to the best approximation vectors (see also [7]). Similar constructions were introduced in [17] or Section 2 of [4]. Some important properties of the best approximation vectors are discussed in $[19,20]$ and a recent survey on the topic is due to Chevallier [6].

For each $\nu \geq 1$, it is easy to see that the region

$$
\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}: \max _{1 \leq i \leq n}\left(\left|x_{i}\right|^{1 / j_{i}}\right)<M_{\nu+1},\left|x_{0}+\sum_{i=1}^{n} x_{i} \theta_{i}\right|<\zeta_{\nu}\right\}
$$

does not contain any integer point different from 0 . Since this region has volume $2^{n+1} M_{\nu+1} \zeta_{\nu}$ (see Lemma 4 in Appendix B of [5]), it follows from Minkowski's convex body theorem that

$$
\begin{equation*}
\zeta_{\nu} M_{\nu+1} \leq 1 \tag{9}
\end{equation*}
$$

The inequality above will be used later as well as the following lemma, stating that the sequence of heights M_{ν} is lacunary.

Lemma 2.2. For every $\nu \geq 1$, we have

$$
M_{\nu+2 \cdot 3^{n}} \geq 2 M_{\nu}
$$

Proof. Given $\nu \geq 1$, we show that we have at most $2 \cdot 3^{n}$ vectors $m_{\nu+r}$ with $r \geq 0$ and $M_{\nu+r}<2 M_{\nu}$. The goal is to see that the 0 -symmetric region
(10) $\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}: \max _{1 \leq i \leq n}\left(\left|x_{i}\right|^{1 / j_{i}}\right)<2 M_{\nu},\left|x_{0}+\sum_{i=1}^{n} x_{i} \theta_{i}\right| \leq \zeta_{\nu}\right\}$
contains at most $4 \cdot 3^{n}$ integer points other than 0 . The region (10) is covered by sets of the form

$$
T(\xi)=\left\{\begin{aligned}
\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} & : \max _{1 \leq i \leq n}\left(\left|x_{i}-\xi_{i}\right|^{1 / j_{i}}\right) \leq M_{\nu} \\
& \text { and }\left|x_{0}-\xi_{0}+\sum_{i=1}^{n}\left(x_{i}-\xi_{i}\right) \theta_{i}\right| \leq \zeta_{\nu}
\end{aligned}\right\}
$$

with

$$
\begin{equation*}
\xi_{i} \in\left\{-2 M_{\nu}^{j_{i}}, 0,2 M_{\nu}^{j_{i}}\right\}, \quad \xi_{0}=-\sum_{i=1}^{n} \xi_{i} \theta_{i} \tag{11}
\end{equation*}
$$

Each region $T(\xi)$ is the translate by $\left(\xi_{0}, \ldots, \xi_{n}\right)$ of the set

$$
\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}: \max _{1 \leq i \leq n}\left(\left|x_{i}\right|^{1 / j_{i}}\right) \leq M_{\nu},\left|x_{0}+\sum_{i=1}^{n} x_{i} \theta_{i}\right| \leq \zeta_{\nu}\right\}
$$

which contains exactly three integer points: 0 and two best approximations with opposite sign. Hence each $T(\xi)$ contains at most four integer points. Since there are 3^{n} possible choices for $\left(\xi_{0}, \ldots, \xi_{n}\right)$ satisfying (11), the set (10) contains at most $4 \cdot 3^{n}$ integer points.

3. The set \mathcal{V} included in $\operatorname{Bad}_{\theta}\left(j_{1}, \ldots, j_{n}\right)$

The following proposition allows us to work with a set defined by the best approximations to θ instead of working directly with $\operatorname{Bad}_{\theta}\left(j_{1}, \ldots, j_{n}\right)$.

Proposition 3.1. If $\eta \in \mathbb{R}^{n}$ satisfies

$$
\begin{equation*}
\inf _{\nu}\left\|m_{\nu} \cdot \eta\right\|>0 \tag{12}
\end{equation*}
$$

then $\eta \in \operatorname{Bad}_{\theta}\left(j_{1}, \ldots, j_{n}\right)$.
Proof. Let $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right) \in \mathbb{R}^{n}$ satisfy

$$
\left\|m_{\nu} \cdot \eta\right\|>\gamma \quad \forall \nu \geq 1
$$

for some $\gamma>0$. For all $q \in \mathbb{N}$ and $\nu \geq 1$, we have the identity

$$
m_{\nu} \cdot \eta=m_{\nu} \cdot(\eta-q \theta)+q m_{\nu} \cdot \theta
$$

from which we obtain the inequalities

$$
\begin{equation*}
\gamma<\left\|m_{\nu} \cdot \eta\right\| \leq n \max _{1 \leq i \leq n}\left(\left|m_{\nu, i}\right| \cdot\left\|\eta_{i}-q \theta_{i}\right\|\right)+q \zeta_{\nu} \tag{13}
\end{equation*}
$$

Since ζ_{ν} is strictly decreasing and $\zeta_{\nu} \rightarrow 0$ as $\nu \rightarrow \infty$, there exists $\nu \geq 1$ such that

$$
\begin{equation*}
\frac{\gamma}{2 \zeta_{\nu}} \leq q \leq \frac{\gamma}{2 \zeta_{\nu+1}} \tag{14}
\end{equation*}
$$

On the one hand, from the inequalities (13) and the upper bound in (14), we deduce that

$$
\begin{equation*}
\max _{1 \leq i \leq n}\left(\left\|\eta_{i}-q \theta_{i}\right\| \cdot\left|m_{\nu+1, i}\right|\right)>\frac{\gamma}{2 n} \tag{15}
\end{equation*}
$$

On the other hand, from the lower bound in (14) and the inequality (9), it follows that

$$
q \geq \frac{\gamma}{2} M_{\nu+1} .
$$

We deduce that

$$
\begin{equation*}
q^{j_{i}} \geq c\left|m_{\nu+1, i}\right| \quad \forall i=1, \ldots, n, \tag{16}
\end{equation*}
$$

where

$$
c=\min _{1 \leq i \leq n}\left(\left(\frac{\gamma}{2}\right)^{j_{i}}\right)
$$

Finally, by combining (15) and (16), we have that

$$
\max _{1 \leq i \leq n}\left(\left\|\eta_{i}-q \theta_{i}\right\| q^{j_{i}}\right)>\frac{\gamma c}{2 n} .
$$

This concludes the proof of the proposition.
We define the set

$$
\mathcal{V}:=\left\{\eta \in \mathbb{R}^{n}: \inf _{\nu \geq 1}\left\|m_{\nu} \cdot \eta\right\|>0\right\}
$$

Clearly

$$
\begin{equation*}
\mathcal{V} \subset \operatorname{Bad}_{\theta}\left(j_{1}, \ldots, j_{n}\right) \tag{17}
\end{equation*}
$$

4. The Cantor-type set $K(R)$

In this section we construct the Cantor-type set $K(R)$ inside $\operatorname{Bad}_{\theta}\left(j_{1}, \ldots, j_{n}\right) \cap \operatorname{Bad}(1,0, \ldots, 0) \cap \ldots \cap \operatorname{Bad}(0, \ldots, 0,1)$. In order to lighten the notation, throughout this section we denote by \mathcal{M} the set of best approximations in the sequence (6), and for each $m \in \mathcal{M}$, by M_{m} the quantity defined by (7), i.e.

$$
M_{m}=\max _{1 \leq i \leq n}\left(\left|m_{i}\right|^{1 / j_{i}}\right)
$$

Hence

$$
\mathcal{V}=\left\{\eta \in \mathbb{R}^{n}: \inf _{m \in \mathcal{M}}\|m \cdot \eta\|>0\right\}
$$

We define the following partition of \mathcal{M} :

$$
\begin{equation*}
\mathcal{M}_{k}:=\left\{m \in \mathcal{M}: R^{k-1} \leq M_{m}<R^{k}\right\} \quad(k \geq 0) \tag{18}
\end{equation*}
$$

Note that $\mathcal{M}_{0}=\emptyset$. We have that $\mathcal{M}=\bigcup_{k=0}^{\infty} \mathcal{M}_{k}$.
We also need, for each $1 \leq i \leq n$, the following partitions of \mathbb{N} :

$$
\begin{equation*}
\mathcal{Q}_{k}^{(i)}:=\left\{q \in \mathbb{N}: R^{(k-1) j_{i} / 2} \leq q<R^{k j_{i} / 2}\right\} \quad(k \geq 0) \tag{19}
\end{equation*}
$$

Note that $\mathcal{Q}_{0}^{(i)}=\emptyset$ and for each $1 \leq i \leq n$, we have that $\mathbb{N}=\bigcup_{k=0}^{\infty} \mathcal{Q}_{k}^{(i)}$.

At the heart of the construction of $K(R)$ is constructing a collection \mathcal{F}_{k} of hyperrectangles H_{k} inside the hypercube $[0,1]^{n}$ that satisfy the following n conditions:
(0) $|m \cdot \eta+p| \geq \epsilon \quad \forall \eta \in H_{k}, \forall m \in \mathcal{M}_{k-1}, \forall p \in \mathbb{Z}$;
(1) $q\left|q \eta_{1}-p\right| \geq \epsilon \quad \forall \eta \in H_{k}, \forall q \in \mathcal{Q}_{k-1}^{(1)}, \forall p \in \mathbb{Z}$;
(n) $q\left|q \eta_{n}-p\right| \geq \epsilon \quad \forall \eta \in H_{k}, \forall q \in \mathcal{Q}_{k-1}^{(n)}, \forall p \in \mathbb{Z}$
for some $\epsilon>0$.
We start by constructing a collection $\left(\mathcal{G}_{k}^{(0)}\right)_{k \geq 0}$ of hyperrectangles satisfying condition (0). This construction is done by induction. Then we define a subcollection $\mathcal{G}_{k}^{(1)} \subset \mathcal{G}_{k}^{(0)}$ of hyperrectangles that also satisfy condition (1), a subcollection $\mathcal{G}_{k}^{(2)} \subset \mathcal{G}_{k}^{(1)}$ that also satisfies condition (2), etc. This
process ends with a subcollection $\mathcal{G}_{k}^{(n)}$ that satisfies the n conditions above. We would like to quantify $\# \mathcal{G}_{k}^{(n)}$. We can give a lower bound, but we cannot quantify the exact cardinal. So we refine the collection $\mathcal{G}_{k}^{(n)}$ by choosing a right and final subcollection \mathcal{F}_{k} that we can quantify.

Let

$$
j_{\min }=\min _{1 \leq i \leq n}\left(j_{i}\right), \quad j_{\max }=\max _{1 \leq i \leq n}\left(j_{i}\right) .
$$

Let $R>4^{1 / j_{\text {min }}}$ and $\epsilon>0$ be such that

$$
\begin{equation*}
\epsilon<\frac{1}{2 R^{2 j_{\max }}} . \tag{20}
\end{equation*}
$$

The parameter R will be chosen later to be sufficiently large in order to satisfy various conditions.
4.1. The collection $\mathcal{G}_{k}^{(0)}$. For each $m \in \mathcal{M}$ and $p \in \mathbb{Z}$, let

$$
\Delta(m, p):=\left\{x \in \mathbb{R}^{n}:|m \cdot x+p|<\epsilon\right\} .
$$

Geometrically, $\Delta(m, p)$ is the thickening of a hyperplane of the form

$$
\begin{equation*}
\mathcal{L}(m, p):=\left\{x \in \mathbb{R}^{n}: m \cdot x+p=0\right\} \tag{21}
\end{equation*}
$$

with width $2 \epsilon / m_{i}$ in all the x_{i}-coordinate directions.

Next we describe the induction procedure in order to define the collection $\left(\mathcal{G}_{k}^{(0)}\right)_{k \geq 0}$. We work within the closed hypercube $H_{0}=[0,1]^{n}$ and set $\mathcal{G}_{0}^{(0)}=$ $\left\{H_{0}\right\}$. For $k \geq 0$, we divide each $H_{k} \in \mathcal{G}_{k}^{(0)}$ into new hyperrectangles H_{k+1} of size

$$
R^{-(k+1) j_{1}} \times \ldots \times R^{-(k+1) j_{n}}
$$

Note that if $R^{j_{i}} \notin \mathbb{Z}$ for some $1 \leq i \leq n$, the division will not be exact, in the sense that the new hyperrectangles will not cover H_{k}. This division gives at least $\prod_{i=1}^{n}\left[R^{j_{i}}\right]>R-\sum_{i=1}^{n} R^{j_{i}}$ new hyperrectangles. Among these new hyperrectangles, we denote by $\mathcal{G}^{(0)}\left(H_{k}\right)$ the collection of hyperrectangles $H_{k+1} \subset H_{k}$ satisfying

$$
H_{k+1} \cap \Delta(m, p)=\emptyset \quad \forall m \in \mathcal{M}_{k}, \forall p \in \mathbb{Z}
$$

We define

$$
\mathcal{G}_{k+1}^{(0)}:=\bigcup_{H_{k} \in \mathcal{G}_{k}^{(0)}} \mathcal{G}^{(0)}\left(H_{k}\right)
$$

Hence $\mathcal{G}_{k+1}^{(0)}$ is nested in $\mathcal{G}_{k}^{(0)}$ and it is a collection of 'good' hyperrectangles with respect to all the best approximations m satisfying $M_{m}<R^{k}$ and all the integers p. The collection $\mathcal{G}^{(0)}\left(H_{k}\right)$ is the collection of 'good' hyperrectangles that we obtain from the division of H_{k}.

Next we give a lower bound for $\# \mathcal{G}_{k}^{(0)}$. Actually, for a fixed hyperrectangle $H_{k} \in \mathcal{G}_{k}^{(0)}$, we give a lower bound for the number of hyperrectangles $H_{k+1} \in \mathcal{G}^{(0)}\left(H_{k}\right)$. Alternatively, we give an upper bound for the number of 'bad' hyperrectangles in H_{k}; these are the hyperrectangles $H_{k+1} \subset H_{k}$ that intersect the thickening $\Delta(m, p)$ of some hyperplane $\mathcal{L}(m, p)$ with $m \in \mathcal{M}_{k}$. Fact 1 and Fact 2 bound the number of thickenings $\Delta(m, p)$ with $m \in \mathcal{M}_{k}$ and $p \in \mathbb{Z}$ that intersect H_{k}. Fact 3 bounds the number of hyperrectangles $H_{k+1} \subset H_{k}$ that are intersected by a thickening $\Delta(m, p)$ with $m \in \mathcal{M}_{k}$ and $p \in \mathbb{Z}$.

Fact 1. We show that for each $k \geq 1$, the set \mathcal{M}_{k} contains at most $2 \cdot 3^{n}\left(1+\log _{2}(R)\right)$ best approximations. Indeed, lemma 2.2 implies that

$$
\begin{aligned}
M_{\nu+2 \cdot 3^{n}\left(1+\log _{2}(R)\right)} & \geq 2^{1+\log _{2}(R)} M_{\nu} \\
& \stackrel{(18)}{\geq} 2^{1+\log _{2}(R)} R^{k-1} \\
& >R^{k} .
\end{aligned}
$$

Therefore, there are at most $2 \cdot 3^{n}\left(1+\log _{2}(R)\right)$ best approximations in \mathcal{M}_{k}.

Fact 2. Fix $m \in \mathcal{M}_{k}$. We show that there are at most $2^{n} n$ thickenings $\Delta(m, p)$ that intersect H_{k}. Indeed, suppose that two different thickenings $\Delta(m, p)$ and $\Delta\left(m, p^{\prime}\right)$ intersect the same edge of H_{k}. This edge of H_{k} is a segment of a line which is parallel to an x_{l}-axis. Let $P=\left(y_{1}, \ldots, y_{n}\right)$ and $P^{\prime}=\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$ denote the points of intersection of this line parallel to the x_{l}-axis with $\mathcal{L}(m, p)$ and $\mathcal{L}\left(m, p^{\prime}\right)$ respectively. The fact that P and P^{\prime} respectively belong to $\mathcal{L}(m, p)$ and $\mathcal{L}\left(m, p^{\prime}\right)$ is described by the equations

$$
\begin{equation*}
m \cdot y+p=0, \quad m \cdot y^{\prime}+p^{\prime}=0 \tag{22}
\end{equation*}
$$

The fact that P and P^{\prime} both belong to a line parallel to the x_{l}-axis implies that $y_{i}=y_{i}^{\prime} \forall i \neq l$. Hence, by substracting the second equation in (22) to the first one, we have that

$$
\begin{equation*}
\left|y_{l}-y_{l}^{\prime}\right|-\frac{2 \epsilon}{\left|m_{l}\right|} \geq \frac{\left|p-p^{\prime}\right|}{\left|m_{l}\right|}-\frac{2 \epsilon}{\left|m_{l}\right|}>\frac{1}{R^{k j_{l}}}-\frac{1}{2 R^{k j_{l}}}=\frac{1}{2} R^{-k j_{l}} . \tag{23}
\end{equation*}
$$

Since the length size of H_{k} in the x_{l}-direction is $R^{-k j_{l}}$, the inequality (23) implies that there are not more than two thickenings intersecting the same edge of H_{k}. Thus the number of thickenings $\Delta(m, p)$ that intersect H_{k} is at most twice the number of edges of H_{k}, and this is $2^{n} n$.

Fact 3. Given a thickening $\Delta(m, p)$, we give an upper bound for the number of hyperrectangles $H_{k+1} \subset H_{k}$ that intersect $\Delta(m, p)$. Fix $m \in \mathcal{M}_{k}$ and $p \in \mathbb{Z}$. Denote by l the index such that $M_{m}=\left|m_{l}\right|^{1 / j l}$. Consider the projection of $\Delta(m, p) \cap H_{k}$ onto one of the faces of H_{k} parallel to the plane given by the x_{l}-axis and an x_{i}-axis. We split this projected of $\Delta(m, p) \cap H_{k}$ into right triangles with perpendicular sides of length $2 \epsilon /\left|m_{l}\right|$ and $2 \epsilon /\left|m_{i}\right|$ respectively. From this splitting and the inequality

$$
\frac{2 \epsilon}{\left|m_{l}\right|}<\frac{1}{2 R^{j_{l}(k+1)}}
$$

we deduce that $\Delta(m, p)$ intersects at most $2\left[R^{1-j_{\min }}\right]$ hyperrectangles $H_{k+1} \subset$ H_{k}.

Conclusion. There are at most $\left[2^{n+2} 3^{n} n\left(1+\log _{2}(R)\right) R^{1-j_{\text {min }}}\right]$ hyperrectangles $H_{k+1} \subset H_{k}$ that intersect some $\Delta(m, p)$ with $m \in \mathcal{M}_{k}, p \in \mathbb{Z}$. Hence

$$
\# \mathcal{G}^{(0)}\left(H_{k}\right) \geq R-\sum_{i=1}^{n} R^{j_{i}}-\left[2^{n+2} 3^{n} n\left(1+\log _{2}(R)\right) R^{1-j_{\min }}\right]
$$

4.2. The subcollections $\mathcal{G}_{k}^{(i)}$. For each $q \in \mathbb{N}$ and $p \in \mathbb{Z}$, consider the sets

$$
\begin{equation*}
\Gamma_{i}(q, p):=\left\{x \in \mathbb{R}^{n}: q\left|q x_{i}-p\right|<\epsilon\right\} \quad(1 \leq i \leq n) \tag{24}
\end{equation*}
$$

Geometrically, each $\Gamma_{i}(q, p)$ is a thickening of a hyperplane described by the equation $x_{i}=p / q$ with width $2 \epsilon / q^{2}$ in the x_{i}-coordinate direction.

We construct a tower of subcollections

$$
\mathcal{G}_{k}^{(n)} \subset \mathcal{G}_{k}^{(n-1)} \subset \ldots \subset \mathcal{G}_{k}^{(1)} \subset \mathcal{G}_{k}^{(0)}
$$

where each $\mathcal{G}_{k}^{(i)}$ consists of hyperrectangles in $\mathcal{G}_{k}^{(i-1)}$ which points avoid each thickening $\Gamma_{i}(q, p)$ for $q \in \mathcal{Q}_{k-1}^{(i)}$. More precisely, for $1 \leq i \leq n$, we form $\mathcal{G}_{k}^{(i)}$ by letting

$$
\mathcal{G}^{(i)}\left(H_{k}\right):=\left\{H_{k+1} \in \mathcal{G}^{(i-1)}\left(H_{k}\right): H_{k+1} \cap \Gamma_{i}(q, p)=\emptyset \forall q \in \mathcal{Q}_{k}^{(i)}\right\}
$$

and

$$
\mathcal{G}_{k+1}^{(i)}:=\bigcup_{H_{k} \in \mathcal{G}_{k}^{(i-1)}} \mathcal{G}^{(i)}\left(H_{k}\right)
$$

Clearly the hyperrectangles in $\mathcal{G}_{k+1}^{(i)}$ satisfy the conditions $(0),(1), \ldots,(i)$, so the collection $\mathcal{G}_{k}^{(n)}$ satisfies the n conditions (0), $\ldots,(n)$.

Next, for each $1 \leq i \leq n$ and $H_{k} \in \mathcal{G}_{k}^{(i-1)}$, we give a lower bound of $\# \mathcal{G}^{(i)}\left(H_{k}\right)$. Suppose that there are two pairs (q, p) and $\left(q^{\prime}, p^{\prime}\right)$ in $\mathcal{Q}_{k}^{(i)} \times \mathbb{Z}$ such that

$$
H_{k} \cap \Gamma_{i}(q, p) \neq \emptyset, \quad H_{k} \cap \Gamma_{i}\left(q^{\prime}, p^{\prime}\right) \neq \emptyset .
$$

In other words, suppose there exist η, η^{\prime} in H_{k} such that

$$
\begin{equation*}
q\left|q \eta_{i}-p\right|<\epsilon, \quad q^{\prime}\left|q^{\prime} \eta_{i}^{\prime}-p^{\prime}\right|<\epsilon . \tag{25}
\end{equation*}
$$

Then, by (19) and (20), we have

$$
\begin{equation*}
\left|\frac{p}{q}-\frac{p^{\prime}}{q^{\prime}}\right|-\frac{\epsilon}{q^{2}}-\frac{\epsilon}{q^{\prime 2}} \geq \frac{1}{q q^{\prime}}-\frac{\epsilon}{q^{2}}-\frac{\epsilon}{q^{\prime 2}}>\frac{1}{R^{k j_{i}}}-\frac{1}{2 R^{k j_{i}}}=\frac{1}{2} R^{-k j_{i}} . \tag{26}
\end{equation*}
$$

Since the length sides of H_{k} in the x_{i}-direction is $R^{-k j_{i}}$, the inequality (26) implies that at most two thickenings of the form (24) can intersect H_{k}.

Now, from (19) and (20), it follows that if $\eta \in \Gamma_{i}(q, p)$, then

$$
\left|\eta_{i}-\frac{p}{q}\right|<\frac{\epsilon}{q^{2}}<\frac{1}{2} R^{-k j_{i}}
$$

which implies that each thickening $\Gamma_{i}(q, p)$ intersects at most

$$
2\left[R^{j_{1}}\right] \times \ldots \times\left[\widehat{R^{j_{i}}}\right] \times \ldots \times\left[R^{j_{n}}\right] \leq 2\left[R^{1-j_{i}}\right]
$$

hyperrectangles $H_{k+1} \subset H_{k}$.

Therefore, there are at most $4\left[R^{1-j_{\text {min }}}\right]$ hyperrectangles $H_{k+1} \subset H_{k}$ that do not satisfy condition (i). Hence
(27) $\# \mathcal{G}^{(i)}\left(H_{k}\right) \geq R-\sum_{i=1}^{n} R^{j_{i}}-\left[2^{n+2} 3^{n} n\left(1+\log _{2}(R)\right) R^{1-j_{\text {min }}}\right]-4 i\left[R^{1-j_{\text {min }}}\right]$.
4.3. The right subcollection \mathcal{F}_{k}. We choose a subcollection of $\mathcal{G}_{k}^{(n)}$ that we can exactly quantify in the following way. Let $\mathcal{F}_{0}:=\mathcal{G}_{0}^{(0)}$. Choose R sufficiently large so that $\left[R-\sum_{i=1}^{n} R^{j_{i}}-2^{n+2} 3^{n} n\left(1+\log _{2}(R)\right) \cdot R^{1-j_{\text {min }}}-\right.$ $\left.4 n R^{1-j_{\min }}\right]>1$. For $k \geq 0$, for each $H_{k} \in \mathcal{F}_{k}$, we choose exactly [$R-$ $\sum_{i=1}^{n} R^{j_{i}}-2^{n+2} 3^{n} n\left(1+\log _{2}(R)\right) R^{1-j_{\text {min }}}-4 n R^{\left.1-j_{\text {min }}\right]}$ hyperrectangles from the collection $\mathcal{G}^{(n)}\left(H_{k}\right)$ and denote this collection by $\mathcal{F}\left(H_{k}\right)$. Trivially,

$$
\begin{equation*}
\# \mathcal{F}\left(H_{k}\right)=\left[R-\sum_{i=1}^{n} R^{j_{i}}-2^{n+2} 3^{n} n\left(1+\log _{2}(R)\right) R^{1-j_{\min }}-4 n R^{1-j_{\min }}\right]>1 \tag{28}
\end{equation*}
$$

so each hyperrectangle $H_{k} \in \mathcal{F}_{k}$ gives rise to exactly the same number of hyperrectangles H_{k+1} in $\mathcal{F}\left(H_{k}\right)$. Finally, define

$$
\mathcal{F}_{k+1}:=\bigcup_{H_{k} \in \mathcal{F}_{k}} \mathcal{F}\left(H_{k}\right) .
$$

This completes the construction of the Cantor-type set

$$
K(R):=\bigcap_{k=0}^{\infty} \mathcal{F}_{k} .
$$

By construction, we have $K(R) \subset \mathcal{V} \cap \operatorname{Bad}(1,0 \ldots, 0) \cap \ldots \cap \operatorname{Bad}(0, \ldots, 0,1)$. Moreover, in view of (28), we have

$$
\begin{align*}
\# \mathcal{F}_{k+1} & =\# \mathcal{F}_{k} \# \mathcal{F}\left(H_{k}\right) \tag{29}\\
& =\left[R-\sum_{i=1}^{n} R^{j_{i}}-2^{n+2} 3^{n} n\left(1+\log _{2}(R)\right) R^{1-j_{\min }}-4 n R^{1-j_{\min }}\right]^{k+1} . \tag{30}
\end{align*}
$$

5. The measure μ on $K(R)$

We now describe a probablity measure μ supported on the Cantor-type set $K(R)$ constructed in the previous section. The measure we define is analogous to the probability measure used in [21] and [2] on a Cantor-type set of \mathbb{R}^{2}. For any hyperrectangle $H_{k} \in \mathcal{F}_{k}$ we attach a weight $\mu\left(H_{k}\right)$ which is defined recursively as follows: for $k=0$,

$$
\mu\left(H_{0}\right)=\frac{1}{\# \mathcal{F}_{0}}=1
$$

and for $k \geq 1$,

$$
\mu\left(H_{k}\right)=\frac{1}{\# \mathcal{F}\left(H_{k-1}\right)} \mu\left(H_{k-1}\right) \quad\left(H_{k} \in \mathcal{F}\left(H_{k-1}\right)\right)
$$

This procedure defines inductively a mass on any hyperrectangle used in the construction of $K(R)$. Moreover, μ can be further extended to all Borel subsets X of \mathbb{R}^{n}, so that μ actually defines a measure supported on $K(R)$, by letting

$$
\mu(X)=\inf \sum_{H \in \mathcal{C}} \mu(H)
$$

where the infimum is taken over all coverings \mathcal{C} of X by rectangles $H \in$ $\left\{\mathcal{F}_{k}: k \geq 0\right\}$. For further details, see [9], Proposition 1.7.

Notice that, in view of (29), we have

$$
\mu\left(H_{k}\right)=\frac{1}{\# \mathcal{F}_{k}} \quad(k \geq 0)
$$

A classical method for obtaining a lower bound for the Hausdorff dimension of an arbitrary set is the following mass distribution principle (see [9] p. 55).

Lemma 5.1 (mass distribution principle). Let δ be a probability measure supported on a subset X of \mathbb{R}^{n}. Suppose there are positive constants c, s and l_{0} such that

$$
\begin{equation*}
\delta(S) \leq c l^{s} \tag{31}
\end{equation*}
$$

for any hypercube $S \subset \mathbb{R}^{n}$ with side length $l \leq l_{0}$. Then $\operatorname{dim}(X) \geq s$.
The goal in the next section is to prove that there exist constants c and l_{0} satisfying (31) with $\delta=\mu, X=K(R)$ and $s=n-\lambda(R)$, where $\lambda(R) \rightarrow 0$ as $R \rightarrow \infty$. Then from the mass distribution principle it will follow that $\operatorname{dim}(K(R))=n$.

6. A LOWER BOUND FOR $\operatorname{dim}(K(R))$

Recall that

$$
j_{\min }=\min _{1 \leq i \leq n}\left(j_{i}\right)
$$

Let k_{0} be a positive integer such that

$$
\begin{equation*}
R^{-k j_{i}}<R^{-(k+1) j_{\min }} \quad \forall j_{i} \neq j_{\min } \text { and } k \geq k_{0} \tag{32}
\end{equation*}
$$

Consider an arbitrary hypercube S of side length $l \leq l_{0}$ where l_{0} satisfies

$$
\begin{equation*}
l_{0}<R^{-\left(k_{0}+1\right) j_{\min }} \tag{33}
\end{equation*}
$$

together with a second inequality to be determined later. We can choose $k>k_{0}$ so that

$$
\begin{equation*}
R^{-(k+1) j_{\min }}<l<R^{-k j_{\min }} \tag{34}
\end{equation*}
$$

From the inequality (32) it follows that

$$
\begin{equation*}
l>R^{-k j_{i}} \quad \forall j_{i} \neq j_{\min } \tag{35}
\end{equation*}
$$

Then it is easy to see that S intersects at most $2^{n} l^{n-1} \prod_{j_{i} \neq j_{\text {min }}} R^{k j_{i}}$ hyperrectangles $H_{k} \in \mathcal{F}_{k}$, so

$$
\mu(S) \leq 2^{n} l^{n-1} \prod_{j_{i} \neq j_{\min }} R^{k j_{i}} \mu\left(H_{k}\right)=2^{n} l^{n-1} R^{k-k j_{\min }} \frac{1}{\# \mathcal{F}_{k}}
$$

Since $R^{(k+1) j_{\text {min }}}>l^{-1}$ (see (34)), we have that

$$
\mu(S) \leq 2^{n} l^{n} R^{j_{\min }} R^{k} \frac{1}{\# \mathcal{F}_{k}}
$$

Remember that we mentioned in Section 3 that later we would choose the parameter R big enough so that it satisfies various conditions. We choose R so that

$$
R^{-1} \sum_{i=1}^{n} R^{j_{i}}-2^{n+2} 3^{n} n\left(1+\log _{2}(R)\right) R^{-j_{\min }}-4 n R^{-j_{\min }}-R^{-1} \leq 2^{-1}
$$

Then, by (29) we have that

$$
\mu(S) \leq 2^{n} l^{n} R^{j_{\min }} 2^{k}
$$

We choose

$$
k \geq \log (R) \quad \text { and } \quad \lambda(R)=\frac{1+\log (2)}{j_{\min } \log (R)},
$$

so

$$
\mu(S) \leq 2^{n} l^{n} R^{k j_{\min } \lambda(R)}
$$

Since $R^{k j_{\text {min }}}<l^{-1}$ (see (34)), it follows that

$$
\mu(S) \leq 2^{n} l^{n-\lambda(R)}
$$

Finally, by applying the mass distribution principle we obtain

$$
\operatorname{dim} K(R) \geq n-\lambda(R) \rightarrow n \quad \text { as } R \rightarrow \infty
$$

References

[1] J. An, Two-dimensional badly approximable vectors and Schmidt's game, Duke Math. J. 165, no. 2 (2016), 267-284.
[2] D. Badziahin, A. Pollington and S. Velani, On a problem in simultaneous Diophantine approximation: Schmidt's conjecture, Annals of Mathematics. 174 (2011), 1837-1883.
[3] Y. Bugeaud, S. Harrap, S. Kristensen and S. Velani, On shrinking targets for \mathbb{Z}^{m} actions on tori, Mathematika 56 (2010), 193-202.
[4] Y. Bugeaud and M. Laurent, Exponents of homogeneous and inhomogeneous Diophantine approximation, Moscow Math. J. 5 (2005), 747-766.
[5] J.W.S. Cassels, An introduction to Diophantine approximation, Cambridge Tracts in Mathematics and Mathematical Physics 45. Cambridge University Press, 1957.
[6] N. Chevallier, Best simultaneous Diophantine approximations and multidimensional continued fraction expansions, Moscow Journal of Combinatorics and Number Theory, 3:1 (2013), 3-56.
[7] B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree, American Mathematical Society, 1964.
[8] M. Einsiedler and J. Tseng, Badly approximable systems of affine forms, fractals, and Schmidt games, J. Reine Angew. Math. 660 (2011), 83-97.
[9] K. Falconer, Fractal geometry: mathematical foundations and applications, John Wiley, 1990.
[10] S. Harrap, Twisted inhomogeneous Diophantine approximation and badly approximable sets, Acta Arithmetica, 151 (2012), 55-82.
[11] S. Harrap and N. Moshchevitin, A note on weighted badly approximable linear forms, Glasgow Mathematical Journal, DOI: http://dx.doi.org/10.1017/S0017089516000203.
[12] V. Jarník, O lineárnich nehomogennich diofantických aproximacich, Rozpravy II. Třidy České Akademie, Ročnik LI, Čislo 29 (1941), 1 21.
[13] V. Jarník, Sur les approximations diophantiques linéaires non homogènes, Bulletin international de l'Académie tchèque des Sciences 1946, 47 Année, Numéro 16, 1-16.
[14] A. Ya. Khinchine, Sur le problème de Tchebycheff, Izv. Akad. Nauk SSSR, Ser. Math. 10 (1946), 281-294 (in Russian).
[15] A. Ya. Khintchine, Regular systems of linear equations and general Tchebysheff problem, Izv. Akad. Nauk SSSR Ser. Math. 12 (1948), 249 - 258 (in Russian).
[16] D.H. Kim, The shrinking target property of irrational rotations, Nonlinearity 20 (2007), 7, 1637-1643.
[17] J.C. Lagarias, Best Diophantine approximations to a set of linear forms, J. Austral. Math. Soc. Ser. A 34 (1983), 114-122.
[18] N. G. Moshchevitin, A note on badly approximable affine forms and winning sets, Mosc. Math. J., 11:1 (2011), 129-137.
[19] N. G. Moshchevitin, Best Diophantine approximations: the phenomenon of degenerate dimension, London Math. Soc. Lecture Note Ser. 338, Cambridge Univ. Press, Cambridge (2007), 158-182.
[20] N.G. Moshchevitin, Khintchine's singular Diophantine systems and their applications, Russian Mathematical Surveys. 65:3 (2010), 433511.
[21] A. Pollington and S. Velani, On simultaneously badly approximable numbers, J. London Math. Soc. (2) 66 (2002), 29-40.
[22] W.M. Schmidt, On badly approximable numbers and certain games, Trans. Amer. Math. Soc. 123 (1966), 178-199.
[23] J. Tseng, Badly approximable affine forms and Schmidt games, J. Number Theory 129 (2009), 3020-3025.
[24] G. F. Voronoi, On one generalization of continued fractions' algorithm, Warsaw, 1896 (in Russian).
[25] H. Weyl, Uber die Gleichverteilung von Zahlen mod. Eins, Math. Ann. 77 (1916), 3, 313-352.

Department of Mathematics, University of York, York, YO10 5DD, United Kingdom

E-mail address: paloma.bengoechea@york.ac.uk
Department of Mathematics and Mechanics, Moscow State University, Leninskie Gory 1, GZ MGU, 119991 Moscow, Russia

E-mail address: moshchevitin@rambler.ru

[^0]: 2010 Mathematics Subject Classification. 11K60,11J83,11J20.
 Key words and phrases. Badly approximable numbers, simultaneous twisted Diophantine approximation, Hausdorff dimension.
 ${ }^{\dagger}$ Research supported by EPSRC Programme Grant: EP/J018260/1.

 * Research supported by RFBR grant No. 15-01-05700a.

[^1]: ${ }^{1}$ We recall that winning sets in \mathbb{R}^{n} have maximal Hausdorff dimension, and that countable intersections of winning sets are again winning. We refer the reader to [22] for all necessary definitions and results on winning sets.

