
This is a repository copy of Congestion Control for 6LoWPAN Networks: A Game
Theoretic Framework.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/112757/

Version: Accepted Version

Article:

Al-Kashoash, HAA orcid.org/0000-0001-9681-8285, Hafeez, M and Kemp, AH (2017)
Congestion Control for 6LoWPAN Networks: A Game Theoretic Framework. IEEE Internet
of Things Journal, 4 (3). pp. 760-771. ISSN 2327-4662

https://doi.org/10.1109/JIOT.2017.2666269

© 2016, IEEE. This is an author produced version of a paper published in IEEE Internet of
Things . Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works. Uploaded in
accordance with the publisher’s self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

Congestion Control for 6LoWPAN Networks:

A Game Theoretic Framework
Hayder A. A. Al-Kashoash, Student Member, IEEE, Maryam Hafeez, Member, IEEE, and

Andrew H. Kemp, Senior Member, IEEE

Abstract—The Internet of Things (IoT) has been considered
as an emerging research area where the 6LoWPAN (IPv6 over
Low-Power Wireless Personal Area Network) protocol stack is
considered as one of the most important protocol suite for the
IoT. Recently, the Internet Engineering Task Force has developed
a set of IPv6 based protocols to alleviate the challenges of
connecting resource limited sensor nodes to the Internet. In
6LoWPAN networks, heavy network traffic causes congestion
which significantly degrades network performance and effects
the quality of service (QoS) aspects e.g. throughput, end-to-end
delay and energy consumption. In this paper, we formulate the
congestion problem as a non-cooperative game framework where
the nodes (players) behave uncooperatively and demand high data
rate in a selfish way. Then, the existence and uniqueness of Nash
equilibrium is proved and the optimal game solution is computed
by using Lagrange multipliers and KKT conditions. Based on this
framework, we propose a novel and simple congestion control
mechanism called game theory based congestion control frame-
work (GTCCF) specially tailored for IEEE 802.15.4, 6LoWPAN
networks. GTCCF is aware of node priorities and application
priorities to support the IoT application requirements. The
proposed framework has been tested and evaluated through two
different scenarios by using Contiki OS and compared with
comparative algorithms. Simulation results show that GTCCF
improves performance in the presence of congestion by an overall
average of 30.45%, 39.77%, 26.37%, 91.37% and 13.42% in
terms of throughput, end-to-end delay, energy consumption,
number of lost packets and weighted fairness index respectively
as compared to DCCC6 algorithm.

Index Terms—Congestion control, rate adaptation, non-
cooperative game theory, 6LoWPAN networks, IoT applications.

I. INTRODUCTION

THE IoT is considered to be the next big opportunity and

challenge for the Internet research community [1]. The

IoT is an emerging paradigm in which a variety of things or

objects such as wireless sensor nodes, radio frequency iden-

tification (RFID) tags and near field communication (NFC)

devices are able to interact with each other and cooperate to

achieve a common goal [2]. These things are connected to the

Internet where they can collaborate and provide services such

as smart environments, health care, etc. [2].

H. A. A. Al-Kashoash is with the Electronic and Electrical Engineering
School, University of Leeds, Leeds LS2 9JT, U.K., and also with Tech-
nical Institute/Qurna, Southern Technical University, Basra, Iraq (e-mail:
ml14haak@leeds.ac.uk; hayderaam@gmail.com).

M. Hafeez and A. H. Kemp are with the Electronic and Electrical
Engineering School, University of Leeds, Leeds LS2 9JT, U.K. (e-mail:
m.hafeez@leeds.ac.uk; a.h.kemp@leeds.ac.uk).

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Wireless sensor networks (WSNs) are considered as one of

the most important elements in the IoT [3]. 6LoWPANs [4]

are used for full integration of WSN with the Internet where

sensor nodes implement the Internet Protocol (IP) stack though

it was originally designed for wired networks. However, the

implementation of the TCP/IP model in WSN and 6LoWPAN

networks has many issues and problems due to the limitation

of bandwidth, energy and buffer resources. TCP requires extra

resources for connection setup and termination before and

after the data transmission whilst UDP does not provide a

congestion control mechanism. Thus, TCP and UDP are not

efficient for WSN and 6LoWPAN networks [1], [2]. Therefore,

one of the main issues in WSN and 6LoWPAN networks is

congestion that causes packet loss, increased energy consump-

tion and degraded throughput.

WSNs connected to the Internet through 6LoWPAN have

wide applications in industrial, automation, healthcare, mil-

itary, environment, logistics, etc. An estimate by Bell Labs

suggests that from 50 to 100 billion things are expected to

be connected to the Internet by 2020 [5], and the number

of the wireless sensor devices will account for a majority

of these. Generally, the applications can be categorized into

four types: event-based, continuous, query-based and hybrid

applications based on the data delivery method [6]. In the

hybrid application type, the first three categories are combined

into hybrid application i.e. sensor nodes send packets in

response to an event (event-based) and at the same time

send packets periodically (continuous) as well as send a reply

to a sink query (query-based). This type of application will

be common in the future as WSNs are integrated with the

Internet to form the IoT [2]. In the IoT applications, the

sensor nodes host many different application types simultane-

ously (event-based, continuous and query-based) with varied

requirements. Some of them are real-time applications where

the application data is time critical and delay constrained,

while others are non-real time applications. Some applications

send very important data and losing this data is not permitted

e.g. medical applications and fire detection applications. This

brings new challenges to the congestion control algorithms

and mechanisms designed to be aware of application priorities

as well as node priorities. However, according to our best

knowledge; none of the existing congestion control literature

in WSNs and 6LoWPAN networks supports awareness of both

node priorities and application priorities. To address this, later

we define a ‘priority cost function’ to support node priority

awareness and distinguish between high priority nodes and

low priority nodes.

2

In 6LoWPAN networks, every node selects its parent based

on RPL (IPv6 routing protocol for low-power and lossy

networks) [7] where there are three types of nodes: sink node,

intermediate node and leaf node. When congestion occurs,

the leaf nodes start to send high data rate packets to their

parent node where each leaf node wants to send packets

as high as it can in a selfish way without considering the

remaining channel capacity, the available parent’s buffer space

and the other leaf nodes’ sending rate. This problem can be

formulated as a non-cooperative game where each selfish leaf

node is modelled as a player in the game. To the best of

our knowledge, none of the existing work in the congestion

control literature of WSNs and 6LoWPAN networks uses game

theory to solve the congestion problem through traffic control

(rate adaptation). However, the non-cooperative game theory

gives a natural and suitable framework to study and formulate

the congestion control problem in 6LoWPAN networks where

the nodes (players) are non-cooperative in their behaviors and

each node demands high data rate in a selfish way. Also,

the non-cooperative game theory provides an optimal solution

concept, which is Nash equilibrium, where each player (node)

plays a strategy (sending rate) to maximize its payoff given

the strategies of other players.

This paper is motivated by these considerations to propose

a new congestion control algorithm called “Game Theory

based Congestion Control Framework” (GTCCF) which uses

the non-cooperative game theory framework to solve the

congestion problem and is aware of both node priorities and

application priorities to support the IoT application require-

ments. Our main contributions in this paper include:

• Design a congestion control game for mitigating congestion

in 6LoWPAN networks. The node’s payoff function is

formulated to achieve the node demand (preference) for

sending high data rate (utility function) and the desirable

fairness among leaf nodes according to their priorities

(priority cost function), while alleviating and mitigating

congestion in the network (congestion cost function).

• Prove the existence and uniqueness of Nash equilibrium in

the formulated congestion control game. Also, the node’s

payoff function is modelled as a constrained nonlinear

optimization problem which is solved by using Lagrange

multipliers and KKT (Karush-Kuhn-Tucker) conditions such

that each node obtains its optimal solution (sending rate) that

satisfies the congestion alleviation.

• By using the formulated game, we propose a novel and

simple congestion control algorithm called GTCCF which is

aware of node priorities and application priorities to support

the IoT application requirements. Also, the proposed frame-

work is designed and built on the unique characteristics of

the IEEE 802.15.4 standard, IPv6 and 6LoWPAN protocol

stack.

• Implement and evaluate the performance of the proposed

framework in the real IoT operating system, Contiki OS

[8], through Cooja simulator [9].

The remainder of the paper is organized as follows: in

section II, we provide a review of related work on congestion

control in 6LoWPAN networks. Section III introduces a non-

cooperative game framework for congestion control, proves

the existence of a unique Nash equilibrium and computes the

optimal solution for the designed game. The implementation

of the congestion control game in 6LoWPAN networks is

provided in section IV. In section V, simulation scenarios and

results are given. Finally, section VI draws conclusions.

II. RELATED WORK

Numerous algorithms have been proposed in the congestion

control literature for mitigating congestion in WSNs (see [6]

and references therein). However, the most of the existing

literature do not take into account the unique characteristics

of the IEEE 802.15.4 standard, IPv6 and 6LoWPAN protocol

stack (i.e. RPL routing protocol, the adaptation layer and

IEEE 802.15.4 MAC and PHY layers). Recently, a number

of papers suggest new congestion control algorithms for

6LoWPAN networks. A short review of these mechanisms is

given below. However, according to our best knowledge, none

of the proposed algorithms in congestion control literature

for WSNs and 6LoWPAN networks: (i) uses game theory

for traffic control (rate adaptation) [10], [11] to solve the

congestion problem (the work in [12] and [13] (the content

of these two papers overlaps) use game theory for parent

selection (routing)) and (ii) supports and is aware of both

node priorities and application priorities. However, the non-

cooperative game theory provides an analytical framework

suited for characterizing the interactions and decision mak-

ing process among several players with conflicting interests

[14]. Therefore, in this work, we use the non-cooperative

game theory framework to solve and mitigate the congestion

problem. Moreover, this is the first work that is aware of

both node priorities and application priorities to support the

IoT application requirements where each node is assigned a

priority based on its importance and hosted application types

as well as each application is given a priority according to its

type (i.e. real-time application or not, time-critical application

or not, etc.).

In [15], Michopoulos et al. proposed a new congestion con-

trol algorithm called Duty Cycle-Aware Congestion Control

(DCCC6) for 6LoWPAN networks. The proposed algorithm

detects the presence of radio duty cycle and adjusts its

operation accordingly. The proposed protocol uses a dynamic

buffer occupancy as a congestion detection method as well as

a modified AIMD (Additive-Increase Multiplicative-Decrease)

to reduce the congestion in the network. In [16], Castellani

et al. proposed three different congestion control schemes

called Griping, Deaf and Fuse for controlling unidirectional

and bidirectional data flows in (Constrained Application Pro-

tocol) CoAP/6LoWPAN networks. The proposed algorithms

are based on distributed back pressure concept. The proposed

algorithms use a buffer occupancy strategy (in Griping) and

missing acknowledgement packet (in Deaf and Fuse) to detect

the congestion as well as AIMD scheme to mitigate the

congestion by adjusting the transmission rate to reduce the

injected packets into the network.

In [17], Hellaoui and Koudil proposed a congestion control

solution for CoAP/6LoWPAN networks. The proposed algo-

rithm is based on a bird flocking concept to pass packets

3

through uncongested areas and avoid congested ones. The

proposed mechanism uses the buffer occupancy strategy to

detect congested nodes in the network as well as the resource

control method to mitigate the congestion by selecting the least

congested routes to deliver packets to the destination (sink

node). In [18], [19], Kim et al. proposed an effective queue

utilization based RPL algorithm called (QU-RPL). QU-RPL

uses the queue utilization factor in parent selection process to

satisfy the traffic load balancing. When a node experiences a

certain number of consecutive buffer overflows, it broadcasts

a DIO (DODAG Information Object) message which contains

the congestion information. The node changes its parent on

experiencing congestion with one that has less buffer occu-

pancy and lower hop distance to sink node. Otherwise, without

congestion, the node chooses its best parent based on the same

parent selection mechanism of the default RPL.

In [12] and [13], the authors proposed a congestion control

mechanism called Game Theory Congestion Control (GTCC)

for 6LoWPAN networks. The proposed protocol detects con-

gestion by using the network packet flow rate which is packet

generation rate subtracted by packet service rate. When a

parent node detects congestion, it sends a congestion mes-

sage to its children through a DIO control packet. When

the children nodes receive the DIO packet, they start the

parent-change procedure. In this procedure, the node uses the

potential game theory method to decide whether to change

its parent or not. When the node changes its parent, it broad-

casts a new DIO message to notify other nodes and update

their information. In [20], Tang et al. proposed a congestion

avoidance multipath routing algorithm based on RPL called

CA-RPL. Also, the authors propose a routing metric for RPL

called DELAY ROOT which minimizes the average delay

toward the root node. CA-RPL mitigates network congestion

by distributing a large amount of traffic to different paths.

The proposed algorithm uses the DELAY ROOT and three

other metrics: ETX (expected transmission count), rank and

number of received packets for parent selection process. In

[21], Al-Kashoash et al. proposed a new RPL based objective

function called congestion-aware objective function (CA-OF)

that works efficiently when congestion occurs. The proposed

objective function combines two metrics (buffer occupancy

and ETX) and forwards packets to sink node through less

congested nodes. CA-OF reflects how much the nodes are

congested by using buffer occupancy metric and how much

the wireless link is congested by using ETX metric.

III. GAME THEORETIC FORMULATION

A. Network Setup and Problem Formulation

In 6LoWPAN networks, the RPL routing protocol [7] is

responsible for constructing the network topology where three

types of nodes are defined: sink (root) node which provides

connectivity to other networks, intermediate node which for-

wards packets to the sink and leaf node. The construction

of network topology is based on the DAG (Directed Acyclic

Graph) concept where every node selects a neighbour as its

parent based on an objective function. RPL organises nodes

as Destination Oriented DAGs (DODAG) where a sink node

Fig. 1. RPL based network topology

works as the root of the DAG which is responsible to start

forming the network topology. The DAG root broadcasts a

DIO control message to other nodes in the network. When

an intermediate node receives the DIO message, it replies to

the sink node with DAO (Destination Advertisement Object)

for joining the DODAG. Then, the intermediate node sends a

DIO message to all neighbours. This process continues until

the DIO message reaches the leaf nodes. When a node receives

a DIO message from more than one neighbour, it selects its

parent with a best rank. Also, when a node does not receive a

DIO message within a specific time, it sends a DIS (DODAG

Information Solicitation) message to solicit DIO message from

neighbours. The formed network topology is shown in Fig. 1.

Consider a network of one sink node, S, a set of interme-

diate nodes, I , and a set of leaf nodes, L, as shown in Fig.

1. We consider a group of leaf nodes (L1, L2, . . . , Lm) are

competing to send data packets to the sink node through path

I1 (parent), I2, . . . , Il (dash lines in Fig. 1). We denote by

Lk to leaf node k; ∀k ∈ M where M = {1, 2, ..., k, ...,m}.
Also, we assume that: (i) Each node in the network has a

buffer size of B packets, (ii) The leaf nodes have different

priorities P = {p1, ..., pk, ..., pm} where pk is the priority of

node Lk; ∀k ∈M . The priorities of leaf nodes are specified by

user based on importance of node and importance of hosted

applications, (iii) Each leaf node hosts N applications with

different priorities where N = {1, 2, ..., j, ..., n}; we denote

by pjk to the priority of application j hosted in leaf node Lk for

all k ∈M and j ∈ N . The priorities of hosted applications are

specified by user based on importance and type of application

(i.e. real-time application, reliable application, etc.), (iv) Each

leaf node Lk has a maximum sending packet rate of λmax
k .

In 6LoWPAN networks, when congestion occurs, the leaf

nodes (L1, L2, . . . , Lm) start to send high data rate packets

to their parent (I1) in a selfish way where each leaf node

wants to send as many packets as it can without taking

into account the available channel bandwidth, the buffer

occupancy of the parent, the forwarding (service) rate of

the parent node and sending rate of other leaf nodes. This

will increase packet loss, energy consumption and end-to-end

delay, decrease the network performance and throughput and

impact on the QoS aspects. These selfish leaf nodes and their

parent can be modelled as the following non-cooperative game

G = (M, (Sk)k∈M , (Φk)k∈M) where:

4

• Players: we have a group of M players (leaf nodes),

L1, ..., Lk, ..., Lm where m represents number of leaf nodes

which are associated with parent, I1.

• Strategies: Sk; ∀k ∈M represents the feasible action space

for player Lk. Each node (player) Lk can send a minimum

data rate of zero and a maximum data rate of λmax
k . Thus,

Sk = [0, λmax
k] and the strategy space for all players is

S =
∏m

k=1 Sk = [0, λmax
1]×· · ·×[0, λmax

k]×· · ·×[0, λmax
m].

• Payoff function: we use Φk : S → R to represent payoff

function of player Lk; ∀k ∈ M . The objective function of

player Lk is to optimize its profit by maximizing its payoff

function Φk with respect to λk over [0, λmax
k].

In our framework, the payoff function is modelled to reflect

the leaf node demand (desire) for sending high data rate (utility

function), how much the parent node is congested due to

the leaf nodes (congestion cost function) and the importance

(priority) of the leaf node (priority cost function). Thus, the

payoff function includes the following three functions:

• Utility function: we use Uk(λk) to represent the utility

function of player Lk where λk is sending rate (strategy)

of player Lk. The utility function is designed such that

each player gets more profit by increasing its sending rate.

Many types of utility function are commonly used such as

exponential, logarithmic, linear and sigmoidal [22]. In our

framework, we use the logarithmic utility function as it has

strict concavity property. Thus, we select the utility function

of player Lk as follows:

Uk(λk) = log(λk + 1) (1)

• Congestion cost function: we use Ck(λk, λ−k) to represent

the congestion cost of node (player) Lk where λ−k =
[λj]j∈M ;j 6=k is the vector of sending rates (strategies) of

all players except player Lk and s = (λk, λ−k) ∈ S is

referred to as the strategy profile. This function reflects

how much the parent node is congested due to the leaf

nodes. According to Queuing Theory; if the arrival rate

at the parent node’s buffer is higher than the service rate

from the parent, the buffer starts overflowing the packets

and congestion occurs. Thus, one possible method is to

choose the congestion cost function as the ratio between the

total receiving rate and total forwarding rate at the parent’s

buffer. As the receiving rate is greater than the forwarding

rate, the ratio increases. Also, the number of leaf nodes

has an impact on congestion. As the number of leaf nodes,

m, increases, the congestion situation becomes worse at

the parent. Assume that a number of sending packets from

the leaf nodes are lost on the wireless channel before they

arrive to the parent node with a probability of P channel−loss
k ;

∀k ∈M . Thus, the congestion cost function can be defined

as follows:

Ck(λk, λ−k) = m

m
∑

k=1

(1− P channel−loss
k)λk + 1

λout + 1
(2)

where λout is the outgoing rate from the parent node such

that λout ≥ 0.

In [23], congestion analysis for 6LoWPAN networks with

different parameters and various scenarios was explored. It

demonstrated that the majority of packets are lost in the

nodes’ buffer as compared to wireless channel loss when

congestion occurs. For example, with high offered load (i.e.

8 packets/second), the percentage of packet loss due to

buffer overflow is up to 99.66% compared to 0.33% due to

channel loss. Therefore, to simplify the analysis, we assume

that P channel−loss
k in equation (2) is zero; ∀k ∈ M . Thus,

Ck(λk, λ−k) becomes as follows:

Ck(λk, λ−k) = m
λin + 1

λout + 1
(3)

where λin =
m
∑

k=1

λk, λout ≥ 0 and 0 ≤ λk ≤ λmax
k for all

k ∈M .

Remark 3.1: We add 1 to λk in equation (1) and to λout in

the denominator of equation (2) to avoid making the values

of utility function and congestion cost function equal to −∞
and ∞ respectively. Since the value of λk ranges from zero

to λmax
k and the value of λout is greater than or equal to

zero; therefore, without adding 1, Uk(λk) = −∞ when

λk = 0 and Ck(λk, λ−k) = ∞ when λout = 0 for all

k ∈M .

• Priority cost function: we use Pk(λk; pk) to represent the

priority cost function of player Lk; ∀k ∈M . Player Lk has

to pay a penalty based on its priority (pk) and its sending

rate (λk) to distinguish between high priority nodes and low

priority nodes. A player with less pk value has high priority

(e.g. if pi = 1 and pj = 2, this means that player Li has

higher priority than player Lj). Therefore, the priority cost

function of player Lk can be defined as follows:

Pk(λk; pk) = pkλk (4)

After we define the utility function Uk(λk), congestion cost

function Ck(λk, λ−k) and priority cost function Pk(λk; pk) for

player Lk; ∀k ∈ M ; therefore, the payoff function of player

Lk can be stated as follows:

Φk(λk, λ−k) = ωk log(λk+1)−αkm
λin + 1

λout + 1
−βkpkλk (5)

where ωk, αk and βk are player preference parameters of

functions Uk(λk), Ck(λk, λ−k) and Pk(λk; pk) respectively

such that ωk, αk, βk > 0; ∀k ∈ M . The values of ωk, αk

and βk are chosen by user to satisfy the system objective and

requirement. For example, as the value of βk is greater, the

difference between sending rate (λk) of high priority node and

low priority node is higher and vice versa.

A non-cooperative game has a solution when Nash

equilibrium exists. In the congestion control game G =
(M, (Sk)k∈M , (Φk)k∈M), a vector of strategies (sending rates)

s∗ ∈ S is called Nash equilibrium if no player can improve its

payoff by changing its strategy while other players maintain

their current strategies where s∗ = [λ∗1, . . . , λ
∗
k, . . . , λ

∗
m].

Mathematically, in this game, Nash equilibrium is M-tuple

{λ∗k}k∈M that satisfies:

Φ(λ∗k, λ
∗
−k) ≥ Φ(λk, λ

∗
−k)

∀λ∗k, λk ∈ Sk, λ
∗
k 6= λk, ∀k ∈M .

5

Lemma 3.2: In the congestion control game G =
(M, (Sk)k∈M , (Φk)k∈M), ∀k ∈ M , every strategy set Sk is

compact and convex, Φk(λk, λ−k) is continuous function in

the profile of strategies s ∈ S and concave in Sk; then, the

game G has at least one Nash equilibrium.

Proof: The strategy set for all players {Lk}k∈M is

S =
∏m

k=1 Sk where 0 ≤ Sk ≤ λmax
k ; ∀k ∈ M . As

Sk = [0, λmax
k], the strategy set of player Lk (Sk) is closed

and bounded. Thus, the set Sk is compact for all k ∈M .

Assume two points x, y ∈ Sk and γ = [0, 1]. Thus we have

0 ≤ γx+ (1− γ)y ≤ λmax
k

this means that the point γx+ (1− γ)y ∈ Sk. Therefore, we

can say that the set Sk is convex; ∀k ∈M .

Consider the following twice-differentiable payoff function

of player Lk:

Φk(λk, λ−k) = ωk log(λk + 1)− αkm
λin + 1

λout + 1
− βkpkλk

In order to determine the concavity of the payoff function,

we define Hessian of Φk(s), where s = {λk}k∈M , as follows:

H(s) =











A11 A12 . . . A1m

A21 A22 . . . A2m

...
...

. . .
...

Am1 Am2 . . . Amm











(6)

where Akj =
∂2Φk

∂λk∂λj
∀k, j ∈M .

For all λk such that ωk, αk, βk > 0 and λout > 0; ∀k ∈M ,

Ak,j =







− ωk

(λk + 1)2
< 0 if k = j; ∀k, j ∈M

0 if k 6= j; ∀k, j ∈M
(7)

According to the leading principal minor of H(s), it is clear

that H(s) is negative definite for all s ∈ S, thus, Φk(λk, λ−k)
is strictly concave in Sk; ∀k ∈M .

According to the Nikaido Isoda theorem [24], these condi-

tions (in Lemma 3.2) are sufficient to satisfy the existence of

at least one Nash equilibrium in the game G.

Lemma 3.3: The congestion control game G =
(M, (Sk)k∈M , (Φk)k∈M) admits unique Nash equilibrium in

its pure strategy space.

Proof: Let r = (r1, r2, ..., rm) be an arbitrary vector

of fixed positive parameters. Based on Rosen’s Theorem

(Theorem 2) [25], we define the weighted nonnegative sum

of the payoff functions Φk(λk, λ−k); ∀k ∈M as follows:

σ(λk, λ−k; r) =

m
∑

k=1

rkΦk(λk, λ−k), rk ≥ 0 (8)

The pseudogradient of σ(λk, λ−k; r) is given by:

g(λk, λ−k; r) =











r1∇Φ1(λ1, λ−1)
r2∇Φ2(λ2, λ−2)

...

rm∇Φm(λm, λ−m)











(9)

where ∇Φk(λk, λ−k) =
ωk

λk + 1
− αkm

1

λout + 1
− βkpk,

∀k ∈M .

Now, we define the Jacobian matrix (G(λk, λ−k; r)) of

g(λk, λ−k; r) with respect to λk as follows:

G(λk, λ−k; r) =











B11 B12 . . . B1m

B21 B22 . . . B2m

...
...

. . .
...

Bm1 Bm2 . . . Bmm











(10)

where Bi,j = riAi,j ; ∀i, j ∈M .

Now, it is clear that the symmetric matrix [G(λk, λ−k; r)+
GT (λk, λ−k; r)] is negative definite for all λk, λ−k ∈ S. Then,

Rosen’s Theorem (Theorem 6) [25] states that the function

σ(λk, λ−k; r) is diagonally strictly concave. Therefore, ac-

cording to Rosen’s Theorem (Theorem 2) [25], the game G
has unique Nash equilibrium in its pure strategy space.

B. Game Solution Computation

After we design the congestion control game and prove the

uniqueness of Nash equilibrium in the strategy space of each

player, we need to find and compute the optimal game solution

(λ∗k) where each player chooses a strategy that maximize its

payoff function. Consider the following constrained nonlinear

optimization problem (P):

maximize
λk∈Sk

Φk(λk, λ−k)

subject to λk ≥ 0

λk ≤ λmax
k , ∀k ∈M.

(11)

in order to solve the problem (P), we introduce the Lagrange

multipliers uk and vk and define the Lagrangian function

Lk(λk, uk, vk) for player Lk; ∀k ∈M as follows:

Lk = Φk(λk, λ−k) + ukλk + vk(λ
max
k − λk) (12)

where the KKT conditions of player Lk for optimality are as

follows:

uk, vk ≥ 0

λk ≥ 0

λmax
k − λk ≥ 0

∇λk
Φk(λk, λ−k) + uk∇λk

(λk) + vk∇λk
(λmax

k − λk) = 0

uk(λk), vk(λ
max
k − λk) = 0

The optimal data rate (λ∗k) for player Lk; ∀k ∈ M can be

computed by solving the problem (P) and it is as follows:

λ∗k =



















0 if condition 1

λmax
k if condition 2

ωk(λout + 1)

αkm+ βkpk(λout + 1)
− 1 otherwise

(13)

where condition 1 and condition 2 respectively are:

αkm

λout + 1
+ βkpk ≥ ωk (14)

αkm

λout + 1
+ βkpk ≤

ωk

λmax
k + 1

(15)

6

C. Distribution of Node’s Sending Rate among Applications

In the IoT application, it is important for each node to be

aware of the priorities of the hosted applications. We assume

that a leaf node, Lk, hosts N applications with different

priorities where N = {1, 2, . . . , n}. We denote by pjk the

priority of application j hosted in leaf node Lk where an

application with less value of pjk has higher priority. After

the leaf node calculates its sending rate (λ∗k) based on the

game theory framework, the value of λ∗k is distributed among

applications according to their priorities as follows:

λjk = θjλ
∗
k (16)

θj =



























1 if n = 1
n
∑

i=1;i 6=j

pik

(n− 1)
n
∑

i=1

pik

if n > 1
(17)

n
∑

j=1

θj = 1 (18)

where λjk is the sending rate of application j hosted in leaf

node Lk, θj is weight of application j and n is the number

of applications such that pjk > 0 for all k ∈M and j ∈ N .

IV. GAME THEORY FRAMEWORK IMPLEMENTATION

In 6LoWPAN networks, the network topology is governed

by RPL routing protocol through transmission of DIO, DAO

and DIS control messages. The DIO transmission strategy is

controlled by the “Trickle Algorithm” [26] where the Trickle

timer is set to the minimum interval size, Imin, and it is

doubled after the timer expires until it reaches to maximum

interval size, Imax. Therefore, the Trickle algorithm is not

aware of the occurrence of congestion. Thus, the operation of

the algorithm is modified such that when congestion occurs

at the parent node, the DIO packet is immediately sent and

congestion information is piggybacked on it.

Initially, a leaf node (Lk) selects its initial sending rate

based on its priority (pk) and its maximum sending rate (λmax
k)

as follows:

λ
(initial)
k =

λmax
k

pk
; ∀k ∈M (19)

The parent node periodically checks the congestion conditions

every interval time ‘Icheck’. The value of Icheck has to be in

the right range (e.g. typically 1, 2 or 3 seconds). Below this

range, the adaptation of the sending rate fluctuates wildly and

also this will increase the number of overhead DIO notification

packets sent. If the value of Icheck is too large, congestion

may occur and the node will not check frequently enough.

According to Queuing Theory, if the arrival rate (λin) at the

parent’s buffer is higher than service rate (λout), the parent’s

buffer will be blocked and congestion does occur. As a result,

the parent node broadcasts a DIO packet which contains the

congestion cost function information. The forwarding rate

of parent λout is not constant with time. It is increased or

decreased due to the operation of the CSMA algorithm (i.e.

Algorithm 1 Congestion control framework

1: Input:

ωk preference parameter of U(λk)
αk preference parameter of C(λk, λ−k)
βk preference parameter of P (λk; pk)
λmax
k maximum sending rate

Icheck congestion check interval time

ψ smoothing factor

2: Output:

An optimal sending rate to eliminate congestion

3: At each parent:

timer set(congestion timer,Icheck);

If (timer expired(congestion timer)) then

If (λout < λin or m changes) then

DIO.send();

End

timer reset(congestion timer);

End

4: At each leaf :

pk ← priority of node Lk;

pjk ← priority of application j;
λinitial ← equation (19);

If (a new DIO message is received) then

λ∗k ← equation (13);

λjk ← equation (16);

End

backoff time), MAC parameters (i.e. channel check rate) and

number of active nodes. Thus, to avoid sending high overhead

DIO packets and fluctuating the sending rate of leaf nodes,

we use Brown’s simple exponential smoothing model [27] to

estimate the actual maximum sending rate as follows:

λout(t+ 1) = ψλout(t) + (1− ψ)λout(t− 1) (20)

where λout(t+ 1), λout(t) and λout(t− 1) are the expected,

current and historical forwarding rate of the parent respectively

and ψ is smoothing factor such that 0 < ψ < 1. A large value

of ψ reduces the level of smoothing and gives high weight to

current measurement of λout, while a value of ψ close to zero

gives greater smoothing effect and less responsive to recent

changes in λout value. In this paper, we set the value of ψ to

0.4. Also, the parent node sends DIO packet when the number

of leaf nodes, m, changes because the optimal sending rate

(Nash equilibrium) of each leaf node will change. When the

leaf nodes receive the DIO message, they update their sending

rate according to equation (13) where the parameters ωk, αk,

βk and pk are already known to the player Lk; ∀k ∈M . After

that, the leaf node distributes the updated sending rate (λk)

among the hosted applications according to their priorities as

in equations (16) and (17). Algorithm 1 shows the procedures

of GTCCF.

V. PERFORMANCE EVALUATION

The proposed congestion control framework has been tested

and evaluated on different network scenarios through simu-

lation by using the Contiki 3.0 OS and Cooja simulator. In

7

TABLE I
PROTOCOL STACK AND SIMULATION PARAMETERS

Layer Protocol Parameter value

Application Every leaf node send high
data rate packets to sink

application payload = 30
bytes

Transport UDP

Network uIPv6 + RPL objective function = OF0

Adaptation SICSlowpan layer compression method = HC06

Data Link CSMA (MAC layer)
Contikimac (RDC layer)
802.15.4 (framer)

buffer size = 8 packets
MAC reliability (ACK) = en-
abled
MAC max. retransmission = 3
channel check rate = 8 Hz
max. frame size = 127 bytes

Physical CC2420 RF transceiver

related work, four proposed algorithms exist that use traffic

control strategies. These algorithms are: DCCC6 [15], Griping

[16], Deaf [16] and Fuse [16]. The working principle of Deaf

and Fuse algorithms is based on ACK packet loss as the

congestion indicator. However, it is impractical to use ACK

packet loss to detect congestion in the network because other

reasons for missing ACK exist such as packet error in the

wireless channel. Therefore, our proposal is compared with

DCCC6 and Griping. In the simulation, we have used one

sink node, a set of intermediate nodes and a group of leaf

nodes which at the beginning, start sending packets at high

data rate (6 packets/s) to create a congested situation. During

the simulation, the leaf nodes start sending packets after 60s

so the network topology construction is completed where the

simulation time is set to 600s. Cooja simulates the hardware

of a set of real sensor nodes such as Tmote Sky which is used

in the simulation. Also, Cooja simulator implements a number

of wireless channel models such as Unit Disk Graph Medium

(UDGM) - Distance Loss which is used in the simulation since

interference is considered [28]. We use Powertrace [29] to

measure the energy consumption of each node where it is a

run-time network-level power profiling system that uses state

tracking to estimate the energy consumption and it is accurate

up to 94%. The protocol stack and simulation parameters used

in the simulation are shown in Table I. For our proposal, we

have set Icheck = 384 clock ticks, ωk = 15, αk = 7, βk = 0.9,

ψ = 0.4 and λmax
k = 8 packet/s; ∀k ∈ M where each 128

clock ticks = 1 second.

A. DCCC6 and Griping Implementation

In Contiki 3.0 OS, when the outgoing packet is unicast, the

MAC layer stores the packet in its buffer to check whether the

channel is free before transmission. In DCCC6 and Griping,

the congested node sends a unicast notification packet to the

source node when congestion occurs since the buffer is full

most of the time. Therefore, the probability of loss of the

notification packet due to buffer overflow is high. In this case,

the congestion situation gets worse as the source node does not

know about the congestion and it increases its sending rate.

To avoid this, the sending of a notification packet is modified

from unicast to broadcast where the packet is sent directly

without storing it at the node’s buffer.

Fig. 2. Sending rate adaptation comparison

DCCC6 detects congestion by using a dynamic buffer

occupancy threshold similar to the one use in [30] where the

buffer is monitored per incoming packet as follows:

threshould(k) = threshold(k − 1) +
I

2k−1
(21)

where k is a small integer and I is a constant increment of

the queue length. In the simulation, we set threshold(0) = 3
and I = 2.

When the buffer occupancy is above threshold(k), the

congested node sends notification to source nodes. Each time,

the congestion notification is received, the sending rate is

decreased by increasing the inter-packet interval ti by α as

follows:

ti+1 = ti + α = ti +
γ ×√tmax√

ti
(22)

where tmax is a maximum inter-packet interval and γ is a

slop factor (γ > 1). In the simulation, we set γ = 2 and

tmax = 7680 clock ticks (1 minute).

Periodically every ti, the sending rate is increased by

reducing ti by ti/δ as follows:

ti+1 = ti −
ti
δ

(23)

δ =
β × ti ×

√
n1 + 1

(ǫ×√tmin)−
√
ti

(24)

where tmin is a minimum inter-packet interval, ni is the

number of active children and β > 1. In the simulation, we set

β = 4 and according to Table 5.1 in [31], for channel check

rate = 8, tmin = 16 and ǫ = 21.8.

For Griping, when a node receives a new packet, it checks

its queue length. If the queue length is greater than a threshold,

Qthr, the node sends back a control message. However, the

receiver cannot send more than one control message to the

same sender during K seconds. Whenever the sender receives

the control message, it halves its transmission rate. If no

control message has been received during T seconds, the

sender increments its transmission rate. According to [16], we

set Qthr = 6 packets, k = 13 clock ticks and T = 96 clock

ticks.

8

B. Sending Rate Adaptation Comparison

Fig. 2 compares the rate adaptation mechanisms used in

Griping, DCCC6 and GTCCF. Firstly, Griping algorithm em-

ploys the original AIMD policy for controlling the sending

rate where the rate is increased linearly by a small fixed

step every T seconds. Once congestion occurs, the rate is

decreased to half and then again linearly increased. Secondly,

DCCC6 algorithm uses a modified AIMD mechanism where

the sending rate is increased by a variable step every ti. For

example, at time 1168 clock tick, the rate is increased from

3.5 to 3.65 (increasing step = 0.15); whereas at time 1360

clock tick, the increasing step is 0.35. On the other hand, the

decreasing step is variable and smaller than the step of the

original AIMD. Finally, in GTCCF algorithm, game theory is

applied adapting the sending rate where the rate is calculated

when congestion occurs or the number of leaf nodes changes.

From this figure, it is obvious that the sending rate in GTCCF

is closer to the optimal sending rate than others. Also, the

modified AIMD used in DCCC6 can be seen to have better

rate adaptation than the original AIMD mechanism used by

Griping.

C. Scenario 1

In the first scenario, we use a simple network with one

sink node, one intermediate node and three leaf nodes (L1, L2

and L3) to demonstrate the behaviour and performance of our

proposal (GTCCF) compared with other algorithms (DCCC6

and Griping). We have set the priorities of leaf nodes (L1, L2

and L3) to p1 = 1, p2 = 2 and p3 = 3 respectively. Nodes

L1 and L2 host two applications each with priorities p11 = 1,

p21 = 3, p12 = 1 and p22 = 2 respectively, whereas L3 hosts

one application.

Fig. 3 shows the number of received packets every second

from the leaf nodes at the sink. For GTCCF, it is clear that

the node (L1) with higher priority has the highest number

of received packets (≈ 1.4 packet/s) as compared to other

nodes, whereas the node L3 has the lowest number of received

packets (≈ 0.75 packet/s) as it has lower priority than others.

For DCCC6 and Griping, the nodes do not obtain sending rates

according their priorities for example, in DCCC6, the node L2

has higher sending rates than others, while the node L1 has

the highest priority. The reason is that GTCCF is aware of

node priorities where each node gets sending rate according

to its priority; however, DCCC6 and Griping do not consider

the node priorities in their operation. Also, from this figure,

we can see that GTCCF has stable performance (number of

received packets at sink) with time as GTCCF computes the

optimal sending rate (Nash equilibrium) for each leaf node

and this rate is still stable unless the number of leaf nodes

changes or the service rate at the intermediate node is less than

the incoming rate. On the other hand, DCCC6 has fluctuating

sending rate. The reason is that DCCC6 uses modified AIMD

where the sending rate is continuously increased every inter-

packet interval (ti) by a variable amount and decreased by α
when congestion does occur and then it starts increasing every

ti. While, Griping has the lowest throughput per leaf node as it

uses the original AIMD where the sending rate is incremented

Fig. 3. Number of received packets/s from leaf nodes at sink

every interval time by a small fixed step and decreased to half

when congestion occurs. Also, Fig. 3 shows that the modified

AIMD used in DCCC6 has better performance in term of

throughput than the original AIMD used in Griping.

Fig. 4 shows the overall throughput which is the total num-

ber of received packets every second at the sink node. It is clear

that GTCCF has stable and higher throughput as compared to

other algorithms as well as DCCC6 has better throughput than

Griping algorithm for the same reasons stated above. Fig. 5

shows the sending rate of applications hosted in the leaf nodes

for GTCCF where L1 and L2 host two applications each and

L3 hosts only one. It is obvious that each node distributes

its sending rate among hosted applications according to their

priorities. For example, in the node L1, application 1 (App.1)

obtains high sending rate (≈ 1.1 packet/s) as compared to

application 2 (App.2) (≈ 0.35 packet/s) which has low priority.

While, the node L3 allocates all its sending rate to application

1 as it is hosted alone.

Fig. 6 shows end-to-end delay which is the time between

a packet being generated at the application of the source

until its successful reception at the application of the final

destination. It is clear that GTCCF and Griping have lower

end-to-end delay as compared to DCCC6. In GTCCF and

Griping, initially; when congestion occurs, the delay is high

because the buffer is full so packet waiting time in the buffer is

high. After that, when each node computes its optimal sending

rate (in GTCCF) or halves its sending rate (in Griping), the

delay of packets will decrease. On the other hand, DCCC6

has higher delay than other algorithms because the nodes’

sending rates are increased periodically every ti and decreased

when congestion occurs and then increased and this process

continues. As a result, the packets wait a long time in the

nodes’ buffers.

Fig. 7 shows the energy consumption due to transmission

and reception in the leaf and intermediate nodes per success-

fully delivered packet (i.e. energy consumption per packet =

total energy consumption due to Tx and Rx / total number

of received packets at sink). We note that with GTCCF,

the energy consumption in the network is less than others

as DCCC6 and Griping waste energy by transmitting and

receiving packets which are then lost due to buffer overflow

on the path without successful delivery. Also, the consumed

9

Fig. 4. Number of received packets/second at sink Fig. 5. Applications’ sending rate for GTCCF Fig. 6. End-to-end delay

Fig. 7. Energy consumption per successful packet Fig. 8. Number of lost packets Fig. 9. Weighted fairness index in scenario 1

energy per packet in Griping is significantly higher than others

as the number of delivered packets to sink in Griping is

much lower than others. Fig. 8 shows the total number of lost

packets in the network due to buffer overflow. It is obvious that

GTCCF loses less packets at the buffer than others. GTCCF

loses packets at the beginning and after the optimal sending

rates (Nash equilibrium) are computed, the number of lost

packets due to buffer overflow becomes zero. However, the

number of lost packets in DCCC6 is higher than Griping

algorithm as the sending rates are increased by a small step

in Griping whereas by a large step in DCCC6.

Fig. 9 shows the weighted fairness index (WFI) which is

an indication of how much the nodes associated with a parent

are treated fairly according to their priorities. We measure

this performance metric to show and determine whether the

algorithms achieve a fair allocation of the network resources

(i.e. throughput) among nodes. We have calculated this metric

similar to that used in [32] as follows:

WFI =

[

m
∑

k=1

thkpk

]2

m
m
∑

k=1

(thkpk)2
(25)

where thk is throughput of leaf node Lk.

From this figure, it is clear that GTCCF achieves fairness index

close to 1 which indicates for high fairness allocation of overall

throughput among the leaf nodes based on their priorities. On

the other hand, DCCC6 and Griping have lower WFI than

GTCCF as they do not support awareness of node priorities.

Table II summarizes the performance of GTCCF, DCCC6

and Griping algorithms in the first scenario in terms of average

number of received packets per second per leaf node (through-

put/leaf), the total number of received packets per second

(overall throughput), average end-to-end delay per packet in

seconds (delay/packet), average energy consumption per suc-

cessful delivered packet (energy/packet), average number of

TABLE II
ALGORITHMS PERFORMANCE SUMMARIZATION IN SCENARIO 1

Performance metric GTCCF DCCC6 Griping

Throughput/L1 1.459 0.690 0.068

Throughput/L2 1.003 0.853 0.072

Throughput/L3 0.751 0.698 0.062

Overall throughput 3.214 2.242 0.203

Delay/packet 0.493 1.104 0.549

Energy/packet 5.266 7.135 21.496

Lost packets/s 0.025 0.385 0.094

Average WFI 0.970 0.856 0.847

Fig. 10. Number of received packets/s from leaf nodes at sink

lost packets per second due to buffer overflow (lost packets/s)

and average weighted fairness index (average WFI).

D. Scenario 2

In the second scenario, we use a multihop network with one

sink node, 15 intermediate nodes and 5 leaf nodes distributed

10

Fig. 11. Number of received packets/second at sink Fig. 12. Applications’ sending rate for GTCCF Fig. 13. End-to-end delay

Fig. 14. Energy consumption per successful packet Fig. 15. Number of lost packets Fig. 16. Weighted fairness index in scenario 2

randomly (the network topology in this scenario is similar

to the network topology in Fig. 1). L1 and L2 select an

intermediate node (P1) as their parent, L2 and L3 choose

parent (P2), whereas the node L5 is associated alone with

parent (P3). We have set the priorities of nodes (L1, L2,

L3, L4 and L5) to p1 = 1, p2 = 2, p3 = 1, p4 = 2, and

p5 = 2 respectively. The node L1 hosts three applications

with priorities p11 = 1, p21 = 2 and p31 = 3, the nodes L2 and

L5 host two applications each with priorities p12 = p25 = 1
and p22 = p15 = 2, whereas L3 and L4 host one application

each. From scenario 1, it is clear that Griping has the worst

performance due to the rate adaptation mechanism used in

Griping. Therefore, in this scenario, only GTCCF and DCCC6

are compared.

Fig. 10 shows the number of received packets from each leaf

node every second at the sink node. For GTCCF, the number

of received packets from L1 (≈ 1.1 packet/s) is higher than

node L2 (≈ 0.8 packet/s) as it has higher priority. Similarly,

L3 has higher number of received packets (≈ 0.3 packet/s)

at sink than L4 (≈ 0.15 packet/s). On the other hand, for

DCCC6, the number of received packets from node L1 and

L2 is approximately the same (≈ 0.6 packet/s) and from

L3 and L4 is also the same (≈ 0.1 packet/s). Also, from

this figure, we can see that the number of received packets

from nodes L1 and L2 is higher than nodes L3 and L4. The

reason is that the forwarding rate of parent (P1) is higher than

parent (P2) as P1 is located nearer to the sink than P2. Fig. 11

shows overall throughput which is the total number of received

packets at the sink every second. It is obvious that GTCCF has

better throughput than DCCC6 for the same reasons stated in

scenario 1. Fig. 12 shows the sending rate (packet/second) for

the applications hosted in the leaf nodes for GTCCF algorithm.

It is clear that each leaf node distributes its sending rate among

its applications according to their priorities. For example, the

average sending rates of applications 1, 2 and 3 hosted in node

TABLE III
ALGORITHMS PERFORMANCE SUMMARIZATION IN SCENARIO 2

Performance metric GTCCF DCCC6

Throughput/L1 1.172 0.629

Throughput/L2 0.807 0.666

Throughput/L3 0.305 0.120

Throughput/L4 0.155 0.155

Throughput/L5 0.657 1.062

Overall throughput 3.098 2.635

Delay/packet 7.276 10.195

Energy/packet 25.590 34.841

Lost packets/s 0.224 2.085

Average WFI 0.981 0.864

L1 are 0.488, 0.39 and 0.29 packet/s respectively.

Fig. 13 shows the end-to-end delay which is the time in

second since a packet is generated at the leaf node until its

arrival at the sink node. From this figure, it is obvious that

GTCCF has lower end-to-end delay than DCCC6 algorithm for

the same reasons stated in scenario 1. Fig. 14 shows the energy

consumption per successfully received packet (in mJoule) in

the leaf and intermediate nodes due to packet transmission

and reception. This figure shows that GTCCF consumes less

energy as compared to DCCC6. Fig. 15 shows the number

of lost packets every second due to buffer overflow in each

leaf node and intermediate node. It is clear that the number

of lost packets in GTCCF is lower than DCCC6 algorithm

in both leaf nodes and intermediate nodes. Fig. 16 shows

the weighted fairness index for GTCCF and DCCC6. It is

obvious that GTCCF has better fairness index that DCCC6

as it considers the priority of each leaf node in its operation.

In general, table III summerizes the overall performance of

GTCCF and DCCC6 in scenario 2.

Overall, based on the simulation results from scenario 1

11

and scenario 2, it is obvious that GTCCF and DCCC6 have

better performance than Griping algorithm. Also, it is clear that

GTCCF improves performance in terms of overall throughput,

end-to-end delay, energy consumption, number of lost packets

due to buffer overflow and average weighted fairness index by

30.45%, 39.77%, 26.37%, 91.37% and 13.43% respectively as

compared to DCCC6 algorithm.

VI. CONCLUSION

In this paper, the congestion problem in 6LoWPAN net-

works is modelled as a game by using the non-cooperative

game theory as well as the uniqueness of Nash equilibrium

in the pure strategy space of the designed game is proved.

Also, a new and simple congestion control mechanism called

game theory based congestion control framework (GTCCF)

is proposed. To support the IoT application requirements, the

proposed framework is aware of node priorities and application

priorities. Also, GTCCF is built and designed on the unique

characteristics of IEEE 802.15.4, IPv6 and 6LoWPAN proto-

col stack. The proposed algorithm is evaluated in Contiki 3.0

OS under two scenarios and compared with other algorithms.

Simulation results show that our proposal improves the QoS

aspects e.g. throughput, end-to-end delay, energy consumption,

packet loss ratio and weighted fairness index as compared to

existing algorithms.

REFERENCES

[1] Z. Shelby and C. Bormann, 6LoWPAN: The Wireless Embedded Internet.
John Wiley & Sons, 2009.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A Survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[3] N. Khalil, M. R. Abid, D. Benhaddou, and M. Gerndt, “Wireless
Sensors Networks for Internet of Things,” in IEEE Ninth International

Conference on Intelligent Sensors, Sensor Networks and Information

Processing (ISSNIP). IEEE, 2014, pp. 1–6.
[4] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6 over Low-

Power Wireless Personal Area Networks (6LoWPANs): Overview, As-
sumptions, Problem Statement, and Goals,” Internet Engineering Task

Force (IETF), RFC 4919, 2007.
[5] M. Weldon, The Future X Network: A Bell Labs Perspective. CRC

Press, March 2016.
[6] A. Ghaffari, “Congestion Control Mechanisms in Wireless Sensor Net-

works: A Survey,” Journal of Network and Computer Applications,
vol. 52, pp. 101–115, 2015.

[7] T. Winter, P. Thubert, A. Brandt, J. Hui, and R. Kelsey, “RPL: IPv6
Routing Protocol for Low-Power and Lossy Networks,” Internet Engi-

neering Task Force (IETF), RFC 6550, 2012.
[8] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a Lightweight and

Flexible Operating System for Tiny Networked Sensors,” in 29th Annual

IEEE International Conference on Local Computer Networks. IEEE,
2004, pp. 455–462.

[9] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-
Level Sensor Network Simulation with COOJA,” in Proceedings 31st

IEEE Conference on Local Computer Networks. IEEE, 2006, pp. 641–
648.

[10] H.-Y. Shi, W.-L. Wang, N.-M. Kwok, and S.-Y. Chen, “Game Theory
for Wireless Sensor Networks: A Survey,” Sensors, vol. 12, no. 7, pp.
9055–9097, 2012.

[11] R. Machado and S. Tekinay, “A survey of game-theoretic approaches
in wireless sensor networks,” Computer Networks, vol. 52, no. 16, pp.
3047–3061, 2008.

[12] J. P. Sheu, C. X. Hsu, and C. Ma, “A Game Theory Based Congestion
Control Protocol for Wireless Personal Area Networks,” in 2015 IEEE

39th Annual Computer Software and Applications Conference (COMP-

SAC), vol. 2, July 2015.
[13] C. Ma, J.-P. Sheu, and C.-X. Hsu, “A Game Theory Based Congestion

Control Protocol for Wireless Personal Area Networks,” Journal of

Sensors, vol. 2016, 2015.

[14] Z. Han, D. Niyato, W. Saad, T. Başar, and A. Hjørungnes, Game

Theory in Wireless and Communication Networks:Ttheory, Models, and

Applications. Cambridge University Press, 2012.
[15] V. Michopoulos, L. Guan, G. Oikonomou, and I. Phillips, “DCCC6:

Duty Cycle-aware congestion control for 6LoWPAN networks,” in IEEE

International Conference on Pervasive Computing and Communications

Workshops (PERCOM Workshops). IEEE, 2012, pp. 278–283.
[16] A. P. Castellani, M. Rossi, and M. Zorzi, “Back pressure congestion

control for CoAP/6LoWPAN networks,” Ad Hoc Networks, vol. 18, pp.
71–84, 2014.

[17] H. Hellaoui and M. Koudil, “Bird Flocking Congestion Control for
CoAP/RPL/6LoWPAN Networks,” in Proceedings of the 2015 Workshop

on IoT challenges in Mobile and Industrial Systems. ACM, 2015, pp.
25–30.

[18] H.-S. Kim, J. Paek, and S. Bahk, “QU-RPL: Queue Utilization Based
RPL for Load Balancing in Large Scale Industrial Applications,” in 12th

Annual IEEE International Conference on Sensing, Communication, and

Networking (SECON). IEEE, 2015, pp. 265–273.
[19] H.-S. Kim, H. Kim, J. Paek, and S. Bahk, “Load balancing under heavy

traffic in rpl routing protocol for low power and lossy networks,” DOI

10.1109/TMC.2016.2585107, IEEE Transactions on Mobile Computing,
2016.

[20] W. Tang, X. Ma, J. Huang, and J. Wei, “Toward Improved RPL: A
Congestion Avoidance Multipath Routing Protocol with Time Factor
for Wireless Sensor Networks,” Journal of Sensors, vol. 2016, 2015.

[21] H. A. A. Al-Kashoash, Y. Al-Nidawi, and A. H. Kemp, “Congestion-
Aware RPL for 6LoWPAN Networks,” in Wireless Telecommunications

Symposium (WTS), 2016. IEEE, 2016, pp. 1–6.
[22] L. Wang and G.-S. Kuo, “Mathematical Modeling for Network Selection

in Heterogeneous Wireless Networks—A Tutorial,” Communications

Surveys & Tutorials, IEEE, vol. 15, no. 1, pp. 271–292, 2013.
[23] H. A. A. Al-Kashoash, Y. Al-Nidawi, and A. H. Kemp, “Congestion

Analysis for Low Power and Lossy Networks,” in Wireless Telecommu-

nications Symposium (WTS), 2016. IEEE, 2016, pp. 1–6.
[24] H. Nikaido and K. Isoda, “Note on Noncooperative Convex Games,”

Pacific Journal of Mathematics, vol. 5, no. 5.
[25] J. B. Rosen, “Existence and Uniqueness of Equilibrium Points for

Concave N-Person Games,” Econometrica: Journal of the Econometric

Society, pp. 520–534, 1965.
[26] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, “The trickle

algorithm,” Internet Engineering Task Force, RFC6206, 2011.
[27] R. G. Brown, Smoothing, Forecasting and Prediction of Discrete Time

Series. Courier Corporation, 2004.
[28] M. Stehlık, “Comparison of Simulators for Wireless Sensor Networks,”

Master’s thesis, Faculty of Informatics, Masaryk University, Brno, Czech
Republic, 2011.

[29] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes, “Powertrace: Network-
level Power Profiling for Low-power Wireless Networks,” Swedish
Institute of Computer Science, Tech. Rep., 2011.

[30] S. Rangwala, R. Gummadi, R. Govindan, and K. Psounis, “Interference-
Aware Fair Rate Control in Wireless Sensor Networks,” ACM SIG-

COMM Computer Communication Review, vol. 36, no. 4, pp. 63–74,
2006.

[31] V. Michopoulos, “Congestion and Medium Access Control in 6LoWPAN
WSN,” Ph.D. dissertation, Computer Science, Loughborough University,
2012.

[32] M. Zawodniok and S. Jagannathan, “Predictive Congestion Control
Protocol for Wireless Sensor Networks,” IEEE Transactions on Wireless

Communications, vol. 6, no. 11, pp. 3955–3963, 2007.

Hayder A. A. Al-Kashoash is a PhD student in the School of Electronic
and Electrical Engineering, University of Leeds, UK. His research Interests
include congestion control and resource management in WSNs, 6LoWPAN
and LPWAN by utilizing game theory and optimization theory.

Maryam Hafeez is a Research Fellow with the School of Electronic and
Electrical Engineering, University of Leeds, UK. Her research interests include
design and analysis of protocols for next-generation green intelligent wireless
networks employing tools from game theory and stochastic geometry.

Andrew H. Kemp is Senior Lecturer and Joint Programme Director with the
Electronic and Electrical Engineering School, University of Leeds, UK. His
research interests are in aspects of WSNs, in particular, related to localization,
routing, and also multipath propagation studies to assist system development,
cross-layer optimization, and the Internet of Things.

