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Axisymmetric pulse train solutions in narrow-gap spherical Couette flow

Adam Child, Rainer Hollerbach, Evy Kersalé

Department of Applied Mathematics, University of Leeds, Leeds, LS2 9JT, UK

Abstract

We numerically compute the flow induced in a spherical shell by fixing the outer sphere and rotating the inner one.
The aspect ratio ǫ = (ro − ri)/ri is set at 0.04 and 0.02, and in each case the Reynolds number measuring the inner
sphere’s rotation rate is increased to ∼10% beyond the first bifurcation from the basic state flow. For ǫ = 0.04 the
initial bifurcations are the same as in previous numerical work at ǫ = 0.154, and result in steady one- and two-vortex
states. Further bifurcations yield travelling wave solutions similar to previous analytic results valid in the ǫ → 0
limit. For ǫ = 0.02 the steady one-vortex state no longer exists, and the first bifurcation is directly to these travelling
wave solutions, consisting of pulse trains of Taylor vortices travelling toward the equator from both hemispheres, and
annihilating there in distinct phase-slip events. We explore these time-dependent solutions in detail, and find that they
can be both equatorially symmetric and asymmetric, as well as periodic or quasi-periodic in time.

Keywords: Spherical Couette flow, Hydrodynamic stability, Pattern formation

1. Introduction

How and why nonlinear systems form particular pat-
terns is of enormous interest in a broad variety of appli-
cations [1, 2, 3]. A recurring theme is the development of
small-scale patterns on a background that varies on large
scales. One fluid dynamical system in which this arises
naturally is spherical Couette flow – the flow between dif-
ferentially rotating concentric spheres – in the limit of a
very narrow gap. The expected scale for instabilities is
then the gap width ro − ri, whereas the scale on which the
background varies is the radius ri, where ri and ro are the
radii of the inner and outer spheres, respectively. If the
aspect ratio

ǫ = (ro − ri)/ri

is sufficiently small, the scale separation between instabil-
ities and background becomes arbitrarily large. Previous
work has traditionally been classified into three regimes:
wide gap ǫ > 0.24 [4, 5, 6], medium gap 0.12 < ǫ < 0.24
[7, 8, 9], and narrow gap ǫ < 0.12 [10, 11, 12]. We will here
concentrate on the very narrow gap regime ǫ ≤ 0.04, and
demonstrate that differences in the first few bifurcations
can occur even in this limited regime.

Wimmer [10, 11] performed experiments for gaps as thin
as ǫ = 0.0063, and found that roughly circular Taylor
vortices occurred in the equatorial regions. The ratio of
length scales is thus indeed ǫ, as expected. Asymptotic
solutions [13, 14] verified that the instability should be
localised to the equatorial region, and should occur for
Reynolds numbers somewhat larger than the correspond-
ing values in cylindrical geometry. This difference is due
to the large scale variation (curvature) of the spherical ge-
ometry, and the resulting meridional Ekman circulation

cells, in which fluid streams along the inner sphere to-
ward the equator and returns to the polar regions along
the outer sphere. This results in phase mixing, where fre-
quencies vary with position, causing a continual reduction
in lengthscales. This serves to enhance dissipation and is
thus a stabilising influence. Via utilisation of a WKBJ
method, accurate asymptotic values were first given by
[15].

Bartels [16] performed very early numerical simulations
in the narrow gap limit, as low as ǫ = 0.0256, and obtained
travelling wave solutions in which Taylor vortices propa-
gate toward the equator. However, computational limi-
tations in 1982 allowed only one single Reynolds number
to be computed at the smallest ǫ = 0.0256. Nevertheless,
these pioneering calculations form part of our motivation
for re-examining the same problem. The second line of re-
search motivating our work is a series of asymptotic anal-
yses by Soward, Bassom, and co-workers, most recently
summarized in [17].

Specifically, [18, 19] examined the case where the spheres
almost corotate (δ = (Ωi − Ωo)/Ωi ∼ ǫ1/2, where Ωi

and Ωo are the angular velocities of the inner and outer
spheres), also obtaining travelling wave solutions. Bassom
and Soward [20], influenced by work on thermal convec-
tion [21, 22], conclude that such solutions take the form of
pulse trains. They developed a rigorous analytic theory in
the ǫ → 0 limit, for which it is shown that pulse train so-
lutions exist when ǫ1/2 < δ < 1, encompassing cases from
almost co-rotation to a stationary outer sphere. Physically
it was shown that, for ǫ → 0, vortices exist in a region
localised around the equator, under some wave-envelope
with an amplitude proportional to the distance from the
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equator. There exists a dislocation halfway between pulse
centres, and over long time scales these centres drift pole-
ward, leading to unstable solutions. Blockley et al. [23]
expanded upon this to give a number of additional sym-
metry classes for the pulse train solutions, showing both
periodic and chaotic behaviour, and reached the conclusion
that such solutions are similar to the 3-D spiral vortices of
[24, 25, 26]. Indeed, the azimuthal evolution of the spiral
vortices is similar to the time evolution of axisymmetric
flow.

In this paper, we explore axisymmetric pulse train solu-
tions for ǫ = 0.04 and 0.02, and map out the bifurcation
sequences that arise. We show that ǫ = 0.04 still has some
aspects in common with much wider gaps (ǫ = 0.154), but
for ǫ = 0.02 the first bifurcation is directly to a pulse train
solution similar to the asymptotics discussed above. Fi-
nally, we link the structure of the wave-envelope, under
which vortices oscillate, to the bifurcation sequence and
phase-slips present in the flow.

2. Equations

We consider axisymmetric spherical Couette flow, with
radii ri and ro and angular velocities Ωi and Ωo at the
inner and outer spheres, respectively. The nondimensional
Navier-Stokes equation is

∂U

∂t
− Re−1

∇
2U = −∇p− U · ∇U, (1)

together with the incompressibility condition ∇ · U = 0.
Length and time have been nondimensionalised using the
inner radius ri, and the rotational period Ω−1

i , respec-
tively. The Reynolds number is thus defined as

Re = r2i Ωi/ν. (2)

The boundary conditions are no-slip, U = Ωi,o ri,o sin θ êφ

at the inner and outer spheres.
Since we only consider axisymmetric flow, it proves ad-

vantageous to decompose the velocity field into toroidal
and poloidal components,

U = v eφ + ∇× (ψ eφ), (3)

such that the incompressibility condition is automatically
fulfilled. The quantities v and ψ are further decomposed
into Chebyshev polynomials in r, and associated Legendre
functions in θ. Relatively little structure develops in the
radial direction, so ∼20 Chebyshev polynomials were suf-
ficient for all solutions considered here. In latitude though
we require up to 2000 Legendre functions, since we are
specifically interested in the small ǫ regime where the con-
trast between large and small scales is substantial. At such
large θ resolutions, the Legendre transforms used by [27]
turned out to be too inefficient. A new code was therefore
developed based on much the same general method, but
using the highly optimised ‘SHTNS’ Legendre transforms

of Schaeffer [28]. The resulting code was also benchmarked
against results from [29], with agreement to within a frac-
tion of one percent.

For this work, we focus solely on the case where only the
inner sphere is rotating, Ω0 = 0, which corresponds to the
δ = 1 results discussed by [20] and [23]. It should be noted
that many of their solution branches are qualitatively sim-
ilar regardless of whether the outer sphere is stationary or
co-rotating. We focus on the two values ǫ = 0.04 and 0.02,
and in each case increase Re to ∼10% above the first bifur-
cation. Based on the previous asymptotic work [19, 20], we
expect the critical Reynolds numbers to be around 5400
for ǫ = 0.04, and 15100 for ǫ = 0.02, after translating from
their Taylor number notation to our Re.

3. Results
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Figure 1: Schematic bifurcation diagrams for ǫ = 0.04 (top) and
ǫ = 0.02 (bottom). Solid lines indicate stable solutions, dashed lines
indicate verified unstable solutions, and dotted lines indicate pre-
sumed unstable solutions. The colours represent different symmetries
and time dependencies in the solutions: black is symmetric steady
state, red is symmetric periodic, blue is asymmetric periodic, and
green is asymmetric quasiperiodic. Crosses correspond to solutions
shown in figure 2; asterisks denote solutions in figure 3.

Figure 1 shows schematic bifurcation diagrams for ǫ =
0.04 and 0.02. In both cases the basic state before any
bifurcations occur is the so-called zero-vortex state, hav-
ing only one extremely elongated Ekman circulation cell
in each hemisphere, but no Taylor vortices. Turning to
ǫ = 0.04 first, we see that this basic state becomes unstable
via a subcritical pitchfork bifurcation at Re = 5395. The
intermediate stages of the subsequent evolution are equa-
torially asymmetric, but the system eventually equilibrates
to an equatorially symmetric state again, the so-called one-
vortex state, having one Taylor vortex in each hemisphere
(so two vortices in total). If Re is subsequently reduced
again, this one-vortex branch exhibits a slight amount of
hysteresis, existing back down to a turning point bifurca-
tion at Re = 5391. If instead Re is increased, the one-
vortex state remains stable up to Re ≈ 5450, where it also
becomes unstable to a subcritical pitchfork bifurcation.

2



The subsequent transients again involve equatorial asym-
metry, but the final equilibrated solution is again equa-
torially symmetric, the two-vortex state, with two Taylor
vortices in each hemisphere. This transition between the
one state and the two state also involves a slight degree of
hysteresis, as indicated in figure 1. Finally, we note that
the zero and two states are continuously connected by solu-
tions that are unstable to equatorially asymmetric pertur-
bations, but which can easily be computed by artificially
suppressing these asymmetric flow components. Figure 2
shows examples of these zero-, one- and two-vortex states,
as well as one-dimensional slices of ψ(θ) at a constant r
roughly in the middle of the gap. The Taylor vortices show
up very clearly as oscillations in these slices. The gradual
linear trend that is also noticeable is due to the large-scale
Ekman cells.
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Figure 2: The top row shows contours of meridional circulation ψ

for zero-, one- and two-vortex states at Re = 5395, 5400 and 5440,
respectively, and all three at ǫ = 0.04. The bottom row shows ψ as a
function of θ only (varying ±5◦ from the equator), at the particular
value of r indicated by the dotted lines in the top row. The three
curves are color coded according to: blue, red, green corresponds to
zero, one, two states, respectively.

For ǫ = 0.154, the bifurcation diagram of [8] details
exactly the same sequence of zero-, one- and two-vortex
states as our ǫ = 0.04 solutions; compare in particular our
Figure 1 with Figure 6 of [8]. It is only subsequent bifurca-
tions that are different; [8] obtain a variety of other steady
solutions, including equatorially asymmetric ones, whereas
we obtain time-dependent pulse train solutions. The time-
dependent solutions at ǫ = 0.04 are similar though to the
ones at ǫ = 0.02, so we only studied the latter case in
full detail. Similar axisymmetric time-dependent solutions

were noted by [26] for ǫ = 0.06, though not discussed in
any detail.

Turning then to ǫ = 0.02, and comparing it with
ǫ = 0.04, the first point to note is that the one-vortex
state has disappeared entirely, and the zero and two states
now merge together without any unstable gap in between.
That is, the two state is now effectively part of the basic
state still, in the sense that no bifurcations occur as Re
is increased up to where a two state exists. This smooth
transition from the zero state to the two state is similar
to the imperfect bifurcation to normal modes in cylindri-
cal Taylor-Couette flow with endcaps [30]. By varying ǫ
between 0.02 and 0.04, it is relatively straightforward to
determine where the transition from one bifurcation dia-
gram to the other occurs. The unstable solutions connect-
ing the zero and two states still exist at ǫ = 0.023, but
at ǫ = 0.022 this unstable segment has ceased to exist,
and the zero and two state merge together in a way that is
not only continuous, but stable throughout the entire solu-
tion branch. Determining how far ǫ can be reduced before
the one state ceases to exist is somewhat more difficult
to compute, since calculations in the vicinity of turning
points inevitably take very long to equilibrate. It seems
though that the one state also disappears somewhere be-
tween ǫ = 0.025 and 0.02. The one state disappearing,
and the unstable gap between the zero and two states dis-
appearing, are two separate phenomena though, and thus
almost certainly do not happen at precisely the same crit-
ical value of ǫ. However, as there is no particular interest
in knowing precisely for which ǫ values either event occurs,
we return instead to the single value ǫ = 0.02, and continue
increasing Re until the basic state (now the two state) does
eventually become unstable. This occurs at Re = 15118,
where a supercritical Hopf bifurcation leads to a branch of
periodic, equatorially symmetric travelling pulse solutions,
of exactly the variety explored by [19, 20, 23]. Indeed, the
solution is qualitatively very similar to that in Fig. 3 of
[23]. At onset the period is τ = 214.

As previously seen in figure 2, all the interesting dynam-
ics occur in θ, with relatively little structure in r. The
entire space-time dependence of the solutions can then be
conveniently captured in so-called Hovmöller plots, show-
ing ψ(θ, t) at fixed r = (ri + ro)/2. Figure 3 shows re-
sults of the first few bifurcations (see again figure 1 for the
entire bifurcation diagram). The initial Hopf bifurcation
from the steady two-vortex state to a time-dependent state
results in Taylor vortices drifting toward the equator, com-
ing symmetrically from both hemispheres. At the equator
pairs of vortices are periodically destroyed in phase-slip
events, as seen in the top row of figure 3. Note the crucial
role played by the equator in organising these solutions;
this probably explains why there are no analogous phase-
slip solutions in cylindrical Taylor-Couette flow.

Further increasing Re, at Re = 15245 this equatorially
symmetric solution undergoes a subcritical pitchfork bifur-
cation to an equatorially asymmetric perturbation. The
middle row of figure 3 shows the resulting new solution
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Figure 3: From top to bottom, Hovmöller plots of ψ(θ, t) for Re = 15200, 15250, 15650. The black lines denote slices of ψ(θ) used in figure 4.

branch. We note how the previous equatorial symmetry
ψ(θ, t) = −ψ(π − θ, t) has been broken, but the solu-
tion still preserves the so-called shift-and-reflect symme-
try ψ(θ, t) = −ψ(π − θ, t + T/2), where T is the period.
Notice also how the phase-slips now occur several degrees
off the equator, alternating in the two hemispheres. If Re
is decreased again, this shift-and-reflect solution branch
exists back down to Re = 15210, thus having a slight
amount of hysteresis with the previous equatorially sym-
metric branch. If instead Re is increased, it exists up to
Re = 15775. We conjecture that the ends of the interval
are both turning point bifurcations, with unstable solution
branches connecting as in figure 1.

If Re is increased beyond 15775, the system switches
back to an equatorially symmetric solution (again with
hysteresis if Re is then reduced). The bottom row of figure
3 shows these solutions. Note how phase-slips now occur
alternately on the equator and ∼ 7◦ offset from it. Finally,
as indicated in figure 1, the two equatorially symmetric
solution branches existing for 15118 ≤ Re ≤ 15245 and
15575 ≤ Re ≤ 16190 are continuously connected by solu-
tions that are unstable to equatorially asymmetric pertur-
bations, but which can easily be computed by artificially
suppressing these asymmetric flow components (just as be-
fore for the branch connecting the ǫ = 0.04 zero and two
states).

Figure 4 shows further details of these three types of so-
lutions, and their resulting phase-slip events. The rows are
the same as in figure 3; the left and right panels then cor-
respond to the particular times indicated by the two black

lines shown for each solution in figure 3. Each panel shows
ψ(θ) at that time, as well as just before and after, to give
a clearer indication of the nature of the time-dependence,
that is, the phase-slip events. In the top row (the sym-
metric solution at Re = 15200), we see that between the
phase-slips the pattern is essentially steady, whereas dur-
ing the phase-slips the pattern right at the equator evolves
very quickly. In the middle row (the shift-and-reflect so-
lution at Re = 15250), the phase-slips again occur very
quickly, in each case at the edge of the wave packet that is
closer to the equator. In the bottom row (the symmetric
solution at Re = 15650), the phase-slips occur alternately
in the middle and the edges of the wave packet. In all cases
the time-dependence is most rapid where the phase-slips
are occurring, with the rest of the wave packets remain-
ing essentially steady during the phase-slips. Finally, note
how the number of Taylor vortices within the wave pack-
ets increases as Re is increased. This suggests a natural
explanation for the existence of the intermediate shift-and-
reflect solutions; if the number of Taylor vortices naturally
increases by one at a time, then there must inevitably be
solutions that are not equatorially symmetric.

Finally, if Re is increased beyond 16190, these equato-
rially symmetric, periodic solutions become unstable to a
secondary Hopf bifurcation, leading to quasi-periodic so-
lutions. The full details of these patterns, and transitions
between them, are very difficult to compute, as extremely
long run times are required. We therefore did not attempt
to map out the precise nature of any subsequent bifurca-
tions in this quasi-periodic regime. Figure 5 shows four
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Figure 4: From top to bottom, Re = 15200, 15250, 15650, as in figure 3. The left and right panels correspond to the times indicated by the
two vertical lines in figure 3. Each panel then shows ψ(θ) at exactly that time as a solid black line, four rotation periods before as a red
dashed line, and four rotation periods after as a blue dot-dashed line.

examples of typical behaviour.

At Re = 16200 we still see pulse trains of Taylor vor-
tices travelling toward the equator from both hemispheres.
However, in the immediate vicinity of the equator, between
approximately 85◦ and 92◦, there is instead a unidirec-
tional drift, from ‘south’ to ‘north’. (There is presumably
also a different solution where this drift would be in the
opposite direction.) The phase-slip events then occur at
the boundaries, where the outer pulse trains impinge on
this equatorial region. The quasi-periodicity of the solu-
tions comes about because the drift rates of the inner and
outer pulse trains do not match up in any simple ratio.

For greater Re, the phase-slip events have disappeared
entirely, and there are only pulse trains that either oscil-
late up and down, at Re = 16250 and 16400, or else travel
unidirectionally, at Re = 16275. It is possible of course
that even these unidirectionally travelling solutions would
eventually reverse their direction of travel on some suffi-
ciently long time-scale. That is, all three of these solutions

could potentially be qualitatively exactly the same, just
with reversal periods that vary enormously with Re. This
difficulty in knowing how long one must integrate before
one has truly captured all the dynamics of the solutions
just underscores the computational difficulties in fully ex-
ploring this quasi-periodic regime.

4. Conclusion

The pulse train solutions we have numerically computed
here are in excellent qualitative agreement with the asymp-
totic results of [18, 19, 20, 23, 17]. In accordance with their
results, we agree also that a new ‘very narrow gap’ regime
ought to be defined, in which these pulse train solutions
are the first bifurcation from the basic state. We have
identified that this point occurs around ǫ ≈ 0.023, with
narrower gaps having pulse trains as the first bifurcation,
but wider gaps having the first few bifurcations at least be-
ing the same as throughout the remainder of the ‘narrow

5



Figure 5: From top to bottom, Hovmöller plots of ψ(θ, t) for Re = 16200, 16250, 16275, and 16400.

gap’ regime. Within the pulse train regime, we obtained a
broad variety of solutions, including equatorially symmet-
ric and asymmetric, as well as periodic and quasi-periodic.
Finally, we note that it would be of interest to compute the
possibility of non-axisymmetric solutions in some of these
regimes, as observed experimentally by [24] at ǫ = 0.08 as
well as numerically by [26] at ǫ = 0.06. Computationally
though this would be even more challenging than the cal-
culations presented here, so any attempts in this direction
are deferred to future work.
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Highlights

• Pulse trains of Taylor vortices travel towards the equator from each 

hemisphere.

• Solutions are equatorially symmetric or asymmetric, and periodic or 

quasi-periodic.

• Separate bifurcation sequences are found for narrow and very-narrow 

gaps.


