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ABSTRACT. Our monograph presents the foundations of the theory of groups
and semigroups acting isometrically on Gromov hyperbolic metric spaces. We
make it a point to avoid any assumption of properness/compactness, keep-
ing in mind the motivating example of H°, the infinite-dimensional rank-one
symmetric space of noncompact type over the reals. We have not skipped
over parts that might be thought of as “trivial” extensions of the finite-
dimensional /proper theory, as our intuition has turned out to be wrong often
enough regarding these matters that we feel it is worth writing everything down
explicitly and with an eye to detail. Moreover, we feel that it is a method-
ological advantage to have the entire theory presented from scratch, in order
to provide a basic reference for the theory.

Though our work unifies and extends a long list of results obtained by
many authors, Part [I] of this monograph may be treated as mostly expository.
The remainder of this work, some of whose highlights are described in brief
below, contains several new methods, examples, and theorems. In Part 2] we
introduce a modification of the Poincaré exponent, an invariant of a group
which provides more information than the usual Poincaré exponent, which we
then use to vastly generalize the Bishop—Jones theorem relating the Hausdorff
dimension of the radial limit set to the Poincaré exponent of the underlying
semigroup. We construct examples which illustrate the surprising connection
between Hausdorff dimension and various notions of discreteness which show
up in non-proper settings. Part [3] of the monograph provides a number of
examples of groups acting on H which exhibit a wide range of phenomena not
to be found in the finite-dimensional theory. Such examples often demonstrate
the optimality of our theorems.

In Part @ we construct Patterson—Sullivan measures for groups of di-
vergence type without any compactness assumption on either the boundary
or the limit set. This is carried out by first constructing such measures on
the Samuel-Smirnov compactification of the bordification of the underlying
hyperbolic space, and then showing that the measures are supported on the
(non-compactified) bordification. We end with a study of quasiconformal mea-
sures of geometrically finite groups in terms of doubling and ezxact dimension-
ality. Our analysis characterizes exact dimensionality in terms of Diophantine
approximation on the boundary. We demonstrate that though all doubling
Patterson—Sullivan measures are exact dimensional, there exist Patterson—
Sullivan measures that are exact dimensional but not doubling, as well as

ones that are neither doubling nor exact dimensional.
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Prologue

... Cela suffit pour faire comprendre que dans les cing mémoires
des Acta mathematica que j’ai consacrés a l’étude des transcen-
dantes fuchsiennes et kleinéennes, je n'ai fait qu’effleurer un su-
jet trés vaste, qui fournira sans doute aux géometres 'occasion de

nombreuses et importantes découvertesﬂ

— H. Poincaré, Acta Mathematica, 5, 1884, p. 278.

The theory of discrete subgroups of real hyperbolic space has a long history. It
was inaugurated by Poincaré, who developed the two-dimensional (Fuchsian) and
three-dimensional (Kleinian) cases of this theory in a series of articles published
between 1881 and 1884 that included numerous notes submitted to the C. R. Acad.
Sci. Paris, a paper at Klein’s request in Math. Annalen, and five memoirs com-
missioned by Mittag-Leffler for his then freshly-minted Acta Mathematica. One
must also mention the complementary work of the German school that came be-
fore Poincaré and continued well after he had moved on to other areas, viz. that
of Klein, Schottky, Schwarz, and Fricke. See [80] Chapter 3] for a brief exposi-
tion of this fascinating history, and [79} [63] for more in-depth presentations of the
mathematics involved.

We note that in finite dimensions, the theory of higher-dimensional Kleinian
groups, i.e., discrete isometry groups of the hyperbolic d-space H? for d > 4, is
markedly different from that in H3 and H2?. For example, the Teichmiiller the-
ory used by the Ahlfors—Bers school (viz. Marden, Maskit, Jorgensen, Sullivan,
Thurston, etc.) to study three-dimensional Kleinian groups has no generalization
to higher dimensions. Moreover, the recent resolution of the Ahlfors measure con-
jecture [3l [43] has more to do with three-dimensional topology than with analysis
and dynamics. Indeed, the conjecture remains open in higher dimensions [106] p.
526, last paragraph]. Throughout the twentieth century, there are several instances
of theorems proven for three-dimensional Kleinian groups whose proofs extended
IThis is enough to make it apparent that in these five memoirs in Acta Mathematica which I have
dedicated to the study of Fuschian and Kleinian transcendants, I have only skimmed the surface

of a very broad subject, which will no doubt provide geometers with the opportunity for many
important discoveries.

XV
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easily to n dimensions (e.g. [2I}, I33]), but it seems that the theory of higher-
dimensional Kleinian groups was not really considered a subject in its own right
until around the 1990s. For more information on the theory of higher-dimensional
Kleinian groups, see the survey article [106], which describes the state of the art
up to the last decade, emphasizing connections with homological algebra.

But why stop at finite n? Dennis Sullivan, in his IHES Seminar on Conformal
and Hyperbolic Geometry [164] that ran during the late 1970s and early ’80s, indi-
cated a possibility of developing the theory of discrete groups acting by hyperbolic
isometries on the open unit ball of a separable infinite-dimensional Hilbert space
Later in the early ’90s, Misha Gromov observed the paucity of results regarding
such actions in his seminal lectures Asymptotic Invariants of Infinite Groups [86]
where he encouraged their investigation in memorable terms: “The spaces like this
[infinite-dimensional symmetric spaces] ... look as cute and sexy to me as their
finite dimensional siblings but they have been for years shamefully neglected by
geometers and algebraists alike”.

Gromov’s lament had not fallen to deaf ears, and the geometry and represen-
tation theory of infinite-dimensional hyperbolic space H* and its isometry group
have been studied in the last decade by a handful of mathematicians, see e.g.
[40] [65), 132]. However, infinite-dimensional hyperbolic geometry has come into
prominence most spectacularly through the recent resolution of a long-standing
conjecture in algebraic geometry due to Enriques from the late nineteenth cen-
tury. Cantat and Lamy [47] proved that the Cremona group (i.e. the group of
birational transformations of the complex projective plane) has uncountably many
non-isomorphic normal subgroups, thus disproving Enriques’ conjecture. Key to
their enterprise is the fact, due to Manin [125], that the Cremona group admits a
faithful isometric action on a non-separable infinite-dimensional hyperbolic space,
now known as the Picard—Manin space.

Our project was motivated by a desire to answer Gromov’s plea by exposing a
coherent general theory of groups acting isometrically on the infinite-dimensional
hyperbolic space H>*°. In the process we came to realize that a more natural do-
main for our inquiries was the much larger setting of semigroups acting on Gro-
mov hyperbolic metric spaces — that way we could simultaneously answer our own
questions about H* and construct a theoretical framework for those who are in-
terested in more exotic spaces such as the curve graph, arc graph, and arc complex
[95], 126, [96] and the free splitting and free factor complexes [89] 27, [104), [96].

2This was the carliest instance of such a proposal that we could find in the literature, although
(as pointed out to us by P. de la Harpe) infinite-dimensional hyperbolic spaces without groups
acting on them had been discussed earlier [130] §27], [131}, [60]. It would be of interest to know
whether such an idea may have been discussed prior to that.
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These examples are particularly interesting as they extend the well-known dic-
tionary [26, p.375] between mapping class groups and the groups Out(Fy). In
another direction, a dictionary is emerging between mapping class groups and Cre-
mona groups, see [30} [66]. We speculate that developing the Patterson—Sullivan
theory in these three areas would be fruitful and may lead to new connections and
analogies that have not surfaced till now.

In a similar spirit, we believe there is a longer story for which this monograph
lays the foundations. In general, infinite-dimensional space is a wellspring of out-
landish examples and the wide range of new phenomena we have started to uncover
has no analogue in finite dimensions. The geometry and analysis of such groups
should pique the interests of specialists in probability, geometric group theory, and
metric geometry. More speculatively, our work should interact with the ongoing
and still nascent study of geometry, topology, and dynamics in a variety of infinite-
dimensional spaces and groups, especially in scenarios with sufficient negative cur-
vature. Here are three concrete settings that would be interesting to consider: the
universal Teichmiiller space, the group of volume-preserving diffeomorphisms of R?
or a 3-torus, and the space of Kahler metrics/potentials on a closed complex man-
ifold in a fixed cohomology class equipped with the Mabuchi—-Semmes—Donaldson
metric. We have been developing a few such themes. The study of thermodynamics
(equilibrium states and Gibbs measures) on the boundaries of Gromov hyperbolic
spaces will be investigated in future work [67]. We speculate that the study of
stochastic processes (random walks and Brownian motion) in such settings would
be fruitful. Furthermore, it would be of interest to develop the theory of discrete

isometric actions and limit sets in infinite-dimensional spaces of higher rank.
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CHAPTER 1

Introduction and Overview

The purpose of this monograph is to present the theory of groups and semi-
groups acting isometrically on Gromov hyperbolic metric spaces in full detail as
we understand it, with special emphasis on the case of infinite-dimensional alge-
braic hyperbolic spaces X = Hp°, where [ denotes a division algebra. We have
not skipped over the parts which some would call “trivial” extensions of the finite-
dimensional /proper theory, for two main reasons: first, intuition has turned out to
be wrong often enough regarding these matters that we feel it is worth writing ev-
erything down explicitly; second, we feel it is better methodologically to present the
entire theory from scratch, in order to provide a basic reference for the theory, since
no such reference exists currently (the closest, [39], has a fairly different emphasis).
Thus Part [IJ of this monograph should be treated as mostly expository, while Parts
contain a range of new material. For experts who want a geodesic path to
significant theorems, we list here five such results that we prove in this monograph:
Theorems [[.22.1] and [LZ.4] provide generalizations of the Bishop—Jones theorem [28]
Theorem 1] and the Global Measure Formula [160, Theorem 2|, respectively, to
Gromov hyperbolic metric spaces. Theorem [[LZ.1] guarantees the existence of a
d-quasiconformal measure for groups of divergence type, even if the space they are
acting on is not proper. Theorem provides a sufficient condition for the exact
dimensionality of the Patterson-Sullivan measure of a geometrically finite group,
and Theorem relates the exact dimensionality to Diophantine properties of
the measure. However, the reader should be aware that a sharp focus on just these
results, without care for their motivation or the larger context in which they are sit-
uated, will necessarily preclude access to the interesting and uncharted landscapes
that our work has begun to uncover. The remainder of this chapter provides an

overview of these landscapes.

CONVENTION 1. The symbols <, 2, and < will denote coarse asymptotics;
a subscript of + indicates that the asymptotic is additive, and a subscript of X
indicates that it is multiplicative. For example, A <y x B means that there exists
a constant C' > 0 (the implied constant), depending only on K, such that A < CB.
Moreover, A <4 « B means that there exist constants C7,Cs > 0 so that A <

C1B + C5. In general, dependence of the implied constant(s) on universal objects

xix



XX 1. INTRODUCTION AND OVERVIEW

such as the metric space X, the group G, and the distinguished point 0 € X (cf.
Notation [[LTH]) will be omitted from the notation.

CONVENTION 2. The notation x,, — = means that z,, = r as n — oo, while
n

the notation x,, —— = means that

n7

x =4 limsup z,, <4 liminf z,,,
n—oo n—0o0

and similarly for x,, — .
n,x
CONVENTION 3. The symbol < is used to indicate the end of a nested proof.

CONVENTION 4. We use the Iverson bracket notation:

1 statement true
[statement] =

0 statement false

CONVENTION 5. Given a distinguished point o € X, we write
|z|| = d(o,z) and ||g]| = [[g(0)]-
1.1. Preliminaries

1.1.1. Algebraic hyperbolic spaces. Although we are mostly interested in
this monograph in the real infinite-dimensional hyperbolic space Hg®, the complex
and quaternionic hyperbolic spaces Hg” and HZ are also interesting. In finite
dimensions, these spaces constitute (modulo the Cayley hyperbolic plane@) the rank
one symmetric spaces of noncompact type. In the infinite-dimensional case we retain
this terminology by analogy; cf. Remark For brevity we will refer to a rank
one symmetric space of noncompact type as an algebraic hyperbolic space.

There are several equivalent ways to define algebraic hyperbolic spaces; these
are known as “models” of hyperbolic geometry. We consider here the hyperboloid
model, ball model (Klein’s, not Poincaré’s), and upper half-space model (which
only applies to algebraic hyperbolic spaces defined over the reals, which we will call
real hyperbolic spaces), which we denote by H2, B, and E®, respectively. Here [
denotes the base field (either R, C, or ), and « denotes a cardinal number. We
omit the base field when it is R, and denote the exponent by oo when it is #(N),
so that H> = [HEZ&(N) is the unique separable infinite-dimensional real hyperbolic
space.

The main theorem of Chapter Blis Theorem 2.3.3] which states that any isom-
etry of an algebraic hyperbolic space must be an “algebraic” isometry. The finite-

dimensional case is given as an exercise in Bridson-Haefliger [39] Exercise I1.10.21].

We omit all discussion of the Cayley hyperbolic plane H2, as the algebra involved is too exotic
for our taste; cf. Remark 2111
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We also describe the relation between totally geodesic subsets of algebraic hyper-
bolic spaces and fixed point sets of isometries (Theorem 247, a relation which

will be used throughout the paper.

REMARK 1.1.1. Key to the study of finite-dimensional algebraic hyperbolic
spaces is the theory of quasiconformal mappings (e.g., as in Mostow and Pansu’s
rigidity theorems [133), 141]). Unfortunately, it appears to be quite difficult to
generalize this theory to infinite dimensions. For example, it is an open question
[92] p.1335] whether every quasiconformal homeomorphism of Hilbert space is also

quasisymmetric.

1.1.2. Gromov hyperbolic metric spaces. Historically, the first motiva-
tion for the theory of negatively curved metric spaces came from differential ge-
ometry and the study of negatively curved Riemannian manifolds. The idea was
to describe the most important consequences of negative curvature in terms of the
metric structure of the manifold. This approach was pioneered by Aleksandrov
[6], who discovered for each k£ € R an inequality regarding triangles in a metric
space with the property that a Riemannian manifold satisfies this inequality if and
only if its sectional curvature is bounded above by k, and popularized by Gromov,
who called Aleksandrov’s inequality the “CAT(k) inequality” as an abbreviation
for “comparison inequality of Alexandrov—Toponogov” [85] p.106]11 A metric space
is called CAT(k) if the distance between any two points on a geodesic triangle is
smaller than the corresponding distance on the “comparison triangle” in a model
space of constant curvature x; see Definition B.2.11

The second motivation came from geometric group theory, in particular the
study of groups acting on manifolds of negative curvature. For example, Dehn
proved that the word problem is solvable for finitely generated Fuchsian groups [64],
and this was generalized by Cannon to groups acting cocompactly on manifolds of
negative curvature [44]. Gromov attempted to give a geometric characterization of
these groups in terms of their Cayley graphs; he tried many definitions (cf. [83]
§6.4], |84l §4]) before converging to what is now known as Gromov hyperbolicity
in 1987 [85] 1.1, p.89], a notion which has influenced much research. A metric
space is said to be Gromov hyperbolic if it satisfies a certain inequality that we call
Gromov’s inequality; see Definition A finitely generated group is then said
to be word-hyperbolic if its Cayley graph is Gromov hyperbolic.

21 appears that Bridson and Haefliger may be responsible for promulgating the idea that the C in
CAT refers to E. Cartan [39] p.159]. We were unable to find such an indication in [85], although
Cartan is referenced in connection with some theorems regarding CAT (k) spaces (as are Riemann
and Hadamard).
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The big advantage of Gromov hyperbolicity is its generality. We give some idea
of its scope by providing the following nested list of metric spaces which have been

proven to be Gromov hyperbolic:

e CAT(-1) spaces (Definition B2.T])
— Riemannian manifolds (both finite- and infinite-dimensional) with
sectional curvature < —1
* Algebraic hyperbolic spaces (Definition 2.2.5])
- Picard—Manin spaces of projective surfaces defined over
algebraically closed fields [125], cf. [46] §3.1]
— R-trees (Definition BI.T0)
* Simplicial trees

- Unweighted simplicial trees

Cayley metrics (Example BI2]) on word-hyperbolic groups

e Green metrics on word-hyperbolic groups [29, Corollary 1.2]

Quasihyperbolic metrics of uniform domains in Banach spaces [173] The-
orem 2.12]
Arc graphs and curve graphs [95] and arc complexes [126), [96] of finitely

punctured oriented surfaces

Free splitting complexes [89], [96] and free factor complexes |27, 104, [96]

REMARK 1.1.2. Many of the above examples admit natural isometric group

actions:

e The Cremona group acts isometrically on the Picard—Manin space [125],
cf. [46, Theorem 3.3].

e The mapping class group of a finitely punctured oriented surface acts
isometrically on its arc graph, curve graph, and arc complex.

e The outer automorphism group Out(F i) of the free group on N generators
acts isometrically on the free splitting complex FS(F ) and the free factor
complex FF(F ).

REMARK 1.1.3. Most of the above examples are examples of non-proper hyper-
bolic metric spaces. Recall that a metric space is said to be proper if its distance
function z — ||z|| = d(o,z) is proper, or equivalently if closed balls are compact.
Though much of the existing literature on CAT(-1) and hyperbolic metric spaces
assumes that the spaces in question are proper, it is often not obvious whether this
assumption is really essential. However, since results about proper metric spaces
do not apply to infinite-dimensional algebraic hyperbolic spaces, we avoid the as-

sumption of properness.
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REMARK 1.1.4. One of the above examples, namely, Green metrics on word-
hyperbolic groups, is a natural class of non-geodesic hyperbolic metric spaces
However, Bonk and Schramm proved that all non-geodesic hyperbolic metric spaces
can be isometrically embedded into geodesic hyperbolic metric spaces [31] Theorem
4.1], and the equivariance of their construction was proven by Blacheére, Haissinsky,
and Mathieu [29] Corollary A.10]. Thus, one could view the assumption of geodesic-
ity to be harmless, since most theorems regarding geodesic hyperbolic metric spaces
can be pulled back to non-geodesic hyperbolic metric spaces. However, for the most
part we also avoid the assumption of geodesicity, mostly for methodological reasons
rather than because we are considering any particular non-geodesic hyperbolic met-
ric space. Specifically, we felt that Gromov’s definition of hyperbolicity in metric
spaces is a “deep” definition whose consequences should be explored independently
of such considerations as geodesicity. We do make the assumption of geodesic-
ity in Chapter [[2] where it seems necessary in order to prove the main theorems.
(The assumption of geodesicity in Chapter [[2]can for the most part be replaced by
the weaker assumption of almost geodesicity [31] p.271], but we felt that such a

presentation would be more technical and less intuitive.)

We now introduce a list of standing assumptions and notations. They apply to
all chapters except for Chapters 2], Bl and Bl (see also §4.T]).

NoTATION 1.1.5. Throughout the introduction,

e X is a Gromov hyperbolic metric space (cf. Definition [3.3.2)),

e d denotes the distance function of X,

e 0X denotes the Gromov boundary of X, and bord X denotes the bordifi-
cation bord X = X U 0X (cf. Definition B.4.2)),
D denotes a visual metric on dX with respect to a parameter b > 1 and a
distinguished point 0 € X (cf. Proposition B.6.8)). By definition, a visual

metric satisfies the asymptotic

(111) Db,o(é‘;n) =y b7<£|77>o7

where (-|-) denotes the Gromov product (cf. (3:3.2)).
e Isom(X) denotes the isometry group of X. Also, G < Isom(X) will mean
that G is a subgroup of Isom(X), while G < Isom(X) will mean that G

is a subsemigroup of Isom(X).

A prime example to have in mind is the special case where X is an infinite-
dimensional algebraic hyperbolic space, in which case the Gromov boundary 90X
BQuasihyperbolic metrics on uniform domains in Banach spaces can also fail to be geodesic, but

they are almost geodesic which is almost as good. See e.g. [172] for a study of almost geodesic
hyperbolic metric spaces.
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can be identified with the natural boundary of X (Proposition B:5.3)), and we can
set b = e and get equality in (LTI (Observation B.6.7]).

Another important example of a hyperbolic metric space that we will keep in
our minds is the case of R-trees alluded to above. R-trees are a generalization of
simplicial trees, which in turn are a generalization of unweighted simplicial trees,
also known as “Z-trees” or just “trees”. R-trees are worth studying in the context
of hyperbolic metric spaces for two reasons: first of all, they are “prototype spaces”
in the sense that any finite set in a hyperbolic metric space can be roughly iso-
metrically embedded into an R-tree, with a roughness constant depending only on
the cardinality of the set [T, pp.33-38]; second of all, R-trees can be equivariantly
embedded into infinite-dimensional real hyperbolic space H>® (Theorem [I3.1.0]),
meaning that any example of a group acting on an R-tree can be used to construct
an example of the same group acting on H>*. R-trees are also much simpler to
understand than general hyperbolic metric spaces: for any finite set of points, one
can draw out a list of all possible diagrams, and then the set of distances must be
determined from one of these diagrams (cf. e.g., Figure B.3.1]).

Besides introducing R-trees, CAT(-1) spaces, and hyperbolic metric spaces, the
following things are done in Chapter [B} construction of the Gromov boundary
0X and analysis of its basic topological properties (Section B.4), proof that the
Gromov boundary of an algebraic hyperbolic space is equal to its natural boundary
(Proposition 53], and the construction of various metrics and metametrics on the
boundary of X (Section[3.6]). None of this is new, although the idea of a metametric
(due to Vaiséla [172] §4]) is not very well known.

In Chapter [ we go more into detail regarding the geometry of hyperbolic
metric spaces. We prove the geometric mean value theorem for hyperbolic metric
spaces (Section 2], the existence of geodesic rays connecting two points in the
boundary of a CAT(-1) space (Proposition[d.4.4]), and various geometrical theorems
regarding the sets

Shad,(z,0) := {{ € 0X : (z|¢), < o},

which we call “shadows” due to their similarity to the famous shadows of Sullivan
[161] Fig. 2] on the boundary of H? (Section EH). We remark that most proofs
of the existence of geodesics between points on the boundary of complete CAT(-1)
spaces, e.g. [39, Proposition I1.9.32], assume properness and make use of it in a
crucial way, whereas we make no such assumption in Proposition 244l Finally,
in Section we introduce “generalized polar coordinates” in a hyperbolic metric
space. These polar coordinates tell us that the action of a loxodromic isometry
(see Definition [6.1.2)) on a hyperbolic metric space is roughly the same as the map
X — Mx in the upper half-plane E2.
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1.1.3. Discreteness. The first step towards extending the theory of Kleinian
groups to infinite dimensions (or more generally to hyperbolic metric spaces) is to
define the appropriate class of groups to consider. This is less trivial than might be
expected. Recalling that a d-dimensional Kleinian group is defined to be a discrete
subgroup of Isom(H?), we would want to define an infinite-dimensional Kleinian
group to be a discrete subgroup of Isom(H>). But what does it mean for a subgroup
of Tsom(H>) to be discrete? In finite dimensions, the most natural definition is
to call a subgroup discrete if it is discrete relative to the natural topology on
Isom(H9); this definition works well since Isom(H?) is a Lie group. But in infinite
dimensions and especially in more exotic spaces, many applications require stronger
hypotheses (e.g., Theorem [[2Z] Chapter [2). In Chapter Bl we discuss several
potential definitions of discreteness, which are inequivalent in general but agree in
the case of finite-dimensional space X = H¢ (Proposition [[.2Z.10):

DEFINITIONS [5.2.T] AND Fix G < Isom(X).
e G is called strongly discrete (SD) if for every bounded set B C X, we have

#{geG:g9(B)NB # g} < oo.

G is called moderately discrete (MD) if for every = € X, there exists an

open set U containing x such that

#lgeG:gU)NU # g} < .

G is called weakly discrete (WD) if for every x € X, there exists an open
set U containing x such that

gU)NU # & = g(x) = .

G is called COT-discrete (COTD) if it is discrete as a subset of Isom(X)
when Isom(X) is given the compact-open topology (COT).

e If X is an algebraic hyperbolic space, then G is called UOT-discrete
(UOTD) if it is discrete as a subset of Isom(X) when Isom(X) is given
the uniform operator topology (UOT; cf. Section [B.)).

As our naming suggests, the condition of strong discreteness is stronger than
the condition of moderate discreteness, which is in turn stronger than the condition
of weak discreteness (Proposition 5.24]). Moreover, any moderately discrete group
is COT-discrete, and any weakly discrete subgroup of Isom(H>) is COT-discrete
(Proposition [5.2.7). These relations and more are summarized in Table [l on p. 03]

Out of all these definitions, strong discreteness should perhaps be thought of as
the best generalization of discreteness to infinite dimensions. Thus, we propose that

the phrase “infinite-dimensional Kleinian group” should mean “strongly discrete
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subgroup of Isom(H>)”. However, in this monograph we will be interested in the
consequences of all the different notions of discreteness, as well as the interactions

between them.

REMARK 1.1.6. Strongly discrete groups are known in the literature as met-
rically proper, and moderately discrete groups are known as wandering. However,
we prefer our terminology since it more clearly shows the relationship between the

different notions of discreteness.

1.1.4. The classification of semigroups. After clarifying the different types
of discreteness which can occur in infinite dimensions, we turn to the question of
classification. This question makes sense both for individual isometries and for en-
tire semigroupSE Historically, the study of classification began in the 1870s when
Klein proved a theorem classifying isometries of H? and attached the words “ellip-
tic”, “parabolic”, and “hyperbolic” to these classifications. Elliptic isometries are
those which have at least one fixed point in the interior, while parabolic isometries
have exactly one fixed point, which is a neutral fixed point on the boundary, and
hyperbolic isometries have two fixed points on the boundary, one of which is at-
tracting and one of which is repelling. Later, the word “loxodromic” was used to
refer to isometries in H? which have two fixed points on the boundary but which
are geometrically “screw motions” rather than simple translations. In what follows
we use the word “loxodromic” to refer to all isometries of H" (or more generally a
hyperbolic metric space) with two fixed points on the boundary — this is analogous
to calling a circle an ellipse. Our real reason for using the word “loxodromic” in
this instance, rather than “hyperbolic”, is to avoid confusion with the many other
meanings of the word “hyperbolic” that have entered usage in various scenarios.

To extend this classification from individual isometries to groups, we call a
group “elliptic” if its orbits are bounded, “parabolic” if it has a unique neutral
global fixed point on the boundary, and “loxodromic” if it contains at least one
loxodromic isometry. The main theorem of Chapter [6 (viz. Theorem [6.2.3)) is that
every subsemigroup of Isom(X) is either elliptic, parabolic, or loxodromic.

Classification of groups has appeared in the literature in various contexts, from
Eberlein and O’Neill’s results regarding visiblility manifolds [69], through Gro-
mov’s remarks about groups acting on strictly convex spaces [83] §3.5] and word-

hyperbolic groups [85] §3.1], to the more general results of Hamann [88, Theorem

4n Chapters [BHI0} we work in the setting of semigroups rather than groups. Like dropping the
assumption of geodesicity (cf. Remark [[LT.4), this is done partly in order to broaden our class of
examples and partly for methodological reasons — we want to show exactly where the assumption
of being closed under inverses is being used. It should be also noted that semigroups sometimes
show up naturally when one is studying groups; cf. Proposition [0.5.2(B).
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2.7], Osin [140] §3], and Caprace, de Cornulier, Monod, and Tessera [48] §3.A]
regarding geodesic hyperbolic metric spacesE Many of these theorems have similar
statements to ours ([88] and [48] seem to be the closest), but we have not kept
track of this carefully, since our proof appears to be sufficiently different to warrant
independent interest anyway.

After proving Theorem [6.2.3] we discuss further aspects of the classification
of groups, such as the further classification of loxodromic groups given in §6.2.3t
a loxodromic group is called “lineal”, “focal”, or “of general type” according to
whether it has two, one, or zero global fixed points, respectively. (This terminology
was introduced in [48].) The “focal” case is especially interesting, as it represents a
class of nonelementary groups which have global fixed points{i We show that certain
classes of discrete groups cannot be focal (Proposition [6.4.1]), which explains why
such groups do not appear in the theory of Kleinian groups. On the other hand, we
show that in infinite dimensions, focal groups can have interesting limit sets even

though they satisfy only a weak form of discreteness; cf. Remark [3.4.3]

1.1.5. Limit sets. An important invariant of a Kleinian group G is its limit
set A = Ag, the set of all accumulation points of the orbit of any point in the
interior. By putting an appropriate topology on the bordification of our hyperbolic
metric space X (§3.4.2), we can generalize this definition to an arbitrary subsemi-
group of Isom(X). Many results generalize relatively straightforwardlyﬁ to this new
context, such as the minimality of the limit set (Proposition [[4.1]) and the connec-
tion between classification and the cardinality of the limit set (Proposition [[.31]).
In particular, we call a semigroup elementary if its limit set is finite.

In general, the convex hull of the limit set may need to be replaced by a
quasiconvex hull (cf. Definition [[.5.1]), since in certain cases the convex hull does
not accurately reflect the geometry of the group. Indeed, Ancona [9, Corollary
C] and Borbely [32], Theorem 1] independently constructed examples of CAT(-1)
three-manifolds X for which there exists a point £ € 0.X such that the convex hull
of any neighborhood of £ is equal to bord X. Although in a non-proper setting the
limit set may no longer be compact, compactness of the limit set is a reasonable

geometric condition that is satisfied for many examples of subgroups of Isom(H>)

5We remark that the results of [48] §3.A] can be generalized to non-geodesic hyperbolic metric
spaces by using the Bonk—Schramm embedding theorem [31] Theorem 4.1] (see also [29] Corollary
A.10]).

6Some sources (e.g. [148] §5.5]) define nonelementarity in a way such that global fixed points are
automatically ruled out, but this is not true of our definition (Definition [[:32]).

7As is the case for many of our results, the classical proofs use compactness in a crucial way —
so here “straightforwardly” means that the statements of the theorems themselves do not require
modification.
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(e.g. Examples [3:2.2] T347). We call this condition compact type (Definition
[CorT).

1.2. The Bishop—Jones theorem and its generalization

The term Poincaré series classically referred to a variety of averaging pro-
cedures, initiated by Poincaré in his aforementioned Acta memoirs, with a view
towards uniformization of Riemann surfaces via the construction of automorphic
forms. Given a Fuchsian group I' and a rational function H : C — C with no poles
on 0B2, Poincaré proved that for every m > 2 the series

Y HOE)E )™

yel’
(defined for z outside the limit set of I') converges uniformly to an automorphic
form of dimension m; see [63] p.218]. Poincaré called these series “-fuchsian series
of order m”, but the name “Poincaré series” was later used to refer to such objects
The question of for which m < 2 the Poincaré series still converges was investigated
by Schottky, Burnside, Fricke, and Ritter; cf. [2] pp.37-38].

In what would initially appear to be an unrelated development, mathematicians
began to study the “thickness” of the limit set of a Fuchsian group: in 1941 Myrberg
[135] showed that the limit set A of a nonelementary Fuchsian group has positive
logarithmic capacity; this was improved by Beardon [17] who showed that A has
positive Hausdorff dimension, thus deducing Myrberg’s result as a corollary (since
positive Hausdorff dimension implies positive logarithmic capacity for compact sub-
sets of R? [166]). The connection between this question and the Poincaré series was
first observed by Akaza, who showed that if G is a Schottky group for which the
Poincaré series converges in dimension s, then the Hausdorff s-dimensional measure
of A is zero [5] Corollary of Theorem A]. Beardon then extended Akaza’s result to
finitely generated Fuchsian groups [19, Theorem 5|, as well as defining the ezponent
of convergence (or Poincaré exponent) 6 = dg of a Fuchsian or Kleinian group to
be the infimum of s for which the Poincaré series converges in dimension s (cf. Def-
inition BI.T] and [18]). The reverse direction was then proven by Patterson [142]
using a certain measure on A to produce the lower bound, which we will say more
about below in T4l Patterson’s results were then generalized by Sullivan [161] to
the setting of geometrically finite Kleinian groups. The necessity of the geometri-
cal finiteness assumption was demonstrated by Patterson [143], who showed that
there exist Kleinian groups of the first kind (i.e. with limit set equal to dH?Y) with
8The modern definition of Poincaré series (cf. Definition BIT)) is phrased in terms of hyperbolic

geometry rather than complex analysis, but it agrees with the special case of Poincaré’s original
definition which occurs when H = 1 and z = 0, with the caveat that «/(z)™ should be replaced

by |7 (2)™.
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arbitrarily small Poincaré exponent [I43] (see also [100] or [I57, Example 8] for
an earlier example of the same phenomenon).

Generalizing these theorems beyond the geometrically finite case requires the
introduction of the radial and uniformly radial limit sets. In what follows, we will
denote these sets by A, and A,;, respectively. Note that the radial and uniformly
radial limit sets as well as the Poincaré exponent can all (with some care) be defined
for general hyperbolic metric spaces; see Definitions [[.1.2] [7.2.1] and BIT.Il The
radial limit set was introduced by Hedlund in 1936 in his analysis of transitivity of
horocycles [90, Theorem 2.4].

After some intermediate results [72, [158], Bishop and Jones [28] Theorem
1] generalized Patterson and Sullivan by proving that if G is a nonelementary
Kleinian group, then dimg(A,) = dimg(Ay,) = 61 Further generalization was
made by Paulin [I44], who proved the equation dimg(A;) = ¢ in the case where
G < Tsom(X), and X is either a word-hyperbolic group, a CAT(-1) manifold, or a
locally finite unweighted simplicial tree which admits a discrete cocompact action.
We may now state the first major theorem of this monograph, which generalizes all

the aforementioned results:

THEOREM 1.2.1. Let G < Isom(X) be a nonelementary group. Suppose either
that
1)
2)
3)
4) X is an algebraic hyperbolic space and G acts irreducibly (cf. Section[7.6)
and is COT-discrete.

Then there exists o > 0 such that

G is strongly discrete,
X is a CAT(-1) space and G 1is moderately discrete,

X is an algebraic hyperbolic space and G is weakly discrete, or that

(
(
(
(

(121) dlmH(Ar) = dimH(Aur) = dimH(Aur N Ar,o) =0

(cf. Definitions [7.1.9 and [7.2]] for the deﬁm’tionﬁ Ay 5 ); moreover, for every

0 < s <9 there exist T > 0 and an Ahlfors s-requlanl set Js C Ayr,r N As 5.
For the proof of Theorem [[.2.1] see the comments below Theorem [[.2.3]

REMARK. We note that weaker versions of Theorem [[L2Z.1] already appeared in
[68] and [73], each of which has a two-author intersection with the present paper.
In particular, case (1) of Theorem [[2T]appeared in [73] and the proofs of Theorem
[[C2Tand [73], Theorem 5.9] contain a number of redundancies. This was due to the

9Although Bishop and Jones’ theorem only states that dimpg (Ar) = §, they remark that their
proof actually shows that dimg(Aur) =0 [28] p.4].

10Recall that a measure p on a metric space Z is called Ahlfors s-regular if for all z € Z and
0 < r < 1, we have that u(B(z,7)) <x r°. The topological support of an Ahlfors s-regular
measure is called an Ahlfors s-regular set.
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fact that we worked on two projects which, despite having fundamentally different
objectives, both required essentially the same argument to produce “large, nice”
subsets of the limit set: in the present monograph, this argument forms the core of
the proof of our generalization of the Bishop—Jones theorem, while in [73], the main
use of the argument is in proving the full dimension of the set of badly approximable
points, in two different senses of the phrase “badly approximable” (approximation
by the orbits of distinguished points, vs. approximation by rational vectors in an
ambient Euclidean space). There are also similarities between the proof of Theorem
[[21] and the proof of the weaker version found in [58] Theorem 8.13], although
in this case the presentation is significantly different. However, we remark that
the main Bishop—Jones theorem of this monograph, Theorem [[L2.3] is significantly
more powerful than both [73, Theorem 5.9] and [58, Theorem 8.13].

REMARK. The “moreover” clause is new even in the case which Bishop and
Jones considered, demonstrating that the limit set Ay, can be approximated by
subsets which are particularly well distributed from a geometric point of view. It
does not follow from their theorem since a set could have large Hausdorff dimension
without having any closed Ahlfors regular subsets of positive dimension (much less
full dimension); in fact it follows from the work of Kleinbock and Weiss [116] that
the set of well approximable numbers forms such a setX] In [73], a slight strength-
ening of this clause was used to deduce the full dimension of badly approximable
vectors in the radial limit set of a Kleinian group [73, Theorem 9.3].

REMARK. It is possible for a group satisfying one of the hypotheses of Theorem
[L2Tlto also satisfy § = co (Examples I3.2THIZ.3.3 and Dm-m note that
Theorem [[.2.1] still holds in this case.

REMARK. A natural question is whether (L22]) can be improved by showing
that there exists some o > 0 for which dimg (Ayr,s) = (cf. Definitions and
[[21] for the definition of Ay,»). The answer is negative. For a counterexample,
take X = H? and G = SLy(Z) < Isom(X); then for all o > 0 there exists £ > 0
such that Ay C BA(g), where BA(g) denotes the set of all real numbers with
Lagrange constant at most 1/e. (This follows e.g. from making the correspondence
in [73] Observation 1.15 and Proposition 1.21] explicit.) It is well-known (see e.g.
[118] for a more precise result) that dimgy (BA(e)) < 1 for all € > 0, demonstrating
that dimpg (Aur,s) <1 =0.

1Tt could be ob jected that this set is not closed and therefore should not constitute a counterex-
ample. However, since it has full measure, it has closed subsets of arbitrarily large measure (which
in particular still have dimension 1).

12For the parabolic examples, take a Schottky product (Definition [[0:277) with a lineal group
(Definition [6:22.T3) to get a nonelementary group, as suggested at the beginning of Chapter [[3]
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REMARK. Although Theorem [[2T] computes the Hausdorff dimension of the
radial and uniformly radial limit sets, there are many other subsets of the limit set
whose Hausdorff dimension it does not compute, such as the horospherical limit set
(cf. Definitions [.1.3] and [Z.2.1]) and the “linear escape” sets (Aa)ae(o,1) [122]. We
plan on discussing these issues at length in [57].

Finally, let us also remark that the hypotheses (1) - (4) cannot be weakened in

any of the obvious ways:

PROPOSITION 1.2.2. We may have dimg (A,) < § even if:

1) G is moderately discrete (even properly discontinuous) (Example [13.7.7)).
2) X is a proper CAT(-1) space and G is weakly discrete (Example[13.7.1).
3) X =H> and G is COT-discrete (Example[I37.9).

4) X = H* and G is irreducible and UOT-discrete (Example[157.3).

5) X = H? (Example[137.5).

In each case the counterexample group G is of general type (see Definition [6.2.13)

and in particular s nonelementary.

1.2.1. The modified Poincaré exponent. The examples of Proposition
illustrate that the Poincaré exponent does not always accurately calculate
the Hausdorff dimension of the radial and uniformly radial limit sets. In Chapter [
we introduce a modified version of the Poincaré exponent which succeeds at accu-
rately calculating dimp (A,) and dimg (Ay,) for all nonelementary groups G. (When
G is an elementary group, dimg (A;) = dimg(A,y) = 0, so there is no need for a

sophisticated calculation in this case.) Some motivation for the following definition
is given in §8.21
DEFINITION B2.3 Let G be a subsemigroup of Isom(X).

e For each set S C X and s > 0, let

e (S) = Z p=sl=l

rzesS
A(S)={s>0:%,(5) = o0}
5(S) = sup A(S9).
e The modified Poincaré set of G is the set
E22) Re = NAGS,),
p>0 5,

where the second intersection is taken over all maximal p-separated sets
S, C G(o).
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e The number gg = sup EG is called the modified Poincaré exponent of G.
If gg € Kg, we say that G is of generalized divergence type while if
gg € [0,00) \ Eg, we say that G is of generalized convergence type. Note
that if gg = 00, then G is neither of generalized convergence type nor of

generalized divergence type.
We may now state the most powerful version of our Bishop—Jones theorem:

THEOREM 1.2.3 (Proven in Chapter[@). Let G < Isom(X) be a nonelementary

semigroup. There exists o > 0 such that
(1.2.2) dimp (A;) = dimpg (Ay) = dimg (Age N Ay p) = 6.

Moreover, for every 0 < s < 5 there exist 7 > 0 and an Abhlfors s-reqular set
._75 - Aur,T N Ar,o’-

Theorem [[22.T] can be deduced as a corollary of Theorem [[L2.3} specifically,
Propositions B2Z4(ii) and show that any group satisfying the hypotheses of
Theorem [Z1] satisfies § = 0, and hence for such a group (CZ2) implies (L2.1).
On the other hand, Proposition shows that Theorem applies in many
cases where Theorem [[LZ.1] does not.

We call a group Poincaré regular if its Poincaré exponent § and modified
Poincaré exponent S are equal. In this language, Proposition [0.3.1/ Theorem [[.2.1]
describes sufficient conditions for a group to be Poincaré regular, and Proposition
provides a list of examples of groups which are Poincaré irregular.

Though Theorem [[.2.3lrequires G to be nonelementary, the following corollary

does not:
COROLLARY 1.2.4. Fiz G < Isom(X). Then for some o > 0,
(1.2.3) dimg (A;) = dimg (Ayy) = dimg (Ayy N AL o).

PRrROOF. If G is nonelementary, then (23] follows from ([2:2)). On the other
hand, if G is elementary, then all three terms of (LZ3)) are equal to zero. d

1.3. Examples

A theory of groups acting on infinite-dimensional space would not be complete
without some good ways to construct examples. Techniques used in the finite-
dimensional setting, such as arithmetic construction of lattices and Dehn surgery,
do not work in infinite dimensions. (The impossibility of constructing lattices in
13We use the adjective “generalized” rather than “modified” because all groups of conver-

gence/divergence type are also of generalized convergence/divergence type; see Corollary [B2.8
below.
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Isom(H>°) as a direct limit of arithmetic lattices in Isom(H?) is due to known lower
bounds on the covolumes of such lattices which blow up as the dimension goes
to infinity; see Proposition [2.2.3] below.) Nevertheless, there is a wide variety of
groups acting on H*°, including many examples of actions which have no analogue

in finite dimensions.

1.3.1. Schottky products. The most basic tool for constructing groups or
semigroups on hyperbolic metric spaces is the theory of Schottky products. This
theory was created by Schottky in 1877 when he considered the Fuchsian group
generated by a finite collection of loxodromic isometries g; described by a disjoint
collection of balls B;" and B; with the property that g;(H?>\ B;) = B;}. Tt was
extended further in 1883 by Klein’s Ping-Pong Lemma, and used effectively by
Patterson [143] to construct a “pathological” example of a Kleinian group of the
first kind with arbitrarily small Poincaré exponent.

We consider here a quite general formulation of Schottky products: a collection
of subsemigroups of Isom(X) is said to be in Schottky position if open sets can be
found satisfying the hypotheses of the Ping-Pong lemma whose closure is not equal
to X (cf. Definition [[0:21]). This condition is sufficient to guarantee that the
product of groups in Schottky position (called a Schottky product) is always COT-
discrete, but stronger hypotheses are necessary in order to prove stronger forms of
discreteness. There is a tension here between hypotheses which are strong enough to
prove useful theorems and hypotheses which are weak enough to admit interesting
examples. For the purposes of this monograph we make a fairly strong assumption
(the strong separation condition, Definition [[0.3.1]), one which rules out infinitely
generated Schottky groups whose generating regions have an accumulation point
(for example, infinitely generated Schottky subgroups of Isom(H9)). However, we
plan on considering weaker hypotheses in future work [57].

One theorem of significance in Chapter [I0] is Theorem [[0.4.7] which relates
the limit set of a Schottky product to the limit set of its factors together with the
image of a Cantor set OI' under a certain symbolic coding map 7« : ' — 9X.
As a consequence, we deduce that the properties of compact type and geometri-
cal finiteness are both preserved under finite strongly separated Schottky products
(Corollary[T0.Z.8 and Proposition[T2.4.19] respectively). A result analogous to The-
orem [[0.4.7] in the setting of infinite alphabet conformal iterated function systems
can be found in [128] Lemma 2.1].

In §10.5] we discuss some (relatively) explicit constructions of Schottky groups,
showing that Schottky products are fairly ubiquitous - for example, any two groups
which act properly discontinuously at some point of X may be rearranged to be in

Schottky position, assuming that X is sufficiently symmetric (Proposition [[0.5.1]).
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1.3.2. Parabolic groups. A major point of departure where the theory of
subgroups of Isom(H>) becomes significantly different from the finite-dimensional
theory is in the study of parabolic groups. As a first example, knowing that a group
admits a discrete parabolic action on Isom(X) places strong restrictions on the al-
gebraic properties of the group if X = [H%, but not if X = H°. Concretely, discrete
parabolic subgroups of Isorn([Hﬁé) are always virtually nilpotent (virtually abelian
if F = R), but any group with the Haagerup property admits a parabolic strongly
discrete action on H* (indeed, this is a reformulation of one of the equivalent def-
initions of the Haagerup property; cf. [50, p.1, (4)]). Examples of groups with
the Haagerup property include all amenable groups and free groups. Moreover,
strongly discrete parabolic subgroups of Isom(H>) need not be finitely generated;
cf. Example

Moving to infinite dimensions changes not only the algebraic but also the geo-
metric properties of parabolic groups. For example, the cyclic group generated
by a parabolic isometry may fail to be discrete in any reasonable sense (Example
[[TI12), or it may be discrete in some senses but not others (Example TT.TT4]).
The Poincaré exponent of a parabolic subgroup of Isom([l—lﬁ,i—) is always a half-integer
[64] Proof of Lemma 3.5], but the situation is much more complicated in infinite
dimensions. We prove a general lower bound on the Poincaré exponent of a para-
bolic subgroup of Isom(X) for any hyperbolic metric space X, depending only on
the algebraic structure of the group (Theorem [T.2.6]); in particular, the Poincaré
exponent of a parabolic action of Z* on a hyperbolic metric space is always at least
k/2. Of course, it is well-known that all parabolic actions of Z* on H? achieve
equality. By contrast, we show that for every § > k/2 there exists a parabolic
action of Z¥ on H>™ whose Poincaré exponent is equal to § (Theorem [T.2.1T)).

1.3.3. Geometrically finite and convex-cobounded groups. It has been
known for a long time that every finitely generated Fuchsian group has a finite-sided
convex fundamental domain (e.g. [108] Theorem 4.6.1]). This result does not gen-
eralize beyond two dimensions (e.g. [25], [102]), but subgroups of Isom(H?) with
finite-sided fundamental domains came to be known as geometrically finite groups.
Several equivalent definitions of geometrical finiteness in the three-dimensional set-
ting became known, for example Beardon and Maskit’s condition that the limit set
is the union of the radial limit set A, with the set Ay, of bounded parabolic points
[21], but the situation in higher dimensions was somewhat murky until Bowditch
[34] wrote a paper which described which equivalences remain true in higher di-
mensions, and which do not. The condition of a finite-sided convex fundamental

domain is no longer equivalent to any other conditions in higher dimensions (e.g.
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[12]), so a higher-dimensional Kleinian group is said to be geometrically finite if it
satisfies any of Bowditch’s five equivalent conditions (GF1)-(GF5).

In infinite dimensions, conditions (GF3)-(GF5) are no longer useful (cf. Remark
[[2.4.6]), but appropriate generalizations of conditions (GF1) (convex core is equal
to a compact set minus a finite number of cusp regions) and (GF2) (the Beardon—
Maskit formula A = A;UAyyp) are still equivalent for groups of compact type. In fact,
(GF1) is equivalent to (GF2) + compact type (Theorem [2.4.5]). We define a group
to be geometrically finite if it satisfies the appropriate analogue of (GF1) (Definition
[24T). A large class of examples of geometrically finite subgroups of Isom(H>)
is furnished by combining the techniques of Chapters [0 and I} specifically, the
strongly separated Schottky product of any finite collection of parabolic groups
and/or cyclic loxodromic groups is geometrically finite (Corollary [2.4.20).

It remains to answer the question of what can be proven about geometrically
finite groups. This is a quite broad question, and in this monograph we content
ourselves with proving two theorems. The first theorem, Theorem [2.4.14] is a
generalization of the Milnor-Schwarz lemma [39], Proposition 1.8.19] (see also The-
orem[T2Z2T2)), and describes both the algebra and geometry of a geometrically finite
group G: firstly, G is generated by a finite subset F' C G together with a finite
collection of parabolic subgroups G¢ (which are not necessarily finitely generated,
e.g. Example [T.2Z.20)), and secondly, the orbit map g — ¢(0) is a quasi-isometric
embedding from (G, dg) into X, where dg is a certain weighted Cayley metric (cf.
Example B.I.21 and (I2.4.6)) on G whose generating set is F'UJ; G¢. As a conse-
quence (Corollary [2.4.17)), we see that if the groups G¢, { € App, are all finitely
generated, then G is finitely generated, and if these groups have finite Poincaré

exponent, then G has finite Poincaré exponent.

1.3.4. Counterexamples. A significant class of subgroups of Isom(H>) that
has no finite-dimensional analogue is provided by the Burger—Iozzi-Monod (BIM)
representation theorem [40, Theorem 1.1], which states that any unweighted sim-
plicial tree can be equivariantly and quasi-isometrically embedded into an infinite-
dimensional real hyperbolic space, with a precise relation between distances in the
domain and distances in the range. We call the embeddings provided by their
theorem BIM embeddings, and the corresponding homomorphisms provided by the
equivariance we call BIM representations. We generalize the BIM embedding theo-
rem to the case where X is a separable R-tree rather than an unweighted simplicial
tree (Theorem [I3.1.T)).

If we have an example of an R-tree X and a subgroup I' < Isom(X) with a
certain property, then the image of I' under a BIM representation generally has
the same property (Remark [3.1.4). Thus, the BIM embedding theorem allows



xxxVvi 1. INTRODUCTION AND OVERVIEW

us to translate counterexamples in R-trees into counterexamples in H>. For ex-
ample, if T" is the free group on two elements acting on its Cayley graph, then
the image of I' under a BIM representation provides a counterexample both to
an infinite-dimensional analogue of Margulis’s lemma (cf. Example I3.1.5) and to
an infinite-dimensional analogue of I. Kim’s theorem regarding length spectra of
finite-dimensional algebraic hyperbolic spaces (cf. Remark [[3.1.6]).

Most of the other examples in Chapter [[3] are concerned with our various
notions of discreteness (cf. §I.I.3] above), the notion of Poincaré regularity (i.e.
whether or not § = N), and the relations between them. Specifically, we show that
the only relations are the relations which were proven in Chapter Bl and Proposi-
tion @311 as summarized in Table [ p03l Perhaps the most interesting of the
counterexamples we give is Example [[3.4.2] which is the image under a BIM rep-
resentation of (a countable dense subgroup of) the automorphism group I' of the
4-regular unweighted simplicial tree. This example is notable because discreteness
properties are not preserved under taking the BIM representation: specifically, I"
is weakly discrete but its image under the BIM representation is not. It is also

interesting to try to visualize this image geometrically (cf. Figure [3:4.1]).

1.3.5. R-trees and their isometry groups. Motivated by the BIM rep-
resentation theorem, we discuss some ways of constructing R-trees which admit
natural isometric actions. Our first method is the cone construction, in which one
starts with an ultrametric space (Z, D) and builds an R-tree X as a “cone” over
Z. This construction first appeared in a paper of F. Choucroun [52], although it is
similar to several other known cone constructions: [85] 1.8.A.(b)], [168], [31] §7].
R-trees constructed by the cone method tend to admit natural parabolic actions,
and in Theorem [I4.T.5we provide a necessary and sufficient condition for a function
to be the orbital counting function of some parabolic group acting on an R-tree.

Our second method is to staple R-trees together to form a new R-tree. We give
sufficient conditions on a graph (V| E), a collection of R-trees (X, )yecv, and a col-
lection of sets A(v,w) C X, and bijections 1,4, : A(v,w) = A(w,v) ((v,w) € E)
such that stapling the trees (X,),cv along the isometries (1w )(v,w)er yields an
R-tree (Theorem [4.44). In §T45] we give three examples of the stapling construc-
tion, including looking at the cone construction as a special case of the stapling
construction. The stapling construction is somewhat similar to a construction of
G. Levitt [120].

1.4. Patterson—Sullivan theory

The connection between the Poincaré exponent ¢ of a Kleinian group and the

geometry of its limit set is not limited to Hausdorff dimension considerations such
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as those in the Bishop—Jones theorem. As we mentioned before, Patterson and
Sullivan’s proofs of the equality dimg (A) = J for geometrically finite groups rely on
the construction of a certain measure on A, the Patterson—Sullivan measure, whose
Hausdorff dimension is also equal to §. In addition to connecting the Poincaré
exponent and Hausdorff dimension, the Patterson—Sullivan measure also relates to
the spectral theory of the Laplacian (e.g. [142] Theorem 3.1], [161] Proposition
28]) and the geodesic flow on the quotient manifold [103]. An important property
of Patterson—Sullivan measures is conformality. Given s > 0, a measure y on OB?

is said to be s-conformal with respect to a discrete group G' < Isom(B9) if

(1.4.1) o) = [ 16/ ©F aute) v € G va < 0B

The Patterson—Sullivan theorem on the existence of conformal measures may now
be stated as follows: For every Kleinian group G, there exists a 6-conformal measure
on A, where § is the Poincaré exponent of G and A is the limit set of G.

When dealing with “coarse” spaces such as arbitrary hyperbolic metric spaces,
it is unreasonable to expect equality in ([L.41]). Thus, a measure p on 90X is said

to be s-quasiconformal with respect to a group G < Isom(X) if

1(g(4)) = /A 7(6)° du(€) Vg € G VA C OX.

Here g'(€) denotes the upper metric derivative of g at &; cf. §£2.21 We remark that
if X is a CAT(-1) space and G is countable, then every quasiconformal measure is
coarsely asymptotic to a conformal measure (Proposition [5.2.7).

In Chapter [[5 we describe the theory of conformal and quasiconformal mea-
sures in hyperbolic metric spaces. The main theorem is the existence of S-conformal
measures for groups of compact type (Theorem [[5.4.6]). An important special case
of this theorem has been proven by Coornaert [53], Théoreme 5.4] (see also [41]
§1], [I52] Lemme 2.1.1]): the case where X is proper and geodesic and G satisfies
0 < 0o. The main improvement from Coornaert’s theorem to ours is the ability
to construct quasiconformal measures for Poincaré irregular (g < 0 = 00) groups;
this improvement requires an argument using the class of uniformly continuous
functions on bord X.

The big assumption of Theorem is the assumption of compact type.
All proofs of the Patterson—Sullivan theorem seem to involve taking a weak-*
limit of a sequence of measures in X and then proving that the limit measure
is (quasi)conformal, but how can we take a weak-* limit if the limit set is not
compact? In fact, Theorem becomes false if you remove the assumption of

compact type. In Proposition [I6.6.1] we construct a group acting on an R-tree and
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satisfying § < oo which admits no d-conformal measure on its limit set, and then

use the BIM embedding theorem (Theorem [[3.T1]) to get an example in H>.
Surprisingly, it turns out that if we replace the hypothesis of compact type with

the hypothesis of divergence type, then the theorem becomes true again. Specifically,

we have the following:

THEOREM 1.4.1 (Proven in Chapter[I6]). Let G < Isom(X) be a nonelementary
group of generalized divergence type (see Definition[8.2.3). Then there exists a 5-
quasiconformal measure p for G supported on A, where § is the modified Poincaré
exponent of G. It is unique up to a multiplicative constant in the sense that if
w1, 2 are two such measures then uy <« p2 (¢f. Remark[IZI13). In addition, p

is ergodic and gives full measure to the radial limit set of G.

To motivate Theorem [[L4.]] we recall the connection between the divergence
type condition and Patterson—Sullivan theory in finite dimensions. Although the
Patterson—Sullivan theorem guarantees the existence of a d-conformal measure, it
does not guarantee its uniqueness. Indeed, the J-conformal measure is often not
unique; see e.g. [10]. However, it turns out that the hypothesis of divergence type
is enough to guarantee uniqueness. In fact, the condition of divergence type turns

out to be quite important in the theory of conformal measures:

THEOREM 1.4.2 (Hopf-Tsuji-Sullivan theorem, [138] Theorem 8.3.5]). Fiz d >
2, let G < Isom(HY) be a discrete group, and let § be the Poincaré exponent of G.
Then for any §-conformal measure u € M(A), the following are equivalent:

(A) G is of divergence type.

(B) w gives full measure to the radial limit set A(G).

(C) G acts ergodically on (A, p) x (A, p).
In particular, if G is of divergence type, then every §-conformal measure is ergodic,

so there is exactly one (ergodic) §-conformal probability measure.

”

We remark that our sentence “In particular ...” stated in theorem above was
not included in [I38] Theorem 8.3.5] but it is well-known and follows easily from

the equivalence of (A) and (C).

REMARK 1.4.3. Theorem [[LZ2 has a long history. The equivalence (B) < (C)
was first proven by E. Hopf in the case § = d — [99], (100] (1936, 1939). The
equivalence (A) < (B) was proven by Z. Y1jobo in the case 6 = d — 1 =1 [176]
(1949), following an incorrect proof by M. Tsuji [169] (1944) Sullivan proved (A)
< (C) in the case 6 = d — 1 [163] Theorem II|, then generalized this equivalence
141y this paragraph, when we say that someone proves the case 6 = d — 1, we mean that they

considered the case where 1 is Hausdorff (d — 1)-dimensional measure on S¢~1.
13See [163] p.484] for some further historical remarks on the case § =d — 1 = 1.
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to the case § > (d — 1)/2 [161], Theorem 32]. He also proved (B) < (C) in full
generality [I61] Theorem 21]. Next, W. P. Thurston gave a simpler proof of (A)
= (B)Y in the case § = d — 1 [4] Theorem 4 of Section VII]. P. J. Nicholls finished
the proof by showing (A) < (B) in full generality [I38, Theorems 8.2.2 and 8.2.3].
Later S. Hong re-proved (A) = (B) in full generality twice in two independent
papers [97, [98], apparently unaware of any previous results. Another proof of (A)
= (B) in full generality, which was conceptually similar to Thurston’s proof, was
given by P. Tukia [I71] Theorem 3A]. Further generalization was made by C. Yue
[I75] to negatively curved manifolds, and by T. Roblin [I5I] Théoreme 1.7] to
proper CAT(-1) spaces.

Having stated the Hopf—Tsuji—Sullivan theorem, we can now describe why The-
orem [[L4.1] is true, first on an intuitive level and then giving a sketch of the real
proof. On an intuitive level, the fact that divergence type implies both “existence
and uniqueness” of the §-conformal measure in finite dimensions indicates that per-
haps the compactness assumption is not needed — the sequence of measures used
to construct the Patterson—Sullivan measure converges already, so it should not be
necessary to use compactness to take a convergent subsequence.

The real proof involves taking the Samuel-Smirnov compactification of bord X,
considered as a metric space with respect to a visual metric (cf. §3.63]). The
Samuel-Smirnov compactification of a metric space (cf. [136] §7]) is conceptually
similar to the more familiar Stone-Cech compactification, except that only uni-
formly continuous functions on the metric space extend to continuous functions
on the compactification, not all continuous functions. If we used the Stone-Cech
compactification rather than the Samuel-Smirnov compactification, then our proof
would only apply to groups with finite Poincaré exponent; cf. Remark [6.1.3] and
Remark

SKETCH OF THE PROOF OF THEOREM [[L4.Il We denote the Samuel-Smirnov
compactification of bord X by X. By a nonstandard analogue of Theorem
(viz. Lemma [6.34), there exists a d-quasiconformal measure 7i on X, By a
generalization of Theorem (viz. Proposition [6.47]), 1z gives full measure to
the radial limit set ZX\r But a simple computation (Lemma [6.2.5]) shows that
A; = A,, demonstrating that fi € M(A). O

1.4.1. Quasiconformal measures of geometrically finite groups. Let
us consider a geometrically finite group G < Isom(X) with Poincaré exponent
0 < oo, and let p be a d-quasiconformal measure on A. Such a measure exists

since geometrically finite groups are of compact type (Theorem [[2.4.5and Theorem

6By this point, it was considered obvious that (B) = (A).
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[[54.4]), and is unique as long as G is of divergence type (Corollary [6.2.6]). When
X = H?, the geometry of u is described by the Global Measure Formula [165]
Theorem on p.271], [I60, Theorem 2]: the measure of a ball B(n,e™?) is coarsely
asymptotic to e % times a factor depending on the location of the point 7; := [0, 7];
in the quotient manifold H?/G. Here [o,n]; is the unique point on the geodesic
connecting o and n with distance ¢ from o; cf. Notations B.1.6] {.4.3]

In a general hyperbolic metric space X (indeed, already for X = H*), one
cannot get a precise asymptotic for pu(B(n,e™")), due to the fact that the measure
w1 may fail to be doubling (Example [7.4.12]). Instead, our version of the global
measure formula gives both an upper bound and a lower bound for u(B(n,e™?)).
Specifically, we define a function m : A x [0,00) — (0, 00) (for details see (IZ.2ZT)
and then show:

THEOREM 1.4.4 (Global measure formula, Theorem proven in Section
I73). Forallne A andt >0,

(142) m(ﬁvt+0) SX U(B(T]aeit)) SX m(nat_a)v

where o > 0 is independent of n and t.

It is natural to ask for which groups (L.Z2) can be improved to an exact as-
ymptotic, i.e. for which groups p is doubling. We address this question in Section
[[74], proving a general result (Proposition [[7.4]), a special case of which is that if
X is a finite-dimensional algebraic hyperbolic space, then p is doubling (Example
[[T4TT). Nevertheless, there are large classes of examples of groups G < Isom(H>)
for which g is not doubling (Example [7.4.12)), illustrating once more the wide
difference between H* and its finite-dimensional counterparts.

It is also natural to ask about the implications of the Global Measure Formula
for the dimension theory of the measure p. For example, when X = H¢, the Global
Measure Formula was used to show that dimy(u) = § [160, Proposition 4.10]. In

our case we have:

THEOREM 1.4.5 (Cf. Theorem [TT59). If for all p € P, the series
(1.4.3) > el
heG,
converges, then p is exact dimensional (cf. Definition [17.5.9) of dimension 6. In
particular,

dimpg () =dimp(p) =6 .

The hypothesis that (L43]) converges is a very non-restrictive hypothesis. For
example, it is satisfied whenever § > 6, for all p € P (Corollary[I7.5.10). Combining
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with Proposition [0.3.10l shows that any counterexample must satisfy

Z e Ol 5o = Z e OlRl )|

heG, heG,
for some p € P, creating a very narrow window for the orbital counting function
N, (cf. Notation IT7.2.1)) to lie in. Nevertheless, we show that there exist coun-
terexamples (Example IT7.5.14]) for which the series (.43 diverges. After making
some simplifying assumptions, we are able to prove (Theorem [I7.5.13]) that the
Patterson—Sullivan measures of groups for which (L43) diverges cannot be exact
dimensional, and in fact satisfy dimg(u) = 0.

There is a relation between exact dimensionality of the Patterson—Sullivan mea-
sure and the theory of Diophantine approximation on the boundary of 90X, as de-
scribed in [73]. Specifically, if VWA denotes the set of points which are very well
approximable with respect to a distinguished point & (cf. §IT.5.T), then we have
the following:

THEOREM 1.4.6 (Cf. Theorem [[T5.8). The following are equivalent:

(A) Forallpe P, nf(VWA,) =0.

(B) w is exact dimensional.

(C) dimpg(p) =4.

(D) Forall§ € A, p(VWA¢) =0.

In particular, combining with Theorem demonstrates that the equation
H(VWA) = 0

holds for a large class of geometrically finite groups G and for all £ € A. This
improves the results of [73] §1.5.3].

1.5. Appendices

We conclude this monograph with two appendices. Appendix [A] contains a list
of open problems, and Appendix [B] an index of defined terms.






Part 1

Preliminaries



This part will be divided as follows: In Chapter 2lwe define the class of algebraic
hyperbolic spaces, which are often called rank one symmetric spaces of noncompact
type. In ChaptersBland ] we define the class of hyperbolic metric spaces and study
their geometry. In Chapter Bl we explore different notions of discreteness for groups
of isometries of a metric space. In Chapter [6l we prove two classification theorems,
one for isometries (Theorem [6.1.4]) and one for semigroups of isometries (Theorem
[623). Finally, in Chapter [ we define and study the limit set of a semigroup of

isometries.



CHAPTER 2

Algebraic hyperbolic spaces

In this chapter we introduce our main objects of interest, algebraic hyper-
bolic spaces in finite and infinite dimensions. References for the theory of finite-
dimensional algebraic hyperbolic spaces, which are often called rank one symmetric
spaces of noncompact type, include [39) [45], 123]. Infinite-dimensional algebraic
hyperbolic spaces, as well as some non-hyperbolic infinite-dimensional symmetric

spaces, have been discussed in [67].

2.1. The definition

Finite-dimensional rank one symmetric spaces of noncompact type come in
four flavors, corresponding to the classical division algebras R, C, Q (quaternions),
and O (octonions)l] The first three division algebras have corresponding rank one
symmetric spaces of noncompact type of arbitrary dimension, but there is only one
rank one symmetric space of noncompact type corresponding to the octonions; it
occurs in dimension two (which corresponds to real dimension 16). Consequently,
the octonion rank one symmetric space of noncompact type (known as the Cayley
hyperbolic planfﬁ) does not have an infinite-dimensional analogue, while the other
three classes do admit infinite-dimensional analogues.

The rank one symmetric spaces of noncompact type corresponding to R have
constant negative curvature. However, those corresponding to the other division
algebras have variable negative curvature [147, Lemmas 2.3, 2.7, 2.11] (see also

[93] Corollary of Proposition 4]).

REMARK 2.1.1. In this monograph we will use the term “algebraic hyperbolic

spaces” to refer to all rank one symmetric spaces of noncompact type except the

Cayley hyperbolic plane H2, in order to avoid dealing with the complicated alge-

bra of the octonionsE However, we feel confident that all the theorems regarding

IWe denote the quaternions by Q in order to avoid confusion with the rank one symmetric space
of noncompact type (defined over Q) itself, which we will denote by H. Be aware that Q should
not be confused with the set of rational numbers.

2Not to be confused with the Cayley plane, a different mathematical object.

3The complications come from the fact that the octonions are not associative, thus making it
somewhat unclear what it means to say that Q3 is a vector space “over” the octonions, since in
general (xa)b # x(ab).
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algebraic hyperbolic spaces in this monograph can be generalized to the Cayley
hyperbolic plane (possibly after modifying the statements slightly). We leave this
task to an algebraist.

For the reader interested in learning more about the Cayley hyperbolic plane,
see [133], pp.136-139], [156], or [7]; see also [14] for an excellent introduction to

octonions in general.

Fix F € {R,C,Q} and an index set J, and let us construct an algebraic hyper-
bolic space (i.e. a rank one symmetric space of noncompact type) over the field F
in dimension #(J). We remark that usually we will let J = N = {1,2,...}, but

occasionally J may be an uncountable set. Let

H :’Hg = {X: (.Ti)iej S [FJ

Z|xi|2<oo},

icJ

x| == <Z Iwil2> 1/2-

icJ

and for x € H let

We will think of H as a right F-module, so scalars will always act on the rightE
Note that
Ixall = |a| - ||x]| Vx € H VaeF.

A sesquilinear form on H is an R-bilinear map B(-,-) : H x H — [F satisfying
B(xa,y) =@B(x,y) and B(x,ya) = Bx,y)al]
Here and from now on @ denotes the conjugate of a complex or quaternionic number
a€l;if F =R, then a = a.
A sesquilinear form is said to be skew-symmetric if B(y,x) = B(x,y). For

example, the map

Be(x,y) = Zﬂc_iyi
icJ
is a skew-symmetric sesquilinear form. Note that

E(x) = Be(x,x) = [[x]*.
2.2. The hyperboloid model
Assume that 0 ¢ J, and let
£=" =1V = Ix = @iicaupoy € FUO YT (mf? < oo
1€ JU{0}

4The advantage of this convention is that it allows operators to act on the left.

5In the case F = C, this disagrees with the usual convention; we follow here the convention of
[123] §3.3.1].



2.2. THE HYPERBOLOID MODEL 5

Consider the skew-symmetric sesquilinear form Bg : £ x £ — F defined by
Bo(x,y) = —Toyo + Zfiyi
icJ
and its associated quadratic form
(2.2.1) Q(x) := Bo(x,%) = —|zo|* + > _ |as|*.
icJ
We observe that the form Q is not positive definite, since Q(eg) = —1.

REMARK 2.2.1. If F = R, then the form Q is called a Lorentzian quadratic
form, and the pair (£, Q) is called a Minkowski space.

Let P(L) denote the projectivization of L, i.e. the quotient of £\ {0} under
the equivalence relation x ~ xa (x € L\ {0}, a € F \ {0}). Let

H=H{ = {[x] e P(£]""): Q(x) < 0},

and consider the map dp : H x H — [0, 00) defined by the equation
|Bo(x,y)|

VI 1Q(y)|

Note that the map dp is well-defined because the right hand side is invariant under

(2.2.2) coshdn([x], [y]) = [x],[y] € H.

multiplying x and y by scalars.

PROPOSITION 2.2.2. The map dy is a metric on H that is compatible with the
natural topology, when viewed as a subspace of the quotient space P(L). Moreover,
for any two distinct points [x],[y] € H there exists a unique isometric embedding
v : R = H such that v(0) = [x] and v o du([x],[y]) = [y]-

REMARK 2.2.3. The second sentence is the unique geodesic extension property
of H. It holds more generally for Riemannian manifolds (cf. Remark 227 below),
but is an important distinguishing feature in the larger class of uniquely geodesic

metric spaces.

ProoF OF PROPOSITION [2.2.2] The key to the proof is the following lemma,
which may also be deduced from the infinite-dimensional analogue of Sylvester’s

law of inertia [124] Lemma 3].

LEMMA 2.2.4. Fiz z € L with Q(z) < 0, and let z+ = {w : Bgo(z,w) = 0}.
Then Q |z is positive definite.

ProOF OoF LEMMA 222741 By contradiction, suppose Q(y) < 0 for some y €
z+. There exist a,b € F, not both zero, such that yga + zob = 0. But then

0 < Qya +2b) = |a*Q(y) + [b]*Q(z) < 0,

which provides a contradiction. <
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Now fix [x], [y], [z] € H, and let x,y,z € L\ {0} be representatives which satisfy

Bo(x,z) = Bo(y,z) = Q(z) = —1.

Then
cosh dy([x], [2]) = m coshd([y], [z]) = m
Q(x —z) Qy —2)

sinh dy ([x], [z]) = sinh d([y], [z]) =

VI-Qkx-2) Vi—Qy -2

By the addition law for hyperbolic cosine we have

cosh(dn ([x], [2z]) + du([y], [2])) = “ﬁt\g/i(i ;)z\)/\l/_Q(Qy(; i)z) .

On the other hand, we have
B 1 1
V1-0Q(x—2)/1-Qy -z

Since x —z,y —z € z*, the Cauchy-Schwartz inequality together with Lemma 2.2.4]

cosh di([x], [y])

)|—1+Bg(x—z,y—z)|.

gives

=1+ Bo(x—2,y —2)| <1+ Q(x —2)/Qy - 2),
with equality if and only if x — z and y — z are proportional with a negative real
constant of proportionality. This demonstrates the triangle inequality.

To show that dy is compatible with the natural topology, it suffices to show
that if U is a neighborhood in the natural topology of a point [x] € H, then there
exists € > 0 such that B([x],) C U. Indeed, fix a representative x € [x]; then there
exists § > 0 such that ||y — x|| < § implies [y] € U. Now, given [y] € B(|x],¢),
choose a representative y € [y| such that z := y — x satisfies Bg(x,2z) = 0; this
is possible since any representative y € [y] satisfies Bg(x,y) # 0 by Lemma 224
Then

_ |Q(x)| _ ’ Q(x)

VIQE)[ - [Q() + Q(2)] Qx) + Q(2)
So if du([x], [y]) < e, then Q(z) < Q(x)[1 — 1/ cosh(¢)]. By Lemma 224 there
exists C' > 0 such that [|z]|? < CQ(x)[1—1/ cosh(g)]. In particular, we may choose &
so that C'Q(x)[1 —1/ cosh(e)] < §, which completes the proof that dy is compatible
with the natural topology.

coshdy([x], [y])

Now suppose that 7 : R — H is an isometric embedding, and let [z] = ~(0).
Choose a representative z € £\ {0} such that Q(z) = —1, and for each t € R\ {0}
choose a representative x, € £\ {0} such that Bg(x;,z) = —1. The preceding

argument shows that for t; < 0 < t9, x4, — z and x¢, — z are proportional with a
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negative constant of proportionality. Together with (ZZ2]), this implies that
(2.2.3) x; = z + tanh(t)w

for some w € z+ with Q(w) = 1. Conversely, direct calculation shows that the
equation (Z23) defines an isometric embedding v, w : R — H via the formula
Vaw(t) = [xe]. O

DEFINITION 2.2.5. An algebraic hyperbolic space is a pair (H{, dy), where F €
{R,C,Q} and J is a nonempty set such that 0 ¢ J.

REMARK 2.2.6. In finite dimensions, the class of algebraic hyperbolic spaces is
identical (modulo the Cayley hyperbolic plane, cf. Remark 2ZT.1]) to the class of
rank one symmetric spaces of noncompact type. This follows from the classification
theorem for finite-dimensional symmetric spaces, see e.g. [94] p.518]H It is not clear
whether an analogous theorem holds in infinite dimensions (but see [68] for some

results in this direction).

REMARK 2.2.7. In finite dimensions, the metric dy may be defined as the length
metric associated to a certain Riemannian metric on H; cf. [I47] §2.2]. The same
procedure works in infinite dimensions; cf. [I119] for an exposition of the theory
of infinite dimensional manifolds. Although a detailed account of the theory of
infinite-dimensional Riemannian manifolds would be too much of a digression, let

us make the following points:

e An infinite-dimensional analogue of the Hopf-Rinow theorem is false [13],
i.e. there exists an infinite-dimensional Riemannian manifold such that
some two points on that manifold cannot be connected by a geodesic.
However, if an infinite-dimensional Riemannian manifold X is nonposi-
tively curved, then any two points of X can be connected by a unique
geodesic as a result of the infinite-dimensional Cartan—-Hadamard theo-
rem [119] IX, Theorem 3.8]; moreover, this geodesic is length-minimizing.
In particular, if one takes a Riemannian manifolds approach to defining
infinite-dimensional algebraic hyperbolic spaces, then the second assertion
of Proposition follows from the Cartan—-Hadamard theorem.

e A bijection between two infinite-dimensional Riemannian manifolds is an
isometry with respect to the length metric if and only if it is a diffeomor-
phism which induces an isometry on the Riemannian metric [76, Theorem
7). This theorem is commonly known as the Myers—Steenrod theorem, as
S. B. Myers and N. E. Steenrod proved its finite-dimensional version [134].
The difficult part of this theorem is proving that any bijection which is an

6In the notation of [94], the spaces HE, Hg, H%, and H%) are written as SO(p,1)/SO(p),
SU(p,1)/SU(p), Sp(p, 1)/ Sp(p), and (f4(—20),50(9)), respectively.
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isometry with respect to the length metric is differentiable. In the case of

algebraic hyperbolic spaces, however, this follows directly from Theorem

233 below.

2.3. Isometries of algebraic hyperbolic spaces
We define the group of isometries of a metric space (X, d) to be the group
Isom(X) :={g: X — X : g is a bijection and d(g(z),g(y)) = d(x,y) Vzr,y € X}.

In this section we will compute the group of isometries of an arbitrary algebraic
hyperbolic space. Fix F € {R,C,Q} and an index set J, and let H = H{, L =
E;u{o} , and H = Hf. We begin with the following observation:

OBSERVATION 2.3.1. Let Op(L; Q) denote the group of Q-preserving F-linear
automorphisms of £. Then for all T' € O (L; Q), the map [T] : H — H defined by

the equation
(2.3.1) [T]([x]) = [Tx]
is an isometry of (H, dp).

PROOF. The map [T] is well-defined by the associativity property T'(xa) =
(Tx)a. Since T is Q-preserving and F-linear, the polarization identity (the three

versions cover the three cases when the base field F = R, C, and Q respectively)

ilQx+y) - Qx~vy)
Bo(x,y) = { 11Q(x+¥) = Qx —y) —iQ(x +yi) +iQ(x — yi)]
i|Qx+y)-Qx—y) +£_% . (—0Q(x+yl) +(Q(x — yt))
guarantees that
(2.3.2) Bo(Tx,Ty) = Bo(x,y) ¥x,y € H.
Comparing with 22) shows that [T] is an isometry. O

The group Of(L; Q) is quite large. In addition to containing all maps of the
form T@® I, where T € Op(H;&) and I : F — [ is the identity map, it also contains

the so-called Lorentz boosts
(2.33) Tji(x)= cosh(t)z; +sinh(t)zy i=3j , JeJiteR.

sinh(t)x; + cosh(t)zp i=0 i€ Ju{0}
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We leave it as an exercise that Op(#;E) @ {I} and the Lorentz boosts in fact
generate the group Of(L; Q).

OBSERVATION 2.3.2. The group
POr(L; Q) ={[T]: T € Or(L; Q)} < Isom(H)
acts transitively on H.

PRrROOF. Let o = [(1,0)]. The orbit of o under POr(L; Q) contains its image
under the Lorentz boosts. Specifically, for every ¢ € R the orbit of o contains the
point [(cosh(t), sinh(t),0)]. Applying maps of the form [T®I], T € Of(H,E), shows
that the orbit of o is H. O

We may ask the question of whether the group PO (L; Q) is equal to Isom(H)
or is merely a subgroup. The answer turns out to depend on the division algebra
[

THEOREM 2.3.3. If F € {R,Q} then Isom(H) = POr(L; Q). IfF = C, then
POr(L; Q) is of index 2 in Isom(H).

REMARK 2.3.4. In finite dimensions, Theorem [2.3.3] is given as an exercise
in [39, Exercise 11.10.21]. Because of the importance of Theorem 2333 to this

monograph, we provide a full proof.

Before proving Theorem 2.3.3] it will be convenient for us to introduce a group
somewhat larger than Of(L; Q). Let Aut(F) denote the group of automorphisms

of [ as an R-algebra, i.e.

Aut(F) = {a:[F—HF

o is an R-linear bijection and
o(ab) = o(a)o(b) for all a,b e F |

We will say that an R-linear map T : £ — L is F-skew linear if there exists
o € Aut(F) such that

(2.3.4) T(xa) =T(x)o(a) for all x € H and a € F.

The group of skew-linear bijections 7' : £ — £ which preserve Q will be denoted
OF(L; Q). For each T', the unique o € Aut(F) satisfying (Z:34) will be denoted o7.
Note that the map T+ or is a homomorphism.

WARNING. The associative law (T'x)a = T'(xa) is not valid for T € Op(L; Q);
rather, T'(xa) = (Tx)or(a) by (234). Thus when discussing elements of Of(£; Q),

we must be careful of parentheses.

EXAMPLE 2.3.5. For each o € Aut(F), the map

o’ (x) = (0(2i))ie
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is [F-skew-linear and Q-preserving, and o,s = 0.

OBSERVATION 2.3.6. For T' € Of(£; Q),

Bo(Tx,Ty) = or(Bgo(x,y)) Vx,y € L.

Proor. By ([Z3.32), the formula holds when T' € Op(£; Q), and direct calcula-
tion shows that it holds when T' = o7 for some o € Aut(F). Since Of(L; Q) is a
semidirect product of the groups Of(£; Q) and {07 : o € Aut(F)}, this completes
the proof. O

We observe that if T € Op(L; Q), then (234 shows that T preserves [F-lines,
ie. T(xF) = T(x)F for all x € £\ {0}. Thus the equation (Z31]) defines a map
[T] : H— H, which is an isometry by Observation [Z3.6 Thus if

POR(£; Q) ={[T]: T € Op(£; Q)},

then
POr(£; Q) < POF(L; Q) < Isom(H).

We are now ready to begin the

ProoOF oF THEOREM [2.3.3l The proof will consist of two parts. In the first,
we show that POF(£; Q) = Isom(H), and in the second we show that POr(L; Q) is
equal to POF(L£; Q) if F = R,Q and is of index 2 in PO} (L£; Q) if F = C.

Fix g € Isom(H); we claim that g € POp(£; Q). Let z = (1,0), and let o = [z].
By Observation [Z3.2] there exists [T] € POr(£; Q) such that [T](0) = g(0). Thus,
we may without loss of generality assume that g(o) = o.

We observe that z- = H. Let S(#H) denote the unit sphere of H, i.e. S(H) =
{w € H: Q(w) =1}. For each w € S(H), the embedding 7, w : R = H defined in
the proof of Proposition 2:2.2lis an isometry. By Proposition 2Z.2.2] its image under
g must also be an isometry. Specifically, there exists f(w) € S(H) such that

(2.3.5) 9([z + tanh(t)w]) = [z + tanh(¢) f(w)] Vi € R.

The fact that g is a bijection implies that f : S(H) — S(H) is a bijection. Moreover,
the fact that g is an isometry means that for all wi, wo € S(H) and t1,t2 € R, we

have

d([z + tanh(t1)w1], [z + tanh(t2)ws]) = d([z + tanh(t1) f(w1)], [z + tanh(t2) f(w2)]).
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Recalling that

cosh d([z + tanh(¢1)w1], [z + tanh(t2)wa))
_ |Bg(z + tanh(t1)w1, z + tanh(ta)wa)|
B V/19(z + tanh(t)wq)| - |Q(z + tanh(t2)ws)]
| =1+ tanh(t1) tanh(t2) Bo(w1, W)

(1~ tank® () (1 — tanb®(12))

we see that
| — 1+ tanh(t;) tanh(t2)Bo (w1, w2)| = | — 1 +tanh(t1) tanh(t2) Bo (f(w1), f(w2))|.
Write @ = tanh(¢1) tanh(¢2). Squaring both sides gives
LHS? = 62|Bgo(w1,w2)|> — 20Re[Bgo (w1, w2)] + 1
2.36) ||
RHS* = 0[Bo(f(w1), f(w2))[* = 20 Re[Bo(f(w1), f(w2))] + 1.

We observe that for wi,wy € S(H) fixed, 2336) holds for all -1 < § < 1. In

particular, taking the first and second derivatives and plugging in 6 = 0 gives

(2.3.7) Re[Bo(w1, w2)] = Re[Bo(f(w1), f(wz))]
(2.3.8) |Bo (w1, wz)| = [Ba(f(w1), f(w2))|.

Extend f to a bijection f : H — H by letting f(0) = 0 and f(tw) = tf(w) for
t>0,w e S(H). We observe that (237) and (Z38) hold also for the extended

version of f.
CLAamM 2.3.7. f is R-linear.

PRrROOF. Fix wi,ws € H and ¢1,c2 € R. By (237, the maps
w — Re[Bo(f(c1w1 + cow2), f(w))] and w — Re[Bo(c1 f(w1) + c2 f(wa), f(W))]
are identical. By the surjectivity of f together with the Riesz representation theo-
rem, this implies that f(c1wy 4 cowsa) = 1 f(W1) + caf(wa). <

CLAIM 2.3.8. f preserves [F-lines.

PRrROOF. For each x € H\ {0}, the F-line xF may be defined using the quantity

|Bg| via the formula
xF={yeH:Vwel, [Bo(x,w)| =0 < [Bo(y,w)|=0}.

The claim therefore follows from (2.3.8]). <
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From Claim 238 we see that for all x € H \ {0} and a € F, there exists
ox(a) € F such that

f(xa) = f(x)ox(a).
CLam 2.3.9. For x,y € 1\ {0},
ox(a) = oy (a).
PROOF. By Claim 237}

[f(x) + f(¥)loxty(a) = f(xa +ya) = f(x)ox(a) + f(y)oy(a).

Rearranging, we see that

fX)[oxty(a) = ox(a)] + f(¥)[ox+y(a) — oy(a)] = 0.

If x and y are linearly independent, then oxty(a) — ox(a) = 0 and oxiy(a) —
oy(a) =0, so ox(a) = oy(a). But the general case clearly follows from the linearly

independent case. <

For a € F, denote the common value of ox(a) (x € H \ {0}) by o(a). Then

(2.3.9) f(xa) = f(x)o(a) Vx € H VaeF.
CrLAamM 2.3.10. o € Aut(F).

PROOF. The R-linearity of o follows from Claim 2Z.3.7, and the bijectivity of o
follows from the bijectivity of f. Fix x € H \ {0} arbitrary. For a,b € [,

f(x)o(ab) = f(xab) = f(xa)o(b) = f(x)o(a)o(b),

which proves that o is a multiplicative homomorphism. <

Thus f € Op(H; &), andso T = fdI € Op(L; Q). But [T] = g by @3.5),s09 €
PO (£; Q). This completes the first part of the proof, namely that PO (L; Q) =
Isom(H).

To complete the proof, we need to show that POr(L; Q) is equal to POy (L; Q) if
F =R,Q and is of index 2 in POF(£; Q) if F = C. If F = R, this is obvious. If F = C,
it follows from the semidirect product structure Of (£; Q) = Of(£; Q) x {07 : 0 €
Aut(F)} together with the fact that Aut(F) = {I,z — z} = Z>.

If F = Q, then Aut(F) = {®, : a € S(Q)}, where ®,(b) = aba!. Here
S(F) ={a € F :la] = 1}. So Og(L; Q) # Oq(L; Q); nevertheless, we will show
that POg(L; Q) = POq(L; Q). Fix [T] € POg(L; Q), and fix a € S(Q) for which

or = ®,. Consider the map

(2.3.10) T, (x) = xa.
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We have T, € 05(£; Q) and o7, = @', Thus or,7 = ®.®,' = I, so T,T is
F-linear. But

[TT) = [T1,
so [T] € POgq(L; Q). The completes the proof of Theorem 233 O

REMARK 2.3.11. Using algebraic language, the automorphisms ®, of Q are
inner automorphisms, while the automorphism z + z of C is an outer auto-
morphism. Although both inner and outer automorphisms contribute to the quo-
tient OF (£; Q)/ Or (£; Q), only the outer automorphisms contribute to the quotient
PO;(L; Q)/ POr(L; Q). This explains why the index #(POf(L; Q)/ POr(L; Q)) is
smaller when F = Q than when F = C: although the group Aut(Q) is much larger
than Aut(C), it consists entirely of inner automorphisms, while Aut(C) has an outer

automorphism.

DEFINITION 2.3.12. The bordification of H is its closure relative to the topo-
logical space P(L), i.e.
bordH = {[x] : Q(x) < 0}.

The boundary of H is its topological boundary relative to P(L), i.e.

OH =bordH\ H={[x] : Q(x) = 0}.
The following is a corollary of Theorem [2.3.3t

COROLLARY 2.3.13. Ewvery isometry of H extends uniquely to a homeomorphism
of bord H.

ProoF. If T' € Op(L; Q), then the formula (Z31) defines a homeomorphism

of bord H which extends the action of [T] on H. The uniqueness is automatic. [

REMARK 2.3.14. Corollary[2Z.3.13can also be proven independently of Theorem
.33l via the theory of hyperbolic metric spaces; cf. Lemma [3.4.25] and Proposition
B53l

The following observation will be useful in the sequel:

OBSERVATION 2.3.15. Fix [x], [y] € bord H. Then
Bo(x,y) =0 & [x]=[y] € oH.
PRrROOF. If either [x] or [y] is in H, this follows from Lemma[2.2:4l Suppose that

[x],[y] € OH, and that Bg(x,y) = 0. Then Q is identically zero on xF + yF. Thus
(xF+yF)NH = {0}, and so xF +yF is one-dimensional. This implies [x] = [y]. O
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2.4. Totally geodesic subsets of algebraic hyperbolic spaces

Given two pairs (X, bord X ) and (Y, bordY), where X and Y are metric spaces
contained in the topological spaces bord X and bord Y (and dense in these spaces),
an isomorphism between (X, bord X) and (Y, bordY") is a homeomorphism between

bord X and bordY which restricts to an isometry between X and Y.

PROPOSITION 2.4.1. Let K < F be an R-subalgebra, and let V < L be a closed
(right) K-module such that

(2.4.1) Bo(x,y) € K ¥x,y € V.

Then either [V]NH = & and #([V] NbordH) < 1, or ([V]NH, [V]NbordH) is
isomorphic to an algebraic hyperbolic space together with its closure.

PRrROOF.

Case 1: [V]NH # 2. In this case, fix [z] € [V]NH, and let z be a representative
of [z] with Q(z) = —1. By Lemma 224 Q is positive-definite on z*.
We leave it as an exercise that the quadratic forms Q | zt and £ 1 z*
agree up to a bounded multiplicative error factor, which implies that z*
is complete with respect to the norm v/Q.

From (ZZ4I), we see that (V Nz+, Bg) is a K-Hilbert space. By
the usual Gram—Schmidt process, we may construct an orthonormal basis
(€;)icy for VNzt, thus proving that V' Nz' is isomorphic to 7—[&, for some
set J’. Thus V is isomorphic to Eﬁ{u{o}, and so ([V]NH, [V]NbordH) is
isomorphic to (H, , bord Hy, ).

Case 2: [V]NH = &. We need to show that #([V] N bordH) < 1. By contra-
diction fix [x], [y] € [V] distinct, and let x,y € V be representatives. By
Observation Z3T8l Bo(x,y) # 0. On the other hand, Q(x) = Q(y) =0
since [x],[y] € OH. Thus Q(x — yB(x,y) ') = =2 < 0. On the other
hand, x — yB(x,y)~! € V by @41). Thus [x — yB(x,y)" '] € [V]NH,

a contradiction.

O

DEFINITION 2.4.2. A totally geodesic subset of an algebraic hyperbolic space
H is a set of the form [V] N bord H, where V is as in Proposition 2241l A totally

geodesic subset is nontrivial if it contains an element of H.

REMARK 2.4.3. As with Definition 22,5 the terminology “totally geodesic” is
motivated here by the finite-dimensional situation, where totally geodesic subsets
correspond precisely with the closures of those submanifolds which are totally ge-

odesic in the sense of Riemannian geometry; see [147, Proposition A.4 and A.7].
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However, note that we consider both the empty set and singletons in OH to be

totally geodesic.

REMARK 2.4.4. If V < L is a closed K-module satisfying (2.4.1]), then for each
a € F\ {0}, Va is a closed a~!Ka-module satisfying Z4.1) (with K = a~'Ka).

LEMMA 2.4.5. The intersection of any collection of totally geodesic sets is to-
tally geodesic.

PROOF. Suppose that (Sa)aca is a collection of totally geodesic sets, and sup-
pose that S = (1, Sa # &. Fix [z] € S, and let z be a representative of [z]. Then for
each o € A, there exist (cf. Remark[Z4.4]) an R-algebra K, and a closed K,-subspace
Vo < L satisfying (Z41) (with K = K, ) such that z € V,, and S, = [V,] N bord H.
Let K=, Ko and V' =, V,. Clearly, V is a K-module and satisfies (2.4.1)).

We have [V] NbordH C S. To complete the proof, we must show the converse
direction. Fix [x] € S\ {[z]}. By Observation 23.15] there exists a representative
x of [x] such that Bg(z,x) = 1. Then for each «, we may find a, € F\ {0} such
that xa, € V,. We have

ao = Bo(z,%x)aq = Bo(z,%a,) € K.

Since V,, is a K,-module, this implies x € V. Since o was arbitrary, x € V, and
so [x] € [V] N bord H. O

REMARK 2.4.6. Given K C bordH, Lemma implies that there exists a
smallest totally geodesic set containing K. If we are only interested in the geometry
of K, then by Proposition2.4.J] we can assume that this totally geodesic set is really
our ambient space. In such a situation, we may without loss of generality suppose
that there is no proper totally geodesic subset of bord H which contains K. In this
case we say that K is irreducible.

WARNING. Although the intersection of any collection of totally geodesic sets
is totally geodesic, it is not necessarily the case that the decreasing intersection of
nontrivial totally geodesic sets is nontrivial; c¢f. Remark I1.2.79]

The main reason that totally geodesic sets are relevant to our development is

their relationship with the group of isometries. Specifically, we have the following;:

THEOREM 2.4.7. Let (g,)5° be a sequence in Isom(H), and let

(2.4.2) S = {[x] € bordH : gn([x]) — [x]} .

n

Then either S C OH and #(S) = 2, or S is a totally geodesic set.
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REMARK 2.4.8. An important example is the case where the sequence (g,)5°

is constant, say g, = ¢ for all n. Then S is precisely the fized point set of g:
S = Fix(g) := {[x] € bordH : g([x]) = [x]} .

If H is finite-dimensional, then it is possible to reduce Theorem [2.4.7] to this special

case by a compactness argument.

PROOF OF THEOREM 247l If S = &, then the statement is trivial. Suppose
that S # &, and fix [z] € S.

Step 1: Choosing representatives T,,. From the proof of Theorem [2.3.3] we see
that each g, may be written in the form [T7,] for some T;, € Of(L; Q). We have
some freedom in choosing the representatives T,,; specifically, given a,, € S(F) we
where Ty, is defined by (Z3.10).

Since g, ([z]) — [z], there exist representatives z,, of g,([z]) such that z, — z.

may replace T, by T,,T,

n?

For each n, there is a unique representative T, of g, such that
(Tz)en, = 2y, for some ¢, € R\ {0}.

Then
(Thz)en, — z.

REMARK 2.4.9. If F = Q, it may be necessary to choose T,, € Op(L; Q) \
Or(L; Q), despite the fact that each g, can be represented by an element of

Or(L; Q).
Step 2: A totally geodesic set. Write o, = o, , and let
K={a€lF:o,(a) = a}
V:{XE,C:TnX7X}.

Then K is an R-subalgebra of F, and V is a K-module. Given x,y € V, by Obser-
vation we have

UH(BQ(Xay)) = BQ(TnX, Tny) 7 BQ(Xay)a

so B(x,y) € K. Thus V satisfies 2.4.0]). If V is closed, then the above observations
show that [V] Nbord H is totally geodesic. However, this issue is a bit delicate:

Cram 2.4.10. If #([V] Nnbord H) > 2, then V is closed.

PROOF. Suppose that #([V] N bordH) > 2. The proof of Proposition 241
shows that [V]NH # @. Thus, there exists x € V for which [x] € H. In particular,
gn([x]) — [x]. Letting o = [(1,0)], we have

(0, 9n(0)) < 2dw (0, [x]) + di([x], gn([x])) — 2d (0, [x]).
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In particular dy(o, g, (0)) is bounded, say dp (o, gn(0)) < C.

LEMMA 2.4.11. Fiz T € Op(L; Q), and let | T|| denote the operator norm of T
Then
T = e (0,[T](0))

ProoF. Write T' = T} (A ® I), where T}, is a Lorentz boost (cf. (Z33)) and
A€ OfF(H;€). Then

[T](0) = [Tj,¢](0) = [(cosh(t), sinh(¢), 0)].

Here the second entry represents the jth coordinate. In particular,

|Bo((1,0), (cosh(t),sinh(t),0))| cosh(t)

cosh dp (o, [T](0)) = : = = cosh(t).
V1Q(1,0)] - [Q(cosh(t), sinh(t), 0)] 1
On the other hand,
cosh(t) sinh(t)
T\ = IT;.ll = sinh(¢) cosh(t) =
I
This completes the proof. <

Thus ||T,,|| < e® for all n, and so the sequence (7},)$° is equicontinuous. It follows
that V is closed. <

Since #([V]Nbord H) < 1 implies that [V]Nbord H is totally geodesic, we conclude
that [V] N bord H is totally geodesic, regardless of whether or not V is closed.

REMARK 2.4.12. When #([V] N bordH) < 1, there seems to be no reason to
think that V' should be closed.

Step 3: Relating S to [V] N bordH. The object of this step is to show that
S = [V]NbordH unless S C 0H and #(S) < 2. For each [x] € S\ {[z]}, let x
be a representative of [x] such that Bg(z,x) = 1; this is possible by Observation
2315 Tt is possible to choose a sequence of scalars (asl[x]))j’lozl in F\ {0} such that
(T,x)aP = x. Let i = ¢,. For [x], [y] € S, we have
(2.4.3)
agx})aTn (Bo(x,y))al¥) = aﬂ"”BQ( ,Toy)al>D (by Observation 2.3.6])

T,x
= Bo((Tux)alP, (T, y)a™D)

— Bo(x,y)-
In particular,

(2.4.4) |a§l[x])| . |a£1[y])| — 1 whenever Bg(x,y) # 0.
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CLAIM 2.4.13. Unless S C OH and #(S) < 2, then for all [x] € S we have

(2.4.5) lalPD| — 1.

ProoOF. We first observe that it suffices to demonstrate ([2.435]) for one value
of x; if (Z4.35]) holds for x and [y] # [x], then Bg(x,y) # 0 by Observation 2.3.15]
and so (244) implies [a¥| = 1.

Now suppose that S ¢ dH, and choose [x] € SN H. Then Bg(x,x) # 0, and
so (244) implies 2.4.5).

Finally, suppose that #(S) > 3, and choose [x], [y], [z] € S distinct. By 244)
together with Observation [Z3.T5] we have |a£1[xD| . |a£1[y])| -1, |a£1[x})| . |a£1[z])| =1,
and |a51[y])| .
third, we see that |a{™| — 1. <

aS}Z”| — 1. Multiplying the first two formulas and dividing by the

For the remainder of the proof we assume that either S ¢ 9H or #(S) > 3.
Plugging z = x into ([2.4.0]), we see that ¢, — 1. In particular, [z] € [V]Nbord H.
Now fix [x] € S\ {[z]}. Since ¢,, — 1 and Bg(z,x) = 1, [2:4.3) becomes

ol 1,

Thus x € V, and so [x] € [V] N bord H.

2.5. Other models of hyperbolic geometry

Fix F € {R,C,Q} and a set J, and let H = H{. The pair (H, bord H) is known
as the hyperboloid model of hyperbolic geometry (over the division algebra F and
in dimension #(J)). In this section we discuss two other important models of
hyperbolic geometry. Note that the Poincaré ball model, which many of the figures
of later chapters are drawn in, is not discussed here. References for this section
include [45), [78].

2.5.1. The (Klein) ball model. Let
B=B{ ={xeH:=H{:|x| <1},
and let bord B denote the closure of B relative to H.
OBSERVATION 2.5.1. The map eg  : bord B — bord H defined by the equation
esH(x) = [(1,%)]
is a homeomorphism, and eg 11(B) = H. Thus if we let

|1 - BE(X7Y)|

VI xRy -y

(2.5.1) coshdg(x,y) = coshdp(ep,n (%), ep,n(y))
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then ep,p is an isomorphism between (B, bord B) and (H, bord H).

The pair (B, bord B) is called the ball model of hyperbolic geometry. It is often
convenient for computations, especially those for which a single point plays an
important role: by Observation 2.3.2] such a point can be moved to the origin
0 € B via an isomorphism of (B, bord B).

REMARK 2.5.2. We should warn that the ball model By of real hyperbolic
geometry is not the same as the well-known Poincaré model, rather, it is the same

as the Klein model.

OBSERVATION 2.5.3. For all T € Op(#; &), T 1 Bis an isometry which stabilizes

PROPOSITION 2.5.4. In fact,
Stab(Isom(B);0) = {T 1 B: T € Of(H;€&)}.
PROOF. This is an immediate consequence of Theorem 2.3.3] O

2.5.2. The half-space model. Now suppose I = [RH Assume that 1 € J,
and let
[E:[EJ:{XE’H::H#‘xl >0}.
We will view E as resting inside the larger space
H :=H U {oo}.
The topology on H is defined as follows: a subset U - H is open if and only if

U NH is open and (oo € U = H \ U is bounded).

The boundary and closure of E will be subsets of H according to the topology

defined above, i.e.
OE={xeH 2z =0}U {0}
bordE ={x € H:21 >0} U{o0}.

PROPOSITION 2.5.5. The map eg i : bordE — bordH defined by the formula

2x; 1#0,1
252) ) 1+ x> i=0 X # 00
J. eﬂf,ﬂ‘i X) =
1-|x|* i=1 ]
i€ JU{0}
[(1,-1,0)] X =00

"The appropriate analogue of the half-space model when F € {C, Q} is the paraboloid model; see
e.g. [T8l Chapter 4].
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is a homeomorphism, and eg y(E) = H. Thus if we let

ly — x|

(2.5.3) coshdg(x,y) = coshdp(eg n(x),egn(y)) =1+
22191

)

then eg,n is an isomorphism between (E,bordE) and (H,bordH).

PrOOF. For x € bordE \ {cc},

Qegm(x) = —(1+[x[*)>+ (1 = [x[*)?>+ > (22:)* = —4ai.
ieJ\{1}

It follows that egn(E) C H and ep n(OE) C OH. Calculation verifies that the map
;)2 i1

(2.5.4) ene([x]) = V-eX)/2 i=1 i€J
~ if x = (1,-1,0)

if$0+$1:2

is both a left and a right inverse of eg . Notice that it is defined in a way such
that for each [x] € bord H, there is a unique representative x of [x] for which the
formula ([Z35.4) makes sense. We leave it to the reader to verify that eg,n and ep g
are both continuous, and that (235.3) holds. O

The point co € JE, corresponding to the point [(1, —1,0)] € OH, plays a special
role in the half-space model. In fact, the half-space model can be thought of as an
attempt to understand the geometry of hyperbolic space when a single point on the
boundary is fixed. Consequently, we are less interested in the set of all isometries

of E than simply the set of all isometries which fix oco.

OBSERVATION 2.5.6 (Poincaré extension). Let B = JE \ {o0} = Hé\{l}, and
let g : B — B be a similarity, i.e. a map of the form

g(x) = A\Tx + b,

where A > 0, T € Or(B; &), and b € B. Then the map g : bord E — bord E defined
by the formula

(a1, g(r(x))) % # o0

o0 X =0

(2.5.5) 3(x) =

is an isomorphism of (E,bord E); in particular, g | E is an isometry of E. Here

m: H — B is the natural projection.
PRrROOF. This is immediate from (2.5.3]). O
The isometry g defined by (25.3]) is called the Poincaré extension of g to E.

REMARK 2.5.7. Intuitively we shall think of the number x; as representing the
height of a point x € bord E. Then ([Z.5.5) says that if g : B — B is an isometry,
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then the Poincaré extension of ¢ is an isometry of E which preserves the heights of

points.

PROPOSITION 2.5.8. For all g € Isom(E) such that g(oco) = oo, there exists a
similarity h : B — B such that g = h.

PrROOF. By Theorem 2:33] there exists T € O(L; Q) such that [I] = egpogo
eﬁH. This gives an explicit formula for g, and one must check that if [T] preserves

[(1,-1,0)], then g is a Poincaré extension. O

2.5.3. Transitivity of the action of Isom(H) on 9H. Using the ball and
half-plane models of hyperbolic geometry, it becomes easy to prove the following

assertion:
PROPOSITION 2.5.9. IfF = R, the group Isom(H) acts triply transitively on OH.

This complements the fact that Isom(H) acts transitively on H (Observation
2.3.2).

PRrOOF. By Observation 2.5.1] and Proposition [25.5] we may switch between
models as convenient. It is clear that Isom(B) acts transitively on 0B, and that
Stab(Isom(E); 0o) acts doubly transitively on OE \ {oco}. Therefore given any triple
(&1,&2,&3), we may conjugate to B, conjugate & to a standard point, conjugate to

E while conjugating &; to oo, and then conjugate &2, &3 to standard points. O

We end this chapter with a convention:

CONVENTION 6. When « is a cardinal number, H¢ will denote H{ for any set
J of cardinality «, but particularly J = {1,...,n} if a=neNand J=Nif o =
#(N). Moreover, H° will always be used to denote [H#(N) = HY¥, the unique (up to
isomorphism) infinite-dimensional separable algebraic hyperbolic space defined over
F. Finally, real hyperbolic spaces will be denoted without using R as a subscript,
e.g. H® =HX, B/ =B, H* = HE.






CHAPTER 3

R-trees, CAT(-1) spaces, and Gromov hyperbolic

metric spaces

In this chapter we review the theory of “negative curvature” in general metric
spaces. A good reference for this subject is [39]. We begin by defining the class of R-
trees, the main class of examples we will talk about in this monograph other than the
class of algebraic hyperbolic spaces, which we will discuss in more detail in Chapter
@ Next we will define CAT(-1) spaces, which are geodesic metric spaces whose
triangles are “thinner” than the corresponding triangles in two-dimensional real
hyperbolic space H2. Both algebraic hyperbolic spaces and R-trees are examples of
CAT(-1) spaces. The next level of generality considers Gromov hyperbolic metric
spaces. After defining these spaces, we proceed to define the boundary 0X of a
hyperbolic metric space X, introducing the families of so-called visual metametrics
and extended visual metrics on the bordification bord X := X UdX. We show that
the bordification of an algebraic hyperbolic space X is isomorphic to its closure
bord X defined in Chapter B} under this isomorphism, the visual metric on 9B is

proportional to the Euclidean metric.

3.1. Graphs and R-trees

To motivate the definition of R-trees we begin by defining simplicial trees, which

requires first defining graphs.

DEFINITION 3.1.1. A weighted undirected graph is a triple (V, E,¢), where V
is a nonempty set, E C V x V\ {(z,z) : « € V} is invariant under the map
(x,y) = (y,z), and £ : E — (0, 00) is also invariant under (z,y) — (y,z). (If £ =1,
the graph is called unweighted, and can be denoted simply (V, E).) The graph is
called connected if for all z,y € V, there exist x = 29, 21,...,2, = y such that
(ziy2i41) € Eforalli=0,...,n—1. If (V, E,{) is connected, then the path metric
on V is the metric

n—1

(3.1.1) dpe(z,y) := inf {Z U(ziy zig1)

=0

20 =&y Zn =Y,
(Zi,ZH_l)EE Vi=0,...,n—1

23
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The geometric realization of the graph (V, E,£) is the metric space

X=XWV,E.)=(VU (J [04@ww)]]/~,
(v;w)eEE

where ~ represents the following identifications:
v~ ((v,w),0) Y(v,w) € E
((’U, U]), t) ~ ((’LU, ’U), é(va w) - t) V(U, w) eELE Vte [Oa 6(’0, U])]

and the metric d on X is given by

d(((vo, v1), 1), ((wo,w1), ) = .g{%nl}ﬂt — il(vo, v1)[ + d(vi, w;) + |s — j(wo, w1)l}.
jefo.1}
(The geometric realization of a graph is sometimes also called a graph. In the

sequel, we shall call it a geometric graph.)

EXAMPLE 3.1.2 (The Cayley graph of a group). Let T" be a group, and let
Ey C T be a generating set. (In most circumstances Ey will be finite; there is an
exception in Example [3.3.2] below.) Assume that Ey = E;*. The Cayley graph of
I with respect to the generating set Fy is the unweighted graph (T, ), where

(3.1.2) (v,8) € E & ~7'B8€E,.

More generally, if £y : Ey — (0, 00) satisfies £o(g~1) = ¢o(g), the weighted Cayley
graph of T with respect to the pair (Ep, {p) is the graph (T, E, £), where E is defined

by B12), and
(3.1.3) 0y, B) = Lo(y1P).
The path metric of a Cayley graph is called a Cayley metric.

REMARK 3.1.3. The equations (3812, B13) guarantee that for each v € T,
the map I' 3 8 — v8 € I is an isometry of I" with respect to any Cayley metric.
This isometry extends in a unique way to an isometry of the geometric Cayley
graph X = X(T', E,¢). The map sending 7 to this isometry is a homomorphism
from T to Isom(X), and is called the natural action of T on X.

REMARK 3.1.4. The path metric (B1T]) satisfies the following universal prop-
erty: I Y is a metric space and if ¢ : V — Y satisfies d(é(v), d(w)) < £(v,w) for
every (v,w) € E, then d(¢(v), #(w)) < d(v,w) for every v,w € V.

REMARK 3.1.5. The main difference between the metric space (V, dg ) and the
geometric graph X = X(V, E, () is that the latter is a geodesic metric space. A
metric space X is said to be geodesic if for every p,q € X, there exists an isometric
embedding 7 : [t,s] — X such that 7(t) = p and 7 (s) = ¢, for some t,s € R. The
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set w([t, s]) is denoted [p,q] and is called a geodesic segment connecting p and gq.
The map 7 is called a parameterization of the geodesic segment [p, ¢]. (Note that
although [q, p] = [p, ¢, 7 is not a parameterization of [g, p].)

Warning: Although we may denote any geodesic segment connecting p and ¢
by [p, q], such a geodesic segment is not necessarily unique. A geodesic metric space
X is called uniquely geodesic if for every p,q € X, the geodesic segment connecting

p and ¢ is unique.

NotaTION 3.1.6. If 7 : [0,%9] — X is a parameterization of the geodesic seg-
ment [p, q], then for each t € [0, o], [p,q]: denotes the point 7(¢), i.e. the unique
point on the geodesic segment [p, q] such that d(p, [p, ¢]:) = t.

We are now ready to define the class of simplicial trees. Let (V, E,¢) be a
weighted undirected graph. A cycle in (V,E,{) is a finite sequence of distinct

vertices v1,...,v, € V, with n > 3, such that
(3.1.4) (v1,v2), (V2,v3)y - s (Vn—1,Vn), (Vn,v1) € E.

DEFINITION 3.1.7. A simplicial tree is the geometric realization of a weighted
undirected graph with no cycles. A Z-tree (or unweighted simplicial tree, or just

tredl) is the geometric realization of an unweighted undirected graph with no cycles.

EXAMPLE 3.1.8. Let F3(Z) denote the free group on two elements 1,v2. Let
Eo = {71,717 ", 72,75 ' }. The geometric Cayley graph of Fy(Z) with respect to the

generating set Ey is an unweighted simplicial tree.

EXAMPLE 3.1.9. Let V = {C,p,q, 7}, and fix £5, l7, (z > 0. Let

E={(C,x),(z,C): x =7,q,T},

The geometric realization of the graph (V) E,f) is a simplicial tree; see Figure
BII It will be denoted A = A(p,q,7), and will be called a tree triangle. For
x,y € {P,q,7} distinct, the distance between z and y is given by

d(z,y) =y + 4y.

Solving for ¢; in terms of d(p,q),d(p, ), d(q,T) gives

(3.1.5) tp =d(p,C) = %[d(z‘o, Q) +d(p,7) - d@7))-

DEFINITION 3.1.10. A metric space X is an R-tree if for all p,q,r € X, there
exists a tree triangle A = A(p,q,7) and an isometric embedding ¢ : A — X sending

D,q,T to p,q,r, respectively.

"However, in [167], the word “trees” is used to refer to what are now known as R-trees.
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DEFINITION 3.1.11. Let X be an R-tree, fix p,¢,7 € X, and let ¢ : A — X
be as above. The point C' = C(p,q,7) := +(C) is called the center of the geodesic
triangle A = A(p, q, 7).

As the name suggests, every simplicial tree is an R-tree; the converse does not
hold; see e.g. [51l, Example on p.50]. Before we can prove that every simplicial tree

is an R-tree, we will need a lemma:

LeEMMA 3.1.12 (Cf. [51] p.29]). Let X be a metric space. The following are

equivalent:

(A) X is an R-tree.
(B) There exists a collection of geodesics G, with the following properties:
(BI) For each x,y € X, there is a geodesic [x,y] € G connecting x and y.
(BII) Given [z,y] € G and z,w € [z,y], we have [z,w] € G, where [z,w] is
interpreted as the set of points in [x,y] which lie between z and w.
(BIII) Given x1, 2,23 € X distinct and geodesics [x1, x2), [x1, 23], [T2, 23] €
G, at least one pair of the geodesics [x;,x;], © # j, has a nontrivial
intersection. More precisely, there exist distinct i,j,k € {1,2,3} such

that

[, 23] O 23, 23] 2 {i}-

PROOF OF (A) = (B). Note that (BI) and (BII) are true for any uniquely
geodesic metric space. Given x1, o, x3 distinct, let C' be the center. Then x; # C

for some i; without loss of generality x1 # C. Then
[1, 2] N [21, 23] = [21,C] 2 {z1}.
O

PROOF OF (B) = (A). We first show that given points z1,z2,23 € X and
geodesics [21, 2], [21, 23], [v2, 23] € G, the intersection (), ;[z;,2;] is nonempty.
Indeed, suppose not. For i = 2,3 let ; : [0,d(z1,x;)] = X be a parameterization
of [z1, z;], and let

t1 = max{t > 0: y2(t) = v3(¢t)}.
By replacing « with ~2(t1) = v3(¢1) and using (BII), we may without loss of gen-
erality assume that ¢t; = 0, or equivalently that [x1,z2] N [z1,23] = {x1}. Simi-
larly, we may without loss of generality assume that [z2,21] N[22, 23] = {22} and
[x3,21] N [x3,22] = {x3}. But then (BIII) implies that z1, 22,23 cannot be all
distinct. This immediately implies that (1, ; [xi, ;] # 2.

To complete the proof, we must show that X is uniquely geodesic. Indeed
suppose that for some z1,29 € X, there is more than one geodesic connecting x;

and xo. Let [x1,72] € G be a geodesic connecting z1 and z, and let [x7,z3] be
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q

FIGURE 3.1.1. A geodesic triangle in an R-tree

another geodesic connecting 1 and z3. Then there exists x3 € [x1,x2]" \ [x1, z2].

By the above paragraph, there exists w € (), _;[%, z;]. Since w € [z;, ¥3], we have
(3.1.6) d(z;,w) < d(x;, z3).
On the other hand, since w € [x1,z2] and z3 € [21,22]", we have

d(z1,29) = d(x1,w) + d(x2,w) < d(x1,23) + d(22,23) = d(21, 2).

It follows that equality holds in (810, i.e. d(z;, w) = d(z;,x3). Since w € [x;, 3],

this implies w = x3. But then 3 = w € [z1, 23], a contradiction. O
COROLLARY 3.1.13. Ewvery simplicial tree is an R-tree.

Proor. Let X = X(V, E, /) be a simplicial tree, and let G be the collection
of all geodesics; then (BI) and (BII) both hold. By contradiction, suppose that
there exist points x1,z2,z3 € X such that [z;, z;] N [x;, zx] = {z;} for all distinct
1,7,k € {1,2,3}. Then the path [x1,x2] U [x2, 23] U [x3,21] is equal to the union of
the edges of a cycle of the graph (V, E,£). This is a contradiction. O

We shall investigate R-trees in more detail in Chapter [[4] where we will give

various examples of R-trees together with groups acting isometrically on them.

3.2. CAT(-1) spaces

The following definitions have been modified from [39] p.158], to which the
reader is referred for more details.

A geodesic triangle in X consists of three points p,q,r € X (the wvertices of
the triangle) together with a choice of three geodesic segments [p,q|, [g,7], and
[r, p] joining them (the sides). Such a geodesic triangle will be denoted A(p, q,r),
although we note that this could cause ambiguity if X is not uniquely geodesic.
Although formally A(p, ¢, 7) is an element of X3 xP(X)?, we will sometimes identify
A(p,q,r) with the set [p,q] U [g,r] N [r,p] C X, writing z € A(p,¢,7) if z € [p,q] U
[q, 7] U [r, p].
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A triangle A = A(p, q,7) in H2 is called a comparison triangle for A = A(p, q,r)
if d(p,q) = d(p,q), d(g,7) = d(q,r), and d(p,7) = d(p,r). Any triangle admits a
comparison triangle, unique up to isometry. For any point = € [p, g|, we define its
comparison point T € [p,q| to be the unique point such that d(Z,p) = d(z,p) and
d(Z,q) = d(z,q). In the notation above, the comparison point of [p, ¢; is equal to
[D,q]: for all ¢t € [0,d(p, q)] = [0,d(P,q)]. For x € [¢,r] and = € [r, p], the comparison
point is defined similarly.

Let X be a metric space and let A be a geodesic triangle in X. We say that A
satisfies the CAT(-1) inequality if for all z,y € A,

(3.2.1) d(z,y) < d(T,7),

where T and 7 are anyH comparison points for x and y, respectively. Intuitively, A

satisfies the CAT(-1) inequality if it is “thinner” than its comparison triangle A.

DEFINITION 3.2.1. X is a CAT(-1) space if it is a geodesic metric space and if
all of its geodesic triangles satisfy the CAT(-1) inequality.

OBSERVATION 3.2.2 ([39] Proposition I1.1.4(1)]). CAT(-1) spaces are uniquely

geodesic.

PROOF. Let X be a CAT(-1) space, and suppose that two points p,q € X are
connected by two geodesic segments [p,¢] and [p,q]’. Fix t € [0,d(p, q)] and let
x = [p,qlt, ¥’ = [p, q];. Consider the triangle A(p, q,x) determined by the geodesic
segments [p, q|’, [p, z], and [z, q], and a comparison triangle A(p,q,T). Then x and
2’ have the same comparison point T, so by the CAT(-1) inequality

d(z,2') < d(Z,7) = 0,

/

and thus x = /. Since t was arbitrary, it follows that [p,q] = [p,¢]’. Since [p,q|

was arbitrary, [p, q] is the unique geodesic segment connecting p and gq. ([

3.2.1. Examples of CAT(-1) spaces. In this text we concentrate on two
main examples of CAT(-1) spaces: algebraic hyperbolic spaces and R-trees. We
therefore begin by proving the following result which implies that algebraic hyper-
bolic spaces are CAT(-1):

PROPOSITION 3.2.3. Any Riemannian manifold (finite- or infinite-dimensional)

with sectional curvature bounded above by —1 is a CAT(-1) space.

PROOF. The finite-dimensional case is proven in [39, Theorem II.1A.6]. The

infinite-dimensional follows upon augmenting the finite-dimensional proof with the

2The comparison points T and 3y may not be uniquely determined if either x or y lies on two sides
of the triangle simultaneously.
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infinite-dimensional Cartan-Hadamard theorem [119] IX, Theorem 3.8] to guaran-

tee surjectivity of the exponential map. (Il

Since algebraic hyperbolic spaces have sectional curvature bounded between
—4 and —1 (e.g. [93] Corollary of Proposition 4]; see also [147, Lemmas 2.3, 2.7,

and 2.11)), the following corollary is immediate:
COROLLARY 3.2.4. Every algebraic hyperbolic space is a CAT(-1) space.

REMARK 3.2.5. One can prove Corollary B.2.4] without using the full strength
of Proposition [3.2.3] Indeed, any geodesic triangle in an algebraic hyperbolic space
is isometric to a geodesic triangle in HZ for some F € {R,C, Q}. Since H2 is finite-
dimensional, thinness of its geodesic triangles follows from the finite-dimensional
version of Proposition

OBSERVATION 3.2.6. R-trees are CAT(-1).

PRrROOF. First of all, an argument similar to the proof of Observation
shows that R-trees are uniquely geodesic, justifying Figure B.I.Jl In particular,
if A(p,q,7) is a geodesic triangle in an R-tree and if C = C(p,q,r) then [p,q] =
[p,ClU[q, C], g, 7] = [q, C|U[r,C], and [r,p] = [r, C]U[p, C]. It follows that any two
points z,y € A share a side in common, without loss of generality say x,y € [p, q].
Then

]

In a sense R-trees are the “most negatively curved spaces”; although we did

not define the notion of a CAT (k) space, R-trees are CAT (k) for every k € R.

3.3. Gromov hyperbolic metric spaces

We now come to the theory of Gromov hyperbolic metric spaces. In a sense,
Gromov hyperbolic metric spaces are those which are “approximately R-trees”. A
good reference for this section is [172].

For any three numbers dpq, dgr, drp > 0 satisfying the triangle inequality, there
exists an R-tree X and three points p, ¢, r € X such that d(p, q) = dpq, etc. Thus
in some sense looking at triples “does not tell you” that you are looking at an
R-tree. Now let us look at quadruples. A quadruple (p, g, r, s) in an R-tree X looks
something like Figure B33l Of course, the points p, ¢, r, s € X could be arranged
in any order. However, let us consider them the way that they are arranged in
Figure B3] and note that
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T

FI1GURE 3.3.1. A quadruple of points in an R-tree

(331) C(p,q,T) = C(p7Qa S)'

In order to write this equality in terms of distances, we need some way of measuring

the distance from the vertex of a geodesic triangle to its center.

OBSERVATION 3.3.1. If A(p,q,r) is a geodesic triangle in an R-tree then the

distance from the vertex p to the center C(p,q,r), i.e. d(p,C(p,q,r)), is equal to
1

(3.32) {alr)p := 5ld(p, @) +d(p, 7) — dlg, 7)].

The expression (g|r), is called the Gromov product of ¢ and r with respect to
p, and it makes sense in any metric space. It can be thought of as measuring the
“defect in the triangle inequality”; indeed, the triangle inequality is exactly what
assures that (g|r), > 0 for all p,q,r € X.

Now (B.3)) implies that

(gr)p = (gls)p < (r|s)p.

(The last inequality does not follow from (B3.1]) but it may be seen from Figure
B31) However, since the arrangement of points was arbitrary we do not know
which two Gromov products will be equal and which one will be larger. An in-

equality which captures all possibilities is

(3.3.3) (q|r)p > min((g|s)p, (r[s)p)-

Now, as mentioned before, we will define hyperbolic metric spaces as those which

are “approximately R-trees”. Thus they will satisfy (833]) with an asymptotic.

DEFINITION 3.3.2. A metric space X is called hyperbolic (or Gromouv hyperbolic)

if for every four points z,y, z,w € X we have

(3.3.4) (@]2)w 2+ min({z]y)w, (y[2)w),

We refer to (8.34]) as Gromov’s inequality.
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From the above discussion, every R-tree is Gromov hyperbolic with an implied
constant of 0 in (B334). (This can also be deduced from Proposition B34 below.)

Note that many authors require X to be a geodesic metric space in order to
be hyperbolic; we do not. If X is a geodesic metric space, then the condition
of hyperbolicity can be reformulated in several different ways, including the thin
triangles condition; for details, see [39] § III.H.1] or Section [4.3] below.

It will be convenient for us to make a list of several identities satisfied by the

Gromov product. For each z € X, let B, denote the Busemann function

(3.3.5) B.(z,y) :=d(z,x) — d(z,y).

PROPOSITION 3.3.3. The Gromov product and Busemann function satisfy the
following identities and inequalities:
a) (2ly)= = (y|x)-
b) d(y, z) = (ylz)= + (z])y
c) 0 < (z[y). < min(d(z, ), d(y, 2))
d) (zly). < (zly)w +d(z, w)
2)

(@|y)w < (z]2)w +d(y, 2)
| B:(z,w)| < d(z,w)

(8) (@) = (el + 2[Ba(z,w) + By(z, w)]

2

() (aly)- = 3ld(r, 2) + B, (z,7)]

(0 Ba(y:2) = (el — {ola).

0 (aly)= = {alybu + d(z, ) ~ (@lzhu — (=)
) (el = (ol2)u + 5[Buly, 2) ~ Baly, 2)]

2

The proof is a straightforward computation. We remark that (a)-(e) may be
found in [172] Lemma 2.8].

3.3.1. Examples of Gromov hyperbolic metric spaces.

PROPOSITION 3.3.4 (Proven in SectionB.3)). Every CAT(-1) space (in particular
every algebraic hyperbolic space) is Gromov hyperbolic. In fact, if X is a CAT(-1)

space then for every four points x,y,z,w € X we have
(3.3.6) e~ @l < o= @lv)w 4 o= Wlz)w

and so X satisfies B34) with an implied constant of log(2).
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FIGURE 3.3.2. An illustration of (b) of Proposition B:33]in an R-tree.

REMARK 3.3.5. The first assertion of Proposition B34 namely, that CAT(-1)
spaces are Gromov hyperbolic, is [39] Proposition ITI.H.1.2]. The inequality (3:3.6))
in the case where z,y,z € X and w € X can be found in [33], Théoreme 2.5.1].

DEFINITION 3.3.6. A space X satisfying the conclusion of Proposition 3.3.4] is
said to be strongly hyperbolic.

Note that
R-tree = CAT(-1) = Strongly hyperbolic = Hyperbolic.

A large class of examples of hyperbolic metric spaces which are not CAT(-1) is
furnished by the Cayley graphs of finitely presented groups. Indeed, we have the

following:

THEOREM 3.3.7 ([86L p.78], [139]; see also [49]). Fiz k > 2 and an alpha-

bet A = {alil,afl,--- ,a?l}. Fix i € N and a sequence of positive integers
(n1,---,n;). Let N = N(k,i,ny,---,n;) be the number of group presentations
G = (a1, - ,ag|r1, -+ ,r;) such that r1,--- ,r; are reduced words in the alphabet A

such that the length of r; isn; for j =1,2,--- 1. If Ny is the number of groups in
this collection whose Cayley graphs are hyperbolic and if n = min(nq,--- ,n;) then
lim,, oo Np/N = 1.

This theorem says that in some sense, “almost every” finitely presented group
is hyperbolic.
If one has a hyperbolic metric space X, there are two ways to get another

hyperbolic metric space from X, one trivial and one nontrivial.

OBSERVATION 3.3.8. Any subspace of a hyperbolic metric space is hyperbolic.
Any subspace of a strongly hyperbolic metric space is strongly hyperbolic.

To describe the other method we need to define the notion of a quasi-isometric

embedding.
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DEFINITION 3.3.9. Let (Xi,d;) and (X2,d2) be metric spaces. A map @ :
X1 — Xy is a quasi-isometric embedding if for every x,y € X3

dy(®(2), (y)) =4, da(2,y).

A quasi-isometric embedding ® is called a quasi-isometry if its image ®(X;) is
cobounded in Xs, that is, if there exists R > 0 such that ®(X;) is R-dense in Xo,
meaning that min,cx, d(z, ®(X1)) < R. In this case, the spaces X; and X5 are

said to be quasi-isometric.

THEOREM 3.3.10 ([39] Theorem III.H.1.9]). Any geodesic metric space which
can be quasi-isometrically embedded into a geodesic hyperbolic metric space is also

a hyperbolic metric space.

REMARK 3.3.11. Theorem [3310]is not true if the hypothesis of geodesicity is
dropped. For example, R is quasi-isometric to [0,00) x {0} U{0} x [0, 00) C R?, but
the former is hyperbolic and the latter is not.

There are many more examples of hyperbolic metric spaces which we will not
discuss; cf. the list in §T.T.21

3.4. The boundary of a hyperbolic metric space

In this section we define the Gromov boundary of a hyperbolic metric space
X . The construction will depend on a distinguished point o € X, but the resulting
space will be independent of which point is chosen. If X is an R-tree, then the
boundary of X will turn out to be the set of infinite branches through X, i.e. the
set of all isometric embeddings 7 : [0,00) — X sending 0 to o, where 0 € X is a
distinguished fixed point. If X is an algebraic hyperbolic space, then the boundary
of X will turn out to be isomorphic to the space 0X defined in Chapter

To motivate the definition of the boundary, suppose that X is an R-tree. An
infinite branch through X can be approximated by finite branches which agree
on longer and longer segments. Suppose that ([0, 2,])° is a sequence of geodesic
segments. For each n,m € N, the length of the intersection of [0, z,] and [0, x.,] is
equal to d(o, C(0, Ty, Tm)), which in turn is equal to (@, |Tm ). Thus, the sequence

([0, 2,])$° converges to an infinite geodesic if and only if
(34.1) (Tn|Tm)o — 00.

(Cf. FigureB41l) The formula (4.1 is reminiscent of the definition of a Cauchy
sequence. This intuition will be made explicit in Section3.6] where we will introduce
a metametric on X with the property that a sequence in X satisfies (341 if and

only if it is Cauchy with respect to this metametric.
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z

2

F1cure 3.4.1. A Gromov sequence in an R-tree

DEFINITION 3.4.1. A sequence (x,)5° in X for which (34.1) holds is called a

Gromov sequence. Two Gromov sequences (z,,)3° and (y,)$° are called equivalent

if
{Znlyn)o — o0,
or equivalently if

(n|Yym)o — 00.
n,m

In this case, we write (,,)$° ~ (y,)5°. It is readily verified using Gromov’s inequal-
ity that ~ is an equivalence relation on the set of Gromov sequences in X. We will

denote the class of sequences equivalent to a given sequence (x,)5° by [(2,)$°]-

DEFINITION 3.4.2. The Gromov boundary of X is the set of Gromov sequences
modulo equivalence. It is denoted 0X. The Gromov closure or bordification of X
is the disjoint union bord X := X U0X.

REMARK 3.4.3. If X is an algebraic hyperbolic space, then this notation causes
some ambiguity, since it is not clear whether d.X represents the Gromov boundary
of X, or rather the topological boundary of X as in Chapter This ambiguity
will be resolved in §3.5.1] below when it is shown that the two bordifications are

isomorphic.

REMARK 3.4.4. In the literature, the ideal boundary of a hyperbolic metric
space is often taken to be the set of equivalence classes of geodesic rays under
asymptotic equivalence, rather than the set of equivalence classes of Gromov se-
quences (e.g. [39] p.427]). If X is proper and geodesic, then these two notions are
equivalent [39] Lemma ITI.H.3.13], but in general they may be different.

REMARK 3.4.5. By (d) of Proposition B33 the concepts of Gromov sequence
and equivalence do not depend on the basepoint o. In particular, the Gromov

boundary 0X is independent of o.
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3.4.1. Extending the Gromov product to the boundary. We now wish
to extend the Gromov product and Busemann function to the boundary “by con-
tinuity”. Fix £,7 € 0X and z € X. Ideally, we would like to define (¢|n), to
be

(342) lim <xn|ym>za

n,Mm—00

where (2,)$° € € and (y,)5° € 1. (The definition would then have to be shown
independent of which sequences were chosen.) The naive definition (34.2]) does not
work, because the limit [8.42]) does not necessarily exist:

EXAMPLE 3.4.6. Let
X ={xeR*: 2y €[0,1]}

be interpreted as a subspace of R? with the L' metric. Then X is a hyperbolic
metric space, since it contains the cobounded hyperbolic metric space R x {0}. Its
Gromov boundary consists of two points —oo and +oo, which are the limits of x
as x1 approaches —oo or +o0o, respectively. Let y = (0,1) and z = (1,0). Then for
all x € X, (x|y)z = x2. In particular, we can find a sequence x,, — +0c such that

lim,, 00 (X |y)z does not exist.
Fortunately, the limit (84.2) “exists up to a constant”:

LEMMA 3.4.7. Let (2,)3° and (ym)5° be Gromov sequences, and fix y,z € X.
Then

(3.4.3) liminf (2, |Ym ). <+ Umsup(z,|ym)-
n,m—00 n,m—00
(3.4.4) lim inf(z,|y) . =<+ limsup(z,|y).,
n—00 n—oo

with equality if X is strongly hyperbolic.

Note that except for the statement about strongly hyperbolic spaces, this
lemma is simply [I72] Lemma 5.6].

ProoF oF LEMMA B 47 Fix ny,ns, mi, me € N. By Gromov’s inequality

<$n1 |ym1>z 24‘ min(<xﬂ2 |ym2>27 <$n1 |$n2>27 <ym1 |ym2>z)'

Taking the liminf over n;, m; and the limsup over nq, mo gives

lim inf (z,, |Ym) -
n,m—00

2+ min (limsup(zn|ym>z,nliminf (Tn, |Tny)z, liminf (ym1|ym2>z)

n,m—o0 1,12 —>00 mi,ma—+00

= limsup(xn|ym) e, (since (z,,)7° and (ym)7° are Gromov)
n,m—00
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demonstrating ([343]). On the other hand, suppose that X is strongly hyperbolic.
Then by ([B:3:6) we have

exp (_ <33n1 |ym1>2) < exp (_<In2 |ymz>2) +exp (_ <33n1 |33n2>Z)+eXp (_<ym1 |ym2>Z)§

taking the limsup over n1,m; and the liminf over ny, mo gives

m

exp ( — lim inf (In|ym>z) < exp ( — lim sup(a:n|ym>z)—|—
0, —> 00 n,m—oo

+ exp ( — liminf (z,, |$"2>Z)+

n1,n2—>00

+ exp ( — hm lnf <ym1 |ym2>z)

mi,ma—+00
= exp ( — lim sup<$n|ym>z),
n,m—so0
(since (z,,)7° and (ym)7° are Gromov)
demonstrating equality in (3. 43]). The proof of ([B.4.4)) is similar and will be omitted.
O

REMARK 3.4.8. Many of the statements in this monograph concerning strongly
hyperbolic metric spaces are in fact valid for all hyperbolic metric spaces satisfying
the conclusion of Lemma [3.4.7]

Now that we know that it does not matter too much whether we replace the
limit in (3:42) by a liminf or a limsup, we make the following definition without
fear:

DEFINITION 3.4.9. For £, € 0X and y,z € X, let

(3.4.5) (€|n) = inf {%i)ggnofownlym& S(@n)TT €&, (ym)ST € n}
(3.4.6) (€ly)- = (l6)= = inf {liminf(zaly). : (22)° €
(3.4.7) Be(y, ) = (21, — (wle)-.

As a corollary of Lemma B.4.7] we have the following:

LEMMA 3.4.10. Fiz {,n € 0X andy,z € X. For all (x,)$° € € and (ym)° €7

we have

(3-4-9) <$n|y>z m—_,’_) <§|y>z
(3.4.10) B, (y,z) T Be(y, 2),

(cf. Conventionld), with exact limits if X is strongly hyperbolic.
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Note that except for the statement about strongly hyperbolic spaces, this
lemma is simply [172 Lemma 5.11].

ProoF oF LEMMA B4 T0l Say we are given (:ng))‘fo € ¢ and (yr(fq))‘fo € n for
each i =1,2. Let
1)

Ny n even
Tn = (2) )
Ty M odd

and define y,, similarly. It may be verified using Gromov’s inequality that (z,,)3° €
¢ and (ym)$° € 1. Applying Lemma B47], we have
2

2 . . 2 2 . .
min min lim inf (a:,(f) |y,(%)>z =, max max lim sup(:z:,(f) |y7(%)>z,
1=1 j=1 n,m—o00 i=1 j=1 p.m—ooo

In particular,
lim inf (z() [y(M), <4 limsup(@(D]yM).
n,Mm—00 n,m—00

<y liminf (@2 ]y?).

n,m—oo
S+ Tmsup(eP[y?). <y liminf (@0 [yL))..
n,1Mm—00 n,Mm—00
Taking the infimum over all (33512))?" € ¢ and (y,(ﬁ))‘fo € n gives (B:48). A similar
argument gives (B49). Finally, (3Z41I0) follows from F49), B47), and (j) of
Proposition [3.3.3
If X is strongly hyperbolic, then all error terms are equal to zero, demonstrating

that the limits converge exactly. O

REMARK 3.4.11. In the sequel, the statement that “if X is strongly hyperbolic,

then all error terms are zero” will typically be omitted from our proofs.
A simple but useful consequence of Lemma [B.4.10]is the following:

COROLLARY 3.4.12. The formulas of Proposition[3-3.3 together with Gromov’s
inequality hold for points on the boundary as well, if the equations and inequalities
there are replaced by additive asymptotics. If X is strongly hyperbolic, then we may

keep the original formulas without adding an error term.

PROOF. For each identity, choose a Gromov sequence representing each ele-
ment of the boundary which appears in the formula. Replace each occurrence of
this element in the formula by the general term of the chosen sequence. This yields
a sequence of formulas, each of which is known to be true. Take a subsequence
on which each term in these formulas converges. Taking the limit along this sub-
sequence again yields a true formula, and by Lemma 3410 we may replace each

limit term by the term which it stood for, with only bounded error in doing so,
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and no error if X is strongly hyperbolic. Thus the formula holds as an additive

asymptotic, and holds exactly if X is strongly hyperbolic. (I

REMARK 3.4.13. In fact, (a), (c), (d), and (e) of Proposition B33 hold in

bord X in the usual sense, i.e. as exact formulas without additive constants.

PROOF. These are the identities where there is at most one Gromov product
on each side of the formula. For each element of the boundary, we may simply
replace each occurence of that element with the general term of an arbitrary Gromov

sequence, take the liminf, and then take the infimum over all Gromov sequences. [
OBSERVATION 3.4.14. (z|y), = oo if and only if z = y € 0X.

PRrOOF. This follows directly from (3.4.5]) and (3-4.6]). (|

3.4.2. A topology on bord X. One can endow the bordification bord X =
X UOX with a topological structure .7 as follows: Given S C bord X, write S € 7
(i.e. call S open) if
(I) SN X is open, and
(IT) For each £ € SNOX there exists ¢ > 0 such that N¢(§) C S, where

Ni(§) := Nio(§) := {y € bord X : (y[€)o > t}

REMARK 3.4.15. The topology .7 may equivalently be defined to be the unique
topology on bord X satisfying:

(I) 71 X is compatible with the metric d, and
(IT) For each ¢ € X, the collection

(3.4.11) {N:(&) : t >0}
is a neighborhood base for 7 at &.

REMARK 3.4.16. Tt follows from Lemma B.4:23] below that the sets N¢(§) are
open in the topology 7.

REMARK 3.4.17. By (d) of Proposition B33 (cf. Remark B.AT3]), we have
Ni2(€) 2 Niqd(a,y),y(§) for all 2,y € X, £ € 90X, and ¢t > 0. Thus the topology 7

is independent of the basepoint o.
The topology 7 is quite nice. In fact, we have the following:

PROPOSITION 3.4.18. The topological space (bord X, T) is completely metriz-
able. If X is proper and geodesic, then bord X (and thus also 0X ) is compact. If
X is separable, then bord X (and thus also 0X ) is separable.

REMARK 3.4.19. If X is proper and geodesic, then Proposition B.ATg is [39]
Exercise IT11.H.3.18(4)].
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PROOF OF PROPOSITION [3.4.18l We delay the proof of the complete metriz-
ability of bord X until Section 3.6l where we will introduce a class of compatible
complete metrics on bord X which are important from a geometric point of view,
the so-called visual metrics.

Since X is dense in bord X, the separability of X implies the separability of
bord X. Moreover, since bord X is metrizable (as we will show in Section [3.0]), the
separability of bord X implies the separability of 0.X.

Finally, assume that X is proper and geodesic; we claim that bord X is compact.
Let (z,,)3° be a sequence in X. If (x,)$° contains a bounded subsequence, then
since X is proper it contains a convergent subsequence. Thus we assume that (z,,)$°
contains no bounded subsequence, i.e. ||z, | — oo.

For each n € N and ¢ > 0 let

Tnt = o0, :En]m”znuE

where [0, z,,] is any geodesic connecting o and x,,. Since X is proper, there exists a

sequence (ny)$° such that for each ¢ > 0, the sequence (zy, ¢)7° is convergent, say

Tyt ? Tt.

It is readily verified that the map ¢ — a; is an isometric embedding from [0, 00) to
X. Thus there exists a point £ € 90X such that z; — . We claim that z,, — &.
Indeed, for each t > 0,
limsup D(2n,, , Ty t) <x Imsup D(zn, 4, 2¢) < limsup D (x4, &) <5 b7,
k—o00 k—o00 k—o0
and so the triangle inequality gives
limsup D, ,€) S b,
k—o00

Letting ¢ — oo shows that z,, — &. O

OBSERVATION 3.4.20. A sequence (x,,)5° in bord X converges to a point £ € 0X
if and only if

(3.4.12) (n)|€)o — o0,

OBSERVATION 3.4.21. A sequence (z,,)$° in X converges to a point £ € 90X if

and only if (x,)$° is a Gromov sequence and (z,)5° € &.

We now investigate the continuity properties of the Gromov product and Buse-

mann function.

LEMMA 3.4.22 (Near-continuity of the Gromov product and Busemann func-

tion). The maps (z,y,z) — (z|y), and (z,z,w) — By(z,w) are nearly continuous

3Here and from now on A A B = min(A, B) and AV B = max(A, B).
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in the following sense: Suppose that (x,)° and (y,)$° are sequences in bord X

which converge to points x, — = € bord X and y, — y € bord X. Suppose that
(2n)3° and (w,,)$° are sequences in X which converge to points z, — z € X and
wy, — w € X. Then

(3.4.13) (@nlyn)z, —— (xly)-

with — if X is strongly hyperbolic.
n

PROOF. In the proof of (B4.13)), there are three cases:

Case 1: z,y € X. In this case, (3413) follows directly from (d) and (e) of Propo-
sition

Case 2: x,y € 0X. In this case, for each n € N, choose Z,, € X such that either
(1) z, =z, (ifz, € X), or
(2) Znlan), >n (if z, € 0X).
Choose ¥, similarly. Clearly, Z, — = and ¥y, — y. By Observation [3.4.27]
(Zn)$° € x and (Yp)$° € y. Thus by Lemma 3410

(3.4.15) (@nlTn)z —— (2ly)=-
Now by Gromov's inequality and (e) of Proposition B:3.3] either

(1) (@nlYn)> =+ (Tnlyn)-, or

(2) (@nlyn)= 2+ n,
with which asymptotic is true depending on n. But for n sufficiently large,
(B4I38) ensures that the (2) fails, so (1) holds.

Case 3: z € X,y € 0X, or vice-versa. In this case, a straightforward combination
of the above arguments demonstrates ([3.4.13).

Finally, note that (84.1I4) is an immediate consequence of B413), B:41), and (j)
of Proposition [3.3.3 O

Although Lemma [3.4.22] is generally sufficient for applications, we include the
following lemma which reassures us that the Gromov product does behave some-

what regularly even on an “exact” level.

LEMMA 3.4.23. The function (z,y,z) — (z|y), is lower semicontinuous on
bord X x bord X x X.

PROOF. Since bord X is metrizable, it is enough to show that if =, — x,
Yn — Y, and z, — z, then

lim inf(zy |yn)2, > (x]y)--

n—roo
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Now fix € > 0.

CLAIM 3.4.24. For each n € N, there exist points Tn,yn € X satisfying:

(3.4.16) (Znlln)zn < (@nlyn)z, +e
(3.4.17) (@nl2n)o 2 n, or Tn = 3y € X,
(3418) <Z/J\n|yn>o > n, or Z/jn =Yn € X.

PROOF. Suppose first that ,,,y, € 0X. By the definition of (z,|yn),,, there
exist (zn,1)3° € Tn, and (Yn,e)3° € yn such that

lim in <xn,k|yn,€>zn < (@nlyn)z, +€/2.

k,£— o0
It follows that there exist arbitrarily largﬂ pairs (k,¢) € N? such that the points
T i= T and Y 1= yn ¢ satisfy B4I6). Since B4I7) and B4I8) are satisfied
for all sufficiently large (k,¢) € N2, this completes the proof. Finally, if either
zy, € X, yn € X, or both, a straightforward adaptation of the above argument
yields the claim. <

The equations (3.417) and (B.4.1])), together with Gromov’s inequality, imply
that Z, — x and 3, — y. Now suppose that z,y € 9X. Then by Observation
BA21] (z,)3° € = and (Un)$° € y. So by the definition of (x|y)., we have

(xly), < liznl){)%f@"@"% (by the definition of (z|y).)

= linnl)io%f@"|§">z" (by (d) of Proposition B:3.3])

<liminf(z, |yn)-, + e (by B.4.1G))
Letting ¢ tend to zero completes the proof. A similar argument applies to the case
where x € X, y € X, or both. O

LEMMA 3.4.25. If g is an isometry of X, then it extends in a unique way to a
continuous map g : bord X — bord X .

ProoF. This follows more or less directly from Remarks and BATT de-
tails are left to the reader. ]

In the sequel we will omit the tilde from the extended map g.

3.5. The Gromov product in algebraic hyperbolic spaces

In this section we analyze the Gromov product in an algebraic hyperbolic space
X. We prove Proposition B34 which states that CAT(-1) spaces are strongly

4Hore7 of course, “arbitrarily large” means that min(k,£) can be made arbitrarily large.
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FIGURE 3.5.1. TfF = Rand x,y € 9B, then e~ *¥)o = 1|y —x|| =
sin(f/2), where 6 denotes the angle £o(x,y) drawn in the figure.

hyperbolic, and then we show that the Gromov boundary of X is isomorphic to its
topological boundary, justifying Remark B.4.3

In what follows, we will switch between the hyperboloid model H = Hf and
the ball model B = Bf according to convenience. In the following lemma, 0B and
bord B denote the topological boundary and closure of B as defined in Chapter 2

not the Gromov boundary and closure as defined above.

LEMMA 3.5.1. The Gromov product (x,y,z) — (X|y)z : Bx Bx B — [0,00)
extends uniquely to a continuous function (x,y,z) — (X|y)z : bord Bxbord BxB —
[0,00]. Moreover, the extension satisfies the following:

(i) (x|y)z = o0 if and only if x =y € OB.
(ii) For all x,y € bord B,

1
3.5.1 e xIyo > 1y x|
( ) > \/gl\y [

If F =R and x,y € 0B, then
1
(3.5.2) e~ vl = Slly —xI.

PROOF. We begin by making some computations in the hyperboloid model H.
For [x],[y] € bord H and [z] € H, let

_ 19| [Ba(x,y)|
Oé[z]([x]a lyl) = |Bo(x,2)| - |Bol(y,2z)]

By 222, for [x],[y], [z] € H we have

(3.5.3) o) (], [y]) =

€ [0, 00).

cosh dy([x], [y]) ,
cosh dy([x], [2]) cosh di ([y], [])
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Let D = {(A, B,C) € [0,00)" : cosh(A) cosh(B)C > 1}, and define F : D — [0, 0)
by
exp [cosh_1 (cosh(A) cosh(B)C)]

edeB

F(A,B,C) =
Then by B.5.3]), we have
e 2BVl = F (dy([2], [x]), dis([2], [¥]), o (], [¥])

for all [x], [y], [z] € H. Now since lim; #]j(t) = 2, we have for all A > 0 and
>0

lim F(A,B,C) = lim 2(cosh(A1)4cc];sh(B)C)
B—o00 B—oo ee
_ cosh(A)
= A C
and h(4)
. COoS
AlgnOo A c=C/2.

Let D be the closure of D relative to [0, 00]? x [0, 00), i.e.
D=DU ([o, )2 % [0,00) \ [0, oo)?’) .

If we let

F(A,B,C) A,B <

Ao A<B=o0

B¢ B<A=oo

C/2 A=B=x

F(A,B,C) :=

then F : D — [0, 00) is a continuous functionE Thus, letting

(XyD@ = —%IOgﬁ (du([2], [x]), dis([2] [¥]) gz ([x], [y])
defines a continuous extension of the Gromov product to bord H x bord H x H.
We now prove (i)-(ii):
(i) Using the inequality e?/2 < cosh(t) < e, it is easily verified that
(3.5.4) F(A,B,C) > C/4

forall (A, B,C) € D. In particular, if ﬁ(A, B,C) =0 then C = 0. Thus if
([X]|[y])[z) = oo then ap5([x], [y]) = 0; since [z] € H we have Bg(x,y) = 0,
and by Observation 23315 we have [x] = [y] € OH. Conversely, if [x] =
[y] € OH, then dn([z], [x]) = dn([z],[y]) = oo and ap,([x],[y]) = 0, so
([x][[y])(z) = —3 log F(00,0,0) = oc.

5Technically, the calculations above do not prove the continuity of F ; however, this continuity is
easily verified using standard methods.
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(ii) Recall that in B, o = [(1,0)]. For x,y € B,
_ 1Q(1, 0)[ - [Bo((L,x), (1, y))]
[Bo((1,0), (1,%))| - [Bo((1,0), (1,))|
=[1-Be(x,y)|
>1—ReBeg(x,y) (with equality if F = R)

ao(ep,H(x), epH(y))

1
> S+ Iyl°] = Re Be(x,y) ~ (with equality if x,y € OB)

1 2
= 5ly =

Combining with 354) gives

olx 1 1
e 2x¥lo > Zao(e[B,[H(x),e[B,[H(}’)) > g”y —x|*.

If F =R and x,y € 0B, then

_alx 1 1
e~ 2xl¥)o — S0o(ern(x),emn(y)) = |y —x|*.

We now prove Proposition [3.334] beginning with the following lemma:
LEMMA 3.5.2. If F = R then B is strongly Gromouv hyperbolic.

PROOF. By the transitivity of the isometry group (Observation 2.3.2)), it suf-
fices to check ([B.3.0G]) for the special case w = o. So let us fix x,y,z € B, and by

contradiction suppose that

67<I‘Z>o > 67<z‘y>o + e*<y‘z>o

3

or equivalently that
1> elel2lo=(@lv)o 4 (@l2)o—(yl2)o,
Clearly, the above inequality implies that z # z and y # o. Now let v; and s
be the unique bi-infinite geodesics extending the geodesic segments [z, z] and [o, y],
respectively. Let xoo, 200 € OB be the appropriate endpoints of 71, and let yo, be
the endpoint of 5 which is closer to y than to o. (See Figure B52) For each
t € ]0,00), let
Tt = [T, Toolt € 71,

and let y: € y2, 2t € 1 be defined similarly.
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T oo

FiGure 3.5.2. If Gromov’s inequality fails for the quadruple
x,, z, 0, then it also fails for the quadruple oo, Yoo, Zoo, O-

We observe that

0 10
En (xe|ze)o — (e|ye)o] = 25 [de(0, 2¢) + de (w4, y¢) — de(we, 2¢) — dg(0, y1)]
10
— 5@ [d[B(O7 Zt) —|— d[B(!Et, yt) — 2t — ﬂ
< %%[H—%—Qt—t] =0,

i.e. the expression (z¢|z¢)o — (¢|yt)o is nonincreasing with respect to ¢. Taking the

limit as t approaches infinity, we have

(Tool2o0)o = (ToolYoo)o < (T]2)0 — (Z|Y)o
and a similar argument shows that

(Tool200)0 = (Yool 200)0 < (T]2)0 — (Y]2)0-

Thus
1 > e<zw‘zw>07<IW|ym>o + e<m00|zoo>o*<yoo‘zoo>o

or equivalently,
e—(mm\zm>o > e—<$oo|yoo>o + 6_<yoo‘zoo>o-

But by B52), if we write oo = X, Yoo =y, and 2o, = 2z, then
Lz — x| > Ly — x| + £llz -yl
2 2 2
This is a contradiction. (I

We are now ready to prove
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ProposITION B34l Every CAT(-1) space is strongly hyperbolic.

PROOF. Let X be a CAT(-1) space, and fix z,y, z,w € X. By [39] Proposition

I1.1.11], there exist 7,7, z,w € H? such that
d(z,y) = d(7,7) d(y, z) = d(y,z)
d(z,w) = d(z,w) d(w,z) = d(w, T)
d(z,z) < d(z,2) d(y,w) < d(7, )

3.5.1. The Gromov boundary of an algebraic hyperbolic space. Again
let X = H = Hg be an algebraic hyperbolic space. By Proposition B34 X is a
(strongly) hyperbolic metric space. (If F = R, we can use Lemma B52) In
particular, X has a Gromov boundary, defined in Section [3.4l On the other hand,
X also has a topological boundary, defined in Chapter 2l For this subsection only,

we will write

0 X = Gromov boundary of X,
OrX = topological boundary of X.

We will now show that this distinction is in fact unnecessary.

ProroSITION 3.5.3. The identity map id : X — X extends uniquely to a
homeomorphism id: XU 0cX — X UIrX. Thus the pairs (X, X UdgX) and
(X, X U0rX) are isomorphic in the sense of Section [24).

PROOF OF PROPOSITION [3.5.3l By Observation 2.5.1] and Proposition 2.5.5]
it suffices to consider the case where X = B = Bf is the ball model. Fix £ € dgB.
By definition, & = [(x,)5°] for some Gromov sequence (x,)°. By B351), the
sequence (x,,)7° is Cauchy in the metric ||-—-||. Thus x,, — x for some x € bord B;
since (x,,)7° is a Gromov sequence, we have

(x|x)o = n7£§m<xn|xm>0 = 00,

and thus x € 7B by (i) of Lemma [35.1] Let

id(¢) = x.



3.5. THE GROMOV PRODUCT IN ALGEBRAIC HYPERBOLIC SPACES 47

To see that the map id is well-defined, note that if (y,)$° is another Gromov

sequence equivalent to (x,)$°, and if y,, — y € drB, then
(x[y)o = lim (x,|yn)o = oo,
and so by (i) of Lemma B3l we have x =y.
We next claim that id : 0aB — OrB is a bijection. To demonstrate injectivity,
we note that if 1?1(5) = ﬂ(n) = x, then by (i) of Lemma B.5.1]

I alyn)o = (xix)o = o0,

where (x,)$° and (y,)$° are Gromov sequences representing £ and 7, respectively.
Thus (x,,)$° and (y,)3° are equivalent, and so £ = 7.

To demonstrate surjectivity, we observe that for x € 9B, we have

a([(5.) -

Finally, we must demonstrate that idisa homeomorphism, or in other words that

the topology defined in §3.4.2is the usual topology on bord B (i.e. the topology
inherited from #). It suffices to demonstrate the following:

CLAamM 3.5.4. For any x € OrB, the collection B.AII) (with & = x) is a
neighborhood base of x with respect to the usual topology.

Proor. By B.51]), we have
Ni(x) C B(x,V8e™).

On the other hand, the continuity of the Gromov product on bord B guarantees

that N¢(x) contains a neighborhood of x with respect to the usual topology. <
O
In the sequel, the following will be useful:

PROPOSITION 3.5.5. Let E = E* be the half-space model of a real hyperbolic

space. For x,y € £, we have
Boo(x,y) = —log(z1/y1).

ProOF. By [2.5.3) we have

(BoeCy) — qyy SPIE(ZX) - coshde(z,x)

200 expdp(z,y) 200 cosh de(z,y)

2
llz—x]|2 (Hzfxll )
-k I+ 2121 1 2z 21 it
= lim ——= = lim —& = =
200 1 4 llz—y|l z—oo [ ||lz—yl? 1
2y121 2y1 21
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X
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FIGURE 3.5.3. The value of the Busemann function B (x,y) de-
pends on the heights of the points x and y.

3.6. Metrics and metametrics on bord X

3.6.1. General theory of metametrics.

DEFINITION 3.6.1. Recall that a metric on aset Zisamap D : Zx Z — [0,00)

which satisfies:
(I) Reflexivity: D(x,x) = 0.

(IT) Reverse reflexivity: D(x,y) =0 =z =1y.

(III) Symmetry: D(z,y) = D(y, z).

(IV) Triangle inequality: D(x,z2) < D(z,y) + D(y, z).
Now we can define a metametric on Z to be a map D : Z x Z — [0,00) which
satisfies (IT), (III), and (IV), but not necessarily (I). This concept is not to be
confused with the more common notion of a pseudometric, which satisfies (I), (III),
and (IV), but not necessarily (II). The term “metametric” was introduced by J.
Viisild in [172).

If D is a metametric, we define its domain of reflexivity to be the set Zief) :=
{r € Z: D(z,x) = O}H Obviously, D restricted to its domain of reflexivity is a

metric.

As in metric spaces, a sequence (z,)$° in a metametric space (Z, D) is called

Cauchy if D(xy,2,) — 0, and convergent if there exists x € Z such that
n,m

D(z,,z) = 0. (However, see Remark B.6.5 below.) The metametric space (Z, D) is

called complete if every Cauchy sequence is convergent. Using these definitions, the

standard proof of the Banach contraction principle immediately yields the following:

THEOREM 3.6.2 (Banach contraction principle for metametric spaces). Let
(Z,D) be a complete metametric space. Fix 0 < X< 1. If g: Z — Z satisfies

D(g(2),g9(w)) < AD(z,w) Vz,w € Z,

6In the terminology of [I72] p.19], the domain of reflexivity is the set of “small points”.
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then there exists a unique point z € Z so that g(z) = z. Moreover, for all w € Z,

we have g™ (w) — z with respect to the metametric D.

OBSERVATION 3.6.3. The fixed point coming z coming from Theorem [3.6.2]

must lie in the domain of reflexivity Z,ef.

PROOF.
D(z,2) = D(g(2),9(2)) < AD(2, 2),
and thus D(z,z) = 0. O

Recall that a metric is said to be compatible with a topology if that topology
is equal to the topology induced by the metric. We now generalize this concept by

introducing the notion of compatibility between a topology and a metametric.

DEFINITION 3.6.4. Let (Z, D) be a metametric space. A topology  on Z is

compatible with the metametric D if for every & € Z,¢f1, the collection

(3.6.1) {Bp,r)={ye Z:DEy) <r}:r>0}
forms a neighborhood base for .7 at &.

Note that unlike a metric, a metametric may have multiple topologies with
which it is compatiblel! The metametric is viewed as determining a neighborhood
base for points in the domain of reflexivity; neighborhood bases for other points
must arise from some other structure. In the case we are interested in, namely
the case where the underlying space for the metametric is the Gromov closure of
a hyperbolic metric space X, the topology on the complement of the domain of
reflexivity will come from the original metric d on X.

REMARK 3.6.5. If (Z, D) is a metametric space with a compatible topology .7,
then there are two notions of what it means for a sequence (x,,)$° in Z to converge
to a point x € Z: the sequence may converge with respect to the topology <, or
it may converge with respect to the metametric (i.e. D(z,,2) — 0). The relation
between these notions is as follows: z,, — = with respect to the metametric D if
and only if both of the following hold: x,, — = with respect to the topology 7,
and x € Ziefl.

REMARK 3.6.6. If a metametric D on a set Z is compatible with a topology
Z, then the metric D | Zyef is compatible with the topology 7 1 Z.cr. However,

the converse does not necessarily hold.

For the remainder of this chapter, we fix a hyperbolic metric space X, and we
let .7 be the topology on bord X introduced in §3.421 We will consider various

metrics and metametrics on bord X which are compatible with the topology 7.

"The topology considered in [I72] p.19] is the finest topology compatible with a given metametric.



50 3. R-TREES, CAT(-1) SPACES, AND GROMOV HYPERBOLIC METRIC SPACES

3.6.2. The visual metametric based at a point w € X. The first meta-
metric that we will consider is designed to emulate the Euclidean or “spherical”
metric on the boundary of the ball model B. Recall from Lemma [B.5.1] that

1
B.5.2) Sy —xl = e e for all x,y € 9B.

The metric (x,y) — 5|ly—x|| can be thought of as “seen from 0”. The expression on
the right hand side makes sense if X,y € bord B, and defines a metametric on bord B.
Moreover, the formula can be generalized to an arbitrary strongly hyperbolic metric

space:

OBSERVATION 3.6.7. If X is a strongly hyperbolic metric space, then for each
w € X the map D,, : bord X x bord X — [0, 00) defined by

(3.6.2) Dy(z,y) = e @l)w

is a complete metametric on bord X. This metametric is compatible with the

topology 7; moreover, its domain of reflexivity is 0.X.

PROOF. Reverse reflexivity and the fact that (bord X),er; = 0X follow directly
from Observation BZT4t symmetry follows from (a) of Proposition together
with Corollary the triangle inequality follows from the definition of strong
hyperbolicity together with Corollary

To show that D,, is complete, suppose that (x,)3° is a Cauchy sequence in
X. Applying B62), we see that (n|Tm)w — 00, Le. (25,)$° is a Gromov
sequence. Letting & = [(2,)$°], we have x, — § in the Dy, metametric. Thus
every Cauchy sequence in X converges in bord X. Since X is dense in bord X, a
standard approximation argument shows that bord X is complete.

Given ¢ € (bord X)er1 = 0X, the collection 6T is equal to the collection
(BZI1), and is therefore a neighborhood base for 7 at . Thus D,, is compatible
with 7. O

Next, we drop the assumption that X is strongly hyperbolic. Fix b > 1 and
w € X, and consider the function
n—1
3.6.3 Dy (z,y) = inf b*(mi|mi+1>w,

where the infimum is taken over finite sequences (z;)§ satisfying o = = and z,, = y.

PrOPOSITION 3.6.8. If b > 1 is sufficiently close to 1, then for each w € X,
the function Dy, defined by B63) is a complete metametric on bord X satisfying
the following inequality:

(3.6.4) b= /4 < Dy () < bW,
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This metametric is compatible with the topology 7 ; moreover, its domain of reflex-
wity is 0X.

We will refer to Dy, as the “visual (meta)metric from the point w with respect

to the parameter b”.

REMARK 3.6.9. The metric Dy ,, 1 0X has been referred to in the literature as

the Bourdon metric.

REMARK 3.6.10. The first part of Proposition B.6.8 is [172] Propositions 5.16
and 5.31].

PROOF OF PROPOSITION 3.6.8. Let 6 > 0 be the implied constant in Gro-
mov’s inequality, and fix 1 < b < 2'/9. Then raising b~' to the power of both sides

of Gromov’s inequality gives
b= (#=)w < 2 max (b—<w\y>w,b—<y|z>w) 7

i.e. the function
() 1= b

satisfies the “weak triangle inequality” of [I54]. A straightforward adaptation of
the proof of [154, Theorem 1.2] demonstrates [B.6.4]). Condition (II) of being a
metametric and the equality (bord X ),er; = 0X now follow from Observation 3414
Conditions (IIT) and (IV) of being a metametric are immediate from FG3)).

The argument for completeness is the same as in the proof of Observation B.6.7

Finally, given £ € (bord X ),er1 = 0X, we observe that although the collections
BEI) and B4II) are no longer equal, (B.6.4) guarantees that the filters they
generate are equal, which is enough to show that Dy, is compatible with .. O

REMARK 3.6.11. If X is strongly hyperbolic, then Proposition B.6.8 holds for
all 1 < b < e; moreover, the metametric D, ,, is equal to the metametric D,, defined
in Observation [3.6.71

REMARK 3.6.12. If (X,d) is an R-tree, then for all t > 0, (X,td) is also an
R-tree and is therefore strongly hyperbolic (by Observation and Proposition
B34). It follows that Proposition B.6.8 holds for all b > 1.

For the remainder of this chapter, we fix b > 1 close enough to 1 so that
Proposition [3.6.8 holds.

3.6.3. The extended visual metric on bord X. Although the metametric
Dy, ., has the advantage of being directly linked to the Gromov product via (3.6.4)),
it is sometimes desirable to put a metric on bord X, not just a metametric. We

show now that such a metric can be constructed which agrees with Dy, ,, on 0.X.
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In the following proposition, we use the convention that d(z,y) = oo if z,y €
bord X and either x € 0X or y € 0X.

PROPOSITION 3.6.13. Fiz w € X, and for all x,y € bord X let

Ebﬁw(az, y) = min (log(b)d(x, Y), Dy (z, y))

Then D = Eb,w s a complete metric on bord X which agrees with D = Dy 4, on
0X and induces the topology 7 .

We call the metric D an extended visual metric.

As an immediate consequence we have the following result which was promised
in §342t
COROLLARY 3.6.14. The topological space (bord X, T) is completely metrizable.

PROOF OF PROPOSITION B.6.13l Let us show that D is a metric. Conditions
(I)-(III) are obvious. To demonstrate the triangle inequality, fix z,y, z € bord X.
(1) If D(z,y) = log(b)d(z,y) and D(y,z) = log(b)d(y,z), then D(z,2) <
log(b)d(z, z) < log(b)d(z,y) +1log(b)d(y, z) = D(x,y) + D(y, ). Similarly,
if D(x,y) = D(x,y) and D(y,z) = D(y,z), then D(z,2) < D(z,2) <
D(z,y) + D(y, 2) = D(x,y) + D(y, 2).
(2) If D(z,y) = log(b)d(z,y) and D(y,z) = D(y,z), fix € > 0, and let y =
Y0, Y1,---,Yn = 2z be a sequence such that

n—1

Z b= Wivitw < D(y,z) +e.

i=0
Let x; = y; for i > 1 but let zyp = x. Then by (e) of Proposition B33 and
the inequality

b=t < slog(b) + b=+ (s,t >0),

we have

b @y <log(b)d(z,y) + b~ Wvi)w,
It follows that

n—1

D(.’II,Z) < D(CE,Z) < Z b_<1i‘$i+1>w
=0

n—1
— b*(m‘yﬁw + Z b*(yi|yi+1>w
=1

n—1
S 10g(b)d(iE, y) + b—(y|y1>w + Z b—(yi\yi+1>w

=1

<log(b)d(z,y) + D(y,2) + & = D(x,y) + D(y, 2) + ¢.
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Taking the limit as € goes to zero finishes the proof.
(3) The third case is identical to the second.

If a sequence (z,)$° is Cauchy with respect to D, then Ramsey’s theorem (for
example) guarantees that some subsequence is Cauchy with respect to either d or
D. This subsequence converges with respect to that metametric, and therefore also
with respect to D. It follows that the entire sequence converges, and therefore that
D is complete.

Finally, to show that D induces the topology .7, suppose that U C 90X is
open in 7, and fix x € U. If x € X, then By(x,r) C U for some r > 0. On the
other hand, by the triangle inequality D(z,y) > 3D(z,z) > 0 for all y € bord X.
Letting 7 = min(r, $D(x,z)), we have Bx(z,7) C By(z,r) C U. If 2 € 9X, then
Ny(xz) C U for some t > 0; letting C' be the implied constant of (B:6.4]), we have
By(z,e7/C) = Bp(x,e "/C) C Ny(z) C U. Thus U is open in the topology
generated by the D metric. The converse direction is similar but simpler, and will
be omitted. (|

REMARK 3.6.15. The proof of Proposition actually shows more, namely
that
D(z,z) < D(z,y) + D(y, 2) Vz,y,2 € bord X.

Since D(z,z) = b~ I*l = inf,cp00a x D(z,7), plugging in z = 2 gives

b7l < =1l - D2, y) Va,y € bord X.

REMARK 3.6.16. Although the metric D is convenient since it induces the
correct topology on bord X, it is not a generalization of the Euclidean metric on
the closure of an algebraic hyperbolic space. Indeed, when X = B2, then D is not
bi-Lipschitz equivalent to the Euclidean metric on bord X.

3.6.4. The visual metametric based at a point £ € 0X. Our final meta-
metric is supposed to generalize the Euclidean metric on the boundary of the half-

space model E. This metric should be thought of as “seen from the point co”.

NotaTION 3.6.17. If X is a hyperbolic metric space and £ € 90X, then let
Ee :==bord X \ {¢}.

Since we have not yet introduced a formula analogous to (85.2) for the Eu-
clidean metric on OF \ {oo}, we will instead motivate the visual metametric based
at a point £ € 9X by considering a sequence (w,)° in X converging to &, and
taking the limits of their visual metametrics.

In fact, Dy, (Y1, y2) — 0 for every yi,y2 € E. Some normalization is needed.
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LEMMA 3.6.18. Fizo € X, and suppose w, — £ € 0X. Then for ally1,yo € &,

[|wn || —[y1ly2)o— 322 1 (yil€)o]
b Dy, (Y1, 42) o b 1 :

with — if X s strongly hyperbolic.
n

PROOF.
pllonll Dy (y1,92) =x b~ [(vly2)w, —llwall] (by B84))
= b lwilv2)o=20 1 {wilwn)ol by (k) of Proposition B3.3)
~lyaly2)o=327_ (wilé)ol
n)—x> b 1 . (by Lemma B.4.22])
In each step, equality holds if X is strongly hyperbolic. (I

We can now construct the visual metametric based at a point £ € 0.X.

PROPOSITION 3.6.19. For each o € X and £ € 0X, there exists a complete

metametric Dy ¢ , on & satisfying
(3.6.5) Do e.o(y1,y2) =x b= [wrly2)o= 7, (wil€)o]

with equality if X is strongly hyperbolic. The metametric Dy ¢ , is compatible with
the topology 7 1 E¢; moreover, a set S C & is bounded in the metametric Dy ¢ o if
and only if € ¢ S.

REMARK 3.6.20. The metric Dy¢o 1 & N 0X has been referred to in the

literature as the Hamenstadt metric.

Proor oF PROPOSITION [3.6.19] Let

Dyg.o(y1,y2) = limsup b1 D, (y1, o)

w—§
;= sup {lim sup 1Dy (g1, 5) : wy — 5}
s oo n
Since the class of metametrics is closed under suprema and limits, it follows that
Dy ¢.0 is a metametric. The asymptotic (B.6.0]) follows from Lemma B.6.18
For the remainder of this proof, we write D = Dy, and D¢ = Dy ¢ o.
For all z € &,
1
“ D(,¢)’
with equality if X is strongly hyperbolic. It follows that for any set S C &, the

(3.6.6) De(0,x) =y p—lelz)o—(ol&)o—(x[€)o] _ plxl&)o —

function De¢(o, ) is bounded on S if and only if the function D(-, &) is bounded from

below on S. This demonstrates that S is bounded in the D¢ metametric if and only

ifegs.
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Let (z,,)3° be a Cauchy sequence with respect to D¢. Since D Sy De, it follows
that (z,,)7° is also Cauchy with respect to the metametric D, so it converges to a
point = € bord X with respect to D. If z € &, then we have

De(zp, x) <« b<m"|5>°+<m|5>°D(:1:n, x) — p2(l€)eo = (.
n,x

On the other hand, if = &, then the sequence (z,);° is unbounded in the Dg
metametric, which contradicts the fact that it is Cauchy. Thus D¢ is complete.
Finally, given € (E¢)reft = & N OX, consider the filters F; and F> generated
by the collections {Bp(n,r) : > 0} and {Bp,(n,r) : r > 0}, respectively. Since
D Sx De, we have Fo € Fy. Conversely, since Bp,(n,1) is bounded in the D
metametric, its closure does not contain &, and so the function (-|¢), is bounded
on this set. Thus D <y , D¢ on Bp,(n,1). Letting C' be the implied constant of
the asymptotic, we have Bp, (1, min(r, 1)) € Bp(n,Cr), which demonstrates that
F1 C Fy. Thus D¢ is compatible with the topology 7 1 &. ([l

From Lemma [3.6.18 and Proposition 3.6.19] it immediately follows that
(3.6.7) b ) Dy (Y1, y2) — Dy.¢,0(y1,Y2)

whenever (w,)$° € €.

REMARK 3.6.21. It is not clear whether a result analogous to Proposition[3.6.13]
holds for the metametric Dy ¢ o. A straightforward adaptation of the proof of Propo-
sition [3.6.19] does not work, since

oI Dy, (2, y) = min(el " ld(z, ), 01" Dy o, (2, )

—— min(oo, Dy ¢,0(2,y))

n,x

= Dy o(x,y).

We finish this chapter by describing the relation between the visual metametric

based at co and the Euclidean metric on the boundary of the half-space model [.

PROPOSITION 3.6.22 (Cf. Figure B.6.1)). Let X = E = E®, let 0o = (1,0) € X,
and fixr X,y € Eoo = EUB. We have

(368) De,oo,o(xay) =x max(xlvyla ||y - XH)a

with equality if x,y € B =0E\ {o0}.



56 3. R-TREES, CAT(-1) SPACES, AND GROMOV HYPERBOLIC METRIC SPACES

FIGURE 3.6.1. The Hamenstadt distance De o0 ,0(X,y) between
two points x,y € [E is coarsely asymptotic to the maximum of
the following three quantities: 1, y1, and ||y — x||. Equivalently,
D. oo.0(x,y) is coarsely asymptotic to the length of the shortest
path which both connects x and y and touches B.

PROOF. First suppose that x,y € E. By (h) of Proposition 3.3.3]

De oo.0(x,y) exp (% (d(x, y) + Boo(0,2) + Boo (0, y)))

1 _ 2
= /T1Y1 exp <§ (cosh_1 <1 + 7”};;61;” )>)
(by 23) and Proposition 5.5

ly — |2
2z131

=x VI1Y1 1—|—
(since e'/? <, \/cosh(t))
= iy + |ly — x||?
= max(y/z1y1, ||y — x||).

Since /z1y1 < max(z1,y1), this demonstrates the < direction of BG8). Since
y1 <21+ ||y — x| and 21 < y1 + ||y — x]|, we have

max(z1,y1) Sx max(min(zy, y1), |y — x[|) < max(y/ziy, [y — x||)

which demonstrates the reverse inequality. Thus (B.6.8) holds for x,y € E; a
continuity argument demonstrates ([B.6.8]) for x,y € Ex.
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If x,y € B, then

i, mexp(l(m (14 2 2)))

= lim \/—\/ 1—|— il ) (since tlim e'/? /\/2 cosh(t) =
—00

De,oo,o(xa y)

a,b—0
: y —x[?
- I, \/2 (a0 %) = VIy T = lly x|

COROLLARY 3.6.23 (Cf. [165] Fig. 5]). For x,y € E, we have

ed(x,y) - max(:c%, y%v Hy - XH2) .
=y
Z1Y1

PROOF. The result follows from

max(z7, Y3, [y — X||*) <x De,oo,o(%,y)? = exp (d(x,y) + Boo(0,%) + Boo(0,y))
= z191e0Y)

which may be easily rearranged to complete the proof. O






CHAPTER 4

More about the geometry of hyperbolic metric

spaces

In this chapter we discuss various topics regarding the geometry of hyperbolic
metric spaces, including metric derivatives, the Rips condition for hyperbolicity,
construction of geodesic rays and lines in CAT(-1) spaces, “shadows at infinity”,
and some functions which we call “generalized polar coordinates”. We start by

introducing some conventions to apply in the remainder of the paper.

4.1. Gromov triples

The following definition is made for convenience of notation:

DEFINITION 4.1.1. A Gromov triple is a triple (X, 0,b), where X is a hyperbolic
metric space, 0 € X, and b > 1 is close enough to 1 to guarantee for every w € X

the existence of a visual metametric Dy ,, via Proposition [3.6.8 above.

NoTATION 4.1.2. Let (X, 0,b) be a Gromov triple. Given w € X and € € 90X,
we will let Dy, = Dy, be the metametric defined in Proposition B.6.8 we will let
D, = ﬁb,w be the metric defined in Proposition B.6.13, and we will let D¢ ,, =
Dy ¢ .. be the metametric defined in Proposition B.6.19 If w = o, then we use the
further shorthand D = D,, D = D,,, and D¢ = De¢ .

We will denote the diameter of a set S with respect to the metametric D by
Diam(.9).

CONVENTION 7. For the remainder of the paper, with the exception of Chapter
[l all statements should be assumed to be universally quantified over Gromov triples

(X, 0,b) unless context indicates otherwise.

CONVENTION 8. For the remainder of the paper, whenever we make statements
of the form “Let X =Y, where Y is a hyperbolic metric space, we implicitly want
to “beef up” X into a Gromov triple (X, 0,b) whose underlying hyperbolic metric
space is Y. For general Y, this may be done arbitrarily, but if YV is strongly
hyperbolic, we want to set b = e, and if Y is an algebraic hyperbolic space, then
we want to set o = [(1,0)], o = 0, or o = (1,0) depending on whether Y is the
hyperboloid model H, the ball model B, or the half-space model E, respectively.

59



60 4. MORE ABOUT THE GEOMETRY OF HYPERBOLIC METRIC SPACES

For example, when saying “Let X = H = H*>”, we really mean “Let X = H =
Ho°, let 0 = [(1,0)], and let b =e.”

CONVENTION 9. The term “Standard Case” will always refer to the finite-

dimensional situation where X = H? for some 2 < d < 0.

4.2. Derivatives

4.2.1. Derivatives of metametrics. Let (Z, ) be a perfect topological
space, and let D; and D be two metametrics on Z. The metric derivative of
D, with respect to Ds is the function Dy/Ds : Z — [0, 00] defined by

&(2) := lim M,

D, w—z Dy(z,w)
assuming the limit exists. If the limit does not exist, then we can speak of the
upper and lower derivatives; these will be denoted (D1/D2)*(z) and (D1/D2).(z),
respectively. Note that the chain rule for metric derivatives takes the following

form:
Dy Dy Dy

Ds Dy D3’
assuming all limits exist.
We proceed to calculate the derivatives of the metametrics that were introduced
in Section 3.6}

OBSERVATION 4.2.1. Fix y1,y2 € bord X.

(i) For all wq,ws € X, we have

(4.2.1) M = b= 3 [Byy (w1, w2) 4By, (wi,w2)]
Dw2 (y17y2)
(ii) For all w € X and £ € 0X, we have
(4.2.2) DewWi,92) _ iyt iwsle)l,
Dw(ylva)

(iii) For all wy,ws € X and £ € X, we have

(4.2.3) M = ng(lUl,’lUg)'
D s (Y1, 92)

In each case, equality holds if X is strongly hyperbolic.

PRrROOF. (i) follows from (g) of Proposition B:33] while (ii) is immediate from
BE4) and BGA). (iii) follows from B.6.7). O

Combining with Lemma yields the following:

COROLLARY 4.2.2. Suppose that bord X is perfect. Fix y € bord X.
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(i) For all wi,ws € X, we have

D * D
4.2.4 w1 = w1 = b*By(wly’u&)'
(4.2 <Dw2) ) X<Dw2)*<y> ;

(ii) For allw € X and £ € 0X, we have

D w : D w _
(4.2.5) (DL) (y) =x (DL> (y) x5 b2,
(ili) For all wi,we € X and & € 0X, we have
Dew ’ Dew w1 ,Ww
(4.2.6) (#) (y) =<x (#) (y) =x pBe(wi,w2)
S W2 G W2 /%

In each case, equality holds if X is strongly hyperbolic.

REMARK 4.2.3. In case bord X is not perfect, (.24]) - (A26) may be taken as

definitions. We will ignore the issue henceforth.
Combining Observation 22.1] with Corollary yields the following:

PROPOSITION 4.2.4 (Geometric mean value theorem). Fiz y1,y2 € bord X.
(i) For all wi,we € X, we have
Dw1 (y17y2) - Dw1 Dw1 12
ey X )5—2) ) -
Dw2 (ylva) Dw2 Dw2
(ii) For allw € X and £ € 0X, we have
De w(y1,92) _ <D5,w( 1>D£,w (y2)) /2
Dw (y17 y2) Dw Dw
(iii) For all wi,ws € X and £ € 0X, we have
1/2
D‘anl(ylhyz) = (Dﬁqwl( 1)D51w1 (yQ)) /
DE,w2 (ylva) DE,w2 DE,w2
In each case, equality holds if X is strongly hyperbolic.

4.2.2. Derivatives of maps. As before, let (Z,.7) be a perfect topological
space, and now fix just one metametric D on Z. For any map g : Z — Z, the

metric derivative of G is the function ¢’ : Z — (0, 00) defined by

7)== 20 = lim W

If the limit does not exist, the upper and lower metric derivatives will be denoted

g and ¢, respectively.

REMARK 4.2.5. To avoid confusion, in what follows ¢’ will always denote the
derivative of an isometry g € Isom(X) with respect to the metametric D = Dy,

rather than with respect to any other metametric.
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PROPOSITION 4.2.6. For all g € Isom(X),
7 (y) =x ¢'(y) =x b B89 vy ¢ bord X

%ﬁ@ = (7 01)7 (12)"* V91,92 € bord X,

with equality if X is strongly hyperbolic.

PRrOOF. This follows from (i) of Corollary £:22] (i) of Proposition 224 and
the fact that Do g= D, -1(,). O

COROLLARY 4.2.7. For any distinct y1,y2 € Fix(g) N 0X we have
7' (y1)7 (y2) =x 1,
with equality if X is strongly hyperbolic.

The next proposition shows the relation between the derivative of an isometry

g € Isom(X) at a point £ € Fix(g) and the action on the metametric space (€, De):

PROPOSITION 4.2.8. Fiz g € Isom(X) and & € Fix(g). Then for all y1,y2 € &,
De(9(y1), 9(y2)) 1

~

De(y1,y2) o 9'(&)’
with equality if X is strongly hyperbolic.

PROOF.
De(9(1).9(y2)) _ Deyg1(0)(y1,92)
De(y1,92) De.o(y1,2)
= b~ Belog™ (o)) (by EZ3))
=y 1/4'(€). (by Proposition [.2.6])

O

REMARK 4.2.9. Proposition£.2.8 can be interpreted as a geometric mean value
theorem for the action of g on the metametric space (€, D). Specifically, it tells

us that the derivative of g on this metametric space is identically 1/¢’(€).

REMARK 4.2.10. If ¢’(¢§) = 1, then Proposition 2.8 tells us that the bi-
Lipschitz constant of ¢ is independent of g, and that ¢ is an isometry if X is
strongly hyperbolic. This special case will be important in Chapter [T1]

EXAMPLE 4.2.11. Suppose that X = E = E® is the half-space model of a real
hyperbolic space, let B = 0E \ {00}, let g(x) = AT (x) + b be a similarity of B, and
consider the Poincaré extension g € Isom(E) defined in Observation 5.6l Clearly
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g+ =0

height(g ™! (x
) ght(g~" (2))

g—

FIGURE 4.2.1. The derivative of g at oo is equal to the reciprocal
of the dilatation ratio of g. In particular, co is an attracting fixed
point if and only if g is expanding, and oo is a repelling fixed point
if and only if g is contracting.

g acts as a similarity on the metametric space (o, Do) in the following sense: For
all y1,y2 € Eco,

Doo(9(y1), 9(y2)) = ADoc (Y1, y2)-
Comparing with Proposition L.2-8 shows that g’(c0) = 1/A.

4.2.3. The dynamical derivative. We can interpret Corollary [4.2.2] as say-
ing that the metric derivative is well-defined only up to an asymptotic in a general
hyperbolic metric space (although it is perfectly well defined in a strongly hyper-
bolic metric space). Nevertheless, if £ is a fixed point of the isometry g, then we

can iterate in order to get arbitrary accuracy.

PROPOSITION 4.2.12. Fiz g € Isom(X) and & € Fix(g). Then

1/n

g'(§) = lim ((g")'(&)) " = lim ((g")(¥))

n—oo n—r oo

1/n

Furthermore

g€ <g' () <79
The number ¢'(§) will be called the dynamical derivative of g at &.

ProoF OF PROPOSITION [.2. 121 The limits converge due to the submulti-
plicativity and supermultiplicativity of the expressions inside the radicals, respec-

tively. To see that they converge to the same number, note that by Corollary

4.2.2] Y
—) n
lim (M) < lim CY" =1
n—o00 (ﬁ / ) n—oo
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for some constant C' independent of n. O

REMARK 4.2.13. Let ¢ denote the Busemann quasicharacter of [48, p.14].

Then fe is related to the dynamical derivative via the following formula: ¢'(§) =
p—Be(9)

Note that although the dynamical derivative is “well-defined”, it is not necessar-
ily the case that the chain rule holds for any two g, h € Stab(Isom(X); &) (although
it must hold up to a multiplicative coarse asymptotic). For a counterexample see
[48] Example 3.12]. Note that this counterexample includes the possibility of two
elementa g, h € Stab(Isom(X); &) such that ¢’(§) = h'(§) = 1 but (gh)'(§) #1. A
sufficient condition for the chain rule to hold exactly is given in [48] Corollary 3.9].

Despite the failure of the chain rule, the following “iteration” version of the

chain rule holds:
PROPOSITION 4.2.14. Fiz g € Isom(X) and £ € Fix(g). Then

(9™)'(€) =1g' ()" VneZ.

In particular

“lye) = 1

PROOF. The only difficulty lies in establishing (Z271):
(57Y(©) = Tim ((T7)(©)"" = expp Tin ~ Be(o,6"(0))
= expyyy m - Be(g™"(0),0)
—expu (- fim % Belong ()

1 .
g'(€)

Combining with Corollary 2.7 yields the following:
COROLLARY 4.2.15. For any distinct y1,y2 € Fix(g) N 0X we have

9 (y1)g'(y2) = 1.

We end this section with the following result relating the dynamical derivative

with the Busemann function:

PROPOSITION 4.2.16. Fiz g € Isom(X) and € € Fix(g). Then for all z € X
andn € 7,

Be(z,97"(x)) <4 nlog, g'(¢).
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with equality if X is strongly hyperbolic.

PROOF. If z = o, then
b~ Belog™"(0) = pBe(97"(0):0)
=y (g™) (€) (by Proposition [£.2.6])
=x (9" (&) = (9" ()"
For the general case, we note that

Be(z, 97" (2)) =+ Be(w, 0) + Be(o,97"(0)) + Be(g™"(0), ™" ()
=4 Be(x,0) + nlog, ¢'(§) + Be(o, 2)

=4 nlog, ¢’ ().

4.3. The Rips condition

In this section, in addition to assuming that X is a hyperbolic metric space (cf.
§24.10), we assume that X is geodesic. Recall (Section B2) that [z,y] denotes the
geodesic segment connecting two points z,y € X.

PRrROPOSITION 4.3.1.

(i) For all z,y,z € X,

d(Z, [‘Ta y]) =+ <‘T|y>z

(ii) (Rips’ thin triangles condition) For all x,y1,y2 € X and for any z €
[y1,y2], we have
2

mind(z, [r, ) < 0.

In fact, the thin triangles condition is equivalent to hyperbolicity; see e.g. [39]
Proposition T11.H.1.22].
PROOF.
(i) By the intermediate value theorem, there exists w € [x,y] such that
(x|2)w = (y|2)w. Applying Gromov’s inequality gives (z|z)y = (Y]|2)w St
(x|y)w = 0. Now (k) of Proposition B33 shows that

d(z, [z,y]) < d(z,w) S {z]y)=-

The other direction is immediate, since for each w € [z,y], we have
(x|y)w = 0, and so (d) of Proposition B33l gives (z|y), < d(z,w).
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FIGURE 4.3.1. An illustration of Proposition L3.1i).

(ii) This is immediate from (i), Gromov’s inequality, and the equation

(Y1ly2)- = 0.
O

The next lemma demonstrates the correctness of the intuitive notion that if

two points are close to each other, then the geodesic connecting them should not
be very large.
LEMMA 4.3.2. Fiz x1,x2 € bord X. We have

Diam([z1, x2]) <x D(x1,z2).

PRrROOF. It suffices to show that if y € [z1,x2], then
D(y, {1, 22}) Sx D(w1,22).
Indeed, by the thin triangles condition, we may without loss of generality suppose

that d(y, [0, 21]) =<4 0. Write d(y, z) =<4 0 for some z € [0, 21]. Then

D(xl7y) =y D(fL'l,Z) — e_HZH =y e_HyH S e_d(o>[mlvm2])
—(@1]z2)0

=y e

=x D(Il, IQ).
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4.4. Geodesics in CAT(-1) spaces

OBSERVATION 4.4.1. Any isometric embedding 7 : [¢,00) — X extends uniquely
to a continuous map 7 : [t,00] — bord X. Similarly, any isometric embedding 7 :
(=00, +00) = X extends uniquely to a continuous map 7 : [—00, +00] — bord X.

Abusing terminology, we will also call the extended maps “isometric embeddings”.

DEFINITION 4.4.2. Fix z € X and §,n € 0X.

e A geodesic ray connecting x and £ is the image of an isometric embedding

71 [0,00] = X satisfying

m(0) = z, m(o0) =¢&.
e A geodesic line or bi-infinite geodesic connecting £ and 7 is the image of
an isometric embedding 7 : [—00, 4+00] = X satisfying
7T(—OO) = 67 7T(+OO) =1

When we do not wish to distinguish between geodesic segments (cf. Section B.2]),
geodesic rays, and geodesic lines, we shall simply call them geodesics. For z,y €

bord X, any geodesic connecting z and y will be denoted [z, y].

NoOTATION 4.4.3. Extending NotationB.1.0l if [z, £] is the image of the isometric
embedding 7 : [0, 00] — X, then for ¢ € [0, 00] we let [z,&]; = 7(t), i.e. [z,]; is the
unique point on the geodesic ray [z, ] such that d(z, [z, &]:) = t.

The main goal of this section is to prove the following:

PROPOSITION 4.4.4. Suppose that X is a complete CAT(-1) space. Then:

(i) For any two distinct points x,y € bord X, there is a unique geodesic [z, y]
connecting them.

(ii) Suppose that (x,)5° and (yn)° are sequences in bord X which converge
to points x, — x € bord X and y, — y € bord X, with x # y. Then
[Tn, Yn] — [2,9] in the Hausdorff metric on (bord X, D). If x =y, then

[Tn, yn] = {x} in the Hausdorff metric.

DEFINITION 4.4.5. A hyperbolic metric space X satisfying the conclusion of
Proposition 4.4 will be called reqularly geodesic.

REMARK 4.4.6. The existence of a geodesic connecting any two points in bord X
was proven in [42], Proposition 0.2] under the weaker hypothesis that X is a Gromov
hyperbolic complete CAT(0) space. However, this weaker hypothesis does not imply
the uniqueness of such a geodesic, nor does it imply (ii) of Proposition [£4.4] as

shown by the following example:
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ExXAMPLE 4.4.7 (A proper and uniquely geodesic hyperbolic CAT(0) space

which is not regularly geodesic). Let
X ={xecR?:2,€0,1]}

be interpreted as a subspace of R? with the usual metric. Then X is hyperbolic,

proper, and uniquely geodesic, but is not regularly geodesic.

PRroOOF. It is hyperbolic since it is roughly isometric to R. It is uniquely geo-
desic since it is a convex subset of R2. It is proper because it is a closed subset of
R2. Tt is not regularly geodesic because if we write X = {£,,£_}, then the two
points £ and £_ have infinitely many distinct geodesics connecting them: for each
t €10,1], R x {t} is a geodesic connecting &, and &_. O

The proof of Proposition [£.4.4] will proceed through several lemmas, the first
of which is as follows:

LEMMA 4.4.8. Fiz € > 0. There exists 6 = dx(e) > 0 such that if A =
A(z,y1,y2) is a geodesic triangle in X satisfying

(4.4.1) D(y1,y2) <9,

then for all t € [0, minZ_, d(x,v;)], if zi = [x,y:]:, then

(4.4.2) D(z1,29) < e.

PROOF. We prove the assertion first for X = H? and then in general:

If X = H%: Let ¢ > 0, and by contradiction, suppose that for each § = % > 0 there
exists a 5-tuple (x("),ygn),yén),z§"),z§")) satisfying the hypotheses but
not the conclusion of the theorem. Since bord H? is compact, there exists

a convergent subsequence
() () ) ) )y (g1, ya, 21, 22) € (bord H2)”

Taking the limit of (@Z1]) as k — oo shows that D(y1,y2) = 0, 50 y1 = ya.
Conversely, taking the limit of (ZZ2]) shows that D(z1,22) > & > 0, so
21 # z2. Write y = y1 = ya.

We will take for granted that Proposition EE4.4] holds when X = H2.
(This can be proven using the explicit form of geodesics in this space.) It
follows that z; € [x,y] if © # y, and 2; = x if & = y. The second case is
clearly a contradiction, so we assume that = # y.

Writing zi("") = [z, yf”")]tk, we observe that
ti = ™ = (=™ ™o = (2 1) — (M),

? (zilY)o — (il )0 — ([Y)o-



In general:

(4.4.3)
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Y1

21

Y2

w2

FIGURE 4.4.1. The triangle A(x,y1,y2).

Since the left hand side is independent of ¢, so is the right hand side. But
the function
2= (2ly)o — (z]x)o — (z[y)o

is an isometric embedding from [, y] to [—oo, +00]; it is therefore injective.
Thus z; = 29, a contradiction.

Let € > 0, and fix £ > 0 to be determined, depending on e. Let & = 0y (£),
and fix 6 > 0 to be determined, depending on 5. Now suppose that
A = A(z,y1,y2) is a geodesic triangle in X satisfying (£4.1)), fix t > 0, and
let z; = [x,yi];- To complete the proof, we must show that D(z1, z2) < ¢.

By contradiction suppose not, i.e. suppose that D(z1,2z2) > . Then
D(xz,2;) > €/2 for some i = 1,2; without loss of generality suppose
D(x,z1) > £/2. By Proposition [3.1] this implies d(o, [z, z1]) =1 0; fix
wy € [x, z1] with |lwi]] =<4 0. Let s = d(z,w1) < ¢, and let wy = [z, 22]s.
(See Figure [.41])

Now let A = A(T,71,72) be a comparison triangle for A(z,y1,2), and
let z1, 22, w1, wa be the corresponding comparison points. Note that z; =
[, 7i]: and w; = [T,7;]s. Without loss of generality, suppose that wy =
ow. Then [lgs]] < lwnl + d(ws, y2) =+ d(ow, T5), and 50 (y1lya)o S v
(U1[72) 0p, and thus

D(mvy_Q) SX@ D(ylayQ) < J.

Setting § equal to 5 divided by the implied constant, we have

D(y1,72) <0 = 6u(E).

Thus D(z7,%) < € and D(wr,ws) < &.
— If d(z1,72) < €, then the CAT(-1) inequality finishes the proof (as
long as € < ¢). Thus, suppose that

D(z1, %) <&
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— If D(wt,wz) <€, then 0 = (W1[wW3)e,, > — log(€), a contradiction for

¢ sufficiently small. Thus, suppose that
(4.4.4) d(wr,wz) <E.
By [@43]), we have d(on,7z;) > —log(€). Applying (£44) gives
(zilyi)w, = d(wi, z;) = d(Wi, Z) Z4 —log(é).

Applying (£ZF), the coarse asymptotic ||wi|| <4 0, and the CAT(-1)

inequality, we have

(2ilYi)o Z+.e —log(E),

and thus D(2;,y;) Sx.c €. Using the triangle inequality together with the
assumption D(y1,y2) < §, we have

D(z1, 22) Sx.e max(9,€).

~

Setting € equal to £ divided by the implied constant, and decreasing ¢ if
necessary, completes the proof.

O

NOTATION 4.4.9. If the map 7 : [¢, s] = X is an isometric embedding, then the
map 7 : [—00,+00] — X is defined by the equation

T(r)y=n{tVrAs).

COROLLARY 4.4.10. If e, §, and A(z,y1,y2) are as in Lemma [{4.8, and if
m [t 81] = [z, y1] and wa ¢ [ty 82] — [x,y2] are isometric embeddings, then
D(7y(r), T2(r)) Sx € Vr € [—00, +00].
PROOF. If 7 < t, then 71 (r) = 2 = Ta(r). If t <7 < minZ_| s;, then 7;(r) =
[, yi]r—¢, allowing us to apply Lemma [£.4.§] directly. Finally, suppose r > ry :=
min?zl s;-  Without loss of generality suppose that s; < so, so that ry = s;.

Applying the previous case to rg, we have

D(y1,ws) <,

where we = m2(s1). Now 71(r) = y1, and 72(r) € [we,y2], so Lemma [L3.2] com-

pletes the proof. O

LEMMA 4.4.11. Suppose that (2,)3° and (yn)$° are sequences in X which con-
verge to points x, — x € bord X and y, — y € bord X, with x # y. Then
there exists a geodesic [x,y] connecting x and y such that [Xn,yn] — [x,y] in the

Hausdorff metric. If x =y, then [y, yn] — {2} in the Hausdorff metric.
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PRrROOF. We observe first that if z = y, then the conclusion follows immediately
from Lemma Thus we assume in what follows that = # v.

For any pair p,q € X, we define the standard parameterization of the geodesic
[p,q] to be the unique isometry « : [—(o|q)p, (o|p)q] — [p,q] sending —(o|g), to p
and (o|p), to g. For each n let m, : [t,, Sn] — [Tn,Yn] be the standard parameter-
ization, and for each m,n € N let 7y : [tmon, Sm,n] = [Tn, Ym] be the standard
parameterization. Let 7, : [—00, +00] = [Zn, Yn] and Ty p 1 [—00, +00] = [Zn, Y]
be as in Notation £.4.9] Note that
tn = tmn = (0lYm)z, = (OYn)z, = (Tnlyn)o = (@nlym)o — (zly)o — (z[y)o = 0.

m,n

(We have (x|y), < oo since x # y.) Thus

D@n(r),Tn(r —tn +tmn)) < AT (), Tn(r —tn +tmn)) < [tn — tma| — 0.
Here and below, the limit converges uniformly for r € [—00,4+00]. On the other
hand, Corollary £ 4.10] implies that

D(Ton(r —tn + tmm), Tmn(r)) — 0,

m,n

so the triangle inequality gives

D(Tn(r), T (r)) — 0.

m,n

A similar argument shows that

DT (1), Tm (1)) — 0,

m,n

so the triangle inequality gives

D(Tn(r), Tm(r)) — 0,

m,n

i.e. the sequence of functions (7,)$° is uniformly Cauchy. Since (bord X, D) is

complete, they converge uniformly to a function 7 : [—o0, +00] = X.
Clearly, [Tn,Yyn] = Tn([—00, +0]) — T([—00, +o¢]) in the Hausdorfl metric.

We claim that 7([—o0, +00]) is a geodesic connecting  and y. Indeed,
tn — 1= (zly)o — [lz] and s, — s := [y = (z[y)o-

Forallt < ry <rg < s, wehavet, <ry <re < s, for all sufficiently large n, which
implies that

d(7(r),m(re)) = nl;rgo d(Tn (1), Tn(re)) = nlgrxgo(rg —r1) =19 — 71,
ie. 71 (t,8) is an isometric embedding. Since 7 is continuous (being the uniform
limit of continuous functions), = := 7 1 [t,s] is also an isometric embedding. A

similar argument shows that 7(r) = 7 (¢) for all » < ¢, and 7(r) = 7(s) for all r > s;
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thus 7([—o0, +00]) = 7([t, s]) is a geodesic. To complete the proof, we must show
that 7(t) = « and 7(s) = y. Indeed,
m(t) = 7(—o00) = nll)H;o Tn(—00) = nll}ngo Ty =,

and a similar argument shows that 7(s) = y. Thus the geodesic 7([t, s]) connects

z and y. ([l

Using Lemma B 47Tl we prove Proposition .44l
PROOF OF PROPOSITION (L. 441

(i) Given distinct points z,y € bord X, we may find sequences X > x, — «
and X 3 y, — y. Applying Lemma 4TT] proves the existence of a
geodesic connecting x and y. To show uniqueness, suppose that [z,y]:
and [z,y]a are two geodesics connecting x and y. Fix sequences [z,y]; 2

2 - x, [z,y]2 D 2P - x, [z,y]1 D y,(zl) — y,and [z,y]2 2 y,(f) — 1. By

considering the intertwined sequences

n .2 1)  (2)

Ty, Ty, Ty Ty

and

T T
Lemma 4 TTlshows that both sequences ([37:5I ), yg)]) and ([37:5I ), y7(12)])
converge in the Hausdorff metric to a common geodesic [z, y]. But clearly
the former tend to [z,y];, and the latter tend to [x,y]2; we must have
[z, 9l = [, yl2.

(ii) Suppose that bord X 3 x,, — x and bord X > y,, — y. For each n, choose
Ty Un € [Tn,yn] N X such that D(Z,,, 2,), D(Yn,yn) < 1/n. Then ,, — x
and ¥, — y, so by Lemma LTIl we have [Z,, y,] — [z,y] in the Hausdorff
metric, or [T, y,] — {a} if x = y. To complete the proof it suffices to show
that the Hausdorff distance between [, y,] and [Z,, ¥,] tends to zero as
n tends to infinity. Indeed, [Z,,¥n] C [Ty, yn], and for each z € [xn, yn],
either z € [z, Ty, 2 € [Tn, Ynl, OF 2 € [Yn,Yn]. In the first case, Lemma
M3.2 shows that D(z, [Tn,Un]) < D(2,Zn) Sx D(%n, Tn) < 1/n — 0; the

third case is treated similarly.

O

Having completed the proof of Proposition[£.4.4] in the remainder of this section
we prove that a version of the CAT(-1) equality holds for ideal triangles.

DEFINITION 4.4.12. A geodesic triangle A = A(z,y, z) consists of three distinct
points z,y, z € bord X together with the geodesics [z, y], [y, 2], and [z, x].
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A geodesic triangle A = A(Z,7, %) is called a comparison triangle for A if

(7)== (zly)=, etc.
For any point p € [z,y], its comparison point is defined to be the unique point
P € [7,7] such that
(@]2)p = (ylz)p = @2)p — (W[2)p-
We say that the geodesic triangle A satisfies the CAT(-1) inequality if for all points
p,q € A and for any comparison points p,g € A, we have d(p,q) < d(p, Q).

It should be checked that these definitions are consistent with those given in
Section

PROPOSITION 4.4.13. Any geodesic triangle (including ideal triangles) satisfies
the CAT(-1) inequality.

PROOF. Let A = A(x,y, 2) be a geodesic triangle, and fix p,q € A. Choose
sequences T, — T, Y, — ¥, and z, — 2. By Proposition 4.4 we have A, =
A(Zn, Yn, 2n) = A in the Hausdorff metric, so we may choose p,, g, € A, so that
Pn — Dy @n — q. For each n, let A,, = A(T,,%,,,2Zn) be a comparison triangle for
A,,. Without loss of generality, we may assume that

(4.4.5) 0 € [Tn,Y,] and (Tn|Zn)o = (T, |Zn)o =<+ 0.

By extracting a convergent subsequence, we may without loss of generality assume
that T, — 7, J,, — ¥, and Z,, — Z for some points 7,7,z € bord H?>. By ([@4.75),
the points Z,7, Z are distinct. Thus A = A(T,7,2) is a geodesic triangle, and is in
fact a comparison triangle for A. If p, § are comparison points for p, ¢, then p,, — D

and g,, — ¢. It follows that

d(p,q) = Jim d(Pryqn) < Jim. d(P,,q,) = d(D,7q).

4.5. The geometry of shadows

4.5.1. Shadows in regularly geodesic hyperbolic metric spaces. Sup-
pose that X is regularly geodesic. For each z € X we consider the relation
7, C X x 0X defined by

(x,8) e, & x € [2,¢]
(see Definition for the definition of [z,£]). Note that if X is an algebraic

hyperbolic space, then the relation 7, is a function when restricted to X \ {z}; in
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T (B(ac7 a'))

FIGURE 4.5.1. The set m,(B(z,0)). Although this set is not equal
to Shad, (z, o), they are approximately the same in regularly geo-
desic spaces by Corollary 5.5l In our drawings, we will draw the
set m,(B(x,0)) to indicate the set Shad,(x, o) (since the latter is
hard to draw).

particular, for x € B = Bf with x # 0 we have
b'4
mo(x) = m
However, in general the relation 7, is not necessarily a function; R-trees provide a
good counterexample. The reason is that in an R-tree, there may be multiple ways
to extend a geodesic segment to a geodesic ray.
For any set S, we define its shadow with respect to the light source z to be the
set
m.(S)={£€dX :Fx e S (z,¢ €m,}

4.5.2. Shadows in hyperbolic metric spaces. In regularly geodesic hyper-
bolic metric spaces, it is particularly useful to consider w,(B(z,0)) where z € X
and o > 0. We would like to have an analogue for this set in the Gromov hyperbolic

setting.

DEFINITION 4.5.1. For each ¢ > 0 and z,z € X, let
Shad. (z,0) = {1 € 9X : (zln), < o},

We say that Shad,(z,0) is the shadow cast by x from the light source z, with

parameter o. For shorthand we will write Shad(z, o) = Shad,(z, o).
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The relation between 7,(B(z,0)) and Shad,(z,0) in the case where X is a
regularly geodesic hyperbolic metric space will be made explicit in Corollary 4.5.5]
below.

Let us establish up front some geometric properties of shadows.
OBSERVATION 4.5.2. For each z, z € X and o > 0 the set Shad,(z, o) is closed.
PRrOOF. This follows directly from Lemma [3.4.23] O
OBSERVATION 4.5.3. If € Shad,(«x,0), then

(aln)s <40 d(z, ).

PRrROOF. Follows directly from (b) of Proposition B.:3:3] together with the defi-
nition of Shad,(zx, o). O

LEMMA 4.5.4 (Intersecting Shadows Lemma). For each o > 0, there exists
T =7, > 0 such that for all x,y, z € X satisfying d(z,y) > d(z,x) and Shad,(z,o)N
Shad.(y,o) # &, we have

(4.5.1) Shad. (y,o) C Shad,(z, )
and
(152) A(,9) =40 d(z,y) - d(z,2).

ProoF. Fix n € Shad.(z,0) N Shad,(y, o), so that by Observation [£.5.3]
(@|n): <40 d(z,x) and (yn). <40 d(z,y) = d(z, ).
Gromov’s inequality along with (c) of Proposition B.:3.3] then gives
(4.5.3) (xly): <40 d(z, ).

Rearranging yields (£5.2). In order to show (@51, fix £ € Shad,(y,0), so that
Wl€) 2 <46 d(z,y) > d(z,x). Gromov’s inequality and (Z.5.3]) then give

<‘r|§>z =+,0 d(Z,fL‘),
i.e. £ € Shad,(x,7) for some 7 > 0 sufficiently large (depending on o). O

COROLLARY 4.5.5. Suppose that X is regularly geodesic. For every o > 0, there

exists T = 17, > 0 such that for any x,z € X we have
(4.5.4) 7. (B(x,0)) C Shad,(z,0) C 7, (B(z,7)).

PROOF. Suppose £ € m,(B(x,0)). Then there exists a point y € B(x,o)N[z,E].
By (d) of Proposition B33

(2l8)e < (2[6)y + d(2,y) < (2[€)y + 0 =0,
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Shad. (x, o)

,:" Shad. (y, o)

FIGURE 4.5.2. In this figure, d(z,y) > d(z,z) and Shad,(z,0) N
Shad, (y, o) # @. The Intersecting Shadows Lemma (LemmaL5.4))
provides a 7, > 0 such that the shadow cast from z about B(x, 7, )
will capture Shad, (y, o).

i.e. £ € Shad,(x,0). This demonstrates the first inclusion of (£5.4]). On the other
hand, suppose that £ € Shad,(x,0). Let y € [z,£] be the unique point so that
d(z,y) = d(z,z). Clearly £ € Shad,(y, o), so Shad,(z,0)NShad,(y,o) # &; by the
Intersecting Shadows Lemma [£.5.4] we have

d(ZE,y) =+,0 Bf(yv'r) =0

ie. d(z,y) <7 for some 7 = 7, > 0 depending only on o. Then y € B(x,7)N|[z,¢],
which implies that £ = 7, (y) € m,(B(z,7)). This finishes the proof. O

LEMMA 4.5.6 (Bounded Distortion Lemma). Fiz ¢ > 0. Then for every g €
Isom(X) and for every y € Shady-1(,(0,0) we have

(455) gl(y) XX,(T b_HQH
Moreover, for every y1,y2 € Shadg-1(,)(0,0), we have

(4.5.6) D(g(y1), 9(y2)) = o bl
D(y1,y2) ’
PROOF. We have g/ (y) =<, bBv(0:97 () < p2la~" ()lw)o—llgl =y o b9l giving
#53). Now ([50) follows from ([@L5) and the geometric mean value theorem
(Proposition d.2.4]). O
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N

90X \ Shad. (o, o)

FIGURE 4.5.3. The Big Shadows Lemma [£5. T tells us that for any
e > 0, we may choose o > 0 sufficiently large so that Diam(9X \
Shad,(0,0)) < ¢ for every z € X.

LEMMA 4.5.7 (Big Shadows Lemma). For every € > 0, for every o > 0 suffi-

ciently large (depending on €), and for every z € X, we have

(4.5.7) Diam(0X \ Shad.(0,0)) < e.

ProoF. If £,n € 0X \ Shad,(o,0), then (z|¢), > o and (z|n), > o. Thus by

Gromov’s inequality we have
{€lmo 2+ o

Exponentiating gives D(&,n) Sx b~7. Thus
Diam (90X \ Shad,(0,0)) Sx b7 — 0,

and the convergence is uniform in z. ([l

LEMMA 4.5.8 (Diameter of Shadows Lemma). For all 0 > 0 sufficiently large,
we have for all g € Isom(X) and for all z € X

(4.5.8) Diam, (Shad. (g(0),0)) Sx.o b~ 490,
with < if #(0X) > 3. Moreover, for every C > 0 there exists o > 0 such that

(4.5.9) B.(z,Ce~4=%)) C Shad, (z,0) Vz,z € X.
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Shad . (g(0), o)

B(g(0), o)

FIGURE 4.5.4. The Diameter of Shadows Lemma [£.5.8] says that
the diameter of Shad(g(o), o) is coarsely asymptotic to b—ll9!l.

PROOF. Let z = g(0). For any £,n € Shad,(z, o), we have
D.(.n) sy b€ < pmin(alO- (el ) < pd()
which demonstrates ([AL5.]).
Now let us prove the converse of [LE5.8]), assuming #(90X) > 3. Fix &,&2,&3 €

0X, let ¢ = min,»; D(&,&;)/2, and fix o > 0 large enough so that (£.5.7) holds for
every z € X. By (E1) we have

Diam(0X \ Shady-1(.(0,0)) <,

and thus
#{i=1,2,3:& € Shady-1(,)(0,0)} > 2.

Without loss of generality suppose that £1,&> € Shad,-1(.)(0,0). By applying g,
we have g(&1), g(§2) € Shad,(z,0). Then

Diam. (Shad: (z,0)) = D-(g(&1), 9(£2))
=, b t9(Elg(&))= — pl&l&2) -1y

=x,81,82 =),

S pl@le)oy-lle ()
Finally, given y € B.(z, Cb~%4*%)) we have
(@ly)> 2+ —logy(CH™ 171 < d(z,2)

and thus (z|y), =<4 0, demonstrating ([L5.9)). O
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0

FIGURE 4.6.1. The quantities ||x|| and £(x) can be interpreted as
“polar coordinates” of x.

4.6. Generalized polar coordinates

Suppose that X = E = E* is the half-space model of a real hyperbolic space.
Fix a point x € E, and consider the numbers ||x|| and £(x) := cos™!(x1/|x]|),
i.e. the radial and unsigned angular coordinates of x. (The angular coordinate is
computed with respect to the ray {(¢,0) : t € [0,00)}; cf. Figure .6.1l) These
“polar coordinates” of x do not completely determine x, but they are enough to
compute certain important quantities depending on x, e.g. dg(0,%), Boo(0,x), and
Bo(0,x). (We omit the details.) In this section we consider a generalization, in a
loose sense, of these coordinates to an arbitrary hyperbolic metric space.

Let us note that the isometries of E which preserve the polar coordinate func-
tions defined above are exactly those of the form T where T € O(€). Equivalently,
these are the members of Isom(E) which preserve 0, o = (1,0), and oco. This sug-
gests that our “coordinate system” is fixed by choosing a point in E and two distinct
points in JF.

We now return to the general case of §4.11 Fix two distinct points &;,& € X.

DEFINITION 4.6.1. The generalized polar coordinate functions are the functions
T =1T¢ 0 a0d 0 =0¢ ¢, 01 X — R defined by

r(z) = %

0(z) = % [Be, (2, 0) + Be, (2, 0)] =4 (§11€2)2 — (§11€2)0-

[Bfl (ZE, 0) - 352 (Ia 0)]

The connection between generalized polar coordinates and classical polar co-
ordinates is given in Proposition [£.6.4] below. For now, we list some geometrical

facts about generalized polar coordinates. Our first lemma says that the hyperbolic
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3

distance from a point to the origin is essentially the sum of the “radial” distance

and the “angular” distance.

LEMMA 4.6.2. For all x € X we have
2
el =4 600 ik Be, (2, 0) = [r(a)] +0(a).

PROOF. The equality is trivial, so we concentrate on the asymptotic. The 2>
direction follows directly from (f) of Proposition B33l On the other hand, by
Gromov’s inequality

2 2
]| = miax Be, (, 0) =+ 2min{z|&i)o S+ 2(61l€2)0 <+,0.61.6 0-

d

Our next lemma describes the effect of isometries on generalized polar coordi-

nates.

LEMMA 4.6.3. Fiz g € Isom(X) such that &,& € Fix(g). For all x € X we
have
(4.6.1) r(g(z)) =<4 r(z) +logy g'(&1) = r(x) —log, g'(&2)
(4.6.2) 0(g(2)) =+ 0(a),
with equality if X is strongly hyperbolic. The implied constants are independent of
g9, &1, and &.

PROOF.

2[r(9(x)) —r(@)] = [Be (9(2),0) — Be, (9(x),0)] — [ Be, (x,0) + Bey (@, 0)]

= [Be (2,97 (0) = Bey(x,971(0))] = [ Be, (,0) = Be,(w, 0)]
=+ B, (0,97 (0)) = Be, (0,97 (0))

=4 log, ¢'(&1) — logy, g’ (&2). (by Proposition [1.2.16))

Now (E6.1)) follows from Corollary EL2Z.T5
On the other hand, by (g) of Proposition 3.3.3]
0(g(x)) —0(x) =+ [(&1l€2)ga) — (E1l€2)0] — [(G1l€2)s — (&1l€2)]
= {97 (€)lg™ (€))e — (&1l€2)a = O,

proving (L.6.2)). O

We end this chapter by describing the relation between generalized polar coor-

dinates and classical polar coordinates.
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PROPOSITION 4.64. If X = E, 0= (1,0), & = 0, and & = oo, then
r(x) = log [|x]|
0(x) = — log(a1/[x])) = — log cos(£(x))

Thus the notations r and 6 are slightly inaccurate as they really represent
the logarithm of the radius and the negative logarithm of the cosine of the angle,

respectively.

PROOF OF PROPOSITION .64l We consider first the case ||x|| = 1. Let us set
g(y) = y/llyll?, and note that g € Isom(E), g(o) = o, and g(&;) = &_;. On the

other hand, since ||x|| = 1 we have g(x) = x, and so

851 (X7 0) = BQ(El)(g(X)vg(O)) = 852 (X7 0)'

It follows that r(x) = 0 and 6(x) = Be, (x,0) = B (x,0). By Proposition B.5.5] we
have Boo(x,0) = —log(z1/01) = —log(z1/]|x]|) = — log cos(£(x)).

The general case follows upon applying Lemma .63l to maps of the form
gr(x) = Ax, A > 0. O






CHAPTER 5

Discreteness

Let X be a metric space. In this chapter we discuss several different notions
of what it means for a group or semigroup G =< Isom(X) to be discrete. We show
that these notions are equivalent in the Standard Case. Finally, we give examples
to show that these notions are no longer equivalent when X = H>.

Throughout this chapter, the standing assumptions that X is a (not necessarly
hyperbolic) metric space and that o € X replace the paper’s overarching standing
assumption that (X, 0,b) is a Gromov triple (cf. §4I). Of course, if (X,0,b) is a
Gromov triple then X is a metric space and o € X, and therefore all theorems in

this chapter can be used in other chapters without comment.

5.1. Topologies on Isom(X)

In this section we discuss different topologies that may be put on the isometry
group of the metric space X.

In the Standard Case, the most natural topology is the compact-open topology
(COT), i.e. the topology whose subbasic open sets are of the form

G(K,U) = {f € Isom(X) : f(K) C U}

where K C X is compact and U C X is open. When we replace X by a metric
space which is not proper, it is tempting to replace the compact-open topology with
a “bounded-open” topology. However, it is hard to define such a topology in a way
that does not result in pathologies. It turns out that the compact-open topology is
still the “right” topology for many applications in an arbitrary metric space. But
we are getting ahead of ourselves.

Let’s start by considering the case where X is an algebraic hyperbolic space,
ie., X = H = HE, and figure out what topology or topologies we can put on
Isom(H). Recall from Theorem that

(5.1.1) Isom(H) = PO*(£; Q) = 0" (L; Q)/ ~

where £ = H¢™!, Q is the quadratic form (ZZI)), and T; ~ T» means that [T}] =
[T] (in the notation of Section 23]). Thus Isom(H) is isomorphic to a quotient of
a subspace of L(L), the set of bounded linear maps from £ to itself. This indicates

83
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that to define a topology or topologies on Isom(H), it may be best to start from the
functional analysis point of view and look for topologies on L(L£). In particular, we

will be interested in the following widely used topologies on L(L):

e The wuniform operator topology (UOT) is the topology on L(L) which

comes from looking it as a metric space with the metric
d(Th,Ts) = [Ty = Tp|| = sup{[[(Ty = T2)x|| : x € £, [[x|| = 1}.

e The strong operator topology (SOT) is the topology on L(L) which comes
from looking at it as a subspace of the product space £~. Note that in
this topology,

T, —-T & T,x—Tx VxelLl.

The strong operator topology is weaker than the uniform operator topol-

ogy.

REMARK 5.1.1. There are many other topologies used in functional analysis,

for example the weak operator topology, which we do not consider here.

Starting with either the uniform operator topology or the strong operator topol-
ogy, we may restrict to the subspace O*(£; Q) and then quotient by ~ to induce
a topology on Isom(H) using the identification (E.I1J). For convenience, we will
also call these induced topologies the uniform operator topology and the strong
operator topology, respectively.

We now return to the general case of a metric space X. Define the Tychonoff
topology to be the topology on Isom(X) inherited from the product topology on
XX,

PROPOSITION 5.1.2.

(i) The Tychonoff topology and the compact-open topology on Isom(X) are
identical.

(ii) If X is an algebraic hyperbolic space, then the strong operator topology
is identical to the Tychonoff topology (and thus also to the compact-open

topology).
PROOF.

(i) Since subbasic sets in the Tychonoff topology take the form G({z},U), it
is clear that the compact-open topology is at least as fine as the Tychonoff
topology. Conversely, suppose that G(K,U) is a subbasic open set in the
Tychonoff topology, and fix f € G(K,U). Let e = d(f(K),X \U) > 0,
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and let (z;)7 be a set of points in K such that K C |J} B(z;,£/3). Then

feui= () 6wt Neya(r ()

i=1

The set U is open in the Tychonoff topology; we claim that U C G(K,U).
Indeed, suppose that fE U. Then for x € K, fix ¢ with z € B(z;,¢/3);
since f is an isometry, d(f(x), f(K)) < d(f(2), f(2:)) +d(f(z:), f(K)) <
%/3 < e. It follows that f(z) € U; since z € K was arbitrary, f €
G(K,U).

It is clear that the strong operator topology is at least as fine as the
Tychonoff topology. Conversely, suppose that a set & C Isom(H) is open
in the strong operator topology, and fix [T] € U. Let T € O*(L; Q)
be a representative of [T']. There exist (v;)7 in £ and € > 0 such that
for all T € O*(L; Q) satisfying ||(T — T)vi|| < & Vi, we have [T] € U.
Let fy = eg, and let V' = (f5,vy,...,v,). Extend {fo} to an [F-basis
{fo,f1,...,fx} of V with the property that Bg(f;,,f;,) = 0 for all j1 # jo.
Without loss of generality, suppose that £k > 1. For each i =1,...,n we
have v; =3 fjc; j for some ¢; ; € [, so there exists 2 > 0 such that for
all T € O*(L; Q) satistying ||(T' — T)f;|| < e2 Vj and |loz — or|| < €2, we
have [T] € U.

Let
{1} F=R
Ir =< {1,:} F=C,
{Li,5,k} F=Q
and let

F = {eo}U{eoi(1/2)f1€j: 1,...,I€,£€I|}‘}.

Fix €3 > 0 small to be determined, and for the remainder of this proof
write A ~ B if ||A — B|| is bounded by a constant which tends to zero as
€ — 0. Let

V= {[TV] € Isom(H) : Vx € F, 3y, € [T]([x]) such that |yx — Tx|| < 53} .

For each x € F', we have [x] € H, so the set
{ly] € H: Jy € [y] such that ||y — Tx|| < e3}

is open in the natural topology on H. It follows that ) is open in the

Tychonoff topology. Moreover, [T] € V. To complete the proof we show

Here and elsewhere Ne(S) = {z € X : d(z, S) < €}.
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that ¥V C U. Indeed, fix [T] € V, and let y = ye,. There exists a
representative 7' € O*(L; Q) such that Tey = Ay for some A > 0. Since

—1=0(eg) ~ Qly) = A2Q(\y) = A2,

we have A ~ 1 and thus Teo ~ Tey.
Now for each x € F'\ {eo}, there exists ay € F such that y, = T(xay).
Fix j=1,...,k and £ € Ir. Writing at = ae,+(1/2)¢;¢, We have

HT (eo + %fjg> - T <<e0 + %fjé) ai>

ie. T(eg £ (1/2)f;4) ~ T((ep = (1/2)f;¢)axr). Substituting £ = + and

+ = — and adding the resulting equations gives

’<83,

- 1~
2Teg ~ T(eo(a+ +a-)) + 5T (f;t(ar — a-));
using T'eg ~ Tveo and rearranging gives
- 1~
T(eo(2 ~ay —a-)) ~ 5T(fl(ar —a-)).

Now by Lemma ZAIT] we have ||T|| ~ 1, and thus eg(2 — aq — a_) ~
(1/2)f;0(ay — a—). Since |lega + f;£b|| < max(|a|, |b]) for all a,b € F, it
follows that

2—ay —a_ ~{Llay—a_)~0,

from which we deduce a4 ~ a_ ~ 1. Thus

T <e0 + %fjé) ~ T <e0 + %fjé) .

Substituting + = 4+ and + = —, subtracting the resulting equations, and
using the fact that T'ey ~ feo gives

T(£;0) ~ T(£;0).
In particular, letting £ = 1 we have T'f; ~ Tfj. Thus
(Tt))(ort) ~ (TF;)(07:4) ~ (TE;)(070).

Since this holds for all £ € Ir, we have o7 ~ o%. By the definition of ~,
this means that we can choose €3 small enough so that ||Tf;¢ — ffj€|| <

g2 Vj and |0z — or| < 2. Then [T] € U, completing the proof.
(]

PROPOSITION 5.1.3. The compact-open topology makes Isom(X) into a topo-

logical group, i.e. the maps

(9.h) — gh, g—g !
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are continuous.

PROOF. Fix go,ho € Isom(X), and let G({z},U) be a neighborhood of goho.
For some ¢ > 0, we have B(goho(z),e) C U. We claim that

G({ho(@)}, Blgoho(w).2/2)) 6 ({x}, Blho(@),2/2)) € G({x},U).
Indeed, fix g € G({ho(2z)}, B(goho(x),e/2)) and h € G({z}, B(ho(x),£/2)). Then
d(gh(z), goho(x)) < d(h(x), ho(x)) + d(gho(x), goho(x)) < e/2+¢/2 =,

demonstrating that gh(z) € U, and thus that the map (g, k) — gh is continuous.
Now fix go € Isom(X), and let G({x},U) be a neighborhood of g, '. For some
€ > 0, we have B(go_l(x),a) C U. We claim that

§({go (@)}, B(z.2) " € 6{x}.U).
Indeed, fix g € G({gy * ()}, B(x,¢)). Then
(g™ (x).90 " (z)) = d(z, 995 ' (2)) < ¢,

demonstrating that ¢g~*(z) € U, and thus that the map g — g1

is continuous. [0

REMARK 5.1.4 ([109] 9.B(9), p.60]). If X is a separable complete metric space,
then the group Isom(X) with the compact-open topology is a Polish space.

5.2. Discrete groups of isometries

In this section we discuss several different notions of what it means for a group
G < Isom(X) to be discrete, and then we show that they are equivalent in the
Standard Case. However, each of our notions will be distinct when X = H = Hf

for some infinite cardinal a.

DEFINITION 5.2.1. Fix G < Isom(X).
e G is called strongly discrete (SD) if for every bounded set B C X, we have
#{geG:g(B)NB # g} < .

o G is called moderately discrete (MD) if for every z € X, there exists an
open set U 3 z such that

#lge G:g(U)NU # 2} < <.

e G is called weakly discrete (WD) if for every x € X, there exists an open
set U > x such that

gU)NU # & = g(x) =
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REMARK 5.2.2. Strongly discrete groups are known in the literature as metri-

cally proper, and moderately discrete groups are known as wandering.

REMARK 5.2.3. We may equivalently give the definitions as follows:

e G is strongly discrete (SD) if for every R > 0 and z € X,

(5.2.1) #{g€ G :d(z,g(x)) < R} < c0.
o G is moderately discrete (MD) if for every x € X, there exists € > 0 such
that
(5.2.2) #{g € G :d(z,g(x)) <e} < 0.

o G is weakly discrete (WD) if for every x € X, there exists ¢ > 0 such that

(5.2.3) G(z)N B(z,e) = {z}.

As our naming suggests, the condition of strong discreteness is stronger than
the condition of moderate discreteness, which is in turn stronger than the condition

of weak discreteness.

PROPOSITION 5.2.4. Any strongly discrete group is moderately discrete, and

any moderately discrete group is weakly discrete.

PROOF. It is clear from the second formulation that strongly discrete groups
are moderately discrete. Let G < Isom(X) be a moderately discrete group. Fix
x € X, and let € > 0 be such that (E22) holds. Letting ¢’ = ¢ A min{d(z, g(z)) :

g(x) # x,g(x) € B(z,e)}, we see that (.2:3)) holds. O

The reverse directions, WD = MD and MD =- SD, both fail in infinite dimen-
sions. Examples TT.T.14 and [3.3.IHT3.3.3are moderately discrete groups which are
not strongly discrete, and Examples and [[3.4.1] are weakly discrete groups
which are not moderately discrete.

If X is a proper metric space, then the classes MD and SD coincide, but are still
distinct from WD. Example [3.4.1] is a weakly discrete group acting on a proper
metric space which is not moderately discrete. We show now that MD < SD when

X is proper:

PROPOSITION 5.2.5. Suppose that X is proper. Then a subgroup of Isom(X) is

moderately discrete if and only if it is strongly discrete.

PROOF. Let G < Isom(X) be a moderately discrete subgroup. Fix z € X, and
let £ > 0 satisfy (5.2.2). Fix R > 0 and let K = G(o) N B(x, R); K is compact
since X is proper. The collection {B(g(z),¢) : g € G} covers K, so there is a finite
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subcover {B(g;(x),e):i=1,...,n}. Now

#{g € G d(z,g(x) <R} <) #{g€C:g(x) € Blgi(x),e)} < o0,

=1

ie. (BZI) holds. O

5.2.1. Topological discreteness.

DEFINITION 5.2.6. Let 7 be a topology on Isom(X). A group G < Isom(X)
is 7 -discrete if it is discrete as a subspace of Isom(X) in the topology 7.

Most of the time, we will let 7 be the compact-open topology (COT). The
relation between COT-discreteness and our previous notions of discreteness is as

follows:

PROPOSITION 5.2.7.

(i) Any moderately discrete group is COT-discrete.
(ii) Any weakly discrete group that is acting on an algebraic hyperbolic space
is COT-discrete.
(iii) Any COT-discrete group that is acting on a proper metric space is strongly
discrete.

PRrOOF.

(i) Let G < Isom(X) be moderately discrete, and let & > 0 satisfy (22).
Then the set U := G({o}, B(o,£)) C Isom(X) satisfies #(U N G) < oc.
But U is a neighborhood of id in the compact-open topology. It follows
that G is COT-discrete.

(ii) Suppose that X = H = Hg. Let G < Isom(H) be weakly discrete, and by
contradiction suppose it is not COT-discrete. For any finite set F' C H,
let € > 0 be small enough so that (5.2:3) holds for all x € F; since G is
not COTD, there exists g = gr € G \ {id} such that d(z, g(z)) < € for all
x € F, and it follows that g(x) = « for all x € F. Now suppose that J is
a finite set of indices, and let F' = {[eo]} U{[eo £(1/2)e;]¢ : i € J, £ € If},
where I is as in (B1.2). Then if T is a representative of gr satisfying
Trep = ep, an argument similar to the proof of Proposition B.T.2(ii) shows
that o, =1 and Tye; = e, forall i € J.

Now we define an infinite sequence of indices (i,)7° as follows: If
i1,...,1,_1 have been defined, let T,, = Ty, and let i,, be such
that e;, ¢ Fix(T,).

Choose a nonnegative summable sequence (t,)5°, and let x = ey +

~)7;nfl}’

Zoo tnei, . Then T,x — x; since G is weakly discrete, it follows that

n=1
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T,x = x for all n sufficiently large. Fix such an n, and observe that

0=Tyx —x=1t,(Tn(e,) —e,) + Z tm(Th(em) — em);

m>n
the triangle inequality gives
t 72"9" 2tm .
"7 I Then — e

By choosing the sequence (¢,,)$° to satisfy
b1 < iHTnen —eylt, < %tn,

we arrive at a contradiction.

Let G be a COT-discrete group acting by isometries on a proper metric
space X . By contradiction, suppose that G is not strongly discrete. Then
there exists an infinite set A C G such that the set A(o) is bounded.
Without loss of generality we may suppose that A~' = A. Note that for
each x € X, the set A(x) is bounded and therefore precompact. Now
since X is a proper metric space, it is o-compact and therefore separable.

Let S be a countable dense subset of X. Then
2

K=|]]40@

qeS

is a compact metrizable space. For each g € A let

Gg = ((Q(Q))qe& (g_l(q))qes) e K.

Since A is infinite, there exists an infinite sequence (g,)$° in A such that

bg, = ((y¢(1+))q687 (yé_))qes) e K.

Thus
g (@) >y Vg €S

The density of S and the equicontinuity of the sequences (g,)$° and

g-1)3° imply that for all z € X, there exist yg(ci) such that g*(y) — yg(gi).
n /1 n

Thus, the sequence (g,)$° converges in the Tychonoff topology to some

g™t € XX Similarly, the sequence (g, ')$° converges to some g(=) € X¥.
o0 o0

Again, the equicontinuity of the sequences (g,)° and (g, )3
to take limits and deduce that

allows us

g = lim g,g," =id.
n— o0
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Similarly, ¢~ ¢(*) = id. Thus ¢(*) and ¢(~) are inverses, and in particular
gt e Isom(X). Since g, — g™ in the compact-open topology, the proof

is completed by the following lemma from topological group theory:

LEMMA 5.2.8. Let H be a topological group, and let G be a subgroup
of H. Suppose there is a sequence (g,)5° of distinct elements in G which
converges to an element of H. Then G is not discrete in the topology

inherited from H.

PROOF. Suppose g, — h € H. Then
9ngnts — b7t =1id,

while on the other hand gng;il # id (since the sequence (g,,)$° consists

of distinct elements). This demonstrates that G is not discrete in the
inherited topology. <

d

If X is not an algebraic hyperbolic space, then it is possible for a weakly discrete
group to not be COT-discrete; see Example [3.4.11 Conversely, it is possible for a
COT-discrete group to not be weakly discrete; see Examples amd [[3.5.11

On the other hand, suppose that X is an algebraic hyperbolic space. The
uniform operator topology (abbreviated as UOT) is finer than the COT, i.e. it has
more open sets, and therefore it is easier for every subset of G to be relatively open
in that topology, which is exactly what it means to be discrete. Notice that there is
an “order switch” here; the UOT is finer than the COT, but the condition of being
COT-discrete is stronger than the condition of being UOT-discrete. We record this

for later use as the following

OBSERVATION 5.2.9. Let X be an algebraic hyperbolic space. If a subgroup
G < Isom(X) is COT-discrete, then it is also UOT-discrete.

The inclusion in the previous observation is strict. A significant example of a
group acting on H*> which is UOT-discrete but not COT-discrete is described in
Example [3.4.21

The various relations between the distinct shades of discreteness are somewhat
subtle when first discerned. We speculate that it may be fruitful to study such
distinctions with a finer lens. For the reader’s ease, we summarize the relations

between our different notions of discreteness in Table [I] below.

5.2.2. Equivalence in finite dimensions.
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PROPOSITION 5.2.10. Suppose that X is a finite-dimensional Riemannian man-
ifold. Then the notions of strong discreteness, moderate discreteness, weak dis-
creteness, and COT-discreteness agree. If X is an algebraic hyperbolic space, these

notions also agree with the notion of UOT-discreteness.

PROOF. By Propositions[(5.2.4 and 5.2.7] the conditions of strong discreteness,
moderate discreteness, and COT-discreteness agree and imply weak discreteness.
Conversely, suppose that G < Isom(X) is weakly discrete, and by contradiction
suppose that G is not COT-discrete. Since X is separable, so is Isom(X), and thus
there exists a sequence Isom(X)\{id} 3 g, — id in the compact-open topology. For
eachnlet F,, = {x € X : g,(x) = x}. Since G is weakly discrete, X = [J]° F,, so by
the Baire category theorem, F), has nonempty interior for some n. But then g, = id
on an open set; in particular there exists a point zo € X such that g, (z¢) = xo
and g, (xo) is the identity map on the tangent space of xy. By the naturality of the
exponential map, this implies that g, is the identity map, a contradiction.

Finally, suppose X = H = Hf is an algebraic hyperbolic space, and let £ =
LI Since £ is finite-dimensional, the SOT and UOT topologies on L(L) are
equivalent. This in turn demonstrates that the notions of COT-discreteness and

UOQOT-discreteness agree. (I

In such a setting, we shall call a group satisfying any of these equivalent defi-

nitions simply discrete.
5.2.3. Proper discontinuity.

DEFINITION 5.2.11. A group G < Isom(X) acts properly discontinuously (PrD)
on X if for every x € X, there exists an open set U > z with

gU)NU # g = g =1id,

or equivalently, if
d(z,{g(x) : g #id}) > 0.

Let us discuss the relations between proper discontinuity and some of our no-
tions of discreteness. We begin by noting that even in finite dimensions, the notion
of proper discontinuity is not the same as the notion of discreteness; instead, a
group acts properly discontinuously if and only if it both discrete and torsion-free.
We also remark that in finite dimensions Selberg’s lemma (see e.g. [8]) can be used
to pass from a discrete group to a finite-index subgroup that acts properly discon-
tinuously. However, it is impossible to do this in infinite dimensions; cf. Example
IT218

Although no notion of discreteness implies proper discontinuity, the reverse is

true for certain types of discreteness. Namely, since #{id} = 1 < oo, we have:
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OBSERVATION 5.2.12. Any group which acts properly discontinuously is mod-

erately discrete.

In particular, by combining with Proposition we see that if X is proper
then any group which acts properly discontinuously is strongly discrete. This pro-
vides a connection between our results, in which strong discreteness is often a
hypothesis, and many results from the literature in which proper discontinuity and
properness are both hypotheses.

Observation (212 admits the following partial converse, which generalizes the
fact that in finite dimensions every discrete torsion-free group acts properly discon-

tinuously:

REMARK 5.2.13. If X is a proper CAT(0) space, then a group acts properly

discontinously if and only if it is moderately discrete and torsion free.

PROOF. Suppose that G < Isom(X) acts properly discontinuously. If g €
G\ {id} is a torsion element, then by Cartan’s lemma [39] I1.2.8(1)], g has a fixed
point. This contradicts G acting properly discontinuously. Thus G is torsion-free.

Conversely, suppose that G < Isom(X) is moderately discrete and torsion-free.
Given z € X, let ¢ > 0 be as in (23], and by contradiction suppose that there
exists g # id such that d(z, g(x)) < e. By (23)), g(z) = z. But then by (5.2:2)),
the set {g" : n € Z} is finite, i.e. g is a torsion element. This is a contradiction, so

G acts properly discontinuously. ([l

We summarize the relations between our various notions of discreteness, to-

gether with proper discontinuity, in the following table:

Finite dimensional SD < MD «+ WD
Riemannian manifold ) )
PrD COTD <« UOTD
Sb —- MD — WD
General metric space ya N
PrD COTD
Infinite dimensional Sb - MD — WD
algebraic hyperbolic space N 4
PrD COTD — UOTD
SD «+ MD <« COTD
Proper metric space T J
PrD WD

TABLE 1. The relations between different notions of discreteness.
COTD and UOTD stand for discrete with respect to the compact-
open and uniform operator topologies respectively. All implica-
tions not listed have counterexamples; see Chapter [I31
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5.2.4. Behavior with respect to restrictions. Fix G < Isom(X), and
suppose Y C X is a subspace of X preserved by G, i.e. g(Y) =Y for all g € G.
Then G can be viewed as a group acting on the metric space (Y, d 1y ).

OBSERVATION 5.2.14.

(i) G is strongly discrete < G 1Y is strongly discrete
(ii

(iii

) G is moderately discrete = G 1Y is moderately discrete

) G is weakly discrete = G' 1 Y is weakly discrete

) G is J-discrete < G 1Y is J 1 Y-discrete

(v) G acts properly discontinuously on X = G acts properly discontinuously
onY.

(iv

In particular, strong discreteness is the only concept which is “independent of
the space being acted on”. It is thus the most robust of all our definitions.

Note that for the notions of topological discreteness like COTD and UOTD,
the order of implication reverses; restricting to a subspace may cause a group to no

longer be discrete. Example [3.4.91is an example of this phenomenon.

5.2.5. Countability of discrete groups. In finite dimensions, all discrete
groups are countable. In general, it depends on what type of discreteness you are

considering.

PROPOSITION 5.2.15. Fiz G < Isom(X), and suppose that either

(1) G is strongly discrete, or
(2) X is separable and G is COT-discrete.

Then G is countable.

PROOF. If G is strongly discrete, then

#(G) <Y #ge G lgll <ny <D #N) = #(N).

neN neN
On the other hand, if X is a separable metric space, then by Remark BT Isom(X)
is separable metrizable, so it contains no uncountable discrete subspaces. O

REMARK 5.2.16. An example of an uncountable UOT-discrete subgroup of
Isom(H>) is given in Example [3.42] and an example of an uncountable weakly
discrete group acting on a separable R-tree is given in Example [3.411 An example

of an uncountable moderately discrete group acting on a (non-separable) R-tree is
given in Remark [3.34]



CHAPTER 6

Classification of isometries and semigroups

In this chapter we classify subsemigroups G < Isom(X) into six categories,
depending on the behavior of the orbit of the basepoint o € X. We start by
classifying individual isometries, although it will turn out that the category into
which an isometry is classified is the same as the category of the cyclic group that
it generates.

We remark that if X is geodesic and G < Isom(X) is a group, then the main
results of this chapter were proven in [88]. Moreover, our terminology is based on

[48] §3.A], where a similar classification was given based on [85] § 3.1].

6.1. Classification of isometries
Fix g € Isom(X), and let
Fix(g) := {z € bord X : g(x) = z}.

Consider ¢ € Fix(g) N 0X. Recall that ¢'(£) denotes the dynamical derivative of g

at & (see §42.3).

DEFINITION 6.1.1. £ is said to be
e a neutral or indifferent fixed point if ¢'(¢) = 1,
e an attracting fixed point if ¢’(§) < 1, and
e a repelling fixed point if ¢'(§) > 1.

DEFINITION 6.1.2. An isometry g € Isom(X) is called
o clliptic if the orbit {g"(0) : n € N} is bounded,
e parabolic if it is not elliptic and has a unique fixed point in X, which is
neutral, and
e [oxodromic if it has exactly two fixed points in X, one of which is at-

tracting and the other of which is repelling.

REMARK 6.1.3. We use the terminology “loxodromic” rather than the more
common “hyperbolic” to avoid confusion with the many other meanings of the

word “hyperbolic”. In particular, when we get to classification of groups it would

95
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be a bad idea to call any group “hyperbolic” if it is not hyperbolic in the sense of

Gromov.

The categories of elliptic, parabolic, and loxodromic are clearly mutually ex-

clusiveﬂ In the converse direction we have the following:
THEOREM 6.1.4. Any isometry is either elliptic, parabolic, or loxodromic.
The proof of Theorem [6.1.4] will proceed through several lemmas.

LEMMA 6.1.5 (A corollary of [107, Proposition 5.1]). If g € Isom(X) is not
elliptic, then Fix(g) N0X # &.

We include the proof for completeness.
PrOOF. For each t € N, let n; be the smallest integer such that

g™l > .

The sequence (n;)$° is nondecreasing. Given s,t € N with s < ¢, we have

d(g"(0),9" (0)) = [lg"* ™" < nu,

and thus

n n 1 1
(9" (0)|g"" (0))o > 5[”5 +ng —ng] = 5" ~7 %

ie. (g™ (0)): is a Gromov sequence. Let £ = [(¢™*(0))¢], and note that
(€lg(©))o = Jim (g™ (0)lg™ (o)) > lim [|lg™ || — d(g™ (0),g™ ' (0))] = oc.
Thus g(§) =&, ie. £ € Fix(g) NoX. O

REMARK 6.1.6 ([107], Proposition 5.2]). If g € Isom(X) is elliptic and if X is
CAT(0), then Fix(g)NX # & due to Cartan’s lemma (Theorem [6.2.5 below). Thus
if X is a CAT(0) space, then any isometry of X has a fixed point in bord X.

LEMMA 6.1.7. If g € Isom(X) has an attracting or repelling periodic point,

then g is loxodromic.

PROOF. Suppose that £ € 0X is a repelling fixed point for g € Isom(X), i.e.
g’ (&) > 1. Recall from Proposition [£2.8] that

De(g" (1), 9" (y2)) < Cg'(§) " De(yr,y2) Yy1,y2 € & Yne”Z

for some constant C' > 0. Now let n be large enough so that ¢'(¢)™ > C; then
the above inequality shows that the map ¢g" is a strict contraction of the complete
metametric space (&, Dg) (cf. Proposition B.6.19). Then by Theorem 6.2 ¢ has
a unique fixed point 7 € (&¢)rent = 0X \ {£}. By Corollary 215 7 is an attracting

1P’roposition [4.2.16] can be used to show that loxodromic isometries are not elliptic.
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fixed point. Corollary .2.T7] also implies that g cannot have a third fixed point.
Thus g is loxodromic.
On the other hand, if g has an attracting fixed point, then by Proposition[£.2.14],

1

¢~ ! has a repelling fixed point. Thus g~! is loxodromic, so applying Proposition

E2T4 again, we see that g is loxodromic. O

PROOF OF THEOREM [6.1.4l By contradiction suppose that ¢ is not elliptic
or loxodromic, and we will show that it is parabolic. By Lemma [6.1.5] we have
Fix(g) N 0X # &; on the other hand, by Lemma [E1.7] every fixed point of g in
0X is neutral. It remains to show that #(Fix(g)) = 1. By contradiction, suppose
otherwise. Since g is not elliptic, we clearly have Fix(¢g) N X = . Thus we may
suppose that there are two distinct neutral fixed points &;,& € 0X.

Now for each n € N, we have

Be, (0, 9" (0)) =4 nlog,(¢'(&)) = 0, i=1,2

by Proposition [L.2.16] Let r = r¢, ¢, 0 and 6 = 6¢, ¢, » be as in Section Then
by Lemma [£.6.3] we have r(g™(0)) =<+ 6(¢"(0)) <4+ 0. Thus by Lemma we
have

19"l <+ (g™ (0))| + 0(g"(0)) <+ 0O,
i.e. the sequence {g"(0) : n € N} is bounded. Thus g is elliptic, contradicting our
hypothesis. ([

REMARK 6.1.8 (Cf. [51I] Chapter 3, Theorem 1.4]). For R-trees, parabolic
isometries are impossible, so Theorem [6.1.4] shows that every isometry is elliptic or

loxodromic.

PROOF. By contradiction suppose that X is an R-tree and that g € Isom(X)
is a parabolic isometry with fixed point £ € 0X. Let x = C(0,¢(0),£) € X; then
x = [0,&]; for some t > 0. Now,

d(g(0),z) = [[z]| + Be(g(0),0) =t +0 = 1.

It follows that g(x) = [g(0),&]: = . Thus ¢ is elliptic, a contradiction. O
6.1.1. More on loxodromic isometries.

NOTATION 6.1.9. Suppose g € Isom(X) is loxodromic. Then g4 and g_ denote
the attracting and repelling fixed points of g, respectively.

THEOREM 6.1.10. Let g € Isom(X) be lozodromic. Then
1
9'(9-)

(6.1.1) 9'(94) =
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Furthermore, for every x € bord X \ {g—} and for every n € N we have
l9'(g)]"

(612) D(g"(@).51) S

D(g—,9+)D(w,9-)’
with < if X s strongly hyperbolic. In particular

e#g- = g"(2) = g+,

and the convergence is uniform over any set whose closure does not contain g_.

Finally,

1
6.1.3 g"|| <4 |nllog, ¢'(g-) = |n|log, ———-
(6.1.3) 19" [l =+ In|log, g'(9-) = In] b o)

Proor. (@I follows directly from Corollary [ 215l
To demonstrate ([6.1.2)), note that

(zlg-)o + (9" (@)|g+)0

2+ By_(0,x) + By, (0,9" (x)) (by (j) of Proposition [3.3.3)
=1 By_(0,2) 4+ By, (0,2) —nlog, ¢'(94+) (by Proposition F2Z.T6])
=4 (9-19+4)e — (9-19+)0 —nlog,g'(9+)  (by (g) of Proposition .3.3)
> —{g-|9+)o — nlog, g'(g9+)-

Exponentiating and rearranging yields (6-1.2]).
Finally, (GI13)) follows directly from Lemmas and 6.3 O

6.1.2. The story for real hyperbolic spaces. If X is a real hyperbolic
space, then we may conjugate each g € Isom(X) to a “normal form” whose geo-
metrical significance is clearer. The normal form will depend on the classification

of g as elliptic, parabolic, or hyperbolic.

PROPOSITION 6.1.11. Let X be a real hyperbolic space, and fix g € Isom(X).
(i) If g s elliptic, then g is conjugate to a map of the form T 1 B for some
linear isometry T € O*(H).
(ii) If g is parabolic, then g is conjugate to a map of the form x Tx + P:
E— E, where T € O"(B) and p € B. Here B = 0 \ {co} = H* L.
(iii) If g is hyperbolic, then g is conjugate to a map of the form x — Mx
E— E, where 0 <A< 1 and T € O*(B).
PROOF.

(i) If g is elliptic, then by Cartan’s lemma (Theorem [6.2.5] below), ¢ has a
fixed point € X. Since Isom(X) acts transitively on X (Observation

232)), we may conjugate to B in a way such that g(0) = 0. But then by
Proposition 2.5.4] ¢ is of the form (i).
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(ii) Let & be the neutral fixed point of g. Since Isom(X) acts transitively on
0X (Proposition 25.9), we may conjugate to E in a way such g(oo) = occ.
Then by Proposition 2.5.8 and Example L2.TT] g is of the form (ii).

(iii) Since Isom(X) acts doubly transitively on 0X (Proposition 2.5.9)), we
may conjugate to E in a way such that g = 0 and g = oco. Then by
Proposition 5.8 and Example 2Tl g is of the form (iii). (We have
p = 0 since 0 € Fix(g).)

]

REMARK 6.1.12. If g € Isom(X) is elliptic or loxodromic, then the orbit
(g™(0))3° exhibits some “regularity” - either it remains bounded forever, or it di-
verges to the boundary. On the other hand, if g is parabolic then the orbit can
oscillate, both accumulating at infinity and returning infinitely often to a bounded
region. This is in sharp contrast to finite dimensions, where such behavior is im-
possible. We discuss such examples in detail in §JTT.1.91

6.2. Classification of semigroups

NoOTATION 6.2.1. We denote the set of global fized points of a semigroup G =
Isom(X) by
Fix(G) := m Fix(g).

gea
DEFINITION 6.2.2. G is
o clliptic if G(o) is a bounded set.
e parabolic if G is not elliptic and has a global fixed point £ € Fix(G) such
that
g'(§) =1 Vg €@,
i.e. £ is neutral with respect to every element of G.

e [oxodromic if it contains a loxodromic isometry.
Below we shall prove the following theorem:

THEOREM 6.2.3. Every semigroup of isometries of a hyperbolic metric space is

either elliptic, parabolic, or loxodromic.

OBSERVATION 6.2.4. An isometry g is elliptic, parabolic, or loxodromic accord-
ing to whether the cyclic group generated by it is elliptic, parabolic, or loxodromic.
A similar statement holds if “group” is replaced by “semigroup”. Thus, Theorem
is a special case of Theorem

Before proving Theorem [6.2.3] let us say a bit about each of the different

categories in this classification.
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6.2.1. Elliptic semigroups. Elliptic semigroups are the least interesting of
the semigroups we consider. Indeed, we observe that any strongly discrete ellip-
tic semigroup is finite. We now consider the question of whether every elliptic

semigroup has a global fixed point.

THEOREM 6.2.5 (Cartan’s lemma). If X is a CAT(0) space (and in particular
if X is a CAT(-1) space), then every elliptic subsemigroup G < Isom(X) has a
global fixed point.

We remark that if G is a group, then this result may be found as [39] Corollary
11.2.8(1)].

PROOF. Since G(0) is a bounded set, it has a unique circumcenter [39, Propo-

sition 11.2.7], i.e. the minimum

insup d
gggggg (z,9(0))

is achieved at a single point x € X. We claim that x is a global fixed point of G.
Indeed, for each h € G we have

sup d(h~"(x),g(0)) = sup d(x, hg(0)) < sup d(z, g(0));
geG geG geG

since x is the circumcenter we deduce that h~1(z) = z, or equivalently that h(z) =
x. O

On the other hand, if we do not restrict to CAT(0) spaces, then it is possible
to have an elliptic group with no global fixed point. We have the following simple

example:

EXAMPLE 6.2.6. Let X = B\ Bg(0,1) and let g(x) = —x. Then X is a
hyperbolic metric space, g is an isometry of X, and G = {id, g} is an elliptic group
with no global fixed point.

6.2.2. Parabolic semigroups. Parabolic semigroups will be important in
Chapter when we consider geometrically finite semigroups. In particular, we

make the following definition:

DEFINITION 6.2.7. Let G < Isom(X). A point £ € X is a parabolic fized point
of G if the semigroup

Gg :=Stab(G;€) ={g € G : g(§) = &}
is a parabolic semigroup.

In particular, if G is a parabolic semigroup then the unique global fixed point

of G is a parabolic fixed point.
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WARNING 6.2.8. A parabolic group does not necessarily contain a parabolic
isometry; see Example IT.2.18

Note that Proposition L.2.8] yields the following observation:

OBSERVATION 6.2.9. Let G < Isom(X), and let £ be a parabolic fixed point of
G. Then the action of G¢ on (&, D) is uniformly Lipschitz, i.e.

De(9(y1),9(y2)) =<x De(y1,y2) Yy1,y2 € & Vg € G,

and the implied constant is independent of g € G. Furthermore, if X is strongly
hyperbolic, then G acts isometrically on &.

OBSERVATION 6.2.10. Let G < Isom(X), and let £ be a parabolic fixed point
of G. Then for all g € G,

(6.2.1) D¢ (0,9(0)) =« p/2llall,
with equality if X is strongly hyperbolic.

PRrROOF. This is a direct consequence of [B.6.4]), (h) of Proposition B33l and
Proposition 41.2.16] (I

As a corollary we have the following;:

OBSERVATION 6.2.11. Let G < Isom(X), and let £ be a parabolic fixed point
of G. Then for any sequence (g,)5° in G,

[l gl 7 00 < gn(0) 7 €.
ProOF. Indeed,
9n(0) = € & Dg(0,9n(0)) = 00 [|ga| = oo.
O

REMARK 6.2.12. If X is an R-tree, then any parabolic group must be infinitely
generated. This follows from a straightforward modification of the proof of Remark
0. 1.3

6.2.3. Loxodromic semigroups. We now come to loxodromic semigroups,
which are the most diverse out of these classes. In fact, they are so diverse that we

separate them into three subclasses.

DEFINITION 6.2.13 ([48]). Let G < Isom(X) be a loxodromic semigroup. G is
o lineal if Fix(g) = Fix(h) for all loxodromic ¢, h € G.

e of general type if it has two loxodromic elements g, h € G with

Fix(g) NFix(h) = .
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o focal if #(Fix(Q)) = 1.
(We remark that focal groups were called quasiparabolic by Gromov [85] §3, Case
4.

We observe that any cyclic loxodromic group or semigroup is lineal, so this
refined classification does not give any additional information for individual isome-

tries.

PROPOSITION 6.2.14. Any loxodromic semigroup is either lineal, focal, or of
general type.

PRrROOF. Clearly, #(Fix(G)) < 2 for any loxodromic semigroup G; moreover,
#(Fix(G)) = 2 if and only if G is lineal. So to complete the proof, it suffices
to show that #(Fix(G)) = 0 if and only if G is of general type. The backward
direction is obvious. Suppose that #(Fix(G)) = 0, but that G is not of general type.
Combinatorial considerations show that there exist three points &3, &2, &3 € 0X such
that Fix(g) C {&1,&2,&3} for all g € G. But then the set {&1,&2, &3} would have to
be preserved by every element of g, which contradicts the definition of a loxodromic

isometry. (I

Let G be a focal semigroup, and let £ be the global fixed point of G. The
dynamics of G will be different depending on whether or not ¢’(¢§) > 1 for any
gea@qG.

DEFINITION 6.2.15. G will be called outward focal if ¢'(£) > 1 for some g € G,

and inward focal otherwise.
Note that an inward focal semigroup cannot be a group.

PROPOSITION 6.2.16. For G < Isom(X), the following are equivalent:

(A) G is focal.

(B) G has a unique global fixed point £ € 0X, and ¢'(§) # 1 for some g € G.

(C) G has a unique global fized pont & € 0X, and there are two lozodromic
isometries g,h € G so that g+ = hy =&, but g # h_.

PrROOF. The implications (C) = (A) < (B) are straightforward. Suppose that
G is focal, and let g € G be a loxodromic isometry. Since G is a group, we may
without loss of generality suppose that ¢'(§) < 1, so that g = £. Let j € G be
such that g_ ¢ Fix(j). By choosing n sufficiently large, we may guarantee that
(™)' (€) < 1. Then if h = jg", then h is loxodromic and hy = &. But g_ ¢ Fix(h),
so g_ # h_. O
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6.3. Proof of the Classification Theorem
We begin by recalling the following definition from Section
DEFINITION 5T]. For each o > 0 and z,y € X, let
Shady(z,0) = {n € 0X : (y|n), < o}.

We say that Shady(x,o) is the shadow cast by = from the light source y, with

parameter o. For shorthand we will write Shad(z, o) = Shad,(z, o).

LEMMA 6.3.1. For every o > 0, there exists r > 0 such that for every g €
Isom(X) with ||g|| > r, if there exists a nonempty closed set

Z - Shadgq(o) (07 0’)
satisfying g(Z) C Z, then g is lozodromic and g4 € Z.

PrROOF. Recall from the Bounded Distortion Lemma [4.5.6] that

D(g(y1),9(y2))
(6'3.1) D(y1,y2)

for some C' > 0 independent of g. Now choose r > 0 large enough so that Cb~" < 1.

< cp~lall Vyi,ys € Z

If g € Isom(X) satisfies ||g|| > r, we can conclude that g : Z — Z is a strict
contraction of the complete metametric space (Z, D). Then by Theorem B.6.2] ¢
has a unique fixed point £ € Zyery = Z N 0X.

To complete the proof we must show that ¢’(§) < 1 to prove that g is not
parabolic and that £ = g;. Indeed, by the Bounded Distortion Lemma, we have
g (&) <x b9l < b7, s0 choosing r sufficiently large completes the proof. d

COROLLARY 6.3.2. For every o > 0, there exists r = r, > 0 such that for every
g € Isom(X) with ||g|| >, if g is not lozodromic, then

(6.3.2) (g(0)lg™"(0))o > 0.

PROOF. Fix ¢ > 0, and let ¢/ = o + §, where ¢ is the implied constant in
Gromov’s inequality. Apply Lemma[E3Tto get ' > 0. Let » = max(r’,20”). Now

suppose that g € Isom(X) satisfies ||g|| > r > 7’ but is not loxodromic. Then by
Lemma [6.3.1] we have

Shad(g(0),0") \ Shady-1(,)(0,0") # &.
Let = be a member of this set. By definition this means that
(o) g(0) < " < (g7 (0)]2),-
Since ||g|| > r > 20’, we have

(9(0)|2)o = llgll — {ol)g(e) = 20" — o =o',
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Now by Gromov’s inequality we have

(9(0)lg™"(0))o = min((g(0)|x)o, (97" (0)|x)o) =6 = 0’ =5 =0
O
LEMMA 6.3.3. Let G < Isom(X) be a semigroup which is not lozodromic, and

let (gn)3° be a sequence in G such that ||gn| — o0o. Then (gn(0))$° is a Gromov

sequence.

PRrROOF. Fix o > 0 large, and let » = r, be as in Corollary [6.3.2] Since G is
not loxodromic, (63.2)) holds for every g € G for which ||g|| > r.
Fix n,m € N with ||gn]|, [|gm|| > r; Corollary [6.3.2] gives

(6.3.3) (gn(0)lgn " (0))o = @
(6.3.4) (gm(0)lgm' (0))0 = 0.

By contradiction, suppose that (g, (0)|gm(0))e < o/2; then Gromov’s inequality
together with (633]) gives

(6.3.5) (971 (0)gm(0))o =4 0.
It follows that

9ngm |l = d(g, " (0), gm(0)) = 21 = (g, (0) |gm (0))o = 27
Choosing r sufficiently large, we have ||gngm|| = 7. So by Corollary [6.3.2]
(6.3.6) (9n9m (0)|gm" 9, ' (0))0 > 0.

Now

<gn(0)|gngm(0)>o: <0|gm(0)>g;1(o)
= |lgnll = (95 (0)lgm(0))o

=+ llgnl (by @3.5))
> T
ie.
(6.3.7) (9n(0)|gngm(0))o Z+ 1.
A similar argument yields
(6.3.8) (G ()9 90 (0))o 24 7

Combining (634), (633)), ([@3.6), and (6371), together with Gromov’s inequality,
yields

<gn|gm>o ,2+ min(a, ’I”).
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This completes the proof. O

PROOF OF THEOREM [6.2.3]l Suppose that G is neither elliptic nor loxodromic,
and we will show that it is parabolic. Since G is not elliptic, there is a sequence
(9n)$° in G such that ||g,|| = co. By Lemmal6.3.3] (g, (0))$° is a Gromov sequence;
let £ € 90X be the limit point.

Note that ¢ is uniquely determined by G if (hy(0))$° were another Gromov
sequence, then we could let
_ Gn/2 n even
Jn = .
h(n—l)/2 n odd
The sequence (jn(0))3° would tend to infinity, so by Lemma it would be a
Gromov sequence. But that exactly means that the Gromov sequences (g, (0))5°
and (hy,(0))$° are equivalent. Moreover, it is easy to see that & does not depend on
the choice of the basepoint o € X.

In particular, the fact that £ is canonically determined by G implies that ¢ is
a global fixed point of G. To complete the proof, we need to show that ¢’(¢§) =1
for all g € G. Suppose we have g € G such that ¢’(§) # 1. Then g is loxodromic
by Lemma [6.1.7] a contradiction. O

6.4. Discreteness and focal groups

PROPOSITION 6.4.1. Fiz G < Isom(X), and suppose that either

(1) G is strongly discrete,
(2) X is CAT(-1) and G 1is moderately discrete, or
(3) X admits unique geodesic extensions (e.g. X is an algebraic hyperbolic

space) and G is weakly discrete.

Then G is not focal.

STRONGLY DISCRETE CASE. Suppose that G is a focal group. Let £ € X be
its global fixed point, and let g,h € G be as in (C) of Proposition Since
h="(0) = h_ # &, we have

(h™"(0)|€)o <+,n 0
and thus
(h"(0)I&)o =4 [IR"[| = (0l&)nn (o) =+.n IA"].
Applying g we have

(gh"(0)|€)o = (h"(0)|€)g-1(0) =+.g (K" (0)[€)o =4 [
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and applying Gromov’s inequality we have
(R (0)lgh™ (0))o =491 [Pl =4.g llgh"
Now
[P~ gh™ || = d(h"(0), gh" (0))
= I + llgh™ | = 2(h"(0), gh" (0))o =+,9,1 0

Since G is strongly discrete, this implies that the collection {h~"gh™ : n € N} is

finite, and so for some n; < ns we have
h—’ﬂlghn1 — h—’ﬂgghng
or
R Mg = ghn2 ™

ie. h™™™ commutes with g. But then A™~™(g_) = ¢g_, contradicting that
g— # h_. This completes the proof of Proposition [(.4.1}1). O

MODERATELY DISCRETE CASE. Suppose that G is a focal group. Let £ € 0X
be its global fixed point, and let g,h € G be as in (C) of Proposition 6216 Let

k=l[g,h) =g 'h~'gheG.

We observe first that
ey L+ 1
(641) FO= e e

Note that strong hyperbolicity is necessary to deduce equality in (6.4.1]) rather than

g' (M) =1.

merely a coarse asymptotic.

Next, we claim that k(g—) # g—. Indeed, g_ ¢ Fix(h), so h(g—) # g—. This
in turn implies that h(g_) ¢ Fix(g), so gh(g—) # h(g9—). Now applying g~'h~! to
both sides shows that k(g_) # g_.

CLAIM 6.4.2. g~ "kg™(0) — o.

PROOF. Indeed,
lg~"kg" || = d(g" (0), kg" (0))-

Let
r=¢
y=o
2 = k(o)

pn =g"(0)

qn = kgn(o)'
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=90 | | 4 = ko)

o /\ z = k(o)

FIGURE 6.4.1. The higher the point g"(0) is, the smaller its dis-
placement under £ is.

(See Figure[6.41]) Then p,, ¢, € A := A(x,y, z). By PropositionZT3d(p,, ¢n) <

d(p,,,q,), where p,,,q,, are comparison points for p,, g, on the comparison triangle
A = A(%,7,%). Now notice that

Bz(P,:7,) = Be(g"(0), kg™ (0)) = 0

by Proposition 4.2.16] and (6.4.1). On the other hand, p,,,q, — T. An easy
calculation based on (253 and Proposition B5H (letting T = oo) shows that
d(P,,q,) — 0, and thus that ||g~"kg"|| — 0i.e. g~ "kg"(0) — o. <

Since G is moderately discrete, this implies that the collection {g~"kg™ : n €
N} is finite. As before (in the proof of the strongly discrete case), this implies
that ¢"™ and k commute for some n € N. But (¢")- = g—, and k(g9-) # g—,

which contradicts that ¢" and k commute. This completes the proof of Proposition

BAI(2). O

WEAKLY DISCRETE CASE. Suppose that G is a focal group. Let &, g, h, and k
be as above. Without loss of generality, supposet that o € [g_, &].

CLAIM 6.4.3. g~ "kg™(0) # o for all n € N.
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PROOF. Fix n € N. As observed above, k(g—) # g—. On the other hand,
k(&) =&, and g™ (o) € [g—,&]. Since X admits unique geodesic extensions, it follows
that k(g™ (0)) # g"(0), or equivalently that g~ "kg" (o) # o. <

Together with Claim [6.4.2] this contradicts that G is weakly discrete. This
completes the proof of Proposition [6.4.1](3). O



CHAPTER 7

Limit sets

Throughout this chapter, we fix a subsemigroup G =< Isom(X). We define
the limit set of GG, along with various subsets. We then define several concepts in
terms of the limit set including elementariness and compact type, while relating
other concepts to the limit set, such as the quasiconvex core and irreducibility of a

group action. We also prove that the limit set is minimal in an approprate sense
(Proposition [[.ZT] - Proposition [[.Z.6]).

7.1. Modes of convergence to the boundary

We recall (Observation B-4.20) that a sequence (z,,)$° in X converges to a point
& € 0X if and only if
In this section we define more restricted modes of convergence. To get an intuition

let us consider the case where X = E = E® is the half-space model of a real

hyperbolic space. Consider a sequence (x,,)7° in E which converges to a point

€€ B:=0F\ {oo} = H*¥ L. We say that x,, — £ conically if there exists § > 0
such that if we let

C0)={xeE:z >sind)|x—¢&|}

then x,, € C(&,0) for all n € N. We call C(&,60) the cone centered at £ with
inclination 0; see Figure [[ 1.1

PROPOSITION 7.1.1. Let (x,)3° be a sequence in E converging to a point £ € B.
Then the following are equivalent:
(A) (x,,)$° converges conically to &.

(B) The sequence (x,,)$° lies within a bounded distance of the geodesic ray

[0,€].
(C) There exists 0 > 0 such that for alln € N,

{0l&)x, <o,
or equivalently

(7.1.1) ¢ € Shad(xy,,0).

109
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13

FIGURE 7.1.1. A sequence converging conically to . For each
point x, the height of x is greater than sin(f) times the distance
from x to &.

Moreover, the equivalence of (B) and (C) holds in all geodesic hyperbolic metric

spaces.

PROOF. The equivalence of (B) and (C) follows directly from (i) of Proposition
311 Moreover, conditions (B) and (C) are clearly independent of the basepoint o.
Thus, in proving (A) < (B) we may without loss of generality suppose that £ = 0
and o = (1,0). Note that if # > 0 is fixed, then

C0,0)={xelb:4L(x)<n/2—-0}={xelk:0(x)<—logcos(n/2 —0)},
where 6 = 0p .0 i as in Proposition 2641 Since — logcos(m/2 —6) — 0o as § — 0,
we have (A) if and only if the sequence (0(x,))5° is bounded. But

0(xn) = (0|00)x, =+ d(xn,[0,0]) (by (i) of Proposition 431
= d(xp,[0,0]), (for n sufficiently large)

which completes the proof. ([l

Condition (B) of Proposition [.T.1] motivates calling this kind of convergence
radial; we shall use this terminology henceforth. However, condition (C) is best

suited to a general hyperbolic metric space.

DEFINITION 7.1.2. Let (x,)$° be a sequence in X converging to a point £ € 0X.

We will say that (z,)° converges to &

e o-radially if (T holds for all n € N,
e radially if it converges o-radially for some o > 0,

e o-uniformly radially if it converges o-radially, 1 = o, and
d(xn7$n+1) <o VneN,

e uniformly radially if it converges o-uniformly radially for some o > 0.
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3

FIGURE 7.1.2. A sequence converging horospherically but not ra-
dially to &.

Note that a sequence can converge o-radially and uniformly radially without
converging o-uniformly radially.

We next define horospherical convergence. Again, we motivate the discussion
by considering the case of a real hyperbolic space X = E = E®. This time, however,
we will let £ = 0o, and we will say that a sequence (x,,)$° converges horospherically
to € if

height(x,,) — 00,
where the height of a point x € [ is its first coordinate z;. This terminology
comes from defining a horoball centered at oo to be a set of the form Heo,; = {x:
height(x) > e'}; then x, — oo horospherically if and only if for every horoball
Hoo+ centered at infinity, we have x,, € Ho ¢ for all sufficiently large n. (See also
Definition [2.T.T] below.)
Recalling (cf. Proposition B:5.0]) that
height(z) = pB= (o)

the above discussion motivates the following definition:

DEFINITION 7.1.3. A sequence (x,,)5° in X converges horospherically to a point
to & € 0X if
Be (o, ) — +00.
n

OBSERVATION 7.1.4. If z,, — £ radially, then z,, — £ horospherically.
ProOF. Indeed,

Be(o,2n) =4 [[znll = 2(0[€)a, =4 [[zn] — oo

The converse is false, as illustrated in Figure [[.1.2)
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OBSERVATION 7.1.5. The concepts of convergence, radial convergence, uni-
formly radial convergence, and horospherical convergence are independent of the
basepoint o, whereas the concepts of o-radial convergence and o-uniformly radial
convergence depend on the basepoint. (Regarding o-radial convergence, this de-

pendence on basepoint is not too severe; see Proposition [[.2.3] below.)

7.2. Limit sets

We define the limit set of GG, a subset of X which encodes geometric informa-

tion about G. We also define a few important subsets of the limit set.

DEFINITION 7.2.1. Let

n(0) = 7 for some (g,)° € GN}

AG) :={n € 0X : gn(o)
A (G) = {n € dX : gn(0) — n radially for some (g,);° € G}
Ay o (G) :={n € 0X : g,(0) — 1 o-radially for some (g,,);° € G}
A (G) = {n € 90X : g, (0) — n uniformly radially for some (g,,)3° € G™}
Mo (G) := {n € 0X : gn(0) — 1 o-uniformly radially for some (g,)5° € G™}
Aw(G) :={n € dX : g,(0) — 1 horospherically for some (g,)3° € G™}.

These sets are respectively called the limit set, radial limit set, o-radial limit set,
uniformly radial limit set, o-uniformly radial limit set, and horospherical limit set

of the semigroup G.

Note that

Ar = U Ar,a’

a>0

Aur = U Aur,a

>0
AurgArgAth-

OBSERVATION 7.2.2. The sets A, A, Ay, and Ay are invariantﬂ under the

action of GG, and are independent of the basepoint o. The set A is closed.

PROOF. The first assertion follows from Observation [[.1.5l and the second fol-
lows directly from the definition of A as the intersection of 0X with the set of

accumulation points of the set G(o). O

1By invariant we always mean forward invariant.
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PROPOSITION 7.2.3 (Near-invariance of the sets A, ). For every o > 0, there
exists T > 0 such that for every g € G, we have

(7.2.1) 9(Aro) € Arr

If X is strongly hyperbolic, then (L21)) holds for all T > o.

PRrROOF. Fix £ € A;,. There exists a sequence (h,)° so that h,(0) — &
o-radially, i.e.

(0l&) () <o Y EN
and hy,(0) — £. Now

(0lg™ (0 n,(0) = Il = llg™ I —> +oo.

Thus, for n sufficiently large, Gromov’s inequality gives

(7.2.2) (9710 hnto) St 0
ie.
(09()) ghn(0) S+ O
So ghy(0) — g(§) T-radially, where 7 is equal to o plus the implied constant of this
asymptotic. Thus, g(&) € A, 7.
If X is strongly hyperbolic, then by using ([3.3.0)) instead of Gromov’s inequality,
the implied constant of (C2:2)) can be made arbitrarily small. Thus 7 may be taken

arbitrarily close to o. ([l

7.3. Cardinality of the limit set

In this section we characterize the cardinality of the limit set according to the

classification of the semigroup G.

PROPOSITION 7.3.1 (Cardinality of the limit set by classification). Fiz G =<

Isom(X).
(i) If G is elliptic, then A = &.

If G is parabolic or inward focal with global fixed point &, then A = {£}.
If G is lineal with fized pair {&1,&2}, then A C {&1, &}, with equality if G
1S a group.
(iv) If G is outward focal or of general type, then #(A) > #(R). Equality holds

if X is separable.

Case (i) is immediate, while case (iv) requires the theory of Schottky groups
and will be proven in Chapter [I0] (see Proposition [[0.5.4)).
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PROOF OF (ii). For ¢ € G, ¢'(¢§) < 1, so by Proposition L2106, we have
Be(g(0),0) S+ 0. In particular, by (h) of Proposition B33 we have

1
(@1€)0 2+ 32l Vi € Glo).

oo

This implies that x, — & for any sequence (x,,)$° in G(o) satisfying ||z,| — oco. It
follows that A = {¢}. O

PROOF OF (iii). By Lemma 6.3 we have
0(9(0)) =4 8(0) = 0 Vg € G,
where 0 = 0¢, ¢, 0 = 0¢,.¢,,0 18 as in Section .61 Thus

(&1]&2) <4 0 Vz € G(0).

Fix a sequence G(0) 3 x, — £ € A. By Gromov’s inequality, there exists ¢ = 1,2
such that

(0|&:)z, =<+ O for infinitely many n.

It follows that z,, — & radially along some subsequence, and in particular £ = &;.
Thus A - {51752}. ([l

DEFINITION 7.3.2. Fix G < Isom(X). G is called elementary if #(A) < oo and

nonelementary if #(A) = oc.

Thus, according to Proposition [[L31] elliptic, parabolic, lineal, and inward
focal semigroups are elementary while outward focal semigroups and semigroups of

general type are nonelementary.

REMARK 7.3.3. In the Standard Case, some authors (e.g. [148] §5.5]) define a
subgroup of Isom(X) to be elementary if there is a global fixed point or a global fixed
geodesic line. According to this definition, focal groups are considered elementary.
By contrast, we follow [48] and others in considering them to be nonelementary.

Another common definition in the Standard Case is that a group is elementary
if it is virtually abelian. This agrees with our definition, but beyond the Standard
Case this equivalence no longer holds (cf. Observation IT.T.4] and Remark [[T-T.6).

7.4. Minimality of the limit set

Observation [.2.2]identified the limit set A as a closed G-invariant subset of the
Gromov boundary dX. In this section, we give a characterization of A depending

on the classification of G.

PropPOSITION 7.4.1 (Cf. [53 Théoreme 5.1]). Fiz G = Isom(X). Then any

closed G-invariant subset of 0X containing at least two points contains A.
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PrOOF. We begin with the following lemma, which will also be useful later:
LEMMA 7.4.2. Let (2,,)$°, (y,(ll))‘fo, (yr(?))‘fo be sequences in bord X satisfying

Py e, =4 0

and
x, > & €0X.

Then £ € {yr(f):ne N,z =1,2}.

PrOOF. For n € N fixed, by Gromov’s inequality there exists i,, = 1,2 such

that

(olyi™ )z, =4 0.
It follows that

(@nly™))o =+ an]| — co.
On the other hand
(ale)o — oo,

so by Gromov’s inequality

(Wi1€)o — oo,
i.e. y,(,i") — & <

Now let F' be a closed G-invariant subset of 0X containing two points &; # &o,
and let n € A. Then there exists a sequence (g,)5° so that g,(o) — n. Applying
Lemma [[.42] with z,, = g, (0) and y,(f) = gn(&) € F completes the proof.

O

The proof of Proposition [.4.Tlmay be compared to the proof of [T3] Theorem
3.1], where a quantitative convergence result is proven assuming that 7 is in the

radial limit set (and assuming that G is a group).

COROLLARY 7.4.3. Let G < Isom(X) be nonelementary.

(i) If G is outward focal with global fixed point &, then A is the smallest closed
G-invariant subset of 0X which contains a point other than &.
(ii) (Cf. 20, Theorem 5.3.7]) If G is of general type, then A is the smallest

nonempty closed G-invariant subset of 0X.

PROOF. Any G-invariant set containing a point which is not fixed by G contains

two points. O

COROLLARY 7.4.4. Let G < Isom(X) be nonelementary. Then

A=A = Ay
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PRrROOF. The implications O are clear. On the other hand, for each loxodromic
g € G we have g4 € Ay,. Thus Ay, # &, and Ay € {€} if G is outward focal with
global fixed point £&. By Proposition [[.3] G is either outward focal or of general
type. Applying Corollary [T.4.3] we have A, D A. O

REMARK 7.4.5. If G is elementary, it is easily verified that A = A; = Ay, unless
G is parabolic, in which case A, = Ay, = & ; A.

If G is a nonelementary group, then Corollary immediately implies that
the set of loxodromic fixed points of GG is dense in A. However, if G is not a group
then this conclusion does not follow, since the set of attracting loxodromic fixed
points is not necessarily G-invariant. (The set of attracting fixed points is the right
set to consider, since the set of repelling fixed points is not necessarily a subset of

A.) Nevertheless, we have the following:

PROPOSITION 7.4.6. Let G < Isom(X) be nonelementary. Then the set
Ay :={g4 : g € G is loxodromic}.
is dense in A.

PROOF. First note that it suffices to show that A, contains all elements of A
which are not global fixed points. Indeed, if this is true, then A is G-invariant,
and applying Corollary completes the proof.

Fix € € A which is not a global fixed point of G, and choose h € G such that
h(€) # €. Fix € > 0 small enough so that D(B,h(B)) > ¢, where B = B(¢,¢). Let
o > 0 be large enough so that the Big Shadows Lemma 5.7 holds. Since £ € A,
there exists g € G such that

Shad(g(o),0) C B.

Let Z = g~'(Shad(g(0),0)) = Shadg-1(o)(0,0). Then by Lemma {57 Diam(dX \
Z) < e. Thus 90X \ Z can intersect at most one of the sets B, h(B). So B C Z or
h(B) C Z. If B C Z then

g(B) € B and B C Shadg-1(,)(0,0),
whereas if h(B) C Z then
gh(B) C Band B C Shad(gh)fl(o)(o,a + ||h||)

So by Lemma [631] we have j. € B, where j = g or j = gh is a loxodromic

isometry. ([

The following improvement over Proposition [(.4.0] has a quite intricate proof:
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PROPOSITION 7.4.7 (Cf. [20] Theorem 5.3.8], [117], p.349]). Let G < Isom(X)
be of general type. Then

{(94,9-) : g € G is loxodromic}
is dense in A(G) x A(G™'). Here G ={g~':g € G}.

PROOF.

CLAIM 7.4.8. Let g be a lozodromic isometry and fir € > 0. There exists
d =d(e,g) such that for all £&,& € 0X with D(&, Fix(g)) > ¢,

#{i:o,_,_74;D(gi(§l),€2) S(S}S 1.

PROOF. Suppose that D(g%(£1),&) < d for two distinet values of 4. Then
D(g" (&1),9%(&1)) < 28. For every n, we have

D(g"™" (&1), 9™ (&) Sx 019715
and thus by the triangle inequality
D(g" (&1), 9" (&1)) S 0.

By Theorem B.LI0, if n is sufficiently large then D(g"(2—#)+i(£)) g,) < ¢/2,
which implies that

e/2 < D(&,Fix(g)) — D(g""2 "1 (&), g1) < D(&, "7 (&) Sxin 0,

which is a lower bound on ¢ independent of &1, &;. Choosing ¢ less than this lower

bound yields a contradiction. <

CLAIM 7.4.9. There ezist €, p > 0 such that for all &1,&2,E&3,&4 € A, there exists
j € G such that

(7.4.1) D(j(&), &) > e Yk =1,2 ¥ =3,4 and ||j| < p.

PrOOF. Fix g,h € G loxodromic with Fix(g) NFix(h) = &, and let
4 4 y
o=zl
Now fix &1,&2,&3,& € A. By Claim [[.48] for each k = 1,2 and 7 € Fix(g), we have
#{j =0,....4: D(W (&), n) < 0y := 6(D(Fix(g), Fix(h)), h)} < 1.

It follows that there exists j € {0, ...,4} such that D(h7(&),n) > 6; for all k = 1,2
and n € Fix(g). Applying Claim [[.4g] again, we see that for each k = 1,2 and
¢ = 3,4, we have

#{i=0,...,4:D(g (&), W (&)) < J2:= (01,97 )} < 1.



118 7. LIMIT SETS

It follows that there exists i € {0,...,4} such that D(g7%(&), h’ (&) > d2 for all
k=1,2 and ¢ = 3,4. But then

D(gzh"](gk)agl) ZX 527
completing the proof. <

Now fix & € A, £ € A(G™1) distinct, and fix § > 0 arbitrarily small. By the
definition of A, there exist g, h € G such that

D(g(0>a€+)7 D(hil(o)agf) <.

Let o > 0 be large enough so that the Big Shadows Lemma [£5 7 holds for € = ¢/2,
where ¢ is as in Claim Then

Diam (90X \ Shad,-1(,)(0,0)), Diam(0X \ Shady, (0, 0)) < &/2.
On the other hand,
Diam(Shad(g(0), o)), Diam(Shad(h~'(0),0)) <x 6.

Since Shad(g(0), o) is far from h='(0) and Shad(h~!(0),0) is far from g(o), the
Bounded Distortion Lemma gives

Diam(h(Shad(g(0),))), Diam(g~!(Shad(h~*(0),0))) <

~ X

d.

Choose & € h(Shad(g(0),0)), & € g~ (Shad(h™!(0),0)), &3 € dX\Shad,—1(,) (0, 0)
and &4 € 0X \ Shady(,)(0,0). By Claim [L49] there exists j € G such that (Z4.1)
holds. Then

Diam(jh(Shad(g(o0),o))), Diam(j g~ (Shad(h~'(0),0))) <« 6,

and by choosing § sufficiently small, we can make these diameters less than /2. Tt
follows that

Jh(Shad(g(o0),0)) € Shady-1(6)(0,0), and
7 g7 (Shad(h™!(0),0)) C Shadp,(o) (0, o)
or equivalently that
gjh(Shad(g(0),0)) C Shad(g(0),0), and
(9jh)~*(Shad(h™"(0),)) C Shad(h™'(0),0).
By Lemma [6.31] it follows that gjh is a loxodromic isometry satisfying
(95h)+ € Shad(g(0), 0), (gjh)- € Shad(h™" (o), 0).

In particular D((gjh)+,&+), D((gjh)—,&-) Sx 6. Since § was arbitrary, this com-
pletes the proof. O
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7.5. Convex hulls

In this section, we assume that X is regularly geodesic (see Section ]). Recall
that for points z,y € bord X, the notation [z, y] denotes the geodesic segment, line,
or ray joining x and y.

DEFINITION 7.5.1. Given S C bord X, let

Hully ($) := (J [z,
z,yeS
Hull,, (S) := Hull; - - - Hull; (S)
~—_—
n times
Hullo(S) = ) Hull,(S).
neN
The set Hull, (S) will be called the nth convex hull of S. Moreover, Hullo (S) will

be called the conver hull of S, and Hully (S) will be called the quasiconvez hull of
S.

The terminology “convex hull” comes from the following fact:

PROPOSITION 7.5.2. Hully(S) is the smallest closed set F' C bord X such that
S CF and

(7.5.1) [z,y] CF Vz,y € F.
A set F satisfying (5.0]) will be called convez.

PROOF. It is clear that S C Hull(S) € bord X. To show that Hulls(S)
is convex, fix z,y € Hulloo(S). Then there exist sequences A > z, — x and
AS yn =y, where A = J,, ¢ Hull,, (S). For each n, [z,,,y,] € A C Hullo(S). But
since X is regularly geodesic, [z, yn] — [#,y] in the Hausdorff metric on bord X.
Since Hull (S) is closed, it follows that [z,y] C Hull(S).

Conversely, if S C F C bord X is a closed convex set, then an induction
argument shows that F' D Hull, (S) for all n. Since F' is closed, we have F' D
Hulloo (S). O

Another connection between the operations Hull; and Hully, is given by the

following proposition:

PROPOSITION 7.5.3. Suppose that X is a algebraic hyperbolic space. Then there
exists T > 0 such that for every set S C bord X we have

X NHull(S) € X N Hullow(S) € N, (X N Hully ().

(Recall that N.(S) denotes the T-thickening of a set with respect to the hyperbolic

metric d.)
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Proor. The proof will proceed using the ball model X = B = Bf. We will

need the following lemma:

LEMMA 7.5.4. There exists a closed convexr set F ; bord B whose interior

intersects OB.

PrROOF. If o < o0, this is a consequence of [11 Theorem 3.3].

We will use the finite-dimensional case to prove the infinite-dimensional case.
Suppose that « is infinite. Let Y = B C X. Then by the a < oo case of Lemma
[[.54] there exists a closed convex set Fy ; bordY whose interior intersects 9Y,
say £ € Int(F;) N Y. Choose € > 0 such that By (§,e) C Fs. Then

F) := Hull(By (£,¢)) C Fy ; bordY

by Proposition On the other hand, Fj is invariant under the action of the
group

G1:={g € Isom(Y) : g(0) = 0,9(¢) = &}
Let

G = {g € Isom(X) : g(0) = 0,9(§) = ¢},
and note that G(bordY) = bord X. Let F' = G(F}), and note that FNbordY = F}.
We claim that F' is convex. Indeed, suppose that x,y € F; then there exists g € G
such that g(x), g(y) € bordY. (Note that in this step, we need all three dimensions
of Y.) Then g(z),g(y) € FNbordY = Fi, so by the convexity of F; we have
g([z,y]) = [9(x),g(y)] C Fy C F. Since F is G-invariant, we have [z,y] C F.

In addition to being convex, F is also closed and contains the set G(By (§,¢)) =

Bx(§,€). Thus, £ € Int(F). Finally, since F NbordY = F; & bordY, it follows
that F' G bord X. <

Let F be as in Lemma [Z.5.4l Since F' G bord B is a closed set, it follows that
B\ F # . By the transitivity of Isom(B) (Observation 2:3.2]), we may without loss
of generality assume that 0 € B\ F. By the transitivity of Stab(Isom(B);0) on JB,
we may without loss of generality assume that e; € Int(F). Fix € > 0 such that
B(ey,e) CF.

We now proceed with the proof of Proposition [[.5.3] It is clear from the def-
initions that B N Hull;(S) € B N Hullw(S). To prove the second inclusion, fix
z € B\ N,(Hull;(S)) and we will show that z ¢ Hull(S). By the transitivity
of Isom(B), we may without loss of generality assume that z = 0. Now for every
X,y € S, we have z =0 ¢ N-([x,y]). By (i) of Proposition L3} we have

X[y)o 2+ T

and thus by (357,

ly =l Sx e
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By choosing 7 sufficiently large, this implies that
ly — x| <e/2 ¥x,y € S.

Moreover, since d(0,x) = 2(x|x)o =+ 7, by choosing 7 sufficiently large we may
guarantee that
Ix|| >1—¢/2 ¥x € S.

Since the claim is trivial if S = &, assume that S # @ and choose x € S. Without
loss of generality, assume that x = Ae; for some A > 2/3. Then S C Bg(x,e/2) C
B(ei,e) C F. But then F is a closed convex set containing S, so by Proposition
52 Hull(S) C F. Since z =0 ¢ F, it follows that z ¢ Hull(S). O

COROLLARY 7.5.5. Suppose that X is an algebraic hyperbolic space. Then for
every closed set S C bord X, we have

Hulloo (S) N OX = SN OX.

PROOF. The inclusion D is immediate. Suppose that £ € Hull(S) N9X, and
find a sequence X N Hullo(S) 2 z,, — £. By Proposition [[.5.3] for each n there
exist yfll),yg) € S such that z, € NT([yfll),y,(f)]); by Proposition [£3.1] we have
<y7(11)|y7(12)>zn =, 0. Applying Lemma gives £ € S. O

REMARK 7.5.6. Corollary [[.5.5] was proven for the case where X is a pinched
(finite-dimensional) Hadamard manifold and S C 90X by M. T. Anderson [11]
Theorem 3.3]. It was conjectured to hold whenever X is “strictly convex” by
Gromov [83] p.11], who observed that it holds in the Standard Case. However,
this conjecture was proven to be false independently by A. Ancona [9], Corollary
C] and A. Borbély [32] Theorem 1], who each constructed a three-dimensional
CAT(-1) manifold X and a point £ € X such that for every neighborhood U of &,
Hulloo(U) = bord X.

Thus, although the co-convex hull has more geometric and intuitive appeal
based on Proposition[7.5.2] without more hypotheses there is no way to restrain its
geometry. The 1-convex hull is thus more useful for our applications. Proposition
[[53indicates that in the case of an algebraic hyperbolic space, we are not losing

too much by the change.

DEFINITION 7.5.7. The convex core of a semigroup G < Isom(X) is the set
Ca := X NHull(A),
and the quasiconvex core is the set

Co := X NHull, (G(0)).
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OBSERVATION 7.5.8. The convex core and quasiconvex core are both closed
G-invariant sets. The quasiconvex core depends on the distinguished point 0. How-

ever:
ProrosiTION 7.5.9. Fix x,y € X. Then
C. € NRr(Cy)
for some R > 0.

PROOF. Fix z € C;. Then z € [g(z), h(x)] for some g, h € G. Tt follows that

(9W)|h(y))> =<+ (9(x)|h(z)). = 0.

So by Propositionl.3.1] d(z, [g(y), h(y)]) =+ 0. But [g(y), h(y)] € Cy, s0 d(z,Cy) =+
0. Letting R be the implied constant completes the proof. ([

REMARK 7.5.10. In many cases, we can get information about the action of G
on X by looking just at its restriction to Cp or to C,. We therefore also remark
that if X is a CAT(-1) space, then C, is also a CAT(-1) space.

In the sequel the following notation will be useful:
NOTATION 7.5.11. For a set S C bord X let

(7.5.2) S =SnNnoX.
OBSERVATION 7.5.12. (C,)" = A.

PROOF. Since A = (G(0))" and G(0) C C,, we have (C,)’ 2 A. Suppose that
€ (C,), and let C, 3 x,, — £. By definition, for each n there exist y§11)7 yv(f) € G(o)
such that z,, € [yg), y,(?)]. Lemma [7.4.2] completes the proof. O

7.6. Semigroups which act irreducibly on algebraic hyperbolic spaces

DEFINITION 7.6.1. Suppose that X is an algebraic hyperbolic space, and fix
G < Isom(X). We shall say that G acts reducibly on X if there exists a nontrivial
totally geodesic G-invariant subset S ; bord X. Otherwise, we shall say that G

acts irreducibly on X.

REMARK 7.6.2. A parabolic or focal subsemigroup of Isom(X) may act either
reducibly or irreducibly on X.

PROPOSITION 7.6.3. Let G = Isom(X) be nonelementary. Then the following

are equivalent:

(A) G acts reducibly on X .
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(B) There exists a nontrivial totally geodesic subset S G bord X such that

=
ACS.

(C) There exists a nontrivial totally geodesic subset S G bord X such that
Ch CS.

(D) There exists a nontrivial totally geodesic subset S S bord X such that
C, €S for someo€ X.

PROOF OF (A) = (B). Let S G bord X be a nontrivial totally geodesic G-

invariant subset. Fix o € SN X. Then A C G(o) C S. O

ProoF oF (B) = (C). If S is any totally geodesic set which contains A, then
S is a closed convex set containing A, so by Proposition [7.5.2] Cy C S. O

PRrROOF OF (C) = (D). Since G is nonelementary, Cy # &. Fix o € Cp; then
C, C Cp. O

PRrROOF OF (D) = (A). Let S be the smallest totally geodesic subset of X

which contains C,, i.e.
S = m{W : W D C, totally geodesic}.

Then our hypothesis implies that S g bord X. Since o € S, S is nontrivial. It is
obvious from the definition that S is G-invariant. This completes the proof. (|

REMARK 7.6.4. If G < Isom(X) is nonelementary, then Proposition [[.6.3] gives
us a way to find a nontrivial totally geodesic set on which G acts reducibly; namely,
the smallest totally geodesic set containing A, or equivalently Cg, will have this
property (cf. Lemma 245]). On the other hand, there exists a parabolic group
G < Isom(H*) such that G does not act irreducibly on any nontrivial totally
geodesic subset S C bord H* (Remark [T.2.19)).

7.7. Semigroups of compact type

DEFINITION 7.7.1. We say that a semigroup G =< Isom(X) is of compact type

if its limit set A is compact.

PROPOSITION 7.7.2. For G = Isom(X), the following are equivalent:
(A) G is of compact type.

(B) Ewvery sequence (x,)5° in G(0) with ||z,| — oo has a convergent subse-

quence.
Furthermore, if X is reqularly geodesic, then (A)-(B) are equivalent to:
(C) The set C, is a proper metric space.

and if X is an algebraic hyperbolic space, then they are equivalent to:
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(D) The set Cp is a proper metric space.

PrROOF OF (A) = (B). Fix a sequence (g,,)° in G with |/g,|| — co. The exis-
tence of such a sequence implies that G is not elliptic. If G is parabolic or inward
focal, then the proof of Proposition [[331)(ii) shows that g, (0) — £, where A = {£}.
So we may assume that G is lineal, outward focal, or of general type, in which case
Proposition [[3T] gives #(A) > 2.

Fix distinct &1,& € A, and let (ng)$° be a sequence such that (gn,(&))5°

converges for ¢ = 1,2, and such that

(G (0)€1)o < (g, (0)I€2)o

for all k. (If this is not possible, switch & and &2.) We have

0 =166 (G1l&)o 24 min ({9, (0)[€1) 0, (gn, (0)|€2)0) = (gn, (0)I€1)0

and thus
<gnk (0)|gnk (51)>0 =+4,61,62 ”gnkH 7 Q.
On the other hand, there exists n € A such that gy, (£1) el and thus

{gni (€1)Im)o — oo

Applying Gromov’s inequality yields

{gni (0)[mo — 00

and thus gy, (0) el This completes the proof. O

PrOOF OF (B) = (A). Fix a sequence (£,)° in A. For each n € N, choose
gn € G with

<gn(0)|§n>o > n.

In particular ||gn|| > n — oo. Thus by our hypothesis, there exists a convergent
n

subsequence gy, (0) oneE A. Now

D(&nsm) < D(gny (0),&nn) + D(gn (0),1) Sx 07" + D(gny (0),m) — 0,
ie. &n, 7 7. ([

PROOF OF (A) = (C). Let (z,)$° be a bounded sequence in C,. For each

n € N, there exist yo", y? € G(o0) such that z, € Nl/n([yr(}),yr(f)]). Choose a

sequence (ng)$° on which y,(zlk) 7 a and ygi) 7 8. Since X is regularly geodesic we

have
Wi wid) = .y @),

ny  Yny

For each k, choose 21, € [ylek), yv(i)] with d(2n,,, zk) < 1/ng. Since the sequence (zj)3°

is bounded, it must have a subsequence which converges to a point in [y(*),3®)];
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it follows that the corresponding subsequence of (z,,)$° is also convergent. Thus

every bounded sequence in C, has a convergent subsequence, so C, is proper. [
ProOOF OF (C) = (B). Obvious since G(o) C C,. O

PRrROOF OF (A) = (D). Note first of all that we cannot get (A) = (D) imme-
diately from Proposition [7.5.3] since the 7-thickening of a compact set is no longer
compact.

By [35] Proposition 1.5], there exists a metric p on bord X compatible with the
topology such that the map F +— Hull; (F') is a semicontraction with respect to the
Hausdorff metric of (bord X, p). (Finite-dimensionality is not used in any crucial
way in the proof of [35] Proposition 1.5]B and in any case for algebraic hyperbolic
spaces it can be proven by looking at finite-dimensional subsets, as we did in the
proof of Proposition [[53l) We remark that if F = R, then such a metric p can
be prescribed explicitly: if X = B is the ball model, then the Euclidean metric on
bord B C H has this property, due to the fact that geodesics in the ball model are
line segments in H (cf. (ZZ3)

Now let us demonstrate (D). It suffices to show that bordCx = Hulloo(A) is
compact. Since Hullo (A) is by definition closed, it suffices to show that Hullo(A)
is totally bounded with respect to the p metric. Indeed, fix € > 0. Since A is
compact, there is a finite set F. C A such that

AC Na/2(Fs)'

(In this proof, all neighborhoods are taken with respect to the p metric.) Let X, C
X be a finite-dimensional totally geodesic set containing F.. Then A C N, /5(X:).
On the other hand, since X, is compact, there exists a finite set F C X, such that
Xe © Nejao(F)).

Now, our hypothesis on p implies that

Hully (Ng/2(Xe)) € N, jo(Hully (Xe)) = N jo(Xe),

and thus that N_/5(X:) is convex. But A C N /5(X.), so Hullo(A) € N, /o(Xe).
Thus

Hullo (A) € N, /o(Xe) € N(FY).
Since ¢ was arbitrary, this shows that Hull, (A) is totally bounded, completing the
proof. (I

PRrROOF OF (D) = (B). Since property (B) is clearly basepoint-independent,
we may without loss of generality suppose o € Cx. Then (D) = (C) = (B). O

20ne should keep in mind that the Cartan-Hadamard theorem [119] IX, Theorem 3.8] can be
used as a substitute for the Hopf—~Rinow theorem in most circumstances.
3Recall that our “ball model” B is the Klein model rather than the Poincaré model.
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As an example of an application we prove the following corollary.

COROLLARY 7.7.3. Suppose that X is reqularly geodesic. Then any moderately
discrete subgroup of Isom(X) of compact type is strongly discrete.

Proor. If G is a moderately discrete group, then G' 1 C, is moderately discrete
by Observation [5.2.14] and therefore strongly discrete by Propositions [(.2.5] and
[[721 Thus by Observation 5.2.14] G is strongly discrete. O

A well-known characterization of the complement of the limit set in the Stan-
dard Case is that it is the set of points where the action of G is discrete. We extend

this characterization to hyperbolic metric spaces for groups of compact type:

PROPOSITION 7.7.4. Let G < Isom(X) be a strongly discrete group of compact
type. Then the action of G on bord X \ A is strongly discrete in the following sense:
For any set S C bord X \ A satisfying

(7.7.1) D(S,A) > 0,

we have
#geG:g(S)NS # 2} < .

PROOF. By contradiction, suppose that there exists a sequence of distinct
(9n)$° such that g,(S) NS # & for all n € N. Since G is strongly discrete, we
have ||gn|| — oo, and since G is of compact type there exist an increasing sequence
(nk)5° and £4,&_ € A such that g, (0) = & and g, '(0) — ¢—. In the remainder
of the proof we restrict to this subsequence, so that g,(0) — &4 and g, *(0) — &_.

For each n, fix z,, € g, (g.(S) N S), so that x,, g,(z,) € S. Then

D(Inagf)vD(gn(In)ang) > D(SvA) =x 17

and so
(nl€=)os (gn(zn)|E+)o =<4 O.
On the other hand, (g, (0)[£_)s, (gn(0)|£4+ )6 — 00. Applying Gromov’s inequality
gives
(@algn ' (0))o, (gn(2n)lgn(0))o =<4 0
for all n sufficiently large. But then
lgnll = (gn(@n)|0)g, () + (gn(zn)lgn(0))o <+ O,

a contradiction. O



Part 2

The Bishop—Jones theorem



This part will be divided as follows: In Chapter ] we motivate and define
the modified Poincaré exponent of a semigroup, which is used in the statement of
Theorem [[L2.3l In Chapter @ we prove Theorem [[.2.3] and deduce Theorem [[2.7]
from Theorem



CHAPTER 8

The modified Poincaré exponent

In this chapter we define the modified Poincaré exponent of a semigroup. We
first recall the classical notion of the Poincaré exponent, introduced in the Standard
Case by A. F. Beardon in [18]. Although it is usually defined only for groups, the

generalization to semigroups is trivial.

8.1. The Poincaré exponent of a semigroup

DEFINITION 8.1.1. Fix G < Isom(X). For each s > 0, the series
6(G) = Z p—slgll
geG

is called the Poincaré series of the semigroup G in dimension s (or “evaluated at

s”) relative to b. The number
dc =90(G) :=1inf{s > 0: Z4(G) < oo}

is called the Poincaré exponent of the semigroup G relative to b. Here, we let

inf @ = 0.

REMARK 8.1.2. The Poincaré series is usually defined with a summand of e~*/19ll
rather than b=*19ll, The change of exponents here is important because it relates
the Poincaré exponent to the metric D = Dy, defined in Proposition B.6.8 In
the Standard Case, and more generally for CAT(-1) spaces, we have made the
convention that b = e (see §4.1)), so in this case our series reduces to the classical

one.

REMARK 8.1.3. Given G < Isom(X), we may define the orbital counting func-

tion of G to be the function

Nx.c(p) =#{g € G: |lg|l < p}.

129
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The Poincaré series may be written as an integral over the orbital counting function

as follows:
2.(6) =los) Y [ b dp
s Jlal
(811) o) [ 57 Yllgl < ol ¢
0

geG
~ log(b") / b= Nx.a(p) dp.
0

The Poincaré exponent is written in terms of the orbital counting function as
(8.1.2) dg = limsup E log, Nx,c(p)
p—oo P
DEFINITION 8.1.4. A semigroup G = Isom(X) with dg < oo is said to be of
convergence type if X5, (G) < oo. Otherwise, it is said to be of divergence type. In
the case where d¢ = oo, we say that the semigroup is neither of convergence type

nor of divergence type.

The most basic question about the Poincaré exponent is whether it is finite.

For groups, the finiteness of the Poincaré exponent is related to strong discreteness:

OBSERVATION 8.1.5. Fix G < Isom(X). If G is not strongly discrete, then

5@200.

PRrROOF. Fix p > 0 such that #{g € G : ||g|| < p} = oo. Then for all s > 0 we

have
Se(G) = D belolh > N e = oo,
9€G geG
llgll<p llall<p
Since s was arbitrary, we have g = oo. O

REMARK 8.1.6. Although the converse to Observation [R.I.5]holds in the Stan-
dard Case, it fails for infinite-dimensional algebraic hyperbolic spaces; see Example
L5.2.2]

NoTATION 8.1.7. The Poincaré exponent and type can be conveniently com-

bined into a single mathematical object, the Poincaré set
[0,6¢] G is of divergence type
Ag:={s>0:%4(G) =00} =1[0,0¢) G is of convergence type -
[0,00) dg =00
8.2. The modified Poincaré exponent of a semigroup

From a certain perspective, Observation B.1.5] indicates a flaw in the Poincaré

exponent: If G < Isom(X) is not strongly discrete, then the Poincaré exponent is



8.2. THE MODIFIED POINCARE EXPONENT OF A SEMIGROUP 131

always infinity even though there may be more geometric information to capture.
In this section we introduce a modification of the Poincaré exponent which agrees
with the Poincaré exponent in the case where G is strongly discrete, but can be
finite even if G is not strongly discrete.

We begin by defining the modified Poincaré exponent of a locally compact
group G < Isom(X). Let u be a Haar measure on G, and for each s consider the

Poincaré integral
(8.2.1) L(G) = /b—SHgH du(g).

DEFINITION 8.2.1. The modified Poincaré exponent of a locally compact group
G < Isom(X) is the number

6 =0(G) :==inf{s > 0: I,(G) < oo},
where I;(G) is defined by (821)).

EXAMPLE 8.2.2. Let X = H? for some 2 < d < oo, and let G < Isom(X) be
a positive-dimensional Lie subgroup. Then G is locally compact, but not strongly
discrete. Although the Poincaré series diverges for every s, the exponent of con-
vergence of the Poincaré integral (or “modified Poincaré exponent”) is equal to
the Hausdorff dimension of the limit set of G (Theorem [[L2Z3] below), and so in

particular the Poincaré integral converges whenever s > d — 1.

We now proceed to generalize Definition R22.1] to the case where G < Isom(X
is not necessarily locally compact. Fix p > 0, and consider a maximal p-separate
subset S, C G(0). Then we have

U Bx.p/2) € Glo) € |J Bla.p),

€S, €S,
and the former union is disjoint. Now suppose that G is in fact locally compact,
and let v denote the image of Haar measure on G under the map g — g(0). Then

if f is a positive function on X whose logarithm is uniformly continuous, we have
S i@ [ gavs [fas S [ farss Y s
z€s, xS,/ B@.p/2) xS,/ B@.p) z€s,

Thus in some sense, the counting measure on S, is a good approximation to the
measure v. In particular, taking f(z) = b~ 1=l gives

I(G) =xp y_ b7 lel.

€S,

1Hore7 as usual, a p-separated subset of a metric space X is a set S C X such that d(z,y) > p
for any distinct x,y € S. The existence of a maximal p-separated subset of any metric space is
guaranteed by Zorn’s lemma.
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Thus the integral I;(G) converges if and only if the series Zmesp b=l=ll converges.
But the latter series is well-defined even if G is not locally compact. This discussion
shows that the definition of the “modified Poincaré exponent” given in Definition
[B2T] agrees with the following definition:

DEFINITION 8.2.3. Fix G =< Isom(X).

e For each set S C X and s > 0, let

¥ (9) = Z p=sl=ll

€S
A(S) ={s>0:X,(S5) = o0}

5(S) = sup A(S).

o Let

(8.2.2) Ag = [ AS),

p>0 S,

where the second intersection is taken over all maximal p-separated sets
Sp.

e The number gg = sup &G is called the modified Poincaré exponent of
G. If gg € Ag, we say that G is of generalized divergence typeld while if
gg € [0,00) \ Ag, we say that G is of generalized convergence type. Note
that if gg = 00, then G is neither of generalized convergence type nor of

generalized divergence type.

The basic properties of the modified Poincaré exponent are summarized as

follows:

PROPOSITION 8.2.4. Fiz G < Isom(X).
(i) KG C Ag. (In particular gg <dg.)
(ii) If G satisfies

(8.2.3) sup #{g € G : d(g(0),z) < p} < 00 Vp >0,
zeX

then ZG = Agq. (In particular gg =dg.)

(iii) Ifda < oo, then there exist p > 0 and a mazimal p-separated set S, C G(o)
such that #(S, N B) < oo for every bounded set B.

(iv) For all p > 0 sufficiently large and for every mazimal p-separated set

S, € G(o), we have A(S,) = Ag. (In particular 3(S,) = 5(@).)

2We use the adjective “generalized” rather than “modified” because all groups of conver-
gence/divergence type are also of generalized convergence/divergence type; see Corollary [B2.8
below.
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REMARK 8.2.5. If G is a group, then it is clear that (823 is equivalent to
the assertion that G is strongly discrete. If G is not a group, then by analogy we
will say that G is strongly discrete if (82.3) holds. (Recall that in Chapter [l the

various notions of discreteness are defined only for groups.)
PROOF OF PROPOSITION [R72.4]

(i) Indeed, for every s > 0, p > 0, and maximal p-separated set S, we have
%.(S,) < B.(G) and thus A(G) C A(S,) C A(G).

(ii) Fix p > 0, and let S, C G(0) be a maximal p-separated set. For every
x € G(o) there exists y, € S, with d(z,y,) < p. Then for each y € S,

we have
#{z € G(0) 1 ya = y} < M),
where M, is the value of the supremum (8.2.3]). Therefore for each s > 0

we have
¥s(G) = Z psllzll = Z psllv=ll < M, Z psllvll — M,%.(S,).
z€G(0) z€G(0) YyeES,

In particular, ¥4(G) < oo if and only if ¥4(S,) < 0o, i.e. A(G) = A(S,).
Intersecting over p > 0 and S, € G(o) yields A(G) = A(G).
(iii) Take p and S, such that §(S,) < oo.

Before proving (iv), we need a lemma:

LEMMA 8.2.6. Fiz p1,p2 > 0 with pa > 2p1. Let S1 C G(0) be a pl—netE and
let So C G(0) be a pa-separated set. Then

(8.2.4) A(S) € A(Sy).

PROOF. Since S; is a pi-net, for every y € Sa, there exists x, € S; with
d(y,zy) < p1. If &y = x, for some y,z € S, then d(y, z) < 2p1 < ps and since Sy
is pa-separated we have y = z. Thus the map y — z, is injective. It follows that

for every s > 0, we have

Ye(Sy) = Z psllvll = Z pslzll < Z p=slzll — ¥.(S1),

YyES2 yE Sy €S

demonstrating (8.2.4)). <

(iv) The statement is trivial if S¢: = 00. So suppose that 6a < 0o, and let p, S,
be as in (iii). Fix p’ > 2p and a maximal p’-separated set S,y C G(0), and
we will show that A(S,) = Ag. The inclusion D follows by definition.

3Here7 as usual, a p-net in a metric space X is a subset S C X such that X = N,(S). Note that
every maximal p-separated set is a p-net (but not conversely).
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To prove the reverse direction, fix p” > 0 and a maximal p”-separated set
Sy, and we will show that A(S,) € A(S,r).
Let ' = 5,N B(o,p" + p); then #(F) < co. We then set
S}, = U 9:(F)
JEESP//
where for each x € S,», * = g,(0). Then for all s > 0,

ES(SPN): Z b_sllwn =y Z Zb—sHmH

IGSP// IGSP// yeF

0 33 psleol

IGSpN yeF

and therefore A(S,/) = A(S)). But Sy, is a p-net, so by Lemma B.2.6] we
have A(S,) € A(S},). This completes the proof.
(]

Combining with Observation yields the following;:
COROLLARY 8.2.7. Suppose that G is a group. If A # A then
§ <6 =o0.

COROLLARY 8.2.8. If a group G is of convergence or divergence type, then it

is also of generalized convergence or divergence type, respectively.

We will call a group G < Isom(X) Poincaré regular if Ag = A¢, and Poincaré
irreqular otherwise. A list of sufficient conditions for Poincaré regularity is given in
Proposition [@.3.1] below. Conversely, several examples of Poincaré irregular groups
may be found in Section [[3.4]



CHAPTER 9

Generalization of the Bishop—Jones theorem

In this chapter we prove Theorem [[.2.3] the first part of which states that if

G = Isom(X) is a nonelementary semigroup, then
CZ2) dimy (A;) = dimpg (Ay) = dimg (A N Ary) =0

for some o > 0. Our strategy is to prove that dimpy(Ay N Ay ) < dimg(Ay,) <
dimpg(A;) < 5 < dimpg (A N Ars) for some o > 0. The first two inequalities are

obvious. The third we prove now, and the proof of the fourth inequality will occupy

§90.1H0.2)

LEMMA 9.0.9. For G < Isom(X), we have

dimpg (A,) < 0.

PROOF. It suffices to show that for each ¢ > 0 and for each s > g, we have
dimg(Ays) < s. Fix o >0 and s > 5. Then there exists p > 0 and a maximal
p-separated set S, C G(o) such that s > §(5,), which implies that ¥,(S,) < cc.
For each z € S, let P, = Shad(xz, o + p).

CrLAIM 9.0.10.

£ € Ao = £ € P, for infinitely many x € S,.

PROOF. Fix £ € A;,. Then there exists a sequence g,(0) — £ such that for
all n € N we have £ € Shad(gn(0),0). For each n, let z, € S, be such that
d(gn(0),2,) < p; such an z,, exists since S, is maximal p-separated. Then by (d)
of Proposition B.3.3l we have { € P, = Shad(xy,, 0 + p).

To complete the proof of Claim [3.0.10] we need to show that the collection
(5,)$° is infinite. Indeed, if x,, € F for some finite F' and for all n € N, then we
would have d(g,(0),F) < p for all n € N. This would imply that the sequence
(gn(0))$° is bounded, contradicting that g, (o) — &. <

We next observe that by the Diameter of Shadows Lemma [£.5.8 we have

Z Diam®(P;) Sx,o.p Z b=elell = 1(S,) < 0.

reS, €S,

135
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Thus by the Hausdorff-Cantelli lemma [24] Lemma 3.10], we have H*(A; ) = 0,
and thus dimg (A o) < s.

9.1. Partition structures

In this section we introduce the notion of a partition structure, an important
technical tool for proving Theorem [[L2.31 We state some theorems about these
structures, which will be proven in subsequent sections, and then use them to
prove Theorem [[.2.3]

Throughout this section, (Z, D) denotes a metric space. We will constantly

have in mind the special case Z = 0X, D = Dy,.

NoTAaTION 9.1.1. Let -
N = N
n=0
If w € N* UNY, then we denote by |w| the unique element of N U {co} such that
w € NI“l and call |w]| the length of w. For each r € N, we denote the initial segment
of w of length r by
wi = (wp)] € N".

For two words w,7 € N™, let w A 7 denote their longest common initial segment,
and let

d2 (o.), T) = 2_‘“)/\7—'.

Then (NN, ds) is a metric space.

DEFINITION 9.1.2. A ¢ree on N is a set T" C N* which is closed under initial
segments. (Not to be confused with the various notions of “trees” introduced in

Section B11)

NOTATION 9.1.3. If T is a tree on N, then we denote its set of infinite branches
by
T(0) :={weNN:wl'eT V¥ne N}
On the other hand, for n € N we let
T(n):=TNN"
For each w € T, we denote the set of its children by

T(w):={a€eN:waeT}.

L Much of the material for this section has been taken (with modifications) from [73} §5]. In [73]
we also included as standing assumptions that G was strongly discrete and of general type (see
Definitions [5.2.1] and [6.2.T3]). Thus some propositions which appear to have the exact same state-
ment are in fact stronger in this monograph than in [73]. Specifically, this applies to Proposition
and Lemmas and
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DEFINITION 9.1.4. A partition structure on Z consists of a tree T' C N* together
with a collection of closed subsets (P, )wer of Z, each having positive diameter and
enjoying the following properties:

(I) If w € T is an initial segment of 7 € T then P, C P,. If neither w nor 7
is an initial segment of the other then P, NP, = &.
(IT) For each w € T let
D,, = Diam(P,,).
There exist Kk > 0 and 0 < A < 1 such that for all w € T and for all

a € T(w), we have
(9.1.1) D(Poa, Z \ Pn) > kD,
and
(9.1.2) KDy < Dya < AD,.
Fix s > 0. The partition structure (P, )yer is called s-thick if for all w € T,
(9.1.3) > D, =D,
a€T(w)

DEFINITION 9.1.5. Given a partition structure (P, )wer, a substructure of

(Pu)wer is a partition structure of the form (Py), .7, where T C T is a subtree.

OBSERVATION 9.1.6. Let (P,,),er be a partition structure on a complete metric
space (Z, D). For each w € T'(c0), the set
) P
neN
is a singleton. If we define 7(w) to be the unique member of this set, then the map
7 : T(00) — Z is continuous. (In fact, it was shown in [73], Lemma 5.11] that 7 is

quasisymmetric.)

DEFINITION 9.1.7. The set 7(T(00)) is called the limit set of the partition

structure.

We remark that a large class of examples of partition structures comes from the
theory of conformal iterated function systems [128] (or in fact even graph directed
Markov systems [129]) satisfying the strong separation condition (also known as the
disconnected open set condition [I50]; see also [71], where the limit sets of iterated
function systems satisfying the strong separation condition are called dust-like).
Indeed, the notion of a partition structure was intended primarily to generalize
these examples. The difference is that in a partition structure, the sets (P,), do
not necessarily have to be defined by dynamical means. We also note that if Z = R¢

for some d € N, and if (P,)uer is a partition structure on Z, then the tree T has



138 9. GENERALIZATION OF THE BISHOP-JONES THEOREM

bounded degree, meaning that there exists N < oo such that #(T(w)) < N for
every w € T

We will now state two propositions about partition structures and then use
them to prove Theorem[[.2.3] Theorem [Q.1.8 will be proven below, and Proposition
will be proven in the following section.

THEOREM 9.1.8 ([73] Theorem 5.12]). Fiz s > 0. Then any s-thick partition
structure (Py)wer on a complete metric space (Z, D) has a substructure (Py,) o7
whose limit set is Ahlfors s-reqular. Furthermore the tree T can be chosen so that
for each w € T, we have that T(w) is an initial segment of T (w), i.e. T(w) =

T(w)N{1,...,N,} for some N, € N.

After these theorems about partition structures on an abstract metric space,

we return to our more geometric setting of a Gromov triple (X, o0,b):

ProposITION 9.1.9 (Cf. [73] Lemma 5.13], Footnote ). Let G < Isom(X) be
nonelementary. Then for all o > 0 sufficiently large and for every 0 < s < gg,
there exist 7 > 0, a tree T on N, and an embedding T > w — x, € G(0) such that
if

P, := Shad(xy,,0),
then (Pu)wer is an s-thick partition structure on (0X, D), whose limit set is a
subset of Ayr.r N As 6.

PROOF OF THEOREM [[.2.3] USING THEOREM & PROPOSITION
We first demonstrate the “moreover” clause. Fix ¢ > 0 large enough such that
Proposition [0.1.9 holds. Fix 0 < s < g, and let (P, )wer be the partition structure
guaranteed by Proposition [@.1.91 Since this structure is s-thick, applying Theorem
yields a substructure (’Pw)we:; whose limit set Js C Ayr,r N A; s is Ahlfors
s-regular, where 7 > 0 is as in Proposition Since 0 < s < 0 was arbitrary,

¢

this completes the proof of the “moreover” clause.

To demonstrate ([LZJ), note that the inequality dimg(A,) < & has already
been established (Lemma [0.0.9]), and that the inequalities

dimg (Auyr N Arp) < dimp(Ayy) < dimg(Ay)
are obvious. Thus it suffices to show that
dimp (A N Ay ) > 6.
But the mass distribution principle guarantees that

dimpg (A N Ay o) > dimpy (Js) > s

for each 0 < s < 6. This completes the proof. O
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Proor oF THEOREM [0.T.8] We will recursively define a sequence of maps
tn 2 T(n) — [0,1]
with the following consistency property:
(9.1.4) @)= 3 i (wa).
a€T(w)
The Kolmogorov consistency theorem will then guarantee the existence of a measure

1t on T'(c0) satisfying

(9.1.5) f(w]) = pn (w)

for each w € T'(n).
Let ¢ =1— A° > 0, where A is as in (@.1.2)). For each n € N, we will demand
of our function pu, the following property: for all w € T'(n), if p,(w) > 0, then

(9.1.6) cD;, < pn(w) < D).

We now begin our recursion. For the case n = 0, let uo(@) := ¢Dgy; (@LE) is
clearly satisfied.

For the inductive step, fix n € N and suppose that u, has been constructed
satisfying (@.1.6). Fix w € T(n), and suppose that p,(w) > 0. Formulas (@3]

and (@.L0) imply that
Z Dwa > ,Um )

a€T(w)
Let N, € T(w) be the smallest integer such that

(9.1.7) D T (% )E

a<N,

Then the minimality of N, says precisely that

Z Dwa<:u”l )

a<N,
Using the above, (@1.7), and (Iml), we have
(9.1.8) < Y Di, < pnlw) + Dl < pn(w) + ADE.

a<N,

For each a € T(w) with a > N,,, let pp11(wa) = 0, and for each a < N, let

D(,Sua:u”l
pnt1(wa) = 27()
b< N,

Obviously, pi,+1 defined in this way satisfies (@14). Let us prove that (O.1.0)
holds (of course, with n = n + 1). The second inequality follows directly from the

20Obviously, this and similar sums are restricted to T'(w).
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definition of p,41 and from (@I7). Using (@L8), @I0) (with n = n), and the
equation ¢ = 1 — \*, we deduce the first inequality as follows:
(W) + XDy T (W) + XDy

2\
>D;, |1—
> D |1

Hn+1 (wa) >

=cD},.
The proof of ([@L0) (with n = n 4+ 1) is complete. This completes the recursive

step.
Let

T = U {weT(n): pin(w) > 0}.

Clearly, the limit set of the partition structure (P,) 7 is exactly the topological
support of p := 7[p], where i is defined by ([@IE). Furthermore, for each w € T,
we have T'(w) = T(w)N{1,...,N,}. Thus, to complete the proof of Theorem I.T.8]
it suffices to show that the measure p is Ahlfors s-regular.

To this end, fix z = 7(w) € Supp(p) and 0 < r < kDg, where £ is as in (@I1])

and ([@I2]). For convenience of notation let

Pp :=Pur, Dy := Diam(P,),
and let n € N be the largest integer such that » < kD,,. We have
(9.1.9) k2D, < kDpyy <1 < KD,

(The first inequality comes from (@I2]), whereas the latter two come from the
definition of r.)
We now claim that
B(z,r) C Py,

Indeed, by contradiction suppose that w € B(z,r) \ P,. By @ILI) we have
D(z,w) > D(2,Z\ Pp) > Dy, > r

which contradicts the fact that w € B(z,r).
Let k € N be large enough so that A\¥ < x2. It follows from (@.1.9) and repeated
applications of the second inequality of ([@.I1.2]) that

DnJrk < /\an < KQDn < T,

and thus
Pr+k € B(z,7) C Py.
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Thus, invoking ([@.I1.6]), we get
(9.1.10) (1= X)D5 4 < plPass) < u(B(z,7)) < u(Py) < D3,

On the other hand, it follows from (@.I.9]) and repeated applications of the first
inequality of (@I.2) that

(9.1.11) Dpyy > k¥Dy > ¥ 1,

Combining (@T9), (OII0), and @III) yields
1= M) FDps < (B2, 7)) < k257"
( 1(B(z,

)

i.e. u is Ahlfors s-regular. This completes the proof of Theorem O

9.2. A partition structure on 90X

We begin by stating our key lemma.

LEMMA 9.2.1 (Construction of children; cf. [73l, Lemma 5.14], Footnote[Il). Let
G = Isom(X) be nonelementary. Then for all o > 0 sufficiently large, for every
0<s < gg, for every 0 < X < 1, and for every w € G(0), there exists a finite
subset T'(w) C G(o) (the children of w) such that if we let
Py := Shad(z, o)
D, := Diam(P;)
then the following hold:
(i) The family (Py)zer(w) consists of pairwise disjoint shadows contained in
Puw-
(ii) There exists k > 0 independent of w such that for all x € T(w),
D(Py,0X \ Pu) > D,
KDy < Dy < ADy,.
(i)
> D;>D;.

z€T (w)

It is not too hard to deduce Proposition 0.1.9] from Lemma @271 We do it

now:

PROOF OF PROPOSITION ASSUMING LEMMA Let o > 0 be large
enough so that Lemma holds. Fix 0 < s < 4, and let A = 1/2. For each
w € G(0), let (yn(w))ﬁ)’:@ be an enumeration of T'(w). Define a tree T C N* and
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FIGURE 9.2.1. The strategy for the proof of Lemma [0.211 To
construct a collection of “children” of the point w = g(0), we “pull

back” the entire picture via ¢g~!. In the pulled-back picture, the

Big Shadows Lemma .5 7lguarantees the existence of many points
z € G(o) such that Shad,(z,0) C Shad,(o,0), where z = g~1(0).
(Cf. Lemma below.) These children can then be pushed
forward via g to get children of w.

a collection (z,)wer inductively as follows:
Ty =0
T(w)=A{1,...,N(zx)}
Twa = Ya(Tw)-

Then the conclusion of Lemma precisely implies that (P, := Ps_)wer is an
s-thick partition structure on (90X, D).

To complete the proof, we must show that the limit set of the partition structure
(Pu)wer is contained in Ay, r N A, for some 7 > 0. Indeed, fix w € T(c0). Then
for each n € N, m(w) € Pyp = Shad(z,n,0) and [[zwy| — oo. So, the sequence

(T4 )7° converges o-radially to 7(w). On the other hand,

Ao, Tyyne1) <o Bo(ynt1, Tup) (by E52))
Dwn+1

=4+, —log, Dl (by Lemma £.5.8)
Wi

< —logy(k) <4, 0. (by @1.2)

Thus the sequence (2,7 )7° converges to 7(w) T-uniformly radially, where 7 depends

only on ¢ and x (which in turn depends on s). O
The proof of Lemma [0.2.T] will proceed through a series of lemmas.

LEMMA 9.2.2 (Cf. [73l Lemma 5.15)). Fiz 7 > 0, and let S, C G(o) be a

maximal T-separated subset. Let B C bord X be an open set which intersects A.
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FIGURE 9.2.2. The sets C,, for n € Z.

Then for every 0 <t < g, the series
¥:(S-NB)
diverges.
PrOOF. By Proposition [7.4.6] there exists a loxodromic isometry g € G such
that g+ € B. Let £(g) = log, ¢'(9—) = —log, ¢’(9+) > 0, and let the functions

T="Tg, g .00 ="0g. 4 o beasin Section Fix N € N large to be determined,
let K = N{(g), and for each n € Z let

Cpn={zeX:nk<r(z)<(n+1)k}

(cf. Figure @.22). Let

Cio=J Cn, Cia=JCn
n>0 n>0
even odd

co=J ¢ C_1={JCn
n<0 n<0
even odd

Fix p > 0, and let S, C G(0) be a maximal p-separated set. Since ¥:(S,) = oo,
one of the series £:(S, N C o), Le(Sp, N Ch 1), (S, NC_ ), and E4(S, N C_ 1)

must diverge. By way of illustration let us consider the case where

Zt(Sp N O—,O) = OQ.
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Let

4, = ¢""(CnnS,).

n<0
even

CLAmM 9.2.3. ¥;(4,) = 0.

PrROOF. Fix n = —m < 0 even and x € C,,. Then by (£6.1)),

r(g®V™ (1)) <1 2Nmi(g) + r(x) = 2mi + r(x) <4 25— mp = M

and thus

On the other hand, by [@6.2) we have 6(g?V™(z)

Lemma [4.6.2] gives

Thus

(g™ (2))] <4 (@)

d(0, ) =4 d(0,9*™ (2)).

Si(A,) = Z Z p—tllg®™ ™ (@)

m>0zxzcC_,,NS,
even

e Y el

m>0zeC_,,NS,
even

= Et(C_)Q n Sp) = 0Q.

CLAIM 9.2.4. A, is a p-separated set.

Proor. Fix yi,y2 € A,. Then for some mi,mo > 0 even, we have z; :

g HNmi(yy € C_pn, (i =1,2). If ny = ng, then we have

since 1,22 € S, and S, is p-separated. So suppose ni # ng; without loss

d(y1,y2) = d(z1,x2) > p,

generality we may assume n; > ng. Then by ([@6.I]) we have

r(y1) — r(y2)

=y 2Nmyl(g) 4+ r(x1) — (2Nmal(g) + 7(z2))

AV

v

2k(my —ma) +r(z1) — r(x2)
2k[my — ma] + k(=mq) — K(=ma + 1)
H(ml — Mo — 1)

k= N{(g).

|
) <4 6(z). Combining with

of

By choosing N sufficiently large, we may guarantee that r(y;) — r(y2) > p, which

implies d(y1,y2) > p.

<
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For all z € N,(A,), we have r(z) 24 0. Thus g— ¢ N,(A,). So by Theorem
[E110, we can find n € N such that N,(¢"(4,)) C B.
Let S,/ € G(0) be a maximal p/2-separated set. By Lemma B.2.6] we have

Et(Sp2 N B) Zx (9" (A4p)) =<x Be(4,) = oo

Since p > 0 was arbitrary, this completes the proof. O

LEMMA 9.2.5 (Cf. [73] Sublemma 5.17], Footnote ). Let B C bord X be an
open set which intersects A. For all o > 0 sufficiently large and for all 0 < s < g,
there exists a set Sp C G(0) N B such that for all z € X \ B,

(i) If
P = Shad,(z,0),

then the family (P, z)wesy consists of pairwise disjoint shadows contained

n P, oNB.
(ii) There exists k > 0 independent of z (but depending on s) such that for all
T € SB,
(9.2.1) Dy .(Pz,z,0X \ P.,0) > kDiam,(P.,,)
(9.2.2) x Diam, (P,,,) < Diam, (P, ) < ADiam, (P, ,).

Z Diam; (’Pz)m) > Diam} (Pz,o)-

€SB
PrOOF. Let B C bord X be an open set which contains a point € A. Choose
p > 0 large enough so that

{z € bord X : (z|n), > p} C B.

Then fix 0 > 0 large to be determined, depending only on p. Fix p > p large to be
determined, depending only on p and o.
Fix 0 <s <6 and z € X \ B. For all z € X we have

0 =1 (zIn)o 2+ min((zfn)o, (2l2)o).

Let
B={reX: (aln,>p}

If p is chosen large enough, then we have
(9.2.3) (x|2)o =<4, 0,

for all z € B. We emphasize that the implied constants of these asymptotics are
independent of both z and s.
For each n € N let
A, := B(o,n)\ B(o,n — 1)
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be the nth annulus centered at o. We shall need the following variant of the Inter-

secting Shadows Lemma;:

CLAIM 9.2.6. There exists T > 0 depending on p and o such that for alln € N
and for all x,y € A, N E, if
PowNPey # 4,
then
d(z,y) <T.

PrOOF. Without loss of generality suppose d(z,y) > d(z,z). Then by the
Intersecting Shadows Lemma 5.4 we have
d($, y) =+,0 Bz(yax) = Bo(ya ;C) + 2<x|2>0 - 2<y|2>o-

Now | B,(y,x)| <1 since z,y € A,,. On the other hand, since z,y € E, we have

(z2)0 <4,p (Yl2)o <+, 0.

Combining gives
d({E,y) x"1‘,/),(7' 07
and letting 7 be the implied constant finishes the proof. <

Fix M > 0 large to be determined, depending on p and 7 (and thus implicitly

on o). Let S, C G(0) be a maximal 7-separated set. Fix ¢ € (s,d); then by Lemma
9.2.2] we have

00 =%4(S, NB)= Y %u(S-NBNA,)

n=1

i S bt

n=1gze5.NBNA,

o0

< St S peslel,

n=1 z€S,NBNA,
It follows that there exist arbitrarily large numbers n € N such that
(9.2.4) > vl
z€S,NBNA,
Fix such an n, also to be determined, depending on A, p, p, and M (and thus
implicitly on 7 and o), and let Sgp = S, N Bn A,. To complete the proof, we

demonstrate (i)-(iii).

PROOF OF (i). In order to see that the shadows (P, )zes, are pairwise dis-
joint, suppose that =,y € Sp are such that P, , NP, , # &g. By Claim [0.2.6] we
have d(z,y) < 7. Since Sp is T-separated, this implies z = y.
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Fix z € Sp. Using ([@23)) and the fact that € A,, we have
(0l2)a <4 [lz] = (z[2)o <45 2]l <4 n.
Thus for all £ € P, 4,
0 =40 (2[§)a 24 min((0|z)z; (0l€)z) <+ min(n, (0[&)z);
taking n sufficiently large (depending on o), this gives
(0l€)z <450,
from which it follows that
(21€)0 =+ d(0,7) = (0l¢)a =10 .
Therefore, since x € E, we get
(€lmo 2+ min((z|€)o, (x[n)o) Z+,0 min(n, p).

Thus & € B as long as p and n are large enough (depending on o). Thus P, , C B.
Finally, note that we do not need to prove that P, , C P, ,, since it is implied

by (@21 which we prove below.
<

PROOF OF (ii). Take any « € Sg. Then by [@23]), we have
(9.2.5) d(z, z) — ||zl = [lz]| = 2(z]2)0 =4 p [|2]| <4 .

Combining with the Diameter of Shadows Lemma [£5.8] gives

Diam.(P.,) b 4=

9.2.6 =y o
(9:26) Diam, (P,,) ~ 7 b=d(z0)

— —n
=y, b

Thus by choosing n sufficiently large depending on o, A, and p (and satisfying
@Z4)), we guarantee that the second inequality of ([@2.2) holds. On the other
hand, once n is chosen, ([@.2.6]) guarantees that if we choose x sufficiently small,
then the first inequality of (@.2.2)) holds.
In order to prove (@2)), let £ € P, , and let v € X \ P, ,. We have

(#[€)z <4 d(z,2) = (2[€)e 2 d(z,2) —0

(ol7)z =<4 llzll = (0l§)e < |I2l| — o
Also, by (@Z3) we have

(o). =4 2]l = (2|2)o =+, [I12-
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Applying Gromov’s inequality twice and then applying (@21 gives

12l = o 2+ {ol7)= 2+ min ((ofz), (z[€)=, (€]7)2)
Zot.p min ([|z]], d(z, 2) — 0, (€]7)-)
=y min(|[z]}, 2| +n =0, (¢])2) -
By choosing n and o sufficiently large (depending on p), we can guarantee that nei-

ther of the first two expressions can represent the minimum without contradicting

the inequality. Thus
12l = o 240 (€l7)

exponentiating and the Diameter of Shadows Lemma 5.8 give
Dy (6,7) 25, b-UEI=) = b=zl < | Diam, (P, ).

Thus we may choose x small enough, depending on p and o, so that (@ZT]) holds.
<

PROOF OF (iii).

Z Diam:(P. ) <« Z psd(zm) (by the Diameter of Shadows Lemma)

rESB z€SR

<p b7 3 e (by @23)

TESE

> Mp =0 (by (2.2.4))
<x M Diam}(P,,). (by the Diameter of Shadows Lemma)

Letting M be larger than the implied constant yields the result.

We may now complete the proof of Lemma [0.2.T

PROOF OF LEMMA Let 11,712 € A be distinct points, and let B; and Bs
be disjoint neighborhoods of 1; and 72, respectively. Let o > 0 be large enough so
that Lemma [0.2.5l holds for both By and Bs. Fix 0 < s < g, and let S7 C G(o)N By
and S2 C G(0) N B be the sets guaranteed by Lemma Now suppose that
w = gu(0) € G(0). Let z = g, (0). Then either 2 ¢ By or z ¢ Ba; say z ¢ B;. Let
T(w) = gu(S;); then (i)-(iii) of Lemma exactly guarantee (i)-(iii) of Lemma
9.2.11 O

9.3. Sufficient conditions for Poincaré regularity

We end this chapter by relating the modified Poincaré exponent to the classical
Poincaré exponent under certain additional assumptions, thus completing the proof
of Theorem [[.2.7]
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PROPOSITION 9.3.1. Let G < Isom(X) be nonelementary, and assume either
that

(1) X is regularly geodesic and G is moderately discrete,

(2) X is an algebraic hyperbolic space and G is weakly discrete, or that

(3) X is an algebraic hyperbolic space and G is COT-discrete and acts irre-
ducibly.

Then G is Poincaré regular.

REMARK 9.3.2. Example shows that Proposition cannot be im-
proved by replacing “COT” with “UOT”, Example shows that Proposition
0.3 cannot be improved by removing the assumption that G acts irreducibly, Ex-
ample [[3.4.1] shows that Proposition cannot be improved by removing the
hypothesis that X is an algebraic hyperbolic space from (ii), and Example [3.4.4]
shows that Proposition [0.3.1] cannot be improved by removing the assumption that
X is regularly geodesic.

We begin with the following observation:

OBSERVATION 9.3.3. If (3) implies that G is Poincaré regular, then (2) does as

well.

PROOF. Suppose (2) holds, and let S be the smallest totally geodesic subset of
bord X which contains A (cf. Lemma[ZZF]). Since G is nonelementary, V := SNX
is nonempty; it is clear that V' is G-invariant. By Observation[5.2.14] the action G 1
V' is weakly discrete. By Proposition 5.2.7, G 1 V' is COT-discrete. Furthermore, G
acts irreducibly on V because of the way V was defined (cf. Proposition[7.6.3]). Thus
(3) holds for the action G 1 V, which by our hypothesis implies Ag = Ac (since the

Poincaré set and modified Poincaré set are clearly stable under restrictions). O

We now proceed to prove that (1) and (3) each imply that G is Poincaré regular.
By contradiction, let us suppose that G is Poincaré irregular. By Proposition
B24(ii), we have that G is not strongly discrete and thus

gg<6g=oo.

This gives us two contrasting behaviors: On one hand, by Proposition B2Z4Y(iii),
there exist p > 0 and a maximal p-separated set S, C G(o0) so that S, does not
contain an bounded infinite set. On the other hand, since G is not strongly discrete,
there exists o > 0 such that #(G,) = oo, where

Gy :={g9€G:g(o) € B(o,0)}.

CLAIM 9.3.4. For every € € A, the orbit G,(§) is precompact.
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PROOF. Suppose not. Then the set G, (&) is complete (with respect to the
metric D) but not compact. It follows that G,(§), and thus also G, (&), is not
totally bounded. So there exists ¢ > 0 and an infinite e-separated subset (g, (§))3°.

Fix L large to be determined. Since £ € A, we can find z € G(0) such that

(x]€)o = L.

SUBCLAIM 9.3.5. By choosing L large enough we can ensure
d(gm (), gn(@)) = 2p Ym,n € N.
PROOF. By (d) of Proposition B:3.3]

(gn(2)]gn(§))o =+t,0 <gn(‘r)|gn(§)>gn(0) = (z[§)o > L,

and thus
D(gn(x), gn(£)) Sx,o bt

If L is large enough, then this implies

D(gn(x),90(§)) < /3.

Since by construction the sequence (g, (£))$° is e-separated, we also have

D(Qm(g)vgn(g)) > €

and then the triangle inequality gives

D(gm (), gn(x)) > €/3,

or, taking logarithms,

<gm(x)|gn(x)>o St 1Ogb(‘g/g)'
Now we also have
lgn (@)l <+, llzll = (2|€)0 = L

and therefore

d(gm (), 9n(2)) = [[gm(@)]| + gn (@) — 2(gm(x)|gn(2))o
24,0 2L —2(—logy(/3)).

Thus by choosing L sufficiently large, we ensure that d(g,, (), gn(x)) > 2p.
<

Recall that S, is a maximal p-separated set. Thus for each n € N, we can find
Yn € S, with d(gn (), yn) < p. Then the subclaim implies y,, # yy, for n #m. But
on the other hand
[ynll < llzll +o+p VneN,

which implies that S, contains a bounded infinite set, a contradiction. (|
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We now proceed to disprove the hypotheses (1) and (3) of Proposition 0.31]
Thus if either of these hypotheses are assumed, we have a contradiction which

finishes the proof.

PROOF THAT (1) CANNOT HOLD. Since G is assumed to be nonelementary, we
can find distinct points &1, &2 € A. By Claim [0:334], there exist a sequence (g,)$° in
G, and points 11,72 € A such that

gn(&i) = ni-
n
Next, choose a point x € [£1,&2]. For each n € N, we have

gn(2) € [gn (1), 9n(E2)]-

Thus since X is regularly geodesic there exist a sequence (nj)$° and a point z €
[m1,m2] such that

Since g, € G, Vn, the sequence (g,(z));° is bounded and thus z € X. By
contradiction, suppose that G is moderately discrete, and fix ¢ > 0 satisfying
E22). For all m,n € N large enough so that g, (z),gn(z) € B(z,¢/2), we have
d(x, g, gn (7)) = d(gm(x), gn(z)) < e. Thus for some N € N, we have

#{g;lgn :m,n > N} < oo.

This is clearly a contradiction. (]

PROOF THAT (3) CANNOT HOLD. Now we assume that X is an algebraic hy-
perbolic space, say X = H = Hf, and that G acts irreducibly on X. Using the
identification

Isom(H) = 0*(£; Q)/ ~,
(Theorem [Z33.3)), for each g € G, let T, € O*(L; Q) be a representative of g. Recall

(Lemma ZZ1T) that
Tyl = 1T = el

so since g € G, we have ||Ty|| = [T, 1] < b°. In particular, the family (Ty)geq,
acts equicontinuously on L.

For simplicity of exposition, in the following proof we will assume that X
is separable. (In the non-separable case, the reader should use nets instead of
sequences.) It follows that A C 90X is also separable; let (& = [xx])$° be a dense
sequence, with xj, € L, ||xz| = 1.



152 9. GENERALIZATION OF THE BISHOP-JONES THEOREM

CLAIM 9.3.6. There exists a sequence of distinct elements (gn)3° in G, such
that the following hold:
Ty — vy € £\ {0}
T, xe] = v € £\ {0}

o(T,,) — o € Aut(F).

Proor. For each k£ € N let

Ke=A{y € L\{0}: [y] € G5(&) and 077 < [ly[| < b7},

and let

Then by Claim [0.34] (and general topology), K is a compact metrizable space, and

is in particular sequentially compact. Now for each g € G,,
b= < || Tylxa]ll < b7 and b~ < || T, fxa]l| < 07
and thus
bg = ((Tg(xk))(fov (T;l(xk))(foaa(Tg)) ek,

and so since #(G,) = oo, there exists a sequence of distinct elements (g,)5° in G,

so that the sequence (¢g, )7° converges to a point

(0 i e) e k.

Writing out what this means yields the claim. <

Let T,, = Ty, and o, = o(T,) = 0. We claim that the sequence (T},)7° is

convergent in the strong operator topology. Let
K={acl:o(a)=a}
V = {x € L : the sequence (T,[x])]° converges}.

Then K is an R-subalgebra of F, and V is a K-module. Given x,y € V, by Obser-
vation we have

UH(BQ(Xay)) = BQ(TnX,Tny) 7 BQ(Xay)a

so B(x,y) € K. Thus V satisfies (Z4.I). On the other hand, since the family
(T},)$° acts equicontinuously on £, the set V' is closed. Thus [V]Nbord X is totally
geodesic. But by construction, & € [V] for all k, and so

AC[V]
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Therefore, since by hypothesis G acts irreducibly, it follows that [V] = X, i.e.
V = L (Proposition [[.6.3]). So for every x € L, the sequence (T},(x));° converges.
Thus

To — T e L(L)

in the strong operator topology. (The boundedness of the operator T follows
from the uniform boundedness of the operators (7,,)7°.) We do not yet know that
T is invertible. But a similar argument yields that

7' =17 e L),
and since the sequences (T,,)° and (7, 1)$° are equicontinuous, we have
THTE) = lim 7,77 =1,
n—roo

and similarly 7)T) = I. Thus T and T(-) are inverses of each other and in
particular

T € 0*(£; Q).
Let h = [T™M)] € Tsom(X). By Proposition 5.I.2, we have g, — h in the compact-
open topology. Thus, Lemma (2.8 completes the proof. 0






Part 3

Examples



This part will be divided as follows: In Chapter [[0] we consider semigroups of
isometries which can be written as the “Schottky product” of two subsemigroups.
Next, we analyze in detail the class of parabolic groups of isometries in Chapter
Il In Chapter I2] we define a subclass of the class of groups of isometries which
we call geometrically finite, generalizing known results from the Standard Case.
In Chapter [[3] we provide a list of examples whose main importance is that they
are counterexamples to certain implications; however, these examples are often
geometrically interesting in their own right. Finally, in Chapter [[4 we consider
methods of constructing R-trees which admit natural group actions, including what

we call the “stapling method”.



CHAPTER 10

Schottky products

An important tool for constructing examples of discrete subgroups of Isom(X)
is the technique of Schottky products. Schottky groups are a special case of Schottky
products; cf. Definition [0.2.4] In this chapter we explain the basics of Schottky
products on hyperbolic metric spaces, and give several important examples. We
intend to give a more comprehensive account of Schottky products in [57], where

we will study their relation to pseudo-Markov systems (defined in [159]).

REMARK 10.0.7. Throughout this chapter, E' denotes an index set with at least
two elements. There are no other restrictions on the cardinality of F; in particular,

E may be infinite.

10.1. Free products

We provide a brief review of the theory of free products, mainly to fix notation.
Let (T'y)acr be a collection of nontrivial abstract semigroups. Let
T = [T @\ {e}) = [J{a} x Ta\{e}).
ackE acE
Let (T'g)* denote the set of finite words with letters in I'g, including the empty
word, which we denote by &. The free product of (I'y)eck, denoted *,e Ty, is the
set

{g=(a1,m) (@n, ) € TE) ta; # a1 Yi=1,...,n—1, n >0},

together with the operation of multiplication defined as follows: To multiply two
words g,h € *,cgl'y, begin by concatenating them. The concatenation may no
longer satisfy a; # a;+1 for all 7; namely, this condition may fail at the point where
the two words are joined. Reduce the concatenated word g * h using the rule
(a,m172) Mmy2#e
(a771)(a772) = :
z M2 =€
The word may require multiple reductions in order to satisfy a; # a;y1. The
reduced form of g * h will be denoted gh.
One verifies that the operation of multiplication defined above is associative, so

that the free product *,cgl’, is a semigroup. If (T'y)qcr are groups, then x,cgly

157
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is a group. The inclusion maps ¢q : I'y = *4epl’q defined by ta(y) = (a,v) are
homomorphisms, and *,c gLy = (t4(Ta))acE-

An important fact about free products is their universal property: Given any
semigroup I' and any collection of homomorphisms (7, : 'y, — T'), there exists a
unique homomorphism 7 : *,cgl’y — ' such that 7, = wo¢, for all a. For example,
if (Ty)aer are subsemigroups of I' and (7,)ecp are the identity inclusions, then
m((a1,71)  (an,Yn)) = Y1+ Yn. We will call the map 7 the natural map from
*qcplq to I,

REMARK 10.1.1. We will use the notation I'y * - - - x I', to denote *,¢c(1,... ) la-

The semigroups

Fo(Z)=Zx%---xZ and F,,(N) = Nx---xN
—_—— ~—_———
n times n times
are called the free group on n elements and the free semigroup on n elements,

respectively.

10.2. Schottky products

Given a collection of semigroups G, < Isom(X), we can ask whether the semi-
group (Go)aer = Isom(X) is isomorphic to the free product *,cpG,. A sufficient
condition for this is that the groups (Gq).ck are in Schottky position.

DEFINITION 10.2.1. A collection of nontrivial semigroups (G, =< Isom(X))aecr
is in Schottky position if there exist disjoint open sets U, C bord X satisfying:

(I) For all a,b € FE distinct and g € G, \ {id},
g(Up) C U,.
(IT) There exists 0 € X \m satisfying
(10.2.1) g(o) €U, Va € E Vg € G, \ {id}.

Such a collection (U, )qck is called a Schottky system for (G,)acp. If the collection
(Ga)ack is in Schottky position, then we will call the semigroup G = (G, )qck the
Schottky product of (Gg)ack-

A Schottky system will be called global if for all @ € E and g € G, \ {id},

(10.2.2) g(bord X \ U,) C U,.

REMARK. In most references (e.g. [56] §5]), (I0.2:2]) or a similar hypothesis
is taken as the definition of Schottky position. So what these references call a
“Schottky group”, we would call a “global Schottky group”. There are important
examples of Schottky semigroups which are not global; see e.g. (B) of Proposition
I0.5.41 It should be noted that such examples tend to be semigroups rather than
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groups, which explains why references which consider only groups can afford to

include globalness in their definition of Schottky position.

REMARK. The above definition may be slightly confusing to someone familiar
with classical Schottky groups, since in that context the sets U, in the above def-

inition are not half-spaces but rather unions of pairs of half-spaces; cf. Definition

1oz.4

The basic properties of Schottky products are summarized in the following

lemma:

LEMMA 10.2.2. Let G = (Gu)aecr be a Schottky product. Then:

(i) (Ping-Pong Lemma) The natural map 7 : *qegGa — G is an injection
(and therefore an isomorphism,).

(11) FZI g = (a’lvgl)(G‘Qng) T (anygn) € *G«GEGGJ and let 9= W(g) Th@’ﬂ
(10.2.3) g(0) € Uy, .
Moreover, for all b # an
(10.2.4) 9(Up) C Uy,
and if the system (Uy)acr is global
(10.2.5) g(bord X \ U,,) C U,,.
(iii) If G is a group, then G is COT-discrete.

Proor. (I0.Z3)-({023) may be proven by an easy induction argument. Now
([I023) immediately demonstrates (i), since it implies that m(g) # id. (iii) also
follows from (I0.2Z3]), since it shows that ||g| is bounded from below for all g €
G\ {id}. O

REMARK 10.2.3. Lemma[10.2.2((i) says that Schottky products are (isomorphic
to) free products. However, we warn the reader that the converse is not necessarily
true; cf. Lemma [13.4.0]

Two important classes of Schottky products are Schottky groups and Schottky

Semigroups.

DEFINITION 10.2.4. A Schottky group is the Schottky product of cyclic groups
G4 = (ga)? with the following property: For each a € E, U, may be written as the

disjoint union of two sets U} and U] satisfying
ga(bord X \ U;) C Uy .

A Schottky semigroup is simply the Schottky product of cyclic semigroups; no
additional hypotheses are needed.
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REMARK 10.2.5. In the classical theory of Schottky groups, the sets UF are
required to be half-spaces. A half-space in bord H* is a connected component of the
complement of a totally geodesic subset of bord H* of codimension one. Requiring
the sets UF to be half-spaces has interesting effects on the geometry of Schottky
groups.

Although the notion of half-spaces cannot be generalized to hyperbolic metric
spaces in general or even to nonreal algebraic hyperbolic spaces (since a totally
geodesic subspace of an algebraic hyperbolic space over I = C or Q always has real
codimension at least 2, so deleting it yields a connected set), it at least makes sense
over real hyperbolic spaces and in the context of R-trees. A half-space in an R-tree
X is a connected component of the complement of a point in X.

We hope to study the effect of requiring the sets U to be half-spaces, both
in the case of real (but infinite-dimensional) algebraic hyperbolic spaces and in the

case of R-trees, in more detail in [57].

10.3. Strongly separated Schottky products

Many questions about Schottky products cannot be answered without some
additional information. For example, one can ask whether or not the Schottky
product of strongly (resp. moderately, weakly) discrete groups is strongly (resp.
moderately, weakly) discrete. One can also ask about the relation between the
Poincaré exponent of a Schottky group and the Poincaré exponent of its factors.

For the purposes of this monograph, we will be interested in Schottky products

which satisfy the following condition:

DEFINITION 10.3.1. A Schottky product G = (Gy)acr is said to be strongly
separated (with respect to a Schottky system (U,)qcr) if there exists € > 0 such
that for all a,b € E distinct and g € G, \ {id},

(10.3.1) D(U, Ug (bord X \ Uy),Up) > e.

Here D is as in Proposition B.6.13l Abusing terminology, we will also call the
semigroup G and the Schottky system (U,)qcr strongly separated.

The product G = (G,)ack is weakly separated if (I031]) holds for a constant
¢ > 0 which depends on a and b (but not on g).

REMARK 10.3.2. There are many important examples of Schottky products
which are not strongly separated, and we hope to analyze these in more detail in
[67]. Some examples of Schottky products that do satisfy the condition are given
in Section

STANDING AsSUMPTIONS 10.3.3. For the remainder of this chapter,

G= <Ga>a€E
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denotes a strongly separated Schottky product and (U,).cr denotes the corre-
sponding Schottky system. Moreover, from now on we assume that the hyperbolic

metric space X is geodesic.

NOTATION 10.3.4. Let I' denote the free product I' = %, pG,, and let w: ' —
G denote the natural isomorphism. Whenever we have specified an element g € T,
we denote its length by |g| and we write g = (a1,91) - (ajg|, 9|g|). For h € ', we
write h = (b, hl) e (b|h|, h|h|).

Let 0 € X satisfy (I0.2.1)). Let e < d(o,J, Ua) satisfy (I0.3.1)), and for each a €
E let V,, denote the closed €/4-thickening of U, with respect to the D metric. Then
the sets (Int(Vy))acr are also a Schottky system for (G,)acp; they are strongly

separated with € = ¢/2; moreover,
(10.3.2) D(U,,bord X \V,) >¢/2 Ya € E.

Finally, let
bord X \ Int(V,) (Ua)ack is global

{0} UUpra Vo otherwise

)

so that
(10.3.3) 9(X.) CU, Va€E.

Note that since the sets (V,)q.cp are e/2-separated, they have no accumulation

points and thus X, is closed for all a € E.

The strong separation condition will allow us to relate the discreteness of the
groups G, to the discreteness of their Schottky product G. It will also allow us
to relate the Poincaré exponents of G, with the Poincaré exponent of G. The
underlying fact which will allow us to prove both of these relations is the following

lemma:

LEMMA 10.3.5. There exist constants C,e > 0 such that for allg € T,

gl gl
(10.3.4) > (lgill = €) Ve < d(X \ Vay, 7(8)(Xay, ) < D llgill.
i=1 =1
In particular
gl gl
(10.3.5) > lgill =€) ve < |lx@ < llgill
i=1 i=1
and thus
gl

(10.3.6) (@)l =x Y 1V lgill
=1
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FIGURE 10.3.1. The geodesic segment [0, 7(g)(0]) splits up natu-
rally into four subsegments, which can then be rearranged by the
isometry group to form geodesic segments which connect o with
91(Xa), Vo with g2(X3), Vi, with g3(X.), and V. with o, respec-
tively. Here g = (a, g1)(b, g2)(c, g3).

PROOF. The second inequality of (I034) is immediate from the triangle in-
equality. For the first inequality, fix g € T, x € X \ V,,, and y € Xag - Write
n = |g|. We have

7.r(g)(,y) c g1 gn(Xan) g g1 - 'g'n,fl(vlln) g g1 - 'gnfl(Xanfl)
€ Cgi(Va,) Cg1(Xay) S Va, B

Consequently, the geodesic [z, 7(g)(y)] intersects the sets

a‘/ala gl(aXal)a gl(aVaz)v sy g1 gnfl(aVan)a gr--- gn(aXan)

in their respective orders. Thus

d(‘rv W(g)(y)) d(gl T gi-l(an)u g1-- gz(aXaw))

M-

@
Il
s

(10.3.7) d(0Va,, 9i(0Xa,))

I

s
Il
-

-

s
Il
-

d(X \ Va,, 9i(Xa,))-
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(Cf. Figure I0.31l) Now fix ¢ = 1,...,n, and we will estimate the distance d(X \
Va;» gi(Xa,)). For convenience of notation write a = a; and g = g;.
Fix z€ X \V, and w € g(X,). Combining (I0.3.2)) and (I0.3.3)) gives
D(z,w) >¢/2
and in particular

(10.3.8) d(z,w) > /2.

On the other hand, converting the inequality D(z,w) > £/2 into a statement about

Gromov products shows that
d(z,w) <4 ¢ d(o,2) + d(o,w) > d(o,w) > d(g~*(0), Xa).
Since D(g~%(0), X4) > D(g~(bord X \ V), X,) > ¢/2, we have
(g~ (0), Xa) 2+, dlg " (0), 0) = ||g]l-
Combining with (I0.3.8) gives
d(z,w) = (|lg]l = C) v (¢/2)
for some C > 0 depending only on e. Taking the infimum over all z, w gives
d(X \ Va,, 9i(Xa,)) = (llgill = C) v (e/2).

Summing over all i = 1,. .., n and combining with (I0.3.7) yields (I0.3.4]). Since o €
Xq., and 0 € X\ V,,, ([035) follows immediately. Finally, the coarse asymptotic

g

(lgill = C) Ve=x.ce 1V |gill-

implies (I0.3.6]). O

COROLLARY 10.3.6. Suppose that #{a € E : d(o,U,) < p} < oo for all p > 0.
If the groups (Go)ack are strongly discrete, then G is strongly discrete.
In fact, this corollary holds even if G is only weakly separated and not strongly

separated.

PROOF. Since ||g|| > d(o0,U,) for all ¢ € E and g € G,, our hypotheses implies
that

#{(a,9) €Tk : |g]| < p} < o0 Vp.



164 10. SCHOTTKY PRODUCTS

It follows that for all N € N,

gl

#gel:> 1V]gll <N
i=1

N
(10.3.9) SZ#{ge Te)":||lg:]| <N Vi=1,...,n}
n=0
N
<Y #{(a,9) €Tr: gl < N}" < 0.
n=0

Applying ([I0.3.6) completes the proof. If G is only weakly separated, then for
all p > 0 the Schottky product (Ga)a(o,v,)<, 18 still stronglly separated, which is
enough to apply (I03.0]) in this context. O

ProrosiTiON 10.3.7.

(i) If #(F) < oo and the groups G, satisfy d¢, < 0o, then dg < oo.
(ii) Suppose that for some a € E, G, is of divergence type. Then dg > i,
(iii) Suppose that G is a group. If §g, = 0o for some a, and if Gy is infinite
for some b # a, then SG = 0.
(iv) If E = {a,b} and Gy = g%, then
ILm 5(Gy * g"%) = 6(Gy).
Moreover, if G, s of convergence type, then for all n sufficiently large,

Gq * g"? is of convergence type.

Moreover, (i) holds for any free product G = (Go)ack, even if the product is not
Schottky.

REMARK 10.3.8. Property (iii) tells us that an analogue of property (i) cannot
hold for the modified Poincaré exponent: if we take the Schottky product of two
groups G, G2 with g(Gl) < oo but §(G;) = oo, then the product G will have
§(G) = .

ProoF oF (i). (I0:339) shows that for some C' > 0,
#{g€G:lgll < p} < #{(a,9) €Tr: gl < Cp} ¥p>o0.

Applying (BIZ) completes the proof. O
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PROOF OF (ii). For all s >0,

2.(G) =Y oelm@l > §° b—s 1 gl

gel gel
gl

= St

geli=1

:i 3 DY ﬁbfsngin

n=0a1#:--#an g1€Gqy \{id} gn€Ga, \{id} i=1

:i 3 ﬁ S el

n=0a1##an i=1 geG,, \{id}
= Z Z H(Zs(Gai) - 1)
n=0a;#---#a, i=1

To simplify further calculations, we will assume that #(FE) = 2; specifically we will
let F ={1,2}. Then

n/2
2 (H (2s(Ga) — 1)) n even

aclE

(H (5.(60) - 1)) o (Z (5.6 - 1)) n odd

a€ElE acE

SREEDS
n=0

= i <H (Z(Ga) — 1)>n/2.

n=0 \a€FE
This series diverges if and only if
(10.3.10) [[E:(Ga)—1) > 1.
aclE
Now suppose that G; is of divergence type, and let §; = §(G1). By the monotone

convergence theorem,

lim [ (2:(Ga) = 1) = [] (Z6,(Ga) — 1) = 00(Es, (G2) — 1) = oc.

S0 acE acE
(The last equality holds since Go is nontrivial, see Definition [0.2.1l) So for s
sufficiently close to 41, (I03I0]) holds, and thus X4(G) = oo. O

PRrROOF OF (iii). Fix p > 0, and let h € G, satisfy d(h(o),U,) > p. (This is
possible since Gy, is non-elliptic and d(h(0),U,) <4 ||h|| Vh € Gp.) Then the set

S, ={gh(o) : g € G}

is p-separated, but 6(S,) = §(G,) = oo. Since p was arbitrary, it follows from
Proposition BZA(iv) that 6(G) = co. O
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PROOF OF (iv). We will in fact show the following more general result:

PROPOSITION 10.3.9. Suppose E = {a,b}, and fix s ¢ A(Gy) U A(Gp). Then
there exists a finite set F C Gy, such that for all H < Gy, if HN F = {id}, then
s¢ A(Gyx H).

Indeed, for such an s, the Poincaré series (G, * H) can be estimated using ([0.3.5)

as follows:

(Gax H) =3 b Im@l < 37 s e lgill-0) stmg\b—sz‘f‘ lgill

gel gel gel

Continuing as in the proof of part (ii), we get

(G H) stC"( Ga) = 1) (Z:(H) ~ 1))

Since Xs(H) — 1 < E,(Gp \ F), to show that 3,(G, * H) < oo it suffices to show
that

(10.3.11) bsC((zs(Ga) — 1) (B+(Go \ F)))1/2 <1.

But since the series X(G,) and ¥5(Gp) both converge by assumption, ([0311)
holds for all F' C G} sufficiently large. O

n/2

We will sometimes find the following variant of Proposition M0.3.7|(ii) more

useful than the original:

ProposITION 10.3.10 (Cf. [65] Proposition 2]). Fiz H < G < Isom(X), and
suppose that

M) Ag G Ac,
(I1) G is of general type, and
(ITII) H is of compact type and of divergence type.

Then 6g > 0p.

PROOF. Fix £ € Ag\Ap, and fix € > 0 small enough so that B({,e)NAy = &
Since G is of general type, by Proposition [[.4.7] there exists a loxodromic isometry
g € G such that g1,g_ € B(§,e/4). After replacing g by an appropriate power, we
may assume that ¢"(bord X \ B(€,e/2)) C B(&,¢/2) for alln € Z\ {0}. Now let

= B(£,¢/2)
U2 = Na/4(AH)

Since H is of compact type (and strongly discrete by Observation[8ILH]), Proposition
[[.74] shows that there exists a finite set F© C H such that for all h € H \ F,
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h(bOI‘dX \ UQ) g U2. Let
S=T] ((H\F)x (47 \ {id}))",
n>0

and define 7 : S — G via the formula

7((hi, ji)i=y) = hajr -+ hnjn.

A variant of the Ping-Pong Lemma shows that 7 is injective. On the other hand,
for all (hi,j;)7—, € S, the triangle inequality gies

n

d (0,7 ((hs ji)iz1) (0)) < D [IlAill + [17]-

i=1
Thus for all s > g,

. (G) > Z e slgll

gem(S)

> Z ﬁe*S[llhillJrHjilH

(hi,ji)j—, €S 1=1

= Z Z Z e slIal+511]

n>0 \h€H\F jegZ\{id}

=3 (B(H N\ F)Si(g7 \ {id}))"

n>0
=00 Ns(H\F)Ss(g”\ {id}) > 1
<oo E(H\F)S(¢%\ {id}) <1
Now since H is of divergence type, by the monotone convergence theorem,
i S\ F)S.(97 \ {id}) = S5, (H \ )5, (g7 \ {id})
= 00 - (positive constant)
= o0.

Thus, for s sufficiently close to 0, ¥s(G) = co. This shows that dg > 0x. O

REMARK 10.3.11. The reason that we couldn’t deduce Proposition I0.3.10] di-
rectly from Proposition MOL3.7((ii) is that the group (H, g%) considered in the proof
of Proposition [[0.3.10] is not necessarily a free product due to the existence of the
finite set F. In the Standard Case, this could be solved by taking a finite-index
subgroup of H whose intersection with F' is trivial, but in general, it is not clear

that such a subgroup exists.
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10.4. A partition-structure—like structure

For each g € T, let
We = ﬂ-(g)(Xa\g\ )7
unless g = &, in which case let Wy = bord X.

STANDING ASSUMPTION 10.4.1. In what follows, we assume that for each a €
E, either
(1) G4 is a group, or
(2) G, =N.

For g,h €T, write g <h if h = g * k for some k € I.

LEmMA 10.4.2. Fiz g,h eI, If g <h, then Wy, C Wg. On the other hand, if
g and h are incomparable (g £ h andh £ g), then Wg N Wy = &.

PROOF. The first assertion follows from Lemma For the second asser-
tion, it suffices to show that if (a, g), (b, h) € T'g are distinct, then W, o) "Wy, p) =
. Since W(q,4) C U, and (U, ) e are disjoint, if a # b then Wia,g) "Wp,ny = 2. So
suppose a = b. Assumption I0.ZTlguarantees that either g~ *h € G, or h~1g € Gy;
without loss of generality assume that g~'h € G,. Then

W(a,g) N W(b,h) = g(Xa)Nh(X,) = g(Xa N gilh(Xa)) Cg(XanU,) = 2.

LEMMA 10.4.3. There exists o > 0 such that for all g € T,
(10.4.1) Wg C Shad(w(g)(0),0).
In particular
(10.4.2) Diam(Wg) <y b~ Im@®I

PROOF. Let n = |g|, ¢ = gn, a = an, and z = m(g) (o). Observe that
if g(z) € V,, then Lemma implies that o € V,,, a contradiction. Thus
z € g1 (X\V,). If X is not global, then ([O3.T)y, v, ..o implies that D(z, Xo) >
€/2. On the other hand, if X is global then we have z € U,, so (I032]) implies
that D(z, X,) > /2. Either way, we have D(z, X,) > ¢/2.

Let o > 0 be large enough so that the Big Shadows Lemma [£.5.7] holds; then
we have X, C Shad,(o,0). Applying 7(g) yields (I0.4.1]), and combining with the
Diameter of Shadows Lemma 5.8 yields (I0.4.2). O

Let OT" denote the set of all infinite words with letters in I'g such that a; # a;41
for all 5. Given g € 0T, for each n, g1 n € I'. Then Lemmas[10.4.2and [[0.4.3]show

that the sequence (Wgi)3° is an infinite descending sequence of closed sets with
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diameters tending to zero; thus there exists a unique point £ € ﬂgo Wein, which
will be denoted 7(g).

LEMMA 10.4.4. For all g € OT', n(g 1 n)(0) — w(g) radially. In particular
©(0T") C A (G).

PrOOF. This is immediate from (I0.41), since by definition 7(g) € Wgy, for
all n. 0

LEMMA 10.4.5 (Cf. Klein’s combination theorem [121] Theorem 1.1], [115]).
The set

(10.4.3) D=bordX \ J |J g(Xa) =bordX\ |J Wy
a€E geG, (a,9)elE

satisfies G(D) = bord X \ m(9T").

Before we begin the proof of this lemma, note that since D N X is open (Lemma
[[0.4.6] below), the connectedness of X implies that g(D) N'D # & for some g € G.

Thus D is not a fundamental domain.
PRrROOF. Fix z € bord X \ n(9T"), and consider the set
I,:={gel:zecWg}.

By Lemma [I0.4.2] T', is totally ordered as a subset of I'. If ', is infinite, let g € OT'
be the unique word such that T, = {g 1 n: n € NU{0}}; Lemma implies
that z = m(g) € n(9T'), contradicting our hypothesis. Thus I, is finite. If I', = &,
we are done. Otherwise, let g be the largest element of I';. Then z € Wy, so

m(g) ! (x) € X,, where a = ajg). The maximality of g implies that
m(g) ' (z) ¢ Wipny = h(Xe) Vb€ E\{a} Vh € Gy )\ {id},

but on the other hand 7(g)~!(z) € X, C bord X \ U, implies that 7(g)~!(z) ¢
Wia,ny for all h € G, \ {id}. Thus 7(g)~'(z) € D. O

LEMMA 10.4.6. Suppose that for each a € E, G, is strongly discrete. Then
D\ Int(D) C | J Aa,
ackE

where A, = A(Gy). In particular, DN X is open.

ProOOF. Fix & € D \ Int(D), and find a sequence (an,g,) € 'y such that
D(z,9n(Xa,)) — 0. Since g,(X,,) C U,,, (I0.3.0) implies that a,, is constant for
all sufficiently large n, say a, = a. On the other hand, if there is some g € G,
such that g, = g for infinitely many n, then since g(X,) is closed we would have

x € g(X,), contradicting that = € D. Since G, is strongly discrete, it follows that
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lgnl] = oo, and thus Diam(g,(X,)) — 0 by Lemma [[043 Since g, (0) € gn(Xa),
it follows that g,(0) — =, and thus z € A,. O

THEOREM 10.4.7.
A=rr) U U g(ra).
geGacE
ProOOF. The D direction follows from Lemma [I0.4.4] so let us show C. It
suffices to show that AND C |J,cp Aa- Indeed, for all g € T'\ {@}, Lemma [0.2.2]
gives 1(g)(0) € g1(Xa,) € bord X\ D. Thus AND = DNID C |J,cp Aa by Lemma
110.4.6 O

COROLLARY 10.4.8. If E is finite and each G is strongly discrete and of com-
pact type, then G is strongly discrete and of compact type.

PROOF. Strong discreteness follows from Corollary I0.3.6] so let us show that
G is of compact type. Let (£,)° be a sequence in A. For each n € N, if &, € w(dT"),
write &, = m(g,) for some g, € OI'; otherwise, write &, = m(gn)(n,) for some
gn € I' and n, € A,,. Either way, note that &, € Wy for all h < g.
For each h € T', let
Sh={neN:h<g,}
Since I is countable, by extracting a subsequence we may without loss of generality

assume that for all h € I, either n € Sy, for all but finitely many n, or n € Sy for
only finitely many n. Let

I"={heTl:ne Sy, for all but finitely many n}.

Then by Lemma 042 the set I is totally ordered. Moreover, g € IV, If T is
infinite, then choose g € IT" such that TV = {g 1 m : m > 0}; by Lemma [[0.4.3]
we have &, — 7(g). Otherwise, let g be the largest element of IV. For each n,
either &, € Wy

and 0, € A,,. By extracting another subsequence, we may assume that either the

w.hn) for some (b,, hy,) € I'g, or §, = 7(g)(n,) for some a, € E
first case holds for all n, or the second case holds for all n. Suppose the first case
holds for all n. The maximality of g implies that for each (b,h) € T'g, there are
only finitely many n such that (b,,h,) = (b,h). Since E is finite, by extracting
a further subsequence we may assume that b, = b for all n. Since G} is strongly
discrete and of compact type, by extracting a further subsequence we may assume
that hy (o) — n for some n € Ap. But then &, — 7w(g)(n) € A.

Suppose the second case holds for all n. Since Ap = |J A, is compact, by

a€ElE
extracting a further subsequence we may assume that 7, — n for some n € Ag.

But then &, — w(g)(n) € A. O

COROLLARY 10.4.9. If #(T'g) > 3, then #(A) > #(R).
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PROOF. The hypothesis #(I'g) > 3 implies that for each g € T,
#{(a,9)(b.h) €T - gla,g)(b.h) €Ty = D (#(Ga) = D(#(Go) — 1) 2 2.
bFaFag
Thus, the tree I' has no terminal nodes or infinite isolated paths. It follows that

Il is perfect and therefore has cardinality at least #(R); since w(9T") C A, we have
#(A) > #(0r) = #(R). O

PROPOSITION 10.4.10. Suppose that the Schottky system (Ug)acr s global.
Then if (Go)ack are moderately (resp. weakly) discrete, then G is moderately (resp.
weakly) discrete. If (Ga)ack act properly discontinuously, then G acts properly dis-

continuously.

PROOF. Let D be as in (I0.43)). Fix x € D and g € I, let n = |g|, and suppose
that w(g)(x) € D. Then:
(A) Foralli=1,...,n,if gi11 - gn(zr) € X4, then Lemma [[0.2.2] would give

7(g)(z) € g1(Xa,), 0 git1 - gn(x) € V.
(B) Foralli=0,...,n—1,if git1---gn(x) € Xa,,
give z € g, (Xa,), SO git1- - gn(z) € Va, ;-

then Lemma [10.2.2l would

If n > 2, letting ¢ = 1 in (A)-(B) yields a contradiction, so n = 0 or 1. Moreover,
if n =1, plugging in i = 1 in (A) gives z € V.
To summarize, if we let

Ge z€V,
{id} ¢ U,cpVa

G, =

then
g(x) €D = g€ G, Vg €QG.

More concretely,
d(z,g(x)) <d(z,X\D) = g€ Gz Vge€QG.

Comparing with the definitions of moderate and weak discreteness (Definition [E.2.T])
and the definition of proper discontinuity (Definition B.2.11]) completes the proof.
O

10.5. Existence of Schottky products

PROPOSITION 10.5.1. Suppose that Arsom(xy = 0X, and let G, G2 < Isom(X)
be groups with the following property: For i = 1,2, there exist & € 0X and € > 0
such that

(10.5.1) D(&i, 9(&)) > € Vg € Gi \ {id}.
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Then there exists ¢ € Isom(X) such that the product (G1, ¢(G2)) is a global strongly
separated Schottky product.

PROOF. We begin the proof with the following

Cram 10.5.2. For each i = 1,2, there exists an open set A; > & such that
g(A)NA; = for all g € G; \ {id}.

PrOOF. Fix i@ = 1,2. Clearly, (I0.5T)) implies that & ¢ A(G;). Thus, there
exists 6 > 0 such that D(g(0),&;) > 6 for all ¢ € G;. Applying the Big Shadows
Lemma .57 there exists o > 0 such that B(&;,6/2) € Shad,-1(o)(0,0) for all
g € G. But then by the Bounded Distortion Lemma 5.6l we have

Diam(g(B(&;,7))) =x.o b~ 191 Diam(B(&,7)) < 2y Vg € G Y0 <y < §/2.

Choosing ~ appropriately gives Diam(g(B(&;,v))) < €/2 for all g € G. Letting
A; = B(&;,7) completes the proof of the claim. N

For each i = 1,2, let A; be as above, and fix an open set B; > §; such that
D(B;,bord X \ 4;) > 0. Since Atsom(x) = 0X, there exists a loxodromic isometry
¢ € Isom(X) such that ¢_ € By and ¢, € Bs (Proposition [[47). Then by
Theorem B.T.TI0, ¢™ — ¢4 uniformly on bord X \ B, so ¢"(B1) U Ba = bord X
for all n € N sufficiently large. Fix such an n, and let U3 = ¢™(bord X \ A4;),
Us = bord X \ Aa, V; = ¢"(bord X \ By), Vo = bord X \ Bz. Then (V4,V3) is
a global Schottky system for (G1, $(Gz2)), which implies that (U, Us) is a global
strongly separated Schottky system for (G1,¢(Gz2)). This concludes the proof of

the proposition. ([

REMARK 10.5.3. The hypotheses of the above theorem are satisfied if X is
an algebraic hyperbolic space and for each ¢ = 1,2, G; is strongly discrete and of
compact type and A; = A(G;) G 0X.

PROOF. We have Argomx) = 0X by Observation Fix ¢ = 1,2. Since
A; G 90X, 0X \ A(G;) is a nonempty open set. For each g € G; \ {id}, the set
Fix(g) is totally geodesic (Theorem 2-477) and therefore nowhere dense; since G; is

countable, it follows that UgGGi\{id} Fix(g) is a meager set, so the set

Si=(0X\AG))\ |J Fix(g)

geG;i\{id}

is nonempty. Fix & € S;. By Proposition [[.7.4]

1%;Ieléfl%fD(§i,g(fi)) > D(&,A(Gy)) > 0.
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On the other hand, for all ¢ € G; \ {id} we have ¢ ¢ Fix(g) and therefore

D(&,9(&)) > 0. Combining yields infgeq,\ fiay D (&, 9(&)) > 0 and thus (IL5.).
This concludes the proof of the remark. O

PROPOSITION 10.5.4. For a semigroup G = Isom(X), the following are equiv-

alent:
(A) G is either outward focal or of general type.
(B) G contains a strongly separated Schottky subsemigroup.
(C) 6(G) > 0.
(D) #(Ag) = #(R).

(E) #(Ag) > 3, i.e. G is nonelementary.
If G is a group, then these are also equivalent to:

(F) G contains a global strongly separated Schottky subgroup.

The implications (C) = (E) = (A) have been proven elsewhere in the paper; see
Proposition [[33] and Theorem [[LZ3] The implication (B) = (D) is an immediate
consequence of Corollary [0.49] and (D) = (E) and (F) = (B) are both trivial.
So it remains to prove (A) = (B) = (C), and that (A) = (F) if G is a group.

PROOF OF (A) = (B). Suppose first that G is outward focal with global fixed
point . Then there exists g € G with ¢’(¢) > 1, and there exists h € G such that
hy # g+. If welet j = g™h, then j'(£) > 1 (after choosing n sufficiently large), and
J+ 7 9+

So regardless of whether G is outward focal or of general type, there exist
loxodromic isometries g, h € G such that g4 ¢ Fix(h) and hy ¢ Fix(g). It follows
that there exists € > 0 such that

B(g+,e) Nh"(B(g+,¢€)) = B(hy,e)Ng" (B(hy,e)) =2 Vn > 1.

Let Uy = B(g+,¢/2), Uz = B(hy,e/2), Vi = B(g4,¢), and Vo = B(hy,e). By
Theorem [E.T.T0] for all sufficiently large n we have ¢g"™(V; U Va) C Uy and h™(V; U
Vo) C Us. It follows that (V7,V2) is a Schottky system for ((g™)™, (h™)N), and that
(U1, Us) is a strongly separated Schottky system for ((g™)N, (h™)N). O

PRrooF oF (B) = (C). Since a cyclic loxodromic semigroup is of divergence
type (an immediate consequence of (6.13])), Proposition M0.3.7i),(ii) shows that
0 < 6(H) < oo, where H < G is a Schottky subsemigroup. Thus g(H) > 0, and so
5(G) > 0. 0

PROOF OF (A) = (F) FOR GROUPS. Fix loxodromic isometries g, h € G with
Fix(g) NFix(h) = @. Choose £ > 0 such that

B(Fix(g),e) N k" (B(Fix(g),¢)) = B(Fix(h),£) N g" (B(Fix(h),£)) = & Yn > 1.
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Let Uy = B(Fix(g),/2), Uz = B(Fix(h),e/2), Vi = B(Fix(g),¢), and Vi =
B(Fix(h),e). By Theorem [E.I10] for all sufficiently large n we have g"(bord X \
B(g-,e/2)) € B(g+,&/2) and h™(bord X \ B(h_,e/2)) C B(hy,&/2). Tt follows
that (V1, Va) is a global Schottky system for ((g")%, (h™)%), and that (Uy,Uz) is a
global strongly separated Schottky system for ((g™)%, (h™)%).

(]



CHAPTER 11

Parabolic groups

In this chapter we study parabolic groups. We begin with a list of several exam-
ples of parabolic groups acting on E°°, the half-space model of infinite-dimensional
real hyperbolic geometry. These examples include a counterexample to the infinite-
dimensional analogue of Margulis’s lemma, as well as a parabolic isometry that
generates a cyclic group which is not discrete in the ambient isometry group. The
latter example is the Poincaré extension of an example due to M. Edelstein. After
giving these examples of parabolic groups, we prove a lower bound on the Poincaré
exponent of a parabolic group in terms of its algebraic structure (Theorem [[T.2.6]).
We show that it is optimal by constructing explicit examples of parabolic groups

acting on E*° which come arbitrarily close to this bound.

11.1. Examples of parabolic groups acting on E*

Let X = E = E* be the half-space model of infinite-dimensional real hyperbolic
geometry (§25.2)). Recall that B = O \ {oo} is an infinite-dimensional Hilbert
space, and that Poincaré extension is the homomorphism = : Isom(B) — Isom(E)
given by the formula

S (9)(tx) = g(t,x) = (¢, 9(x))
(Observation 2.5.6]). The image of ~ is the set {g € Stab(Isom(E); 00) : ¢'(c0) = 1}.
Thus, Poincaré extension provides a bijection between the class of subgroups of
Isom(B) and the class of subgroups of Isom(E) for which oo is a neutral global fixed
point. Given a group G < Isom(B), we will denote its image under ~ by G. We may

summarize the relation between G and G as follows:

OBSERVATION 11.1.1.

(i) G is parabolic if and only if G(0) is unbounded; otherwise @ is elliptic.

(i) G is strongly (resp. moderately, weakly, COT) discrete if and only if G
is. G acts properly discontinuously if and only if G does.

(iii) Write Isom(B) = O(B) x B. Then the preimage of the uniform operator
topology under ~ is equal to the product of the uniform operator topology
on O(B) with the usual topology on B. Thus if we denote this topology
by UOT*, then G is UOT-discrete if and only if G is UOT*-discrete.

175
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(iv) For all g € G, we have

eldll < cosh ||g]| =1+ 5 =x 1V |g(0)|?
and thus for all s > 0,
(11.1.1) 2o(G) =x To(G) ==Y (1 V [|g(0)]) >,
geG

In what follows, we let §(G) = inf{s : £,(G) < 0o} = §(G), and we say that G

is of convergence or divergence type if G is.

11.1.1. The Haagerup property and the absence of a Margulis lemma.
One question which has been well studied in the literature is the following: For
which abstract groups I' can I" be embedded as a strongly discrete subgroup of
Isom(B)? Such a group is said to have the Haagerup pmpertyﬂ For a detailed

account, see [50].

REMARK 11.1.2. The following groups have the Haagerup property:

e [62] pp.73-74] Groups which admit a cocompact action on a proper R-tree.
In particular this includes F,(Z) for every n.

e [101] Amenable groups. This includes solvable and nilpotent groups.

A class of examples of groups without the Haagerup property is the class of infinite
groups with Kazdan’s property (T). For example, if n > 3 then SL,(Z) does not
have the Haagerup property [22] §4.2].

The example of (virtually) nilpotent groups will be considered in more detail
in §IT. 23] since it turns out that every parabolic subgroup of Isom(E) which has
finite Poincaré exponent is virtually nilpotent.

Recall that Margulis’s lemma is the following lemmas:

PROPOSITION 11.1.3 (Margulis’s lemma, [61], p.126] or [15] p.101]). Let X be
a Hadamard manifold with curvature bounded away from —oo. Then there exists
e =ex > 0 with the following property: For every discrete group G < Isom(X) and
for every x € X, the group

Ge(r) := (g9 € G:d(x,9(x)) <¢)
is virtually nilpotent.

For convenience, we will say that Margulis’s lemma holds on a metric space
X if the conclusion of Proposition IT.1.3] holds, i.e. if there exists € > 0 such

IThe Haagerup property can also be defined for locally compact groups, by replacing “finite” with
“precompact” in the definition of strong discreteness. However, in this monograph we consider
only discrete groups.
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that for every strongly discrete group G < Isom(X) and for every z € X, G.(x)
is virtually nilpotent. It was proven recently by E. Breuillard, B. Green, and T.
C. Tao [38| Corollary 1.15] that Margulis’s lemma holds on all metric spaces with
bounded packing in the sense of [38]. This result includes Proposition [T.1.3] as a
special case.

By contrast, in infinite dimensions we have the following:

OBSERVATION 11.1.4. Margulis’s lemma does not hold on the space X = F =
.

PROOF. Since F2(Z) has the Haagerup property, there exists a strongly discrete
group G < Isom(B) isomorphic to Fa(Z), say G = (g1)% * (g2)%. Let G be the

Poincaré extension of G. Fix € > 0, and let
x=(t0) ek
for t > 0 large to be determined. Then by (2.5.3),

d(z, gi(x)) = d((t,0), (t,9:(0))) =x llg:(0)]/t.

So if ¢ is large enough, then d(x,g;(z)) < e. It follows that gi,g> € Ge(z), and so
G. (z) = G= F2(Z) is not virtually nilpotent. O

REMARK 11.1.5. In view of the fact that in the finite-dimensional Margulis’s
lemma, epa depends on the dimension d and tends to zero as d — oo (see e.g.
[23] Proposition 5.2]), we should not be surprised that the lemma fails in infinite

dimensions.

REMARK 11.1.6. In some references (e.g. [148] Theorem 12.6.1]), the con-
clusion of Margulis’s lemma states that G.(z) is elementary rather than virtually
nilpotent. The above example shows that the two statements should not be con-
fused with each other. We will show (Example below) that the alternative
formulation of Margulis’s lemma which states that G.(x) is elementary also fails in

infinite dimensions.

REMARK 11.1.7. Parabolic groups acting on proper CAT(-1) spaces must be
amenable [41] Proposition 1.6]. Therefore the existence of a parabolic subgroup
of Isom(H*) isomorphic to F2(Z) also distinguishes H* from the class of proper
CAT(-1) spaces.

11.1.2. Edelstein examples. One of the oldest results in the field of groups
acting by isometries on Hilbert space is the following example due to M. Edelstein:
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PRrOPOSITION 11.1.8 ([70, Theorem 2.1]). There exist an isometry g belonging
to Isom(¢2(N; C)) and sequences (n,(cl))(fo, (n,(f))j’o such that

(11.1.2) g™ (0) — 0 but [lg" (0)| — ox.

Since the specific form of Edelstein’s example will be important to us, we recall

the proof of Proposition [T.I.8] in a modified form suitable for generalization:

ProOOF OF PrROPOSITION [[T.T.8l For each k € N let ar = 1/k!, let by = 1,
and let
(11.1.3) cp = X% dy = b(1 — cp).

Then

2
Sl S Y label2 = 3 <%) < o0,

keN keN keN
sod = (dg)$° € £2(N; C). Let g € Isom(£2(N; C)) be given by the formula

(11.1.4) 9(X)k = ey + di.

Then
n—1 ) _

(11.15)  ¢"(X)k = cRax + > chdk = ciag + - C: di, = cag + bip(1 —c).
=0

In particular, ¢"(0)x = bx(1 — c}). So

(11.1.6)
g™ O)I* =D [be(1 = c)[> = D [br(1 = ™) * = > by |*d(nay, 7).
k=1 k=1 k=1

Now for each k € N, let

n,’ =k!
@ _1 zk: |
n, = 2j:1].
Then
1 > k! 2 > 2
I o= oa(5z) = w2 (3)
j=1 j=k+1
k2
= ((k+1)!>
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but on the other hand

k 2 2 k
g (0)]2 = Y d i 7 le 1—
g ~x Grort) T &g

j=1

=~
[
|
.
+‘t\>
—_
[V}
=]
g

This demonstrates (TT.12]). O

REMARK 11.1.9. Let us explain the significance of Edelstein’s example from
the point of view of hyperbolic geometry. Let g € Isom(B) be as in Proposition
[[TI.8 and let g € Isom(E>°) be its Poincaré extension. By Observation IT.I1] g is
a parabolic isometry. But the orbit of o = (1,0) (cf. §4.1)) is quite irregular; indeed,

PUNCS e

g"’v1 (0) o but g"k2 (0) S 00€ OE.
So the orbit (¢™(0))$° simultaneously tends to infinity on one subsequence while
remaining bounded on another subsequence. Such a phenomenon cannot occur in

proper metric spaces, as we demonstrate now:

THEOREM 11.1.10. If X is a proper metric space and if G < Isom(X) is cyclic,

then either G has bounded orbits or G is strongly discrete.

PrOOF. Write G = g% for some g € Isom(X), and fix a point 0 € X. For each
n € Z write ||n|| = [lg"||. Then || —n|| = [[n]|, and [|m + n| < [[m]| + [n].
Suppose that G is not strongly discrete. Then there exists R > 0 such that

(11.1.7) #{neN:|n| <R} =oc.

Now let g% (0) C g%(0)N B(0,2R) be a maximal R-separated set. Since X is proper,
S is finite. For each k € S, choose ¢ > k such that ||¢x|| < R; such an ¢, exists by
IL.LD).

Now let n € N be arbitrary. Let 0 < m < n be the largest number for which
|m| < 2R. Since g°(0) is a maximal R-separated subset of gZ(0) N B(o,2R) >
g™ (0), there exists k € S for which ||m — k|| < R. Then

|m—k+ 6| < R+ R =2R.

On the other hand, m — k + ¢, > m since ¢;, > k by construction. Thus by the

maximality of m, we have m — k + ¢ > n. So

n—m <Ly —k<C:=max({y — k).
kes
It follows that

[nll < flmll + [ln — m| < 2R + Cllg]l;
i.e. ||n| is bounded independent of n. Thus G has bounded orbits. O
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At this point, we shall use the different notions of discreteness introduced in
Chapter B to distinguish between different variations of Edelstein’s example. To

this end, we make the following definition:

DEFINITION 11.1.11. An isometry g € Isom(¢*(N;C)) is said to be Edelstein-
type if it is of the form (II.I.4]), where the sequences (c;)° and (dj)J° are of
the form ([IT.I3)), where (ax)® and (bg)$° are sequences of positive real numbers

satisfying

oo

Z |6Lkbk|2 < 0.

k=1

Our proof of Proposition [T.T.8 shows that the isometry g is always well-defined
and satisfies (II.T.6). On the other hand, the conclusion of Proposition IT.T.8 does
not hold for all Edelstein-type isometries; it is possible that the cyclic group G = g
is strongly discrete, and it is also possible that this group has bounded orbits. (But
the two cannot happen simultaneously unless g is a torsion element.) In the sequel,
we will be interested in Edelstein-type isometries for which G has unbounded orbits
but is not necessarily strongly discrete. We will be able to distinguish between the

examples using our more refined notions of discreteness.

EDELSTEIN-TYPE EXAMPLE 11.1.12. In our notation, Edelstein’s original ex-
ample can be described as the Edelstein-type isometry g defined by the sequences
ar = 1/k!, by, = 1. Edelstein’s proof shows that G = gZ has unbounded orbits and

is not weakly discrete. However, we can show more:

PROPOSITION 11.1.13. The cyclic group generated by the isometry in Edelstein’s

example is not UOT-discrete.

PROOF. As in the proof of Proposition [[T.I.8] we let ny = k!, so that ¢"*(0) —
0. But if 7™ denotes the linear part of g", then

Tmk (X) — (€2m'k!/j!xj);?il

and so
T =1l < Y 1= TR = e 0,
Jj=k+1 T
Thus 7™ — T in the uniform operator topology, so by Observation [T.ITIiii),
g™ — id in the uniform operator topology. Thus g4 is not UOT-discrete. O

EDELSTEIN-TYPE EXAMPLE 11.1.14. The Edelstein-type isometry g defined
by the sequences aj = 1/2F, b, = 1. This example was considered by A. Valette
[I74] Proposition 1.7]. It has unbounded orbits, and is moderately discrete (in fact

properly discontinuous) but not strongly discrete.
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PROOF. Letting n{") = 2%, we have by (ILL0)

nt 2 S 2* ’ S k—jy2 _ 1
g™ (0)[|" =<x Zd gaz = Z (2777) =3
Jj=1 j=k+1

and so g7 is not strongly discrete. Letting n,(f) = |2%/3], we have

oot Sa( ) S (5e) 4]

;1
Z10

J=7

Y

and therefore gZ has unbounded orbits.
Finally, we show that g7 acts properly discontinuously. To begin with, we

observe that for all n € N, we may write n = 2¥(2j 4+ 1) for some j, k > 0; then
2k( 2y+1) 2 2k (25 +1) _\°
lg™(0)]1> =x Zd< L) zd| L) =14,
i.e. 0 is an isolated point of gZ(0). So for some & > 0,

lg"(0)|| > & Vn eN.

Now let x € £2(N;C) be arbitrary, and let N be large enough so that

(N1, <€/3.

Now for all n € N, we have

N N
lg® ™(x) — x| = [lg? ™(0,...,0,an41,...) — (0,...,0,xNn41,...)]]
N
> [lg* ™(0)]| —2¢/3 > ¢/3

ZNZ(

which implies that the set g x) is discrete. But gZ(x) is the union of finitely

many isometric images of gQNZ(x), so it must also be discrete. (I

REMARK 11.1.15. It is not possible to differentiate further between unbounded
Edelstein-type isometries by considering separately the conditions of weak discrete-
ness, moderate discreteness, and proper discontinuity. Indeed, if X is any metric
space and if G < Isom(X) is any cyclic group with unbounded orbits, then the
following are equivalent: G is weakly discrete, GG is moderately discrete, G acts
properly discontinuously. This can be seen as follows: every nontrivial subgroup
of G is of finite index, and therefore also has unbounded orbits; it follows that no
element of G\ {id} has a fixed point in X; it follows from this that the three notions

of discreteness are equivalent.
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EXAMPLE 11.1.16. Let g € Isom(¢?(N;C)) be as in Proposition [T.I.8] let o :
(%(Z;C) — (*(Z; C) be the shift map o(x)r = zx11, and let T : £2(N; C) — £2(N;C)
be given by the formula

T(x)g = ™/ kg,
Then g1 = g&® o has unbounded orbits and is COT-discrete but not weakly discrete;
g2 = g & T has unbounded orbits and is UOT-discrete but not COT-discrete.

PROOF. Since g has unbounded orbits and is not weakly discrete, the same
is true for both g; and go. Since the sequence (0" (x))$° diverges for every x €
(?(Z;C), the group generated by o is COT-discrete, which implies that g; is as
well. Since the sequence (||T™ — I1)$° is bounded from below, the group generated
by T is UOT-discrete, which implies that g is as well. On the other hand, if we
let ng = k!, then T" (x) — x for all x € ¢£*(Z;C). But we showed in Proposition
ITIT3 that g (x) — x for all x € ¢2(N;C); it follows that g & T is not COT-
discrete. O

REMARK 11.1.17. One might object to the above examples on the grounds that
the isometries g; and go do not act irreducibly. However, Edelstein-type isometries
never act irreducibly: if ¢ is defined by (ITI3]) and (ITI4) for some sequences
(ar)$° and (bx)$°, then for every k the affine hyperplane Hy = {x € (?(N;C) :
xp = by} is invariant under g. In general, it is not even possible to find a minimal
subspace on which the restricted action of g is irreducible, since such a minimal

subspace would be given by the formula
z 2 br]? = o0
ﬂHk _ Eio| k| ,
K {(be) 7} 2277 [bwf* < o0

and if g has unbounded orbits (as in Examples [TT.T.12] and [T.T.T4]), the first case
must hold.

We conclude this section with one more Edelstein-type example:

EDELSTEIN-TYPE EXAMPLE 11.1.18. The Edelstein-type isometry g defined by
the sequences ay = 1/2%, by = log(1 + k). In this example, g7 is strongly discrete

but has infinite Poincaré exponent.

PRrOOF. To show that g7 is strongly discrete, fix n > 1, and let k be such that
2F <n < 281 Then 1/4 < n/2F2 < 1/2, so by (ILLH),

bry2

n n 2
lg" @)1 2 brs2d (g5.2) =

n
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To show that §(g%) = oo, fix £ > 0, and note that by (II.LG),

£
g% (0)]1* =« —1bk]? = |bera ] =log® (24 £).
4k
k=0+1
It follows that
>3V [Ig7 (0)]) 72 =5 > log (24 £) = 00 Vs > 0.
=0 £=0

11.2. The Poincaré exponent of a finitely generated parabolic group

In this section, we relate the Poincaré exponent dg of a parabolic group G
with its algebraic structure. We will show below that dg is infinite unless G is
virtually nilpotent (Theorem IT.2.6] below), so we begin with a digression on the

coarse geometry of finitely generated virtually nilpotent groups.

11.2.1. Nilpotent and virtually nilpotent groups. Recall that the lower
central series of an abstract group I' is the sequence (I';){° defined recursively by
the equations

Pi=Tand 'y = [[,T4].
Here [A, B] denotes the commutator of two sets A, B C T, i.e. [A, B] = {(aba='b~1 :
a € A,b € B). The group I is nilpotent if its lower central series terminates, i.e. if
Ti41 = {id} for some k € N. The smallest integer k for which this equality holds
is called the nilpotency class of I', and we will denote it by k.

Note that a group is abelian if and only if it is nilpotent of class 1. The
fundamental theorem of finitely generated abelian groups says that if I is a finitely
generated abelian group, then I' = Z¢ x F for some d € NU {0} and some finite
abelian group F. The number d will be called the rank of T, denoted rank(T"). Note
that the large-scale structure of I' depends only on d and not on the finite group
F. Specifically, if dr is a Cayley metric on I" then

(11.2.1) Nr(R) =<y R* VR > 1.

Here Nr(R) = #{y € T : d(e,v) < R} is the orbital counting function of T'
interpreted as acting on the metric space (T, dr) (cf. Remark BT.3).

The following analogue of (IT.2Z]) was proven by H. Bass and independently
by Y. Guivarch:
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THEOREM 11.2.1 ([16}, 87]). Let T be a finitely generated nilpotent group with
lower central series (I';)$° and nilpotency class k, and let

k

ar = Z ) rank(l"i/l"iﬂ).
i=1

Let dr be a Cayley metric on T'. Then for all R > 1,
(11.2.2) Nr(R) <y RT.

The number ar will be called the (polynomial) growth rate of Nr.
A group is virtually nilpotent if it has a nilpotent subgroup of finite index. The
following is an immediate corollary of Theorem TT.2.Tt

COROLLARY 11.2.2. Let T" be a finitely generated virtually nilpotent group. Let
I" < T be a nilpotent subgroup of finite index, and let dr be a Cayley metric. Let
ar = ars. Then for all R > 1,

(11.2.3) Nt (R) <y RO
EXAMPLE 11.2.3. If T' is abelian, then (IT22]) reduces to (ILZT]).

ExAMPLE 11.2.4. Let I" be the discrete Heisenberg group, i.e.

1 a c
I'= 1 b |:abce”
1

We compute the growth rate of Nr. Note that T' is nilpotent of class 2, and its

lower central series is given by I'y =T,

1 c
I's = 1 ce”Z

Thus
ap =rank(I'; /T2) + 2rank(l'y) =24+ 2-1 =4.

Corollary TT.2.2] implies that finitely generated virtually nilpotent groups have

polynomial growth, meaning that the growth rate

L long(R)

exists and is finite. The converse assertion is a deep theorem of M. Gromov:

THEOREM 11.2.5 ([I55]). A finitely generated group T' has polynomial growth if
and only if T is virtually nilpotent. Moreover, if I' does not have polynomial growth
then the limit (IT.24) exists and equals co.
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Thus the limit (TT224) exists in all circumstances, so we may refer to it unam-

biguously.

11.2.2. A universal lower bound on the Poincaré exponent. Now let
G < Isom(X) be a parabolic group. Recall that in the Standard Case, if a group
G is discrete then it is virtually abelian. Moreover, in this case ¢ = 5 rank(G).

If G is virtually nilpotent, then it is natural to replace this formula by the
formula ¢ = %ag. However, in general equality does not hold in this formula, as
we will see below (Theorem [[T.2.11]). We show now that the > direction always
holds. Precisely:

THEOREM 11.2.6. Let G < Isom(X) be a finitely generated parabolic group. Let

ag be as in (IL24). Then

(11.2.5) Sa > %G

Moreover, if equality holds and 6g < oo, then G is of divergence type.
Before proving Theorem [IT.2.6] we make a few remarks:

REMARK 11.2.7. In this theorem, it is crucial that b > 1 is chosen close enough
to 1 so that Proposition B:6.8 holds (cf. §4.1)). Indeed, by varying the parameter b
one may vary the Poincaré exponent at will (cf. (81.2])); in particular, by choosing
b large, one could make ¢ arbitrarily small. If X is strongly hyperbolic, then of

course we may let b = e.

REMARK 11.2.8. Expanding on the above remark, we recall that if X is an
R-tree, then any value of b is permitted in Proposition B.6.8 (Remark B.6.12)). This
demonstrates that if a finitely generated parabolic group acting on an R-tree has
finite Poincaré exponent, then its growth rate is zero. This may also be seen more
directly from Remark

REMARK 11.2.9. Let G < Isom(X) be a group of general type, and let H < G
be a finitely generated parabolic subgroup. Then combining Theorem with
Proposition [0.3 T0shows that d¢ > a g /2. This generalizes a well-known theorem
of A. F. Beardon [18] Theorem 7].

Combining Theorems IT.2.5] and [[1.2.6] gives the following corollary:

COROLLARY 11.2.10. Any finitely generated parabolic group with finite Poincaré

exponent is virtually nilpotent.

This corollary can be viewed very loosely as a generalization of Margulis’s lemma
(Proposition [T.I.3). As we have seen above (Observation [[T.T.4)), a strict analogue

of Margulis’s lemma fails in infinite dimensions.
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PROOF OF THEOREM Let g1,...,gn be a set of generators for G, and
let di denote the corresponding Cayley metric. Let & € 0X denote the unique fixed
point of G. Fix g € G, and write g = g;, - - - gi,,,. By the universal property of path
metrics (Remark B4, we have

De(0,9(0)) Sx da(id, g).
Now we apply Observation to get
b/ ANl < de(id, g).
Letting C' > 0 be the implied constant, we have
(11.2.6) Nx.alp) > Na(??/C) ¥p >0

(cf. Remark BI3). In particular, by (8I1.2])
1 1
5e = lim og, Nx,c(p) > lim og, N (R) _ &G
p—r00 P R—oo 2logy(R) 2
To demonstrate the final assertion of Theorem [I1.2.6] suppose that equality holds
in (ITZ3) and that d¢ < oco. Then by Theorem IT.25 G is virtually nilpo-

tent. Combining (IT2Z.6) with (TT.22]) and then plugging into (8IT) gives us that
¥5(G) = 0o, completing the proof. O

11.2.3. Examples with explicit Poincaré exponents. Theorem
raises a natural question: do the exponents allowed by this theorem actually occur
as the Poincaré exponent of some parabolic group? More precisely, given a finitely
generated abstract group I" and a number § > ar/2, does there exist a hyper-
bolic metric space X and an injective homomorphism @ : I' — Isom(X) such that
G = ®(T) is a parabolic group satisfying é¢ = 67 If § = ar/2, then the problem
appears to be difficult; cf. Remark However, we can provide a complete
answer when ¢ > ar/2 by embedding I' into Isom(B) and then using Poincaré

extension to get an embedding into Isom(E>). Specifically, we have the following:

THEOREM 11.2.11. Let T' be a virtually nilpotent group, and let « = ar be the

growth rate of Nt. Then for all § > ar/2, there exists an injective homomorphism
¢ : T — Isom(B) such that
4(®(T)) = 0.

Moreover, ®(T") may be taken to be either of convergence type or of divergence type.

REMARK 11.2.12. Theorem [T.2.TTlraises the question of whether there exists

an injective homomorphism @ : I' — Isom(B) such that

(11.2.7) 5(®(T)) = ar/2.
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It is readily computed that if the map v — ®(v)(0) is bi-Lipschitz, then ([T27)
holds. In particular, if I' = Z? for some d € N, then such a ® is given by
®(n)(x) = x + (n,0). By contrast, if " is a virtually nilpotent group which is
not virtually abelian, then it is known [59] Theorem 1.3] that there is no quasi-
isometric embedding ¢ : I' — B (see also [145] Theorem A] for an earlier version
of this result which applied to nilpotent Lie groups). In particular, there is no ho-
momorphism ® : I' = Isom(B) such that v — ®(y)(0) is a bi-Lipschitz embedding.
So this approach of constructing an injective homomorphism @ satisfying (I1.2.7)
is doomed to failure. However, it is possible that another approach will work. We

leave the question as an open problem.

REMARK 11.2.13. Letting I' = Z in Theorem [[T.2.11] we have the following
corollary: For any & > 1/2, there exists an isometry gs € Isom(B) such that the
cyclic group Gs = (gs)% satisfies §(Gs) = J, and may be taken to be either of
convergence type or of divergence type. The isometries (gs)s~1/2 exhibit “inter-
mediate” behavior between the isometry g,2(x) = x + e; (which has Poincaré
exponent 1/2 as noted above) and the isometries described in the Edelstein-type
isometries [T.T.12] IT.T.T4] and ITTI8 since 6 > 1/2, the sequence (g§(0))3° con-
verges to infinity much more slowly than the sequence (g7'/,(0))3°, but since § < oo,

the sequence converges faster than in Example IT.1.18 not to mention Examples
[T1.12 and IT.T.74 where the sequence (g5 (0))° does not converge to infinity at

all (although it converges along a subsequence).

REMARK 11.2.14. Theorem [IT.2.17] leaves open the question of whether there
is a homomorphism ® : I' — Isom(B) such that ®(T') is strongly discrete but
§(P(T)) = oo. If T' = Z, this is answered affirmatively by Example [T.T.I8 and if T
contains Z as a direct summand, i.e. I' = Z x IV for some IV < T', then the answer
can be achieved by taking the direct sum of Example IT.T.18 with an arbitrary
strongly discrete homomorphism from I to Isom(B). However, the Heisenberg
group does not contain Z as a direct summand. Thus, it is unclear whether or not
there is a a homomorphism from the Heisenberg group to Isom(B) whose image is

strongly discrete with infinite Poincaré exponent.

ProOOF OF THEOREM [IT.2.TT] We will need the following variant of the As-

souad embedding theorem:

THEOREM 11.2.15. Let X be a doubling metric spaceB and let F : (0,00) —

(0,00) be a nondecreasing function such that
(11.2.8) 0 < ax(F) < a*(F) < 1.

2Recall that a metric space X is doubling if there exists M > 0 such that for all z € X and p > 0,
the ball B(z, p) can be covered by M balls of radius p/2.
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Here

ax(F) := liminf inf log F(AR) — log FI(R)
A—oo R>0 log(\)

o (F) := lim sup sup log F(AR) — log F(R)
A—oco R>0 log(A)

Then there exist d € N and a map v : X — R? such that for all z,y € X,
(11.2.9) [e(y) — @)]| =x F(d(z,y)).

PROOF. The classical Assouad embedding theorem (see e.g. [91, Theorem
12.2]) gives the special case of Theorem [T ZT5lwhere F'(¢) = t° for some 0 < & < 1.
It is possible to modify the standard proof of the classical version in order to
accomodate more general functions F satisfying (I1.2.8]); however, we prefer to
prove Theorem directly as a consequence of the classical version.

Fix € € (a*(F),1), and let

F(t) =t inf Fls),

s<t 8&¢

The inequality € > a.(f) implies that F =y F', so we may replace F' by F without

affecting either the hypotheses or the conclusion of the theorem. Thus, we may

without loss of generality assume that the function ¢t — F(t)/¢° is nonincreasing.
Let G(t) = F(t)*/¢, so that t — G(t)/t is nonincreasing. It follows that

G(t +s) < G(t) + G(s).

Combining with the fact that G is nondecreasing shows that GG o d is a metric on
X. On the other hand, since a.(G) = a.(F)/e > 0, there exists A > 0 such that
G(Mt) > 2G(¢t) for all ¢ > 0. It follows that the metric G o d is doubling. Thus we
may apply the classical Assouad embedding theorem to the metric space (X, G od)
and the function t — ¢, giving a map ¢ : X — R? satisfying

[e(y) = e(@)[| =x G° o d(z,y) = F(d(z,y))-

This completes the proof. <
Now let I' be a virtually nilpotent group, and let dr be a Cayley metric on I'.
LEMMA 11.2.16. (I',dr) is a doubling metric space.

PROOF. For all v € T and R > 0, we have by Corollary [1.2.2]

#(B(7, R)) = #(v(B(e, R))) = #(B(e, R)) <x (1V R)*".

Now let S C B(v,2R) be a maximal R-separated set. Then {B(5,R): 8 € S} is a
cover of B(,2R). On the other hand, {B(8, R/2) : € S} is a disjoint collection
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of subsets of B(v,3R), so

> #(B(B,R/2)) < #(B(7,3R))

Bes

#(B(13R) (V3R
minges #(B(8, R/2)) " (1V R/2)er
ie. #(S) < M for some M independent of v and R. But then B(vy,2R) can be
covered by M balls of radius R, proving that I' is doubling. <

#(5) <

=y 1,

Now let f:[1,00) — [1,00) be a continuous increasing function satisfying
(11.2.10) a<a.(f) <a*(f) <oo

and f(1) =1. Let
—1 «
F(R) - [ (RY) R>1
R'/? R<1

Then

0 < a,(F) = min <% %(f)) < o*(F) = max (% ai(f)) <1

Thus F satisfies the hypotheses of Theorem [T.2.T5] so there exists an embedding
v : T — H satisfying (IT29). By [69], Proposition 4.4], we may without loss of
generality assume that ¢(y) = ®(7)(0) for some homomorphism ® : ' — Isom(B).
Now for all R > 1,

Ni.or)(R) = #{y €T : De(0,®(7)(0)) < R}
=#{yeT: F(dr(e,7)) < R}
= Ne(F7H(R)) =x (F7H(R)" = f(R).
In particular, given § > ar/2 and k € {0, 2}, we can let
f(R) = R*(1 +log(R))~".

It is readily verified that o < a(f) = 20 < oo, so in particular (IT2I0) holds.
By 812), §(®(T)) = 6 and by BILI), ®(T') is of divergence type if and only if
k=0. O

REMARK 11.2.17. The above proof shows a little more that what was promised;

namely, it has been shown that

(i) for every function F : (0,00) — (0, 00) satisfying (IT.2.8]), there exists an
injective homomorphism ® : I' — B such that ||®(7)(0)| xx F(d(e,v))
for all v € T', and that
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(i) for every function f : [1,00) — [1,00) satisfying (ITZI0), there exists a
group G < Isom(B) isomorphic to I' such that Nz g(R) =<« f(R) for all

R>1.
The latter will be of particular interest in Chapter [I7] in which the orbital counting
function of a parabolic subgroup of a geometrically finite group is shown to have

implications for the geometry of the Patterson—Sullivan measure via the Global
Measure Formula (Theorem [I7.2.2]).

We conclude this chapter by giving two examples of how the Poincaré exponents

of infinitely generated parabolic groups behave somewhat erratically.

ExAMPLE 11.2.18 (A class of infinitely generated parabolic torsion groups).
Let (b,,)$° be an increasing sequence of positive real numbers, and for each n € N,
let g, € Isom(B) be the reflection across the hyperplane H, := {x : z, = b,}.
Then G := (g, : n € N) is a strongly discrete subgroup of Isom(B) consisting
of only torsion elements. It follows that its Poincaré extension Gis a strongly

discrete parabolic subgroup of Isom(H>®) with no parabolic element. To compute

the Poincaré exponent of G, we use ([LLI):
S(@) =) (Vg =" <1 v <H 9n> (0) )
nes
=y (1\/ Z(2bn)2> .

geG SCN
finite
SCN nes
finite

The special case b, = n gives

N —S
(@) = Y (Z(2n)2> =, 2NN—3s 00 Vs 20

SC{1,...N} \n=1

and thus § = oo, while the special case b,, = n™ gives

¥ (G) < il S;N (n™)=% = il 2" (n™) 7% < oo Vs > 0

max(S)=n
and thus 6 = 0. Intermediate values of § can be achieved either by setting b, =

2n/(29) which gives a group of divergence type:

Sa(G) = Y (nggg(?bn)Q) B =x i >

SCN n=1 SCN
finite max(S)=n

i2n_12_n5/5 =00 fors<é
n=1

<oo fors>94
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or by setting b, = 2/ (?9)n1/% which gives a group of convergence type:

> > =00 fors<é
ES(G) = Z Z b7—12s _ Z 2n—12—ns/6n—28/6
n=1 SCN n=1 <oo fors>9§

max(S)=n

REMARK 11.2.19. In Example [T.2.18] for each n the hyperplane H,, is a totally
geodesic subset of E>° which is invariant under G. However, the intersection (,, Hy,
is trivial, since no point x € bord E*> \ {oo} can satisfy z, = b, for all n. In
particular, G does not act irreducibly on any nontrivial totally geodesic set S C
bord H*.

EXAMPLE 11.2.20 (A torsion-free infinitely generated parabolic group with fi-
nite Poincaré exponent). Let I' = {n/2* : n € Z,k > 0}. Then I is an infinitely
generated abelian group. For each & € N let B, = k*, and define an action
® : T — Isom(¢?(N; C)) by the following formula:

®(q)(wo,x) = (330 +q, (GQWiQkQ(Ik — By) + Bk)k)7

i.e. ®(q) is the direct sum of the Edelstein-type example (cf. Definition [T.T1T])
defined by the sequences aj, = 2Fq, by, = B}, with the map R 3 x¢ — x¢ + ¢. It is
readily verified that ® is a homomorphism (cf. (ITI15)). We have

ok
[2(q)(0)||” = |g|* + > BF|e>™" 1 — 12
k
= laI> + > BRd(2*q,2)
k
= max(|q*, B}),

where k, is the largest integer such that 2kag ¢ 7. Equivalently, kg is the unique
integer such that ¢ = n/2%*! for some k.
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To compute the Poincaré exponent of G = ®(T'), fix s > 1/2 and observe that

Z(G) = Y (Vg

geG

= > (lalVBy,)™*

qel

Z Z(|n|/2k+l V. Bk)725

keENnezZ

S €T —2s
S (s
ken 0

IN

)

[ p25+iBy 00 9
_ Z / B];zs da:—l—/ (%) dx
keN L 0 2k+lBk 2
_ k+1 pl-2s kp1yas T2 =
= ) [2MBT 4 (2R —
keN L 1 =25 )|, _ors1p,
[ 1
_ k+1 pl1—2s k+1 npl—2s
= %_2 By 45— 2By, }
= Y 26BIT = 2R (kR) T < o0,
kEN kEN

Thus §(G) < 1/2, but Theorem [[T.2.6] guarantees that §(G) > 6(®(Z)) > 1/2. So
I(G)=1/2.



CHAPTER 12

Geometrically finite and convex-cobounded groups

In this chapter we generalize the notion of geometrically finite groups to reg-
ularly geodesic strongly hyperbolic metric spaces, mainly CAT(-1) spaces. We
generalize finite-dimensional theorems such as the Beardon-Maskit theorem [21]

and Tukia’s isomorphism theorem [I70, Theorem 3.3].

STANDING ASSUMPTIONS 12.0.21. Throughout this chapter, we assume that

(I) X is regularly geodesic and strongly hyperbolic, and that
(II) G < Isom(X) is strongly discrete.

Recall that for z,y € bord X, [z,y] denotes the geodesic segment, ray, or line

connecting = and y.

Note that we do not assume that G is nonelementary.

12.1. Some geometric shapes

To define geometrically finite groups requires three geometric concepts. The
first, the quasiconvex core C, of the group G, has already been introduced in Section

The remaining two concepts are horoballs and Dirichlet domains.
12.1.1. Horoballs.

DEFINITION 12.1.1. A horoball is a set of the form
Hey={z € X : Be(o,z) > t},

where £ € 90X and t € R. The point £ is called the center of a horoball H¢ ¢, and
will be denoted center(He ;). Note that for any horoball H, we have

HNOX = {center(H)}.

(Cf. Figure I21.11)

LEMMA 12.1.2. For every horoball H C X, we have
Diam(H) =, b~4H),

193
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FIGURE 12.1.1. Two pictures of the same horoball, in the ball
model and half-space model, respectively.

ProoOF. Write H = H¢; for some £ € 0X,t € R. If t < 0, then 0o € H, so
d(o,H) = 0 and Diam(H) = 1. So suppose t > 0. Then the intersection [o,&] N OH
consists of a single point xq satisfying ||xo|| = t. It follows that d(o, H) < ||zo| =t
and Diam(H) > D(zg,z0) = b~'. For the reverse directions, fix x € H. Since
Be(o,x) > t, we have

]| >t
and
D($,§) = b7<z‘5>° = b7[65(07m)+<0‘5>x] S b* Bg(O,z) < bft'
It follows that Diam(H) =<« bt = p—d(o.H) 0

LEMMA 12.1.3 (Cf. Figure[TZT2)). Suppose that H is a horoball not containing
o. Then
Diam(H \ B(o, p)) < 2e~ /)¢,

Proor. Write H = H¢; for some { € 0X and t € R; we have ¢ > 0 since
o ¢ H. Then for all z € H \ B(o,p),

o+t =5p

DN | =
N —

(al€)o = 5 llall + Beo, )] >

and so D(z,£) < e~(1/2)p, O

12.1.2. Dirichlet domains.

DEFINITION 12.1.4. Let G be a group acting by isometries on a metric space
X. Fix z € X. We define the Dirichlet domain for G centered at z by
(12.1.1)

D, :={z:d(z,z) < d(z,9(z)) Vg€ G} ={x:B.(2,97(2)) <0 Vg € G}.
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JH N\ B(o:p)

3

FIGURE 12.1.2. The set H \ B(o, p) decreases in diameter as p — oo.

The idea is that the Dirichlet domain is a “tile” whose iterates under G tile the

space X. This is made explicit in the following proposition:
PROPOSITION 12.1.5. Forall z € X, G(D,) = X.

Proor. Fix x € X. Since the group G is strongly discrete, the minimum
mingeg{d(x,g(z))} is attained at some g € G. Now for every h € G, we have
d(z,g(z)) < d(x,h(z)). Replacing h by gh, it follows that for every h € G we have
d(z,g(z)) < d(z, gh(z)) which is the same as d(g~'(x), 2) < d(g~*(z),h(z)). Thus
g Yx) € D, i.e. x € g(D,). O

COROLLARY 12.1.6. Let S C X be a G-invariant set. The following are equiv-
alent:

(A) There exists a bounded set Sy C X such that S C G(Sp).
(B) The set SND, is bounded.

PROOF OF (A) = (B). Given x € SND,, fix g € G with € g(Syp). Then
d(z,z) < d(z,971(z)) <4 0, i.e. 7 is in a bounded set. O

PRrROOF OF (B) = (A). The set So = SN D, is such a set. Specifically, given
x € S by Proposition [2.1.0] there exists g € G such that z € g(D,). Since S is
G-invariant, g~ 1(z) € SND, = Sp. d

REMARK 12.1.7. It is tempting to define the Dirichlet domain of G centered at
z to be the set

D; :={z:d(z,x) < d(z,9(z)) Vg € G such that g(z) # z},
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R

X vt ez 71 X [ v ez 1 [
l | l con| |

T T

FIGURE 12.1.3. The Cayley graph of I' = F2(Z) = (v1,72). The
closure of the naive Dirichlet domain D} is the geodesic segment
Dx = [e,y1]. Its orbit G(D?) is the union of all geodesic segments
which appear as horizontal lines in this picture.

and then to try to prove that G(Df) = X. However, there is a simple example
which disproves this hypothesis. Let X be the Cayley graph of T' = Fo(Z) =
(71,72), let @ : T' — Isom(X) be the natural action, and let G = ®(T"). If we let
z=((e,m),1/2), then D = {((e,m1),t) : t € (0,1)}, and

G(D7) ={((g.gm).t) : g €T, t € [0, 1]}.

This set excludes all elements of the form ((g,g72),t), t € (0,1). (Cf. Figure
I213)

REMARK 12.1.8. The assumption that G is strongly discrete is crucial for
Proposition In general, tiling Hilbert spaces turns out to be a very sub-
tle problem and has been studied (among others) by Klee [113} [114], Fonf and
Lindenstrauss [75] and most recently by Preiss [146].

12.2. Cobounded and convex-cobounded groups

Before studying geometrically finite groups, we begin by considering the simpler
case of cobounded and convex-cobounded groups. The theory of these groups will

provide motivation for the theory of geometrically finite groups.

DEFINITION 12.2.1. Let G be a group acting by isometries on a metric space
X. We say that G is cobounded if there exists o > 0 such that X = G(B(o,0)).

It has been a long-standing conjecture to prove or disprove the existence of

cobounded subgroups of Isom(H>) that are discrete in an appropriate sense. To
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the best of our knowledge, this conjecture was first stated explicitly by D. P. Sullivan
in his ITHES seminar on conformal dynamics [164] p.17]. We give here two partial

answers to this question, both negative. Our first partial answer is as follows:

PROPOSITION 12.2.2. A strongly discrete subgroup of Isom(H™) cannot be

cobounded.

PROOF. Let us work in the ball model B*. Suppose that G < Isom(B*) is a
strongly discrete cobounded group, and choose o > 0 so that B> = G(Bg(0, 0)).
Since G is strongly discrete, we have #(F') < oo where

F:={xeG(0):dg(0,x) <20+ 1}.

Choose v € 9B> such that Bg(v,z) = 0 for all z € F, and let x = tv, where
0 <t <1 is chosen to make

d[B(O,X) =0+ 1.
Since x € B, we have x € Bg(y,0) for some y € G(0). But then d(0,y) < 20 + 1,
which implies y € F, and thus Bg(x,y) = 0. On the other hand

dp(x,y) <o <o+ 1=dg(0,x),
which contradicts (25.1]). O

Proposition leaves open the question of whether there exist cobounded
subgroups of Isom(H) which satisfy a weaker discreteness condition than strong
discreteness. One way that we could try to construct such a group would be to
take the direct limit of a sequence cobounded subgroups of Isom(H?) as d — oo.
The most promising candidate for such a direct limit has been the direct limit
of a sequence of arithmetic cocompact subgroups of Isom(H?). (See e.g. [23] for
the definition of an arithmetic subgroup of Isom(H?).) Nevertheless, such innocent

hopes are dashed by the following result:

PROPOSITION 12.2.3. If G4 < Isom(H?) is a sequence of arithmetic subgroups,
then the codiameter of Gy tends to infinity, that is, there is no o > 0 such that
Ga(B(0,0)) = H? for every d.

PRrROOF. It is known [23] Corollary 3.3] that the covolume of G4 tends to infinity
superexponentially fast as d — co. On the other hand, the volume of B(o, o) in H¢

tends to zero superexponentially fast. Indeed, it is equal to
(27?2 T (d/2)) / sinh?1(r) dr <, 7926971 /T(d/2).
0

Thus, for sufficiently large d, the volume of B(o, o) is less than the covolume of G4,
which implies that Gq(B(0,0)) S H™. O
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REMARK 12.2.4. Proposition[I2:23Istrongly suggests, but does not prove, that
it is impossible to get a cobounded subgroup of Isom(H>) as the direct limit of
arithmetic subgroups of Isom(H?). One might ask whether one can get a cobounded
subgroup of Isom(H>) as the direct limit of non-arithmetic subgroups of Isom(H%);
the analogous known lower bounds on volume [Il, T10] are insufficient to disprove
this. However, this approach seems unlikely to work, for two reasons: first of all,
the much worse lower bounds for the covolumes of non-arithmetic groups may just
be a failure of technique; there are no known examples of non-arithmetic groups
with volume lower than the bound which holds for arithmetic groups, and it is
conjectured that there are no such examples [23] p.9]. Second of all, even if such
groups exist, they are of no use to the problem unless an entire sequence of groups
may be found, each one of which is a subgroup of all its higher dimensional ana-
logues. Such structure exists in the arithmetic case but it is unclear whether or not

it will also exist in the non-arithmetic case.

From Propositions and [2.2.3] we see that the theory of cobounded
groups acting on H* will be rather limited. Consequently we focus on the weaker
condition of convez-coboundedness.

For the remainder of this chapter, we return to our standing assumption that

the group G is strongly discrete.

DEFINITION 12.2.5. We say that G < Isom(X) is convex-cobounded if its re-
striction to the quasiconvex core C, is cobounded, or equivalently if there exists
o > 0 such that

Co C G(B(o,0)).

We remark that whether or not GG is convex-cobounded is independent of the
base point o (cf. Proposition [[75.9)).
From Proposition [7.5.3] we immediately deduce the following:

OBSERVATION 12.2.6. If X is an algebraic hyperbolic space and if G is nonele-

mentary, then the following are equivalent:

(A) G is convex-cobounded.
(B) There exists o > 0 such that Cx C G(B(o,0)).

In particular, when X is finite-dimensional, we see that the notion of convex-

coboundedness coincides with the standard notion of convex-cocompactness.

12.2.1. Characterizations of convex-coboundedness. The property of

convex-coboundedness can be characterized in terms of the limit set. Precisely:

THEOREM 12.2.7. The following are equivalent:

(A) G is convez-cobounded.
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(B) G is of compact type and any of the following hold:
Bl) A(G) = Aurg( ) for some o > 0.

(

(B2) A(G) = Au(G).
(B3) A(G) = A:(G).
(B4) A(G) = An(G).

REMARK 12.2.8. (B1)-(B4) should be regarded as equivalent conditions which
also assume that G is of compact type, so that there are a total of 5 equivalent

conditions in this theorem.

The implications (B1) = (B2) = (B3) = (B4) follow immediately from the
definitions. We therefore proceed to prove (A) = (B1) and (B4) = (A).

PROOF OF (A) = (B1). The proof consists of two parts: showing that A(G) =
Aur,o(G) for some o > 0, and showing that A(G) is compact.

PROOF THAT A(G) = Ay,o(G) FOR SOME o > 0. Fix £ € A(G), so that
[0,€] € C, C G(B(o,0)).

For each n € N, let z,, = [o0,£],, so that x, — £ and d(z,,2n+1) = 1. Then for
each n, there exists g, € G satisfying d(gn(0),zn) < 0. Then

(01€) g, (0) < (0€)z, +0 =03
moreover,
d(gn(o)v In+1 (0)) < d(xnv xn-l-l) +20=20+1

Thus the convergence g,(0) — £ is (20 4 1)-uniformly radial, so & € Ay 20+1(G).
<

PROOF THAT G IS OF COMPACT TYPE. By contradiction, suppose that G is
not of compact type. Then A is a complete metric space which is not compact,
which implies that there exist € > 0 and an infinite e-separated set I C A. Fix p > 0
large to be determined. For each & € I, let ¢ = [0,&],. Then z¢ € C, C G(B(o0,0)),
so there exists g¢ € G such that d(ge(0), z¢) < 0.

CLAM 12.2.9. For p sufficiently large, the function & — ge(0) is injective.

ProOF. Fix &,& € I distinct, and suppose gg, (0) = ge,(0). Then (cf. Figure

[[2.2.7)) we have that
(alea)o 2 (@rlaz)o = 5(20 — dar,a2)) 2 p— o

On the other hand, since I is e-separated we have (£1|€2), < —log(e). This is a
contradiction if p > o — log(e). <
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&1

20
L T2

&2

o

FIGURE 12.2.1. If g¢, (0) = ge,(0), then & and & must be close
to each other.

The strong discreteness of G therefore implies

#(I) <#{g e G:lgll < p+o} <oo,

which is a contradiction since #(I) = co by assumption. <
This completes the proof of (A) = (B1). O
PROOF OF (B4) = (A). We use the notation (.5.2]).
LEMMA 12.2.10. A, ND) = &.

(Lemma [[22ZT0 is true even without assuming (B4); this fact will be used in
the proof of Theorem [2.4.5] below.)

PROOF. By contradiction fix £ € A, N D.. Since £ € (D,)’, (IZI1]) gives
Be(0,g(0)) <0 for all g € G (cf. Lemma B.422). But then £ ¢ Ay, since by defini-
tion £ € Ay, if and only if there exists a sequence (g,,)7° satisfying Be(o, gn(0)) —
+00. <

Now by (B4) and Observation [[.5.12] we have (C, N D,) CAND, =A,ND,,
and so (C,ND,) = . By (C) of Proposition[7.7.2] we get that C,ND, is bounded,
and Corollary [2.1.0 finishes the proof. O

The proof of Theorem [[2.2.7] is now complete.

REMARK 12.2.11. (B4) = (A) may also be deduced as a consequence of Theo-
rem [[2.4.5(B3)=-(A) below; cf. Remark[I2.4.T11 However, the above prove is much
shorter. Alternatively, the above proof may be viewed as the “skeleton” of the proof
of Theorem [Z45(B3)=-(A), which is made more complicated by the presence of

parabolic points.
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12.2.2. Consequences of convex-coboundedness. The notion of convex-
coboundedness also has several important consequences. In the following theorem,

G is endowed with an arbitrary Cayley metric (cf. Example B1.2).

THEOREM 12.2.12 (Cf. [39] Proposition 1.8.19]). Suppose that G is convex-
cobounded. Then:
(i) G is finitely generated.
(ii) The orbit map g — g¢(0) is a quasi-isometric embedding (cf. Definition
(iii) dg < co.

We shall prove Theorem [12.2.12] as a corollary of a similar statement about
geometrically finite groups; cf. Theorem M2.4.14] and Observation [2Z.4.15] below.
For now, we list some corollaries of Theorem [12.2.12]

COROLLARY 12.2.13. Suppose that G is convex-cobounded. Then G is word-

hyperbolic, i.e. G is a hyperbolic metric space with respect to any Cayley metric.
PRrOOF. This follows from Theorem [2:2.12(ii) and Theorem B3T01 O
COROLLARY 12.2.14. Suppose that G is convez-cobounded. Then
dimg(A) =6 < oo.

PRrROOF. This follows from Theorem [2.2.T2(iii), Theorem [[.2.1] and Theorem
227 O

12.3. Bounded parabolic points

The difference between groups that are geometrically finite and those that
are convex-cobounded is the potential presence of bounded parabolic points in the
former. In the Standard Case, a parabolic fixed point £ in the limit set of a geo-
metrically finite group G, is said to be bounded if (A \ {£})/ Stab(G;€) is compact
[34] p.272]. We will have to modify this definition a bit to make it work for arbi-
trary hyperbolic metric spaces, but we show that in the usual case, our definition
coincides with the standard one (Remark [[2.3.7).

Fix £ € 0X. Recall that & denotes the set bord X \ {¢}.

DEFINITION 12.3.1. A set S C & is £-bounded if € ¢ S.

The motivation for this definition is that if X = H? and ¢ = oo, then &-bounded
sets are exactly those which are bounded in the Euclidean metric. Actually, this

can be generalized as follows:
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OBSERVATION 12.3.2. Fix S C &. The following are equivalent:
(A) S is {-bounded.

(B) (x]&)o <4 0 for all z € X.

(C) De(o,x) Sk 1forall z € X.

(D)

Condition (D) motivates the terminology “£-bounded”.

S has bounded diameter in the D¢ metametric.

PROOF OF OBSERVATION (A) & (B) follows from the definition of the
topology on bord X, (B) < (C) follows from ([3.6.6]), and (C) < (D) is obvious. O

Now fix G < Isom(X), and let G¢ denote the stabilizer of ¢ relative to G.
Recall (Definition [6.2.7)) that £ is said to be a parabolic fized point of G if G is a
parabolic group, i.e. if G¢(0) is unbounded and

geGe =g =1
(Here ¢'(€) is the dynamical derivative of g at &; cf. Proposition lE2.12])
OBSERVATION 12.3.3. If £ is a parabolic point then £ € A.

Proor. This follows directly from Observation [6.2.11] O

DEFINITION 12.3.4. A parabolic point £ € A is a bounded parabolic point if
there exists a {-bounded set S C & such that

(12.3.1) G(0) C G¢(9).
We denote the set of bounded parabolic points by App.
LEMMA 12.3.5. Let G < Isom(X), and fix £ € 0X. The following are equiva-

lent:

(A) & is a bounded parabolic point.
(B) All three of the following hold:
(BI) £ €A,
(BII) ¢'(§) =1 Vg € Ge, and
(BIII) there exists a {-bounded set S C & satisfying (12.3.1)).

PRrROOF. The only thing to show is that if (B) holds, then G¢ (o) is unbounded.
By contradiction suppose otherwise. Let S be a -bounded set satisfying (T2.31]).
Then for all z € G(0), we have x € h(S) for some h € G¢, and so
(1o = (T @)ooy =<5 (W @IE)0  (since Ge(o) is bounded)
=, 0. (since h™1(z) € S)

By Observation [2.3.2] the set G(o) is &-bounded and so £ ¢ A, contradicting
(BI). O
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We now prove a lemma that summarizes a few geometric properties about

bounded parabolic points.

LEMMA 12.3.6. Let £ be a parabolic limit point of G. The following are equiv-

alent:

(A) € is a bounded parabolic point, i.e. there exists a &-bounded set S C &
such that

(12.3.2) G(0) C G¢(9).
(B) There exists a &-bounded set S C E NIX such that

(12.3.3) A\ (€} € Ge(S).
Moreover, if H is a horoball centered at & satisfying G(o) N H = &, then (A)-(B)

are moreover equivalent to the following:

(C) There exists a &-bounded set S C & such that
(12.3.4) Co\ H C Ge(S).
(D) There exists p > 0 such that

(12.3.5) Co NOH C Ge(B(o,p)).

REMARK 12.3.7. The equivalence of conditions (A) and (B) implies that in the
Standard Case, our definition of a bounded parabolic point coincides with the usual

one.

PROOF OF (A) = (B). This is immediate since A \ {¢} C G(o)Me. Here
Ni (S) denotes the 1-thickening of S with respect to the Euclidean metametric
De. O

PRrROOF OF (B) = (A). If #(A) = 1, then G = G¢ and there is nothing to
prove. Otherwise, let 11,12 € A be distinct points.

Let S be as in (IZ33). Fix z = g.(0) € G. Since (g.(m)[g2(12))g, o) =<+ O,
Gromov’s inequality implies that there exists i = 1,2 such that (g;(7;)|£)s <4+ 0.

By [I23.3), there exists h, € G¢ such that h;1g,(n;) € S. We have

(he g0 (1)1€)o =+ (h g (0)[€)pz1 (ay =<+ O-

By Proposition FE3.0(i), this means that o and y, := h;'(x) are both within a
bounded distance of the geodesic line [h;1g.(n;),&]. Since one of these two points

must lie closer to £ then the other, we have either

(12.3.6) (yz€)o =+ 0 or (0[&§)y, =+ 0.
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By contradiction, let us suppose that there exists a sequence x,, € G(0) such that
D¢(0,yz,) — oo. (If no such sequence exists, then for some N € N the set S =
{y € X : De(o,y) < N} is a {-bounded set satisfying (I2.3.2)).) For n sufficiently
large, the first case of (I23.0]) cannot hold, so the second case holds. It follows
that y, := y,, — £ radially. So ¢ is a radial limit point of G. In the remainder of
the proof, we show that this yields a contradiction.

By Proposition [31Li), for each n € N there exists a point z, € [0, &] satisfying
(12.3.7) d(Yn, zn) =<4 0.

Now let p be the implied constant of (IZ371), and let § be the implied constant
of Proposition B.3I[(ii). Since G is strongly discrete, M := #{g € G : |lg|| <
2p+26} < 0o0. Let F' C G¢ be a finite set with cardinality strictly greater than M.
By Proposition FE3T1(ii), there exists ¢ > 0 such that for all y € [o,£] with y > ¢,
then d(y, [h(0),£]) < d for all h € F.

Suppose z, > t. Then for all h € F, we have d(z,, [h(0),£]) < J. On the other
hand, h(z,) € [h(0),€] and Be(zn, h(zy,)) = 0; this implies that d(z,, h(z,)) < 20
and thus d(yn, h(yn)) < 2p + 26. But y, = g,(0) for some g, € G, so we have
llg thanll < 2p + 26. But since #(F) > M, this contradicts the definition of M.

It follows that z, < ¢. But then ||y, < ||znll + p < t 4 p, implying that the

sequence (y,,)$° is bounded, a contradiction. O

For the remainder of the proof, we fix a horoball H = H¢; C X disjoint from
G(o).

PROOF OF (A) = (C). Let S be as in (I2Z3.2). Fix =z € C, \ H. Then there
exist g1, g2 € G with x € [g1(0), g2(0)]. We have {g1(0)|g2(0))» = 0, so by Gromov’s
inequality there exists ¢ = 1,2 such that (g;(0)|{), =<+ 0. By B&0), we have
D¢ 2(x,9i(0)) <x 1, and combining with [@.2.0)) gives

D¢ (z, gi(0)) =x eBelox) < ot =y m 1.

Now by ([Z3.2), there exists h € G¢ such that h=!(g;(0)) € S. Then by Observation

6.2.9]
De(o,h™"(2)) < De(0,h™ (gi(0))) + De(x, gi(0)) Sx 1.

Thus h~1(z) lies in some &-bounded set which is independent of x. O

PRroOOF OF (C) = (D). Let S be a é&-bounded set satisfying (I12Z.3.4]). Then for
all z € SNOH, by (h) of Proposition B33 we have
lzl=2 (216)e — Belox) =4m0.
——

——
=40 since x€S =t since z€H
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g(o) h~'g(0)

Ficure 12.3.1. By moving x close to o with respect to the d
metric, h~! also moves g(o) close to o with respect to the D
metametric.

Thus SNIH C B(o, p) for sufficiently large p. Applying G¢ demonstrates (IZ.3.5).
O

PrROOF OF (D) = (A). Let p be as in (IZ3.3), and fix ¢ € G. Since by as-
sumption G(o) N H = &, we have B¢(o,g(0)) < t. Let = = [g(0),&]i—B (0,9(0))» SO
that = € [g(0),&] N OH (cf. Figure IZ31)). By (IZ33), there exists h € G¢ such
that x € B(h(o), p). Then

(h™"9(0)[€)0 = (9(0)|E)n(o) < (9(0)[€)a + d(h(0),z)

= d(h(0),z) (since x € [9(0),£])
<p.
This demonstrates that g(o) € h(S) for some &-bounded set S. O

REMARK 12.3.8. The proof of (B) = (A) given above shows a little more than
asked for, namely that a parabolic point of a strongly discrete group cannot also

be a radial limit point.

It will also be useful to rephrase the above equivalent conditions in terms of a
Dirichlet domain of G¢. Indeed, letting D,(G¢) denote such a Dirichlet domain, we
have the following analogue of Corollary 12.1.6l

LEMMA 12.3.9. Let & be a parabolic point of G, and let S C & be a G¢-invariant

set. The following are equivalent:

(A) There exists a £-bounded set Sy C & such that S C Ge¢(Sp).

(B) The set SNDy(Ge) is {-bounded.
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PRrOOF. We first observe that for all # € & and h € G, (g) of Proposition
B33 gives

(@1€)o — (2E)n(o) =

In particular

[Ba(0,h(0)) + Be(o, h(0)] = 3 B0, (o))

DN =

z € Do(Ge) © (@(§)o < (2[€)n(o) Vh € Ge

g Dg(,@,f) < Dg(h(l‘),f) Vh € Gﬁu

ie. m is the Dirichlet domain of o for the action of G¢ on the metametric
space (&, D¢). Note that this action is isometric (Observation [(.2.9) and strongly
discrete (Proposition [[.74]). Modifying the proof of Corollary TZT.6lnow yields the
conclusion.

d

COROLLARY 12.3.10. In Lemma[IZ.3.8, the equivalent conditions (A)-(D) are

also equivalent to:

(A") G(0) N Dy(Gy) is &-bounded.
(B') Do(Ge) N AN {&} is E-bounded.

(C") CoNDy(Ge) \ H is -bounded.

12.4. Geometrically finite groups

DEFINITION 12.4.1. We say that G is geometrically finite if there exists a dis-
joint G-invariant collection of horoballs 7 satisfying o ¢ |J 7 such that

(I) for every p > 0, the set
(12.4.1) ,:={H € A :d(o,H) < p}

is finite, and
(I) there exists o > 0 such that

(12.4.2) Co € G(B(o,0)) U| 2.
OBSERVATION 12.4.2. Notice that the following implications hold:
G cobounded = G convex-cobounded = G geometrically finite.

Indeed, G is convex-cobounded if and only if it satisfies Definition [2.4.1] with
H=g.

REMARK 12.4.3. It is not immediately obvious that the definition of geometrical
finiteness is independent of the basepoint o, but this follows from Theorems [[2.4.5]
and [[2.4.74] below.
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REMARK 12.4.4. Geometrical finiteness is closely related to the notion of rela-

tive hyperbolicity of a group; see e.g. [37]. The main differences are:

1. Relative hyperbolicity is a property of an abstract group, whereas geomet-
rical finiteness is a property of an isometric group action (equivalently, of
a subgroup of an isometry group)

2. The maximal parabolic subgroups of relatively hyperbolic groups are as-
sumed to be finitely generated, whereas we do not make this assumption
(cf. Corollary I24.T1711)).

3. The relation between relative hyperbolicity and geometrical finiteness is
only available in retrospect, once one proves that both are equivalent
to a decomposition of the limit set into radial and bounded parabolic
limit points plus auxiliary assumptions (compare Theorem with
[37, Definition 1]).

12.4.1. Characterizations of geometrical finiteness. We now state and
prove an analogue of Theorem [[2.2.7] in the setting of geometrically finite groups.
In the Standard Case, the equivalence (A) < (B2) of the following theorem was
proven by A. F. Beardon and B. Maskit [2I]. Note that while in Theorem [12.2.7]
one of the equivalent conditions involved the uniformly radial limit set, no such
characterization exists for geometrically finite groups. This is because for many
geometrically finite groups, the typical point on the limit set is neither parabolic
nor uniformly radial. (For example, the set of uniformly radial limit points of the
geometrically finite Fuchsian group SLs(Z) is equal to the set of badly approximable
numbers; cf. e.g. [73] Observation 1.15 and Proposition 1.21].)

THEOREM 12.4.5 (Generalization of the Beardon—Maskit Theorem; see also
[151] Proposition 1.10]). The following are equivalent:

(A) G is geometrically finite.

(B) G is of compact type and any of the following hold (cf. Remark[I2.2.8):
(B1) A(G) = A o(G) U App(G) for some o > 0.
(B2) A(G) = A(G) U App(G).
(B3) A(G) = An(G) U App(G).

REMARK 12.4.6. Of the equivalent definitions of geometrical finiteness dis-
cussed in [34], it seems the above definitions most closely correspond with (GF1)
and (GF2)l It seems that definitions (GF3) and (GF5) cannot be generalized to
our setting. Indeed, (GF5) depend on the notion of volume, which does not exist
in infinite dimensional spaces, while (GF3) already fails in the case of variable cur-

vature; cf. [36]. It seems plausible that a version of (GF4) could be made to work

LCf. Remark [[Z3.7 above regarding (GF2).
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at least in the setting of algebraic hyperbolic spaces, but we do not study the issue

at this stage.

The implications (B1) = (B2) = (B3) follow immediately from the definitions.
We therefore proceed to prove (A) = (B1) and then the more difficult (B3) = (A).

PROOF OF (A) = (B1). The proof consists of two parts: showing that A(G) =
Ay o(G) U App(G) for some o > 0, and showing that G is of compact type.

PROOF THAT A(G) = A, o (G) U App(G) FOR SOME o > 0. Let 7 be the dis-
joint G-invariant collection of horoballs as defined in Definition [2.41] and let
o > 0 be large enough so that (I2.4.2]) holds. Fix £ € A, and we will show that
€€ Ay UApp. For each t > 0, recall that [0, £], denotes the unique point on [o, €]
so that d(o,[0,£]:) = t; since [0,&]; € Co, by (IZZA2) either [o,&]; € G(B(o,0)) or
[0,€] € U7

Now if there exists a sequence ¢, — oo satisfying [o,&]:, € G(B(o,0)), then
€ € Ao (Corollary 5.0). Assume not; then there exists ¢y such that [0,£];, € |J
for all ¢ > tg. This in turn implies that the collection

{t>to:[0. e e H} : He N}

is a disjoint open cover of (tg,00). Since (g, 00) is connected, we have (tg,c0) =
{t > to:[0,&]s € H} for some H € 5, or equivalently

[0,€]: € H Vit > tp.

Therefore £ = center(H). Now it suffices to show
LEMMA 12.4.7. For every H € 52, if center(H) € A, then center(H) € App.

PROOF. Let & = center(H). For every g € G¢, we have g(H) N H # &. Since
A is disjoint, this implies g(H) = H and thus ¢’(§) = 1. Thus ¢ is neutral with
respect to every element of Ge.

We will demonstrate equivalent condition (D) of Lemma [[2:3.0] First of all, we
observe that G(o) is disjoint from H since o ¢ |J . Fix x € C,NOH C C, \|J .
Then by (IZ42), we have z € g,(B(o,0)) for some g, € G. It follows that
gz (z) € B(o,0) and so g, (H) N B(o,0 +¢) # & for every € > 0. Equivalently,
gy {(H) € Hoyc, where 7, is defined as in (IZZ1]). Therefore, by (I) of Definition

12411 the set
{9, (H): 2 €C,NOH}

is finite. Let (g;.'(H))T be an enumeration of this set. Then for any z € C, N OH
= 17

there exists ¢ ...,n with g;'(H) = g;'(H). Then g,9;'(H) = H and so
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FIGURE 12.4.1. If He, = Hg,, then & and & must be close to each other.

92951 (&) = & Equivalently, hy = go9;" € Ge. Thus

d(z,G¢(0)) < d(ha(0),2) = (g5, (0), 9z (2)) < llgz | +llgz" ()] < U+I§1:alx 19z 1l-

Letting p = o + max}"; ||gx, ||, we have (IZ33]), which completes the proof. <

The identity A(G) = A, »(G) U App(G) has been proven. <

PROOF THAT G IS OF COMPACT TYPE. By contradiction, suppose otherwise.
Then A is a complete metric space which is not compact, which implies that there
exist € > 0 and an infinite e-separated set I C A. Fix p > 0 large to be determined.
For each § € I, let ¢ = [0,£],. Then z¢ € C, € G(B(o0,0)) UJ S, so either

(1) there exists g € G such that d(ge(0),xz¢) < o, or
(2) there exists He € ¢ such that z¢ € He.

CLAM 12.4.8. For p sufficiently large, the partial functions & — ge(o) and
— H¢ are injective.
1

PRrROOF. For the first partial function & — g¢(0), see Claim [22.91 Now fix
&1,& € I distinct, and suppose that He, = He, (cf. Figure IZ41]). Then z; :=
xe, € He, \ B(o,p). By Lemma [IZ13] this implies that

£ < D(&1,&) < D(x1,m2) < 2~ (/2p,

For p > 2(log(2) —log(e)), this is a contradiction. Thus the second partial function
& — H¢ is also injective. <
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The strong discreteness of G and (IZ4.1]) therefore imply

#(I) < #{H € A :do,H) <pt+#{g€CG: gl <p+o} <oo,
which is a contradiction since #(I) = oo by assumption. <
This completes the proof of (A) = (B1). O

PRrROOF OF (B3) = (A). Let F:= (C,ND,)’, where we use the notation (7.5.2]).
By Lemma [2:2.10] Observation [[L5.12] and our hypothesis (B3), we have

(12.4.3) F C A\ Ap C App.
CLAM 12.4.9. #(F) < 0.

PRrOOF. Note that F' is compact since G is of compact type and so it is enough
to show that F' has no accumulation points. By contradiction, suppose there exists
& € F such that € € F\ {¢}. Then by (IZ43)), £ € Ayp, so by (B’) of Corollary

2310 D,(Ge)NA\{£} is &-bounded. But F\{&} C D,NA\{{} C Do(Ge)NAN{ES,
contradicting that £ € F'\ {{}. <

Let P be a transversal of the partition of F' into G-orbits. Fix ¢t > 0 large to
be determined. For each p € P let

H,=H,;={x:By(o,x) > t},
and let
(12.4.4) H ={g(H,):pe P,geG}.

Clearly, 27 is a G-invariant collection of horoballs. To finish the proof, we need to
show that:

(i) o 7.

(ii) For t sufficiently large, 5 is a disjoint collection.
(iii) ((I) of Definition [2:4T]) For every p > 0 we have #(J¢,) < oco.
(iv) ((II) of Definition IZ4.T]) There exists o > 0 satisfying (IZ.4.2).

It turns out that (ii) is the hardest, so we prove it last.
PROOF OF (i). Fix g € G and p € P. Since p € P C D/, we have
B,(o,g7(0)) <0< t.
It follows that g~'(o) ¢ H,, or equivalently o ¢ g(H,). <

ProOF OF (iii). Fix H = g(H,) € 4 for some p € P. Consider the point
xg = [0,9(p)]aco,rr) € OH, and note that d(o,zy) = d(o, H) < 0. Now g~ (xpg) €
H,, so by (D) of Lemma [I2:3.0] there exists h € G), such that

d(h(0), g~ (za)) =4 0.
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g™ (zm) Rt~ N (@u)

\

FIGURE 12.4.2. Since g !'(zy) lies on the boundary of the
horoball Hj, an element of G, can move it close to o.

(Cf. Figure [2Z42) Letting C be the implied constant, we have
lghll < d(o, x) + d(xm, gh(0)) < p+ C.
On the other hand, gh(H,) = g(H,) = H since h € G,. Summarizing, we have
Ay S{g(Hy) :pe P, gl < p+C}.
But this set is finite because G is strongly discrete and because of Claim
Thus #(7,) < oo. <

PROOF OF (iv).

Craim 12.4.10. ,
(COQDO\U%) =g.

PROOF. By contradiction, suppose that there exists
I
(12.4.5) e (CO A D, \ U%) C F C App.

By the definition of P, there exist p € P and g € G so that g(p) = & Then
H¢ := g(H,) € J is centered at ¢, and so by (C’) of Corollary 12.3.10]

CoND, \ H: C 'Do(Gg) NneC, \ H;
is &-bounded, contradicting (I2.4.5)). <

Since G is of compact type, Claim [2.4.10 implies that the set C, N D, \ |J 7
is bounded (cf. (C) of Proposition [[72)), and Corollary [2.1.6 finishes the proof.
<
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PrOOF OF (ii). Fix Hy, Hy € J distinct, and write H; = g¢;(Hg,) for i =
1,2. The distinctness of H; and Hs implies that they have different centers, i.e.
91(&1) # g2(&2). (This is due to the inequivalence of distinct points in P.) By
contradiction, suppose that Hy N Hy # &. Without loss of generality, we may

suppose that g1 = id and that g2(£2) € Dy(Ge,). Otherwise, let h € G¢, be such
that hg; *g2(£2) € Do(Ge,) (such an h exists by Proposition [2.1.H), and we have

He, N hg;lgg(ng) # 4.
By (B’) of Corollary I2.3.10] we have

(€1192(&2))0 =+ 0,

where the implied constant depends on &;. Since there are only finitely many choices
for &, we may ignore this dependence.
Fix x € Hy N Hy. We have

By, (e2)(0,3) = Be, (g5 ' (0),0) + Be, (0,95 ' ()
> Be, (g;l(o), o)+t (since x € Hy = g2(Hy,))
>0+t (since & € DY)

On the other hand, Be, (0, x) > t since € H;. Thus (g) of Proposition B:33] gives
1
0 < {€1lg2(&2))e = (€1lg2(&2))0 — 5 [Bei (0:2) + By, (¢ (0, )]

1

< (Gilg2(&2))o — 5 [t + 8] =4 .
This is a contradiction for sufficiently large .
The implication (B3) = (A) has been proven.

The proof of Theorem [12.4.5]is now complete.

REMARK 12.4.11. The implication (B4) = (A) of Theorem [[2:2.7] follows di-
rectly from the proof of the implication (B3) = (A) of Theorem [2.4.5] since if

there are no parabolic points then we have F' = & and so no horoballs will be

defined in (I24.4).

OBSERVATION 12.4.12. The proof of Theorem [I2Z. 45| shows that if G < Isom(X)
is geometrically finite, then the set G\App(G) is finite. When X = H3, this is a
special case of Sullivan’s Cusp Finiteness Theorem [162], which applies to all finitely
generated subgroups of Isom(H?) (not just the geometrically finite ones). However,

the Cusp Finiteness Theorem does not generalize to higher dimensions [105].

PROOF. Let s be the collection of horoballs defined in the proof of (B3)
= (A),i.e. S ={g(Hp): p € P} for some finite set P. We claim that Ay, = G(P).
Indeed, fix £ € App. By the proof of (A) = (B1), either £ € A, or { = center(H)
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for some H € . Since Ay, NA, = & (Remark [[23.]]), the latter possibility holds.
Write H = g(H,); then £ = g(p) € G(P). O

The set G\App(G) is called the set of cusps of G.

DEFINITION 12.4.13. A complete set of inequivalent parabolic points for a ge-
ometrically finite group G is a transversal of G\App(G), i.e. a set P such that
App = G(P) but G(p1) N G(p2) = & for all p1,ps € P distinct.

Then Observation [2.4.T72] can be interpreted as saying that any complete set

of inequivalent parabolic points for a geometrically finite group is finite.

12.4.2. Consequences of geometrical finiteness. Geometrical finiteness,
like convex-coboundedness, has some further geometric consequences. Recall (The-
orem [[2.2.17)) that if G is convex-cobounded, then G is finitely generated, and for
any Cayley graph of G, the orbit map g — ¢(0) is a quasi-isometric embedding. If
G is only geometrically finite rather than convex-cobounded, then in general nei-
ther of these things is trueE Nevertheless, by considering a certain weighted Cayley
metric with infinitely many generators, we can recover the rough metric structure
of the orbit G(o).

Recall that the weighted Cayley metric of G with respect to a generating set
Ey and a weight function £y : Ey — (0,00) is the metric

n
d = inf Lo(hy).
6(91,02) = B0 e Z; o)
g1=g2h1--hn T
(Example B.T.2). To describe the generating set and weight function that we want

to use, let P be a complete set of inequivalent parabolic points of G, and consider

the set
E = U Gp.
peP
We will show that there exists a finite set F' such that G is generated by F U F.
Without loss of generality, we will assume that this set is symmetric, i.e. =1 € F
for all h € F. For each h € EU F let

(12.4.6) Co(h) =1V ||A].

We then claim that when G is endowed with its weighted Cayley metric with respect
to (FUF, {y), then the orbit map will be a quasi-isometric embedding. Specifically:

THEOREM 12.4.14. If G is geometrically finite, then

2For examples of infinitely generated strongly discrete parabolic groups, see Examples[IT.2.18 and
these examples can be extended to nonelementary examples by taking a Schottky product
with a lineal group. Theorem guarantees that the orbit map of a parabolic group is never
a quasi-isometric embedding.
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(i) There exists a finite set F such that G is generated by E U F.
(ii) With the metric dg as above, the orbit map g — g(0) is a quasi-isometric

embedding.

OBSERVATION 12.4.15. Theorem[I2.2.12/follows directly from Theorem [12.4.14]
since by Theorem [[2.2.7 we have Ay, = & if G is convex-cobounded.

We now begin the proof of Theorem[ITZZT4l Of course, part (i) has been proven
already (Theorem [TZ4.5]).

PROOF OF (i) AND (ii). Let J# and o be as in Definition [2.4.1]1 Without loss
of generality, we may suppose that ¢ = {k(H,.) : k € G, p € P} for some ¢t > 0
(cf. the proof of Theorem [[2-41).

Fix p > 20 + 1 large to be determined, and let F' = {g € G : ||g|]| < p}. Then

F is finite since G is strongly discrete.
CLAM 12.4.16. For all g € G\ F, there exist h1,ha € EUF such that
gl = d(h1h2(0), g(0)) Zx,p LV [Pl V [[h2]l <x Lo(h1) + Lo(h2).

PRrOOF. Let v : [0, |lgll] = [0,9(0)] be the unit speed parameterization. Let
I=[o+1,p—o0]. Then v(I) C C,, so by (IZ4.2), either v(I) N h(B(o,0)) # & for
some h € G, or y(I) C |J.77.

Case 1: v(I) N h(B(o,0)) # & for some h € G. In this case, fix € y(I) N
h(B(o0,0)). Then
R[] < llzll + d(x, h(0)) < (p—0) + 0 = p,
so h € F. On the other hand,

d(h(0),g(0)) < d(h(0),x) + d(z, g(0))
= d(h(0),x) + |lgll — |||
So+lgll=(o+1)
=gl -1,
o
lgll = d(h(0),g(0)) = 1 =x, [|B].
The claim follows upon letting h; = h and hy = id.
Case 2: v(I) C |J#. In this case, since y(I) is connected and J# is a disjoint

open cover of y(I), there exists H € 4 such that v(I) C H. Since
~v(0),v(llg]]) € G(o) C X \ H, there exist

O<ti<o+l<p—o<ty<]|gl

so that y(t1),v(t2) € OH. Let x; = y(t;) for i = 1,2 (cf. Figure [2.4.3).
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.p <k~ (p)
" s Sy U
T3
ki1 (0) 77 1 kja (o) K 07k (w) j2(0)
g T k)
g(o) k™" g(o)

(12.4.7)

FIGURE 12.4.3. Since j; 'j2 € E and kj; € F, the points o, kji (o),
and kja(o) are connected to each other by edges in the weighted
Cayley graph. Since the distance from kjs(0) to g(o) are both
significantly less than the distance from o to g(o), our recursive
algorithm will eventually halt.

Since H € 4, we have H = k(H)) for some p € P and k € G. By
(D) of Lemma [I2.3.0] there exist ji, jo € G with

d(k™ (), ji(0)) < pp (1 =1,2)
for some p, > 0 depending only on p. Letting pg = max,ecp pp, we have
[Ejall < [l ]l + d(z1, kji(0) < (o +1) + po.

Letting p = max(po+0 + 1,20 +2), we see that ||kj1]| < p, so hy :=kj1 €
F. On the other hand, ho := jl_ljg € E by construction, since j1, jo € Gp.
Observe that hihe = kjs. Now

d(h1h2(0), g(0)) < d(g(0), z2) + d(x2, kj2(0))
< (llgll = t2) + po,
and so
gl = d(h1hz2(0),g(0)) = t2 — po.
Now
ty >ty —ty = d(x1,22)
> d(j1(0), j2(0)) — (k™" (21), j1(0)) — d(k™" (22), j2(0))
> |7 g2l = 2p0 = [Ih2]] — 2p0
and on the other hand

to>p—02>po+ 1.
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Combining with (IZZT), we see that

lgll = d(h1ha(0),g(0)) = (llh2]| = 2p0) V (po + 1) — po
(I[h2]l = 3po) V 1
=y LV ||ha] V [[hz]].

Fix j € G, and define the sequence (h;)7 in E U F inductively as follows: If

h1,...,ho; have been defined for some i > 0, then let
g =92 =hg;' - hi'j = (b1 ha) 'y

(Note that go = j.) If g € F, then let ho;y1 = ¢g and let n = 2i + 1 (i.e. stop the
sequence here). Otherwise, by Claim [2ZZ4.T6] there exist ho;t1, hoi12 € F U F such
that

(12.4.8) lg2ill — d(haiy1h2ir2(0), 92i(0)) Zx.p Lo(h2iv1) + o(haiv2)-

This completes the inductive step, as now hi,...,hyi 1) have been defined. We
remark that a priori, this process could be infinite and so we could have n = oo;
however, it will soon be clear that n is always finite.

We observe that (I2.4.8) may be rewritten:

llg2ill = Nlg2¢+1) || Zx.,p €o(h2ig1) + Lo(hait2).

Iterating yields
2m

(12.4.9) 171 = Ngamll 2 3 bo(hs) Vim < n/2.
i=1

In particular, since £o(h;) > 1 for all 4, we have
51l Zx [n/2] =x n,

and thus n < oo. This demonstrates that the sequence (h;)7 is in fact a finite
sequence. In particular, since the only way the sequence can terminate is if go; € F'
for some ¢ > 0, we have g,_1 € F and h,, = g,—1. From the definition of g,_1,
it follows that j = hy---h,. Since j was arbitrary and hy,...,h, € EU F, this
demonstrates that F' U F generates G, completing the proof of (i).
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To demonstrate (ii), we observe that by (IZZ39]) we have

n—1
171l 2 x Z o(h;)
i=1

=1 Y to(hi) (since h,, € F)
=1
> dg(id, ),

where dg denotes the weighted Cayley metric. Conversely, if (h;)} is any sequence

satisfying j = hy - - - hy, then
I3l <> d(hy -+ hica(0),hy -+ hi(0)) = Y [l <Y lo(hi),
1=1 1=1 =1

and taking the infimum gives ||j|| < dg(id, j).

This finishes the proof of Theorem 12.4.1741

COROLLARY 12.4.17. If G is geometrically finite, then

(i) If for every & € Avp, Ge is finitely generated, then G is finitely generated.
(ii) If for every & € App, 0(Ge) < 00, then 6(G) < 0.

PROOF OF (i). This is immediate from Theorem IZ4.T4(i) and Observation
12.4.12) O

ProoOF OF (ii). Call a sequence (h;)} € E™ minimal if
(12.4.10) > to(hi) = dg(id, hy -+ - hy).
i=1

Then for each g € G\ {id}, there exists a minimal sequence (h;)} € (EU F)" so
that g = hy - - hy,.
Let C be the implied multiplicative constant of (I24.10]), so that for every

minimal sequence (h;)}, we have

- 1
N>
?:1 EO(hZ) ~+ C”hl hm”'
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Fix s > 0. Then

S(@ -1 Y Y Y el

geG\{id} n€N (h;)}€(BEUF)™
minimal
g=h1---hn,

Z Z e sldll

neN (h;)7€(EUF)™
minimal

s n
S>>, exp <—5Zeo(hi>>
neEN (h;)T€(EUF)™ i=1
minimal

>y exp<—%§eo(hi)>

neEN (h;)Pe(EUF)™

> % e

neEN (h;)Pe(BEUF)™ i=1

Z H Z —(s/C)to(R)

neNi=1he EUF

Z( 3 e—(s/cwo(h))n

neEN \he EUF

IN

In particular, if

)\s = Z 6_(5/0)60(}7') < 1,
heEUF
then ¥,(G) < 0o. Now when s/C > max,ep 06(Gp), we have A\; < co. On the other

hand, each term of the sum defining As tends to zero as s — co. Thus As — 0 as
s — 00, and in particular there exists some value of s for which A\; < 1. For this s,
Ys(G) < 0o and s0 g < s < 00. O

12.4.3. Examples of geometrically finite groups. We conclude this sec-
tion by giving some basic examples of geometrically finite groups. We begin with
the following observation:

OBSERVATION 12.4.18.

(i) Any elliptic or lineal group is convex-cobounded.

(ii) Any parabolic group is geometrically finite and is not convex-cobounded.

ProOF. This follows directly from Theorems [2.2.7 and It may also be

proven directly; we leave this as an exercise to the reader. O

PROPOSITION 12.4.19. The strongly separated Schottky product G = (Gg)ack

of a finite collection of geometrically finite groups is geometrically finite. Moreover,
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if P1 and P are complete sets of inequivalent parabolic points for G1 and Ga re-
spectively, then P = Py U Py is a complete set of inequivalent parabolic points for
G. In particular, if the groups (Go)acr are convex-cobounded, then G is convez-

cobounded.

PRrOOF. This follows direction from Lemma [[0.4.4] Theorem I0.47 Corollary
[I0.4.8] and Theorem O

Combining Observation [2.4.18 and Proposition [2.4.19 yields the following;:

COROLLARY 12.4.20. The Schottky product of finitely many parabolic and/or

lineal groups is geometrically finite. If only lineal groups occur in the product, then

it 18 convex-cobounded.






CHAPTER 13

Counterexamples

In Chapter Blwe defined various notions of discreteness and demonstrated some
relations between them, and in Section we related some of these notions to the
modified Poincaré exponent 5. In this chapter we give counterexamples to show
that the relations which we did not prove are in fact false. Specifically, we prove
that no more arrows can be added to Table [Tl (reproduced below as Table [Il), and
that the discreteness hypotheses of Proposition cannot be weakened.

Finite dimensional SD < MD « WD
Riemannian manifold 0
PrD COTD <« UOTD
Sb — MD — WD
General metric space Va N
PrD COTD
Infinite dimensional SD —- MD — WD
algebraic hyperbolic space Va J
PrD COTD — UOTD
SD < MD <« COTD
Proper metric space T J
PrD WD

TABLE 1. The relations between different notions of discreteness.
COTD and UOTD stand for discrete with respect to the compact-
open and uniform operator topologies respectively. All implica-
tions not listed have counterexamples, which are described below.

The examples are arranged roughly in order of discreteness level; the most
discrete examples are listed first.

We note that many of the examples below are examples of elementary groups.
In most cases, a nonelementary example can be achieved by taking the Schottky
product with an approprate group; cf. Proposition T0.5.1]

The notations B = 9E® \ {oo} = £3(N) and = : Isom(B) — Isom(H>) will be
used without comment; cf. Section I1.1]

221
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13.1. Embedding R-trees into real hyperbolic spaces

Many of the examples in this chapter are groups acting on R-trees, but it turns
out that there is a natural way to convert such an action into an action on a real

hyperbolic space. Specifically, we have the following:

THEOREM 13.1.1 (Generalization of [40, Theorem 1.1]). Let X be a separa-
ble R-tree. Then for every A > 1 there is an embedding ¥y : X — H>* and a
homomorphism my : Isom(X) — Isom(H>) such that:

(i) The map ¥y is mx-equivariant and extends equivariantly to a boundary
map Wy : X — OH>® which is a homeomorphism onto its image.

(ii) For all z,y € X we have
(13.1.1) M@Y= coshd(Ty (), Ua(y)).
(iii)
(13.1.2) Hully (05 (8X)) € B(¥,(X), cosh™(v/2)).

(iv) For any set S C X, the dimension of the smallest totally geodesic sub-
space [Vg] C H™ containing ¥x(S) is #(S) — 1. Here cardinalities are
interpreted in the weak sense: if #(S) = oo, then dim([Vs]) = oo but S

may be uncountable even though [Vs] is separable.

PROOF. Let V = {x € R¥X : z, = 0 for all but finitely many v € X}, and
define the bilinear form Bg on V via the formula

(13.1.3) Bo(x,y) =— »_ X"y,

v,weX

CLAM 13.1.2. The associated quadratic form Q(x) = Bg(x,x) has signature
(w,1).

PRrROOF. It suffices to show that Q 1 eﬁo is positive definite, where vy € X is
fixed. Indeed, fix x € ey, \ {0}, and we will show that Q(x) > 0. Now, the set
Xo={veX:x, #0}U{vp} is finite. It follows that the convex hull of X can
be written in the form X (V, E, £) for some finite acyclic weighted undirected graph

(V, E,?). Consider the subspace
Vo={x€cey 7, =0forallve X\V}CV,

which contains x. We will construct an orthogonal basis for V, as follows. For each
edge (v,w) € E, let

fow=me,— )\d(”’w)ew
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if w € [vg, v]; otherwise let £, ,, = f,,. This vector has the following key property:

For all v € X, if [v,w] intersects [vg,v'] in
(13.1.4)

at most one point, then Bg(f, 4, €,) = 0.
(The hypothesis implies that w € [v/,v] and thus d(v,v") = d(v,w) + d(w,v’).)
In particular, letting v' = vg we see that f,,, € eio. Moreover, the tree struc-
ture of (V, E) implies that for any two edges (vi,w;) 7 (v2,ws), we have either
#([v1,w1] N v, v2]) < 1 or #([va, wa] N [vg,v1]) < 1; either way, (I3L4]) implies

that Bo (o, wy» fog.wp) = 0. Finally, Q(f,.,) = A2 — 1 > 0 for all (v,w) € F,

1
vo

so Q 1V is positive definite. Thus Q(x) > 0; since x € eﬁo was arbitrary, Q | e

is positive definite. This concludes the proof of the claim. <

It follows that for any v € X, the quadratic form

Bo,(x,y) = Bo(x,y) +2Bo(x,e,)Bg(ey,y)

is positive definite. We leave it as an exercise to show that for any v1,vy € X,
the norms induced by Q,, and Q,, are comparable. Let £ be the completion of
V with respect to any of these norms, and (abusing notation) let Bg denote the
unique continuous extension of Bg to L. Since the map X > v — e, € L is
continuous with respect to the norms in question, £ is separable. On the other
hand, since these norms are nondegenerate, we have dim({e, : v € 5)) = #(9)
for all S C X, and in particular dim(£) = oco. Thus £ is isomorphic to £, so
H:= {[x] € P(£) : Q(x) < 0} is isomorphic to H>.

We define the embedding ¥y : X — H via the formula ¥y (v) = [e,]. (31I)
now follows immediately from (I313) and Z22). In particular, we have

d(Wx(v), U(w)) =<4 log(A)d(v, w),

which implies that W) extends naturally to a boundary map ¥y : 9X — 9H* which
is a homeomorphism onto its image. Given any g € Isom(X), we let mz(g) = [T] €
Isom(H), where T, € Ogr(L; Q) is given by the formula Ty(e,) = ey(,). Then Wy
and its extension are both my-equivariant, demonstrating condition (i).

For S C X, we have dim(Vg) = dim({e, : v € S)) = #(S5) as noted above, and
thus dim([Vs]) = dim(Vs) — 1 = #(S) — 1. This demonstrates (iv).

It remains to show (iii). Fix £,n € 0X and [z] € [TA(£), Ua(n)]. Write T (&) =
[x] and ¥x(n) = [y]. Since [x],[y] € OH and [z] € H, we have Q(x) = Q(y) = 0,
and we may choose x, y, and z to satisfy Bg(x,y) = Bo(x,z) = Bo(y,z) = —1.
Since [z] € [[x], [y]], we have z = ax + by for some a,b > 0; we must have a = b =1
and thus Q(z) = —2.
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Now, since ¥y (w) = [e,] — Ua(§) = [x] as w — &, there exists a function
f: X — R such that f(w)e, — x as w — &. Fixing v € [£, 7], we have

Bo(x,e,) = lim f(w)Bg(ew,e,) = — limgf(w)/\d(”’w),
w—

w—E
In particular Bg(X,e,,) = Bo(x,e,, )APe(¥2¥1)  which implies that there exists
v € [¢,n] such that Bg(x,e,) = 0. Similarly, there exists a function g : X — R
such that g(w')e, — y as w’ — n; we have

Bo(y,e,) = — lim g(w/ )"
w’'—n
—-1= BQ(xuy) = 7}11315 f(w)g(w/)BQ(ewaew’)
w’—n
= = lim fw)g(w)N) = —Bo(x,e,)Bo(y.e.)
w—&
w’—n

BQ(xvev) = BQ(yuev) =—1,

so e, =z + w for some w € x Nyt. Since Q(z) = —2 and Q(e,) = —1, we have
Q(w) =1 and thus
|Bo(ev, 2)| 2
coshd([e,], [z]) = = =V2.
VIQ(e)-1Q(=z)] V1.2
In particular d([z], ¥ (X)) < cosh™'(v/2). O

DEFINITION 13.1.3. Given an R-tree X and a parameter A > 1, the maps
P, and 7y will be called the BIM embedding and the BIM representation with
parameter A, respectively. (Here BIM stands for M. Burger, A. Iozzi, and N.
Monod, who proved the special case of Theorem [[3.1.1] where X is an unweighted

simplicial tree.)

REMARK 13.1.4. Let X, A\, ¥y, and 7\ be as in Theorem I3. 1.1l Fix I' <
Isom(X), and suppose that Ar = 9X. Let G = m»(I") < Isom(H>).

(i) (3I12) implies that if T' is convex-cobounded in the sense of Definition
[2.2.51 below, then G is convex-cobounded as well. Moreover, we have

A (G) = 0T\ (AL(T)) and Ay (G) = 0T (A (T)).
(ii) Since cosh(t) <y e! for all t > 0, (I3.1.1)) implies that
£4(G) =) e ImOI= % " cosh™ (ma()1)

yel’ yell

_ Z A~ = Sst0g0n) (1)
~el’
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for all s > 0. In particular ég¢ = dp/log(A). A similar argument shows
that dg = or /log()), which implies that G is Poincaré regular if and only
if I is.

(iii) G is strongly discrete (resp. COT-discrete) if and only if T' is strongly
discrete (resp. COT-discrete). However, this fails for weak discreteness;
cf. Example below.

PRrROOF OF (111). The difficult part is showing that if G is COT-discrete, then
T" is as well. Suppose that I' is not COT-discrete. Then there exists a sequence I' 5
~n — id in the compact-open topology. Let g, = mx(7n) € G < Isom(H>®) = O(L).
Then the set

{x€L:gn(x)—x}

contains ¥y (X). On the other hand, since the sequence (g, )$° is equicontinuous
(Lemma 2.4.TT]), this set is a closed linear subspace of £. Clearly, the only such
subspace which contains ¥y(X) is £. Thus g,(x) — = for all x € H*, and so

gn — id in the compact-open topology. Thus G is not COT-discrete. O

We begin our list of examples with the following counterexample to an infinite-

dimensional analogue of Margulis’s lemma suggested in Remark [11.1.6

EXAMPLE 13.1.5. Let I' = F2(Z) = {71,72), and let X be the Cayley graph of T.
Let @ : T' — Isom(X) be the natural action. Then H := ®(T") is nonelementary and
strongly discrete. For each A > 1, the image of H under the BIM representation my
is a nonelementary strongly discrete subgroup G = 7 (H) < Isom(H>) generated

by the elements g1 = mx®(y1), g2 = TAP(72). But
cosh g1 = X6 =,

so by an appropriate choice of A, ||g;|| can be made arbitrarily small. So for arbitrar-
ily small &, we can find a free group G < Isom(H>°) such that G.(0) = G is nonele-
mentary. This provides a counterexample to a hypothetical infinite-dimensional
analogue of Margulis’s lemma, namely, the claim that there exists € > 0 such that

for every strongly discrete G < Isom(H>), G.(0) is elementary.

REMARK 13.1.6. If H is a finite-dimensional algebraic hyperbolic space and
G < Isom(H) is nonelementary, then a theorem of I. Kim [112| states that the
length spectrum of G

L ={logg'(9-) : g € G is loxodromic}

is not contained in any discrete subgroup of R. Example[I3.T.5lshows that this result
does not generalize to infinite-dimensional algebraic hyperbolic spaces. Indeed, if
G < Isom(H>) is as in Example I3. 1.5l and if g = 75 (v) € G, then (I3.1.1]) implies
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that
1 n
logg'(g-) = lim ~|g"|| = lim cosh™* A"l
n—oo N n— 00
T
= log(A) lim —[|7"|
= log(A) log7'(7-),

demonstrating that L is contained in the discrete subgroup log(\)Z < R.

13.2. Strongly discrete groups with infinite Poincaré exponent

We have already seen two examples of strongly discrete groups with infinite
Poincaré exponent, namely the Edelstein-type Example ITT.1.18] and the parabolic
torsion Example [[T.2.T8 We give three more examples here.

EXAMPLE 13.2.1 (A nonelementary strongly discrete group G acting on a
proper R-tree X and satisfying é¢ = 00). Let Y = [0,00), let P = N, and for
eachp=mn € P let

Iy=17/nlZ
(or more generally, let I, be any sufficiently large finite group). Let (X, G) be the
geometric product of Y with (I'y),ep, as defined below in Example [£5.101 By
Proposition [4£5.12] X is proper, and G = (Gp)pcp is a global weakly separated
Schottky product. So by Corollary 036l G is strongly discrete. Clearly, G is

nonelementary. Finally, ¢ = oo because for all s > 0,

ZS(G) > Z Z e—s“g” — Z #(I‘p \ {e})e—ZSH;DH — Z(n| _ 1)6—2715 = 0.

peEP gel'p\{e} peP neN

Applying a BIM representation gives:

EXAMPLE 13.2.2 (A nonelementary strongly discrete convex-cobounded group
acting on H* and satisfying 6 = c0). Cf. Remark [[3.1.41 and the example above.

ExaMPLE 13.2.3 (A parabolic strongly discrete group G acting on H* and
satisfying d¢ = 00). Since F3(Z) has the Haagerup property (Remark IT.T.2]), there
is a homomorphism ® : F3(Z) — Isom(B) whose image G = ®(F2(Z)) is strongly
discrete. However, G must have infinite Poincaré exponent by Corollary T1.2.101

13.3. Moderately discrete groups which are not strongly discrete

We have already seen one example of a moderately discrete group which is not
strongly discrete, namely the Edelstein-type Example IT.I.14] (parabolic acting on
H>). We give three more examples here, and we will give one more example in
Section 3.4l namely Example [3.4.41 All five examples are are also examples of

properly discontinuous actions, so they also demonstrate that proper discontinuity



13.3. MODERATELY DISCRETE GROUPS WHICH ARE NOT STRONGLY DISCRETE 227

does not imply strong discreteness. (The fact that moderate discreteness (or even

strong discreteness) does not imply proper discontinuity can be seen e.g. from
ExamplesIT2 T8 M3.2.1] and[I3.2.2] all of which are generated by torsion elements.)

ExAMPLE 13.3.1 (A parabolic group which acts properly discontinuously on
H>° but is not strongly discrete). Let Z*° C B = ¢2(N) denote the set of all infinite

sequences in Z with only finitely many nonzero entries. Let
G:={x—x+n:nezZ”} CIsom(B).

Then G acts properly discontinuously, since ||(x +n) — x| > 1 for all x € B and
n € Z* \ {0}. On the other hand, G is not strongly discrete since ||n|| = 1 for
infinitely many n € Z*°. By Observation [T.I.T] these properties also hold for the

Poincaré extension G < Isom(H>).

EXAMPLE 13.3.2 (A nonelementary group G which acts properly discontinu-
ously on a separable R-tree X but is not strongly discrete). Let X be the Cayley
graph of I' = F,(Z) with respect to its standard generators, and let ® : T' —
Isom(X) be the natural action. Then G = ®(T') acts properly discontinuously on
X. On the other hand, since by definition each generator g € G satisfies ||g|| = 1,

G is not strongly discrete.
Applying a BIM representation gives:

ExAaMPLE 13.3.3 (A nonelementary group which acts properly discontinuously
on H*> but is not strongly discrete). Let X and G be as in Example[I332 Fix A >
1 large to be determined, and let 7y : Isom(X) — Isom(H>) be the corresponding
BIM representation. By Remark[I3.T.4] the group 7, (G) is a nonelementary group
which acts isometrically on H* but is not strongly discrete. To complete the proof,
we must show that m)(G) acts properly discontinuously. By Proposition [0.4.10]
it suffices to show that G = [[° ma(7:)? is a global strongly separated Schottky
group. And indeed, if we denote the generators of I' = F o (Z) by v; (i € N), and if
we consider the balls U = B(Wx((7i)+), 1/2) (taken with respect to the Euclidean
metric), and if A is sufficiently large, then the sets U; = U;” U U, form a global
strongly separated Schottky system for G.

REMARK 13.3.4. The groups of Examples I[3.32H13.3.3] can be easily modified
to make the group G uncountable at the cost of separability; let X be the Cayley
graph of [y (gy(Z) in Example [3.3.2 and applying (a modification of) Theorem
M3 I Tlgives an action on H#(®),

REMARK. By Proposition @.3.1] the groups of Examples [3.3.2113.3.3] are all

Poincaré regular and therefore satisfy dim g (A,,) = oc.
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13.4. Poincaré irregular groups

We give six examples of Poincaré irregular groups, providing counterexamples

to many conceivable generalizations of Proposition [0.3.1]

ExaMPLE 13.4.1 (A Poincaré irregular nonelementary group G acting on a
proper R-tree X which is weakly discrete but not COT-discrete). Let X be the
Cayley graph of V' = F3(Z) (equivalently, let X be the unique 3-regular unweighted
simplicial tree), and let G = Isom(X). Since #(Stab(G;e)) = oo, G is not strongly
discrete, so by Proposition .27 G is also not COT-discrete. (The fact that G is
not COTD can also be deduced from Proposition [0.3.1] since we will soon show
that G is Poincaré irregular.)

On the other hand, suppose € X. Then either z € V, or = (v, ws), ts)
for some (v, w,) € F and t, € (0,1). In the first case, we observe that G(z) =V,

while in the second we observe that
G(‘T) = {((U7w)7tm) : (U7w) S E}

In either case x is not an accumulation point of G(z). Thus G is weakly discrete.

To show that G is Poincaré irregular, we first observe that § = oo since G is not
strongly discrete. On the other hand, Proposition B2.4(iv) can be used to compute
that & = log;, (2). (Alternatively, one may use Theorem [[.2.3] together with the fact
that dimpy (0X) = log,(2).)

REMARK. The group G in Example [3.4.1] is uncountable. However, if G is
replaced by a countable dense subgroup (cf. Remark E.I.4) then the conclusions
stated above will not be affected. This remark applies also to Examples and
32 A below.

Applying a BIM representation to the group of Example [3.4.1] yields:

EXAMPLE 13.4.2 (A Poincaré irregular nonelementary group acting irreducibly
on H*> which is UOT-discrete but not COT-discrete). Let G < Isom(X) be as in
Example [3470] and let 7y : Isom(X) — Isom(H>*) = O(L) be a BIM representa-
tion. Remark [3.T.4] shows that the group m)(G) is Poincaré irregular and is not
COT-discrete. Note that it follows from either Proposition [£.2.7(ii) or Proposition
03T that 75 (G) is not weakly discrete, despite G being weakly discrete.

To complete the proof, we must show that 7)(G) is UOT-discrete. Let ¥ :
X — H* C L be the BIM embedding corresponding to the BIM representation 7y,
and write z = W, (0); without loss of generality we may assume z = (1,0), so that
Q(x) = ||x||? for all x € zt.

Now fix T = 7x(g) € m(G)\{id}, and we will show that ||7'—I| > min(v/2, \—
1) > 0. We consider two cases. If g(o) # o, then ||g|| > 1, which implies that
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g(x)

FiGURE 13.4.1. The point y is the center of the triangle
A(o,z,g(x)). Both o and y are fixed by g. Intuitively, this means
that g (really, mx(g)) must have a significant rotational component
in order to “swing up” the point z to the point g(z).

|Bo(z,Tz)| > X and thus that ||Tz — z|| > |Bgo(z,Tz — z)| > A — 1. So suppose
g(0) = o. Since g # id, we have g(x) # x for some x € V; choose such an x so as to
minimize ||z||. Letting y = [0, 2]|z|—1, the minimality of ||z|| implies that g(y) =y

(cf. Figure [34T]).

Let x = @) (x) and y = P (y), so that Ty =y but Tx # x. Let w; =x— Ay
and wy = Twy; = Tx — Ay. An easy computation based on (I3IT) and (Z2Z2)
gives Bg(z,w1) = Bg(z,ws) = Bg(w1,ws) =0 (cf. (I3I4)). It follows that

(T = Dw || = [[wg — wi]| = v/ Q(wa — w1)
=V Q(w2) + Q(w1)
=/2Q(w1) = V2| wll,

and thus ||T — I| > v/2.

REMARK 13.4.3. Let G,my be as above and fix { € 0X. Then m)\(Ge) is a
focal group acting irreducibly on H*° whose limit set is totally disconnected. This
contrasts with the finite-dimensional situation, where any nondiscrete group (and

thus any focal group) acting irreducibly on H? is of the first kind [81, Theorem 2].

EXAMPLE 13.4.4 (A Poincaré irregular nonelementary group G’ acting properly
discontinuously on a hyperbolic metric space X’). Let G be the group described in
Example I3.41l Let X’ = G and let

1V d(g(0),h(0)) g#h
g=h

d'(g,h) =

Since the orbit map X’ 5 g — g(0) € X is a quasi-isometric embedding, (X’,d")
is a hyperbolic metric space. The left action of G on X’ is isometric and properly
discontinuous. Denote its image in Isom(X’) by G’. Clearly d¢v = d¢ and gg/ = gg
(the Poincaré exponent and modified Poincaré exponent do not depend on whether

G is acting on X or on X'), so G’ is Poincaré irregular.
)

The next set of examples have a somewhat different flavor.
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EXAMPLE 13.4.5 (A Poincaré irregular group G acting on H?). Fix 2 < d < oo,
and let G be any nondiscrete subgroup of Isom(H?). Then

¢ = dimp (A,) < dimy (OHY) =d — 1.

On the other hand, since G is not strongly discrete we have g = co. Thus G is

Poincaré irregular.

In Example I3.4.5] G could be a Lie subgroup with nontrivial connected com-
ponent (e.g. G = Isom(H?), but this is not the only possibility - G can even be

finitely generated, as we now show:

LEMMA 13.4.6. Let H be a connected algebraic group which contains a copy
of the free group Fo(Z). Then there exist g1,g92 € H such that G := {(g1,g2) is a

nondiscrete group isomorphic to Fo(Z).

By Lemma[I0.2.2] the group G cannot be a Schottky product - thus this lemma

provides an example of a free product which is not a Schottky product.

PROOF. An orders-of-magnitude argument shows that there exists € > 0 such
that for any hi, he € H with d(id, h;) < €, we have

1
d(1d7 [h17 h?]) < 5 maXd(ld7 hi)u

where [hq, ho] denotes the commutator of hy and hs. Thus for any g1, 92 € H such
that d(id, g;) < ¢, letting

hi = g1, hy = 92, hn+2 = [hmhnH]

gives h, — id. But the elements h, are the images of nontrivial words in the free
group [F2(Z) under the natural homomorphism, so if this homomorphism is injective
then G is not discrete. For each element g € Fo(Z), the set of homomorphisms
7w : Fo(Z) — H such that m(g) = id is a proper algebraic subset of the set of all
homomorphisms, and therefore has measure zero. Thus for typical g1, g2 satisfying

d(id, g;) < e, G is a nondiscrete free group. O

Instead of a Lie subgroup of Isom(H?), we could also take a locally compact
subgroup of Isom(H>); there are many interesting examples of such subgroups. In

particular, one such example is given by the following theorem:

THEOREM 13.4.7 (Monod—Py representation theorem, [132] Theorems B and
C)). For any d € N and 0 < t < 1, there exist an irreducible representation py :
Isom(HY) — Isom(H>) and a p;-equivariant embedding f; : bord HY — bord H*>
such that

(13.4.1) d(fi(x), fi(y)) =4 td(x,y) for all z,y € HY.
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The pair (pt, ft) is unique up to conjugacy.

ExAaMPLE 13.4.8 (A Poincaré irregular nonelementary group G acting irre-
ducibly on H*). Fix d € N and 0 < ¢t < 1, and let p;, f; be as in Theorem [I3.4.7]
Let I' = Isom(H?), and let G = py(I'). As G is locally compact, the modified
Poincaré exponent of G can be computed using Definition [B.2.Tk

gg = inf {s >0: / e sl dg < oo}
G
= inf {s >0: / e sl dvy < oo}
r
= inf {s >0: / e st dvy < oo}
r

_S_p dimpg(Ar) _d—1

t t t
On the other hand, since G is convex-cobounded by [132] Theorem D], Theorem
[22T2 shows that Ag = A(G) = Aw(G). (It may be verified that the strong dis-

creteness assumption is not needed for those directions.) Combining with Theorem

23] we have
dimp (Ac) = dimp (A (@) = dimp (Aw(G)) = % > d—1 = dimg(Ar).

In particular, it follows that the map f; : A — Ag cannot be smooth or even Lip-

schitz. This contrasts with the smoothness of f; in the interior (see [I32] Theorem
c@)-

REMARK. The Hausdorff dimension of Ag may also be computed directly from
the formulas (I34.1)) and B6.4), which imply that the map f; 1 Ar and its inverse
are Holder continuous of exponents t and 1/t, respectively. However, the com-

putation above gives a nice application of the Poincaré irregular case of Theorem

L2.3

In Examples [3.4.5] and [3.4.8] the group G does not satisfy any of the dis-
creteness conditions discussed in Chapter Our next example satisfies a weak

discreteness condition:

EXAMPLE 13.4.9 (A Poincaré irregular nonelementary COT-discrete group G
acting reducibly on H* which is not weakly discrete). Let I' = F3(Z) and let
t1 : T — Isom(H?) = O(L3*!) be an injective homomorphism whose image is a
nondiscrete group; this is possible by Lemma Define t5 : I' — O(HY) by
letting

12(7)[es] = €.

Note that o(T") is COT-discrete, since |[ta(7)e. — e.| = v/2 for all y € T'\ {e}.
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The direct sum ¢ := 13 @ 15 : I — O(LIFT! x H') is an isometric action of I' on
HIVLd} = H | Let G = (T). Since ¢;(T) is the restriction of G to the invariant
totally geodesic subspace H%, we have §g = 0,,(ry = oo and SG = SLI(F) < 00, SO
G is Poincaré irregular. On the other hand, G is COT-discrete because t2(I") is.
Finally, the fact that G is not weakly discrete can be seen from either Observation

E2.14 or Proposition [1.3.1]

13.5. Miscellaneous counterexamples

Our remaining examples include a COTD group which is not WD and a WD
group which is not MD.

EXAMPLE 13.5.1 (A nonelementary COT-discrete group G which acts irre-
ducibly on H* and satisfies g = gg = 0o but which is not weakly discrete). Let
G < Isom(H*) be as in Example[I3.4.9] and let g be a loxodromic isometry whose
fixed points are g1 = [eg + €.] € AH VLdb € PLIY0dh - Then for n suffi-
ciently large, the product G = (G1, (¢g™)%) is a global strongly separated Schottky
product. By Lemma [[0.2.2] G is COT-discrete. Since G contains Gy, G is not
weakly discrete.

The fact that d¢ = oo follows from either Proposition [I3.7(iii) or Proposition
So the only thing left to show is that G acts irreducibly. We assume that the
original group ¢1(I") acts irreducibly. Then if [V] C H* is a G-invariant totally
geodesic subspace containing the limit set of G, then £t C V and so V =
L3 @V, for some Vo C HY. But [eg +e.] € Ag, so e. € Va. The G-invariance of
[V] implies that V3 is 12(T)-invariant, and thus that Vo = H' and so [V] = H>®.

REMARK. Example [3.5.] gives a good example of how Theorem [[.2.3] gives
interesting information even when 5a = 0. Namely, in this example Theorem [[.2.3]
tells us that dimy (A;) = dimpg (Ay,) = oo, which is not at all obvious simply from

looking at the group.

ExXAMPLE 13.5.2 (An elliptic group G acting on H* which is weakly discrete
but not moderately discrete). Let H = ¢%(Z), and let T' € O(H) be the shift map
T(x) = (zn41)2%;. Let G be the cyclic group G = TZ? < O(H) < Isom(B>).
Since g(0) = 0 for all g € G, G is not moderately discrete. On the other hand, fix
x € H\ {0}. Then T"(x) — 0 weakly as n — £o00, s0 #{n € Z : |T"(x) — x| <
Ix||/2} < co. Thus G is weakly discrete.



CHAPTER 14

R-trees and their isometry groups

In this chapter we describe various ways to construct R-trees which admit
isometric actions. Section [[4.1]describes the cone construction, in which one starts
with an ultrametric space (Z, D) and builds an R-tree X whose Gromov boundary
contains a point co such that (Z, D) = (0X \ {o0}, Do,o). Sections and [[43]
are preliminaries for Section [[4.4] which describes the “stapling method” in which
one starts with a collection of R-trees (X,),ev and staples them together to get
another R-tree. We give three very general examples of the stapling method in
which the resulting R-tree admits a natural isometric action.

We recall that whenever we have an example of an R-tree X with an isomet-
ric action I' < Isom(X), then we can get a corresponding example of a group of
isometries of H* by applying a BIM representation (Theorem [[3.1.1). Thus, the
examples of this chapter contribute to our goal of understanding the behavior of

isometry groups acting on H*>.

14.1. Construction of R-trees by the cone method

The construction of hyperbolic metric spaces by cone methods has a long his-
tory; see e.g. [85 1.8.A.(b)], [168], [31] §7]. The construction below does not
appear to be equivalent to any of those existing in the literature, although our for-
mula (TZ41T]) is similar to [31] 7.1] (with the difference that their + sign is replaced
by a V; this change only works because we assume that Z is ultrametric).

Let (Z,D) be a complete ultrametric space. Define an equivalence relation
on Z x (0,00) by letting (z1,71) ~ (22,72) if d(z1,22) < r1 = re, and denote the
equivalence class of (z,7) by (z,7). Let X = Z x (0,00)/ ~, and define a distance

function on X:

(14.1.1) d((z1,71), (22,m2)) = 1og<

(cf. Corollary B.6.23]). We call (X, d) the cone of (Z, D). Note that
(14.1.2)

2V 12V D?(zy, 29)
172

. (7‘0\/7‘1 VD(Zo,Zl))(TQ\/Tg \/D(ZQ,ZQ))
(o1, r)(z2,m2)) (4, 1) = 108 < ro(r1 Vra V D(21, 22)) ) '

233
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THEOREM 14.1.1. The cone (X, d) is an R-tree. Moreover, there exists a map
t: Z — 0X such that 0X\i1(Z) consists of one point, 0o, and such that D = D, 50t

where 0 = (zg,1) for any zo € Z.

PROOF. Fix x; = (z,r;) € X, i = 1,2, let R = r1 VraV D(z1,22), and let
v : [log(r;),log(R)] — X be defined by 7;(t) = (z;,e?). Then 7; parameterizes a
geodesic connecting x; and (z;, R). Since (z1, R) ~ (22, R), the geodesics v; can be
concatenated, and their concatenation is a geodesic connecting z; and x2. It can
be verified that the collection of such geodesics satisfies the conditions of Lemma
Thus (X, d) is an R-tree. (For an alternative proof that (X, d) is an R-tree,
see Example [4.5.1] below.)

Fix zgp € Z. For all 21,20 € Z and R > 0, (I£L2) gives

. D(zg, 2;
Tl}iﬁg0<<zlaT1>}<ZzaT2 Zlog )V log (%) —log D(21, 22).

In particular, if z; = 23 = 2, then this shows that the sequence ((2, 1/71))(1>O is a
Gromov sequence. Let «(z) = [((z, 1/n>)00] Similarly, the sequence ((zo,n>)fo is
a Gromov sequence; let oo = [((z0, 1/n>) |. Then Lemma 3422 gives

D29, 2;
(eh(: @M>§J% ) viog (225 og D, )

and thus
108 Do o((1), 1(22)) = Jim [ (e(20)[e(22)) o0,y — log(R)| = —log D(z1, 22),
ie. Doo=D.

To complete the proof we need to show that 0X = «(Z) U {oo}. Indeed, fix
&€= [((zn, rn>)(1)o] € 0X. Without loss of generality suppose that r, — r € [0, 0]
and D(zg, zn) = R € [0,00]. If r = 00 or R = 00, then it follows from (IZI12) that

((2ny7n)[00) 2,1y —+ 00, i.e. & = oo. Otherwise, it follows from (IZ.I1.2]) that

co= lm_{{znrn)l{zm:rm)) 1)

=2log(l1VrVR)-—log ( Hm 7, V7 V D(zp, zm)) ,

n,Mm—00
which implies that r, V 7, V D(2p, 2m) — 0, i.e. 7, = 0 and (2,,)$° is a Cauchy
n,m

sequence. Since Z is complete we can find a limit point z,, — z € Z. Then ([[412])
shows that & = ¢(z). O

COROLLARY 14.1.2. Every ultrametric space can be isometrically embedded into

an R-tree.
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PRrOOF. Let (Y, d) be an ultrametric space, and without loss of generality sup-
pose that Y is complete. Let Z =Y, and let D(z, z5) = e(1/2)4(21:22)  Then (Z, D)
is a complete ultrametric space. Let (X,d) be the cone of (Z, D); by Theorem
411 X is an R-tree. Now define an embedding ¢ : Y — X via «(y) = (y,1). Then

d(e(y1), U(y2)) = 0 Vlog D*(y1,y2) = d(y1, ),

i.e. ¢ is an isometric embedding. O

REMARK 14.1.3. Corollary can also be proven from [31I, Theorem 4.1]
by verifying directly that an ultrametric space satisfies Gromov’s inequality with
an implied constant of zero, and then proving that every geodesic metric space
satisfying Gromov’s inequality with an implied constant of zero is an R-tree.

However, the proof of Corollary yields the additional information that

the isometric image of (Y, d) is contained in a horosphere, i.e.

(14.1.3) Boo(1(y1), (y2)) = 0 V1,42 €Y,

where oo is as in Theorem [4.1.11

REMARK 14.1.4. The converse of the cone construction also holds: if (X, d) is
an R-tree and o € X, £ € 0X, then (X \{¢}, D¢,o) and ({z € X : Be(o,x) = 0},d)

are both ultrametric spaces.

PrROOF. For all z,y € &, we have D¢(x,y) = expBe(o,C(x,y,§))), where
C(z,y,€) denotes the center of the geodesic triangle A(z,y,£) (cf. Definition
BITI). Tt can be verified by drawing appropriate diagrams (cf. Figure B3]
that for all 1, z2, 23 € &, there exists ¢ such that C(x;, z;,&) = C(z;, xx,§) and
C(zj,zr,€) € [&,C(zi,x,€)] (where j,k are chosen so that {i,j,k} = {1,2,3}),

from which follows the ultrametric inequality for D¢. Since D¢ = e(1/2)4 on
{z € X : Be(o,2) = 0}, the space ({z € X : Be(o,2) = 0},d) is also ultramet-
ric. O

THEOREM 14.1.5. Given an unbounded function f :[0,00) — N, the following

are equivalent:

(A) f is right-continuous and satisfies
(1414) VRl, RQ Z 0 such that Rl S RQ, f(Rl) divides f(RQ)

(B) There exist an R-tree X (with a distinguished point o) and a parabolic
group G < Isom(X) such that Nx.c = f.

(C) There exist an R-tree X (with a distinguished point o) and a parabolic
group G < Isom(X) such that Ne, ¢ = f, where p is the global fized point
of G.
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Moreover, in (B) and (C) the R-tree X may be chosen to be proper.

PROOF OF (A) = (B). Let (A,)$° and (N,)$° be sequences such that

f(/)): H Ny,

neN
An<p

The hypotheses on f guarantee that (N,,)?° can be chosen to be integers. Then for
each n € N, let I';, be a finite group of cardinality N,,, and let

I'= {(Wn)(fo € H Ty, : v, = e for all but finitely many n} :
neN

For each (v,)7° € T let

(14.1.5) 1(v) 71l = max A,
TnFeE

with the understanding that |le|| = 0. For each o, € T let d(a, 8) = [[a™1p].
It is readily verified that d is an ultrametric on I'. Thus by Corollary I4.1.2]
(T',d) can be isometrically embedded into an R-tree (X, d). Since T' is proper, X
is proper. Moreover, the natural isometric action of I' on itself extends naturally
to an isometric action on X. Denote this isometric action by ¢, and let G = ¢(I').
Then by (I41.3), G is a parabolic group with global fixed point co. If we let o be

the image of e under the isometric embedding of I' into X, then G satisfies

Nxalp)=#{yeT: vl <pt =[] #@Tn) = fo).
neN
An<p

This completes the proof. O

PROOF OF (B) = (A). For each p > 0 let

G, = {9 € G d0,9(0)) < p}.

Since G(o) is an ultrametric space by Remark I4£T4] G, is a subgroup of G. Thus
by Lagrange’s theorem, the function f(p) = Nx a(p) = #(G,) satisfies (IZ14).
Since orbital counting functions are always right-continuous, this completes the

proof. ([
PROOF OF (A) < (C). Since the equation

ng,G(R) = NX,G(2 log(R))

holds for strongly hyperbolic spaces, including R-trees (Observation [6.2.10]), and
since condition (A) is invariant under the transformation f — (R +— f(2log(R))),
the equivalence (A) < (B) directly implies the equivalence (A) < (C). O
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REMARK 14.1.6. Applying a BIM representation (Theorem [[3.T.T)) shows that
if f:]0,00) = N is an unbounded function satisfying (A) of Theorem [4.T.5 then
there exists a parabolic group G < Isom(H>) such that N'x ¢ = f. This improves
a previous result of two of the authors [73] Proposition A.2].

14.2. Graphs with contractible cycles

In Section [44], we will describe a method of stapling together a collection of
R-trees (X,)vcv based on some data. This data will include a collection of edge
pairings E C V x V\ {(v,v) : v € V} that indicates which trees are to be stapled to
each other. In this section, we describe the criterion which this collection of edge
pairings needs to satisfy in order for the construction to work (Definition [4.2:]),
and we analyze that criterion.

Let (V,E) be an unweighted undirected graph, and let dg denote the path
metric of (V, E) (cf. Definition BIT). A sequence (v;)§ in V' will be called a path
if (vi,vi41) € E Vi < n. The path (v;)j is said to connect the vertices vg and v,,.
The path (v;)§ is called a geodesic if n = dg(vo,v,), in which case it is denoted
[vo, vn]. Note that a sequence is a geodesic if and only if [vg, v1]* - - * [vp_1, v, ] is a
geodesic in the metrization X (V, E) (cf. Definition BILT)). Also, recall that a cycle

in (V, E) is a finite sequence of distinct vertices v1,...,v, € V, with n > 3, such
that (v1,v2), (v2,v3), ..., (Up_1,0p), (Un,v1) € E (cf. BI4)).

DEFINITION 14.2.1. The graph (V, E) is said to have contractible cycles if ev-
ery cycle forms a complete graph, i.e. if for every cycle (v;)§ we have (v;,v;) €
E Vi, j such that v; # v;.

STANDING ASSUMPTION 14.2.2. In the remainder of this section, (V, E) denotes

a connected graph with contractible cycles.

LEMMA 14.2.3. For every v,w € V there exists a unique geodesic [v,w] = (v;)j
connecting v and w; moreover, if (w;)§* is any path connecting v and w, then the

vertices (v;)y appear in order (but not necessarily consecutively) in the sequence
(w;)g"-
PROOF.

CLAmM 14.2.4. Let (v;)§ be a geodesic, and let (w;)§" be a path connecting vg
and vy,. Supposen > 2. Then there existi =1,...,n—1andj=1,...,m—1 such

that v; = wj.

PROOF. By contradiction suppose not, and without loss of generality sup-
pose that (w;){* is minimal with this property. Then the vertices (w,){" are dis-

tinct, since if we had w;, = wj, for some j1 < j2, we could replace (w;)7* by
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(Wo, ..., Wj;—1,Wj; = Wj,, Wjy41,--.,Wm). Since n > 2, it follows that the path
(V0, U1y ey Up = Wipy Win—1,...,W1,We = vp) is a cycle. But then (v,w) € E,
contradicting that (v;)f is a geodesic of length n > 2. N

CLAM 14.2.5. Let (v;)§ be a geodesic, and let (w;)§" be a path connecting vg

and vy,. Then the vertices (v;)§ appear in order in the sequence (w;)g".

PRrROOF. We proceed by induction on n. The cases n = 0, n = 1 are trivial.
Suppose the claim is true for all geodesics of length less than n. By Claim [[4.24]
there exist igp = 1,...,n —1 and jo = 1,...,m — 1 such that v; = w;. By the

induction hypothesis, the vertices (vi)go appear in order in the sequence (wj)%“,

n

and the vertices (v;)j} appear in order in the sequence (w;)7. Combining these

Jo
facts yields the conclusion. <

To finish the proof of Lemma [4.2.3] it suffices to observe that if (v;)§ and
(w;)§" are two geodesics connecting the same vertices v and w, then by Claim
[4.2.5] the vertices (v;)j appear in order in the sequence (w;)y*, and the vertices
(w;)§" appear in order in the sequence (v;)§. It follows that (v;)§ = (w;)7", so

geodesics are unique. ([

LEMMA 14.2.6 (Cf. Figure [42.1)). Fiz vi,ve,vs € V distinct. Then either
(1) there exists w € V' such that for all i # j, [vi,v;] = [vi, w] * [w, v;], or
(2) there exists a cycle wi,w2,w3 € V such that for all i # j, [vi,v;] =

[vi, wi] * [ws, wi] * [wy, vy].

PROOF. For each ¢ = 1,2, 3, let n; be the number of initial vertices on which

the geodesics [v;,v;] and [v;, vy agree, i.e.
n; = max{n : [v;,v;le = [vi,vk]e VL =0,...,n},

and let w; = [v;,v;]n,. Here j, k are chosen such that {i,j,k} = {1,2,3}. Then
uniqueness of geodesics implies that the geodesics [w;, w,], i # j are disjoint ex-
cept for their common endpoints. If (w;)$ are distinct, then the path [wy,ws] *
[wa, w3] * [ws,w1] is a cycle, and since (V, E) has contractible cycles, this implies
(w1, w2), (we, ws), (ws, w1) € E, completing the proof. Otherwise, we have w; = w;

for some ¢ # j; letting w = w; = w; completes the proof. O

COROLLARY 14.2.7 (Cf. Figure [4.22). Fiz vi,ve,u € V distinct such that
(v1,v2) € E. Then either vi € [u,vs], va € [u,v1], or there exists w € V' such that

for each i =1,2, (w,v;) € E and w € [u, v;].

PrOOF. Write v3 = u, so that we can use the same notation as Lemma [14.2.6]

If we are in case (1), then the equation [vi,vs] = [vi,w] % [w,ve] implies that
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v1

w2 w3

FIGURE 14.2.1. The two possibilities for a geodesic triangle in a
graph with contractible cycles. Lemmal[l4.2.Glstates that either the
geodesic triangle looks like a triangle in an R-tree (right figure), or
there is 3-cycle in the “center” of the triangle (left figure).

V2

FIGURE 14.2.2. When the vertices v; and vy are adjacent, Corol-
lary [4.2.7 describes three possible pictures for the geodesic trian-
gle A(u,v1,v2). In the rightmost figure, w is the vertex adjacent
to both v; and vg from which the paths [u,v;] and [u, vs] diverge.

w € {v1,v2}, and so either v1 = w € [u,v2] or vo = w € [u,v1]. If we are in case
2, then the equation [v1,va] = [v1,w1] * [w1, wa] * [wa, v2] implies that wy = v1 and

wg = ve. Letting w = ws completes the proof. O

14.3. The nearest-neighbor projection onto a convex set

Let X be an R-tree, and let A C X be a nonempty closed convex set. Since
X is a CAT(-1) space, for each z € X there is a unique point m(z) € A such that
d(z,m(z)) = d(z, A), and the map z — m(z) is semicontracting (see e.g. [39]). Since
X is an R-tree, we can say more about this nearest-neighbor projection map 7, as
well as providing a simpler proof of its existence. In the following theorems, X

denotes an R-tree.

LEMMA 14.3.1. Let A C X be a nonempty closed convex set. Then for each
z € X there exists a unique point w(z) € A such that for all x € A, 7(z) € [7,x].
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Moreover, for all z1,2z2 € X, we have
(1431) d(w(zl), F(Zg)) =0V (d(Zl, 22) — d(Zl, A) — d(ZQ, A))

PROOF. Since A is nonempty and closed, there exists a point 7(z) € A such
that [z, 7(2)]NA = {n(2)}. Fix z € A. Since C(z, z,7(2)) € [z,7(2)] N[z, 7(z)] C
[z, m(2)] N A, we get C(x,2,7m(2)) = 7(z), i.e. (x|2)z) =0, e 7(2) € [z,2]. This
completes the proof of existence; uniqueness is trivial.

To demonstrate the equation (IZ3]), we consider two cases:

Case 1: If [21,20] N A # &, then 7(21) and 7(22) both lie on the geodesic [21, 22],
so d(m(z1),m(22)) = d(21, 22) — d(21, A) — d(22, A) > 0.

Case 2: Suppose that [z1,22] N A = &; we claim that 7(z1) = 7(22). Indeed, by
the definition of 7(z2) we have m(z2) € [z2, m(21)], and by assumption we
have m(z2) ¢ [21, 2], so we must have 7(z3) € [21,7(21)]. But from the
definition of 7(z1), this can only happen if 7(z1) = 7(22). The proof is
completed by noting that the triangle inequality gives d(z1, z2) —d(z1, A) —
d(ze, A) = d(z1,22) — d(z1,7(21)) — d(22,7(21)) < 0.

(]

LEMMA 14.3.2. Let Ay, Ay C X be closed convex sets such that Ay N Ay # &.
For each i let m; : X — A; denote the nearest-neighbor projection map. Then for
all z € X, either m1(z) € Ag or ma(z) € Ay. In particular, 71 (As) C A1 N As.

PROOF. Let 21 = m1(2) and 2o = ma(2), and fix y € A; N A;. By Lemma
I43T z1, 22 € [z, y]. Without loss of generality assume d(z,x1) < d(z,x2), so that

X9 € [x1,y]. Since A is convex, xo € Aj. O

LEMMA 14.3.3. Let Ay, A3 C X be closed convex sets such that Ay N As # &.
Then A1 U Ay is convex.

PRrROOF. It suffices to show that if 1 € A; and 25 € Ag, then [z1,22] C AjUA,.
Since x5 € Ay, Lemma [[43.1] shows that [z1, 23] intersects the point ma(z1). By
Lemma [[4.32] m(x1) € A1 N Ay, But then the two subsegments [z1, m2(z1)] and
[r2(x1), x2] are contained in A; U As, so the entire geodesic [x1, 2] is contained in
A U As. O

14.4. Constructing R-trees by the stapling method

We now describe the “stapling method” for constructing R-trees. The following

definition is phrased for arbitrary metric spaces.

DEFINITION 14.4.1. Let (V, E) be an unweighted undirected graph, let (X, ),ev
be a collection of metric spaces, and for each (v,w) € E fix a set A(v,w) C X,
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and an isometry ¥, ., : A(v,w) — A(w,v) such that ¥, , = ¥, L. Let ~ be the

v,w*
equivalence relation on [] X, defined by the relations

veV
T~y () Y(v,w) € E Vo € Alv,w).

Then the stapled union of of the collection (X,),cy with respect to the sets
(A(v,w))(v,wyer and the bijections (¢ w)w,w)cr is the set

st
X=X =[] X/~

veEV veEV
equipped with the path metric

V0ye-.yUp €V
(vi,vi41) EE Vi<n
n Vg =V, Up =W

(144.1)  d((v,2), (w,y)) =inf ¢ > du, (i, ;) .
i—o yi € A(vi,vi41) Vi<n
Tit1 = Yoo, (Y3) Vi<n
Lo =T, Yn =Y

Note that d is finite as long as the graph (V, E) is connected. We leave it to the

reader to verify that in this case, d is a metric on X.

EXAMPLE 14.4.2. If for each (v,w) € E we fix a point p(v,w) € X,, then we
can let A(v,w) = {p(v,w)} and let 9, ., be the unique bijection between {p(v,w)}

and {p(w,v)}.

Intuitively, the stapled union Hitev X, is the metric space that results from
starting with the spaces (X,)yev and for each (v, w) € E, stapling the set A(v, w) C
X, with the set A(w,v) C X,, along the bijection 1), 4.

DEFINITION 14.4.3 (Cf. Figure[[4.4.T]). We say that the consistency condition
is satisfied if for every 3-cycle u,v,w € V, we have
(I) A(u,v) N A(u,w) # &, and
(I) for all z € A(u,v) N A(u,w), we have
(a) Yyw(z) € A(w,v) and
(b) Yuw,pthu,w(2) = Yuu(2)-

Obviously, the consistency condition is satisfied whenever (V, E) has no cycles.
Theorem and Examples T4.5.THT4.5. 70 below show how it can be satisfied in
many reasonable circumstances. Now we prove the main theorem of this chapter:
for a connected graph with contractible cycles, the consistency condition implies
that the stapled union of R-trees is an R-tree, if the staples are taken along convex

sets. More precisely:
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" /

FIGURE 14.4.1. In this diagram, the arrows represent the bijec-
tions 1y, .,, while the ovals represent the sets A(v;,v;). The con-
sistency condition (Definition [£4.3]) states that (I) each of the
shaded regions is nonempty, (ITa) shaded regions go to shaded re-
gions, and (IIb) if you start in a shaded region and traverse the
diagram, then you will get back to where you started.

THEOREM 14.4.4. Let (V, E) be a connected graph with contractible cycles, let
(Xu)wev be a collection of R-trees, and for each (v,w) € E let A(v,w) C X, be a
nonempty closed convex set and let 1y 4 @ A(v,w) — A(w,v) be an isometry such

that Yoy 0 = ¥, L. Assume that the consistency condition is satisfied. Then

(i) The stapled union X = Hf}tev X, is an R-tree.
(ii) The infimum in (IZZLT) is achieved when
(a) (vi)g = [v,w], and
(b) for each i < n, y; is the image of x; under the nearest-neighbor

projection to A(v;, vit1).

PRrROOF. We prove part (ii) first. For each (v,w) € E, let my 4 : Xy = A(v,w)
be the nearest-neighbor projection; then m, ., is 1-Lipschitz. Now fix v € V' arbi-
trary. We define a map m, : X — X, as follows. Fix T = (w,z) € X, so that
x € Xy Let (v;)f = [v,w], and let

7o (T) = my(w, ) = Yoy 00 T ,v0 Wy 1 Ty 0p 1 (T)-

CrLAM 14.4.5. The map m, is well-defined.
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PrROOF. Fix (u,w) € F and z € A(u,w) and let y = ), (x); we need to
show that m,(u,z) = my(w,y). If w € [v,u] or u € [v,w] then the equality is
trivial, so by Corollary [4.2.7lwe are reduced to proving the case where there exists
v/ € V such that (v/,w),(v',u) € F and v' € [v,w],[v,u]. We have m,(u,z) =
T (Vs Yoy T () and my(w, y) = 7y (V' Yo 0 Tw 0 (¥)), S0 to complete the proof

it suffices to show that

(1442) 1/)u,v’7ru,v’ (I) = ¢w,v/7w,v’ (y)

Since wu, v’,w form a 3-cycle, part (I) of the consistency condition gives A(u,v") N
A(u,w) # &. By Lemma[l4.3.2] we have 2’ := m,, () € A(u,v")NA(u,w). Apply-
ing part (ITa) of the consistency condition gives y” := 1y (') € A(w,v") and thus
d(z, A(u,v")) = d(z,2") = d(y,y") < d(y, A(w,v")). A symmetric argument gives
d(y, A(w,v")) < d(z, A(u,v")), so we have equality and thus ¢y’ = ¢’ = 7y (y).
Applying part (IIb) of the consistency condition gives ¥y o (2) = Yy o (y'), ie.
([IZ42) holds. <

Since for each w € V the map X, 3 z — m,(w,z) € X, is 1-Lipschitz, the
map 7, : X — X, is also 1-Lipschitz.
Fix T= (v,2),7 = (w,y) € X. Let (v;)g, (z;)§, and (y;)§ be as in (ii), i.e.
(v3)g = [v,w], where z¢ =z,
Yi = in,vi+1(xi) Vi <mn,
xl-‘rl = Q/JU»L,’U1'+1 (yl) VZ < n? a’nd
Yn =Y.

We define a function f: X — R™*! as follows: for each zZ € X, we let
f(?) = (de (xiv T, (E)))?:O'
Then f is 1-Lipschitz, when R™*! is interpreted as having the max norm.

CLamM 14.4.6. Fixz € X and i =0,...,n—1. If f;11(Z) > 0, then f;(Z) >
ri = dy, (Ti, Yi)-

PRrROOF. By contradiction, suppose that fit+1(Z) > 0 but fi(Z) < du,(xi,y:)-
Then ziy1 = Ty, (Z) # ®ip1, but z; := m,,(Z) € B(xi,ri) \ {yi}. In particular,

Twiq1,0; (ZZ) = Yi, SO
(1443) Ri+1 7£ 1/}Uiqvi+lﬁviyvi+l (ZZ)
On the other hand, since z; ¢ A(v;,v;41), we have

(1444) Zq 7£ 1/}Ui+1,viﬂ-vi+1,vi (ZiJrl)'
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Write Z = (w, z). Then the definition of the maps (7, )yev together with (I4.43]),
([IZZ4) implies that v; ¢ [w,v;y1] and v;41 € [w,v;]. Thus by Corollary MT4.27]
there exists w’ € V such that (w',v;), (w',v;41) € F and w' € [w,v;], [w, viy1].
Let 2’ = my (Z), so that 1w v, Tw v, (27) = 2 and Yur v, Twt v, (27) = 2zig1. Let
F = 4y, w (B(xi,r;) N A(vi,w')), and let 7 : X, — F be the nearest-neighbor
projection map. By Lemma [[4.3.2] either 7p(2') € A(w', vit1) or Ty v, (2) € F.

Case 1: mp(2') € A(w',viy1). Since F C A(w',v;) and myr v, (7)) € F, we have
T w; (2') = mp(2') € A(w',vi41) and then part (I1a) of the consistency
condition gives z; = Yy’ v; Tw v; (2') € A(vi,vi41), a contradiction.

Case 2: Ty v, (2") € F. Since F C A(w',v;), part (Ila) of the consistency con-
dition gives zi41 = Y/ v,1 Tt w1 (2) € A(Vig1,vi) and Yo,y 0, (2i41) €
Y v, (F) € B(xi, ;). But then ¢, | v, (2i41) = y; and thus z;41 = x4,

a contradiction.

Thus f(X) is contained in the set
S:{(tl)g :V’L':O,...,n—ltzurl >0 =t ZTz} - R
Now the function h : S — R defined by

h((tl)g) = max [7"0 + ... 411+ tl]
i€{0,...,n}
;>0 if i>0
is Lipschitz 1-continuous with respect to the path metric of the max norm. Thus

since X is a path-metric space, ho f : X — R is Lipschitz 1-continuous. Thus

d(Tvy) 2 hof(y) - hOf(T) 2rot... .+ = Zdvl(xlvyl)a
=0
completing the proof of (ii).
For each T = (v,z),7 = (w,y) € X, let

[Ev y] = [x07 yO]vU Kook ["Enayn]vna

where * denotes the concatenation of geodesics, and (v;)§, (x;)§, and (y;)§ are
as in (ii). Here [z,y], denotes the image of the geodesic [z,y] under the map
Xy, 32z — (v,z) € X. Then by (ii), [%,7] is a geodesic connecting Z and F. Thus
we have a family of geodesics ([T, 7))z gex-

We now prove that X is an R-tree, using the criteria of Lemma Con-
dition (BII) is readily verified. So to complete the proof, we must demonstrate
(BIII). Fix 71, T2, T3 € X distinct, and we show that two of the geodesics [T;, T;]
have a nontrivial intersection. Write T; = (v;, z;). If there is more than one possible

choice, choose (v;)? so as to minimize >z B (i, v;).
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Let wi, w2, ws € V be as in Lemma [I4.2.6], with the convention that w; = wy =
wsg = w if we are in Case 1 of Lemma [14.2.0]

Case A: For some i, v; # w;. Choose j, k such that i, j, k are distinct. Then there
exists a vertex w € V adjacent to v; such that w € [v;,v;] N [v;, vg]. The
choice of (v;)3 guarantees that z; ¢ A(v;,w), so that [x;, Ty, w ()]s, forms
a common initial segment of the geodesics [Z;, T;] and [T;, Tk).

Case B: For all ¢, v; = w;. Then either v; = vy = v3, or v1, v, vs form a cycle.

Case B1: Suppose that v;1 = vo = v3 = v. Then since X, is an R-tree, there
exist distinct 4,7,k € {1,2,3} such that the geodesics [x;,x;], and
[, xk],» have a common initial segment.

Case B2: Suppose that vy, v, vs form a cycle. Then by part (I) of the consis-
tency condition A(vy,vs) N A(v1,v3) # &, so by Lemma [I433] the
set F' = A(v1,v2) U A(vy,v3) is convex. But the choice of (v;)? guar-
antees that xz; ¢ F, so that [z1,7p(z1)]y, forms a common initial

segment of the geodesics [T1,T2] and [T1, T3]

d

14.5. Examples of R-trees constructed using the stapling method

We give three examples of ways to construct R-trees using the stapling method

so that the resulting R-tree admits a natural isometric action.

ExXAMPLE 14.5.1 (Cone construction again). Let (Z, D) be a complete ultra-
metric space, let V.= Z and E =V x V \ {(v,v) : v € V}, and for each v € V
let X, = R. For each v,w € V let A(v,w) = [log D(v,w), o), and let ¥, ., be the
identity map. Since (V, F) is a complete graph, it is connected and has contractible
cycles. Part (IIa) of the consistency condition is equivalent to the ultrametric in-
equality for D, while parts (I) and (IIb) are obvious. Thus we can consider the
stapled union X = Hf)tEV Xy. One can verify that the stapled union is isomet-
ric to the R-tree X considered in the proof of Theorem 4.1l Indeed, the map
(z,t) = (z,e!) provides the desired isometry. Note that the map ¢ constructed in
Theorem [[4.1.1] can be described in terms of the stapled union as follows: For each
z € Z, 1(z) is the image of —oco under the isometric embedding of X, = R into X.

(The image of +oo is 00).

Our next example is a type of Schottky product which we call a “pure Schottky

product”. To describe it, it will be convenient to introduce the following terminol-

ogy:

DEFINITION 14.5.2. If T is a group, a function || - || : T — [0, 00) is called tree-

geometric if there exist an R-tree X, a distinguished point 0 € X, and an isometric
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action ¢ : I' = Isom(X) such that
eI = [lv]l vy €T

EXAMPLE 14.5.3. Theorem [I4.T.5 gives a sufficient but not necessary condition

for a function to be tree-geometric.

REMARK 14.5.4. If the group I' is countable, then whenever I' is a tree-

geometric function, the R-tree X can be chosen to be separable.

Proor. Without loss of generality, we may replace X by the convex hull of
I'(0). O

THEOREM 14.5.5 (Cf. Figure [451)). Let (H;)jcs be a (possibly infinite) col-

lection of groups and for each j € J let || - || : Hj — [0,00) be a tree-geometric
function. Then the function || - || : G = xje;H; — [0,00) defined by
(14.5.1) [y === | := (]l + - - + [ o]

(assuming hy ... hy is given in reduced form) is a tree-geometric function.

PRrROOF. For each j € J write H; < Isom(X;) and ||| = d(oj,h(0;)) Vh € H;
for some R7-tree X; and for some distinguished point o; € X;. Let V = J x G,
and for each (j,g) € V let X, = X;. Let
By ={((9),(k,9)):j #k, g€ G}
Ey ={((,9), G, gh)) :j € J, g€ G, heHj\{e}}
E=FEUEs.

Cramm 14.5.6. Any cycle in (V, E) is contained in a complete graph of one of

the following forms:

(14.5.2) {(j,gh) :he H;} (j € J,g € G fixed),
(14.5.3) {(J,g9) : j € J} (g € G fixed).

In particular, (V, E) is a graph with contractible cycles.

PROOF. Let (v;)§ be a cycle in V, and for each ¢ = 0,...,n — 1 let ¢; =
(vi, vix1). By contradiction suppose that (v;)§ is not contained in a complete graph
of one of the forms (IZ5.2),([T453). Without loss of generality suppose that (v;)§
is minimal with this property. Then no two consecutive edges e;, e;41 can lie in the
same set Fy. After reindexing if necessary, we find ourselves in the position that

e; € Ey for i even and e; € E; for i odd. Write vg = (j1,¢); then

vo = (J1,9), v1 = (j1,9h1), v2 = (j2, gh1), v3 = (j2, gh1h2), [etc.]
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with h; € Hj,, ji # ji+1. Since G is a free product, this contradicts that v, = vy.
<

For each (v,w) = ((4,9),(k,9)) € Ei, we let A(v,w) = {o;} and we let
tyw(0;) = 0j. For each (v,w) = ((4,9), (4, gh)) € Ea, we let A(v,w) = X; and
we let ¥, , = h~!. Claim 0] then implies the consistency condition. Consider
the stapled union X = ]_[ Gorev Xi = L gev Xj/ ~ Elements of [ ey X
consist of pairs ((J,9), ), where g € G and x € X;. We will abuse notation by
writing ((4,9),2) = (4,9,x) and {(J, g),x) = (J, g, ). Then the “staples” are given
by the relations

(4, 9,05) ~ (k,g,01) [g € G, j,k € J],
(. gh,x) ~ (j,9,h(x)) [g € G, je J, he Hj, z € Xj].

Now consider the following action of G' on ]_[( jg)ev Xit

91((j, 92,2)) = (J, 9192, ).

Since the “staples” are preserved by this action, it descends to an action on the
stapled union X. To finish the proof, we need to show that d(o, g(0)) = |lg|| Vg € G,
where 0 = (j,e,0;) Vj € J, and || - || is given by (IZ51). Indeed, fix g € G and
write g = hi - - hy, where for each ¢ = 1,...,n, h; € H;, \ {e} for some j € J, and
ji # jir1 Vi. Foreachi=0,...,nlet g =hy---h;, and for each i = 1,...,n let

U(l) = (Jis9i-1)s v§2) = (Ji, 9i)-

Then the sequence (vg ) v§2),v§1), . ,1)7(11),1)7(12)) is a geodesic whose endpoints are
(j1,e) and (jn, g). We compute the sequences (x; (k )) ( fk)) as in Theorem [TZ.44((ii):

Iz(l) = 0y yz(l) = Oy, 'IEQ) = hzl(oji)a yz(z) = Oj;»

It follows that

n 2 n
d(0, g(0)) = ZZ 2y D) =3l = lgll,
i=1 j=1 =1

which completes the proof. ([

DEFINITION 14.5.7. Let (H;),;cs and G be as in Theorem If we write
G < Isom(X) and ||g|| = d(o,g(0)) Vg € G for some R-tree X and some distin-
guished point o € X, then we call (X, G) the pure Schottky product of (H;) cs. (It
is readily verified that every pure Schottky product is a Schottky product.)

PRrROPOSITION 14.5.8. The Poincaré set of a pure Schottky product Hy x Hy can
be computed by the formula

s € A(Hl * HQ) =4 (ZS(H1> — 1)(25(1{2) — 1) > 1.
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FIGURE 14.5.1. The Cayley graph of F3(Z), interpreted as the
pure Schottky product H; *x Ho, where Hy = Hy; = 7 is inter-
preted as acting on X; = X5 = R by translation. The horizontal
lines correspond to copies of R which correspond to vertices of the
form (1, g), while the vertical lines correspond to copies of R which
correspond to vertices of the form (2,¢g). The intersection points
between horizontal and vertical lines are the staples which hold the
tree together.

PrOOF. Let
E = (Hy\ {id})(H2 \ {id}),
so that

G=|J H:E"H.
n>0
Then by ([Z57]), we have for all s > 0

5,(G) = 3 el :i D $° emsllhol+ I il sl

geG n=0 ho€H2 g1,..., gn€E hn,i1€H,
= Y.(Ha)Ss (Hh) i Y el
n=0 \geFE
= S,(Ha) Y, (H1) i ((Ss(Hy) = 1)(So(H2) — 1))".
n=0
This completes the proof. O

Proposition [[4.5.8] generalizes to the case of more than two groups as follows:

PROPOSITION 14.5.9. The Poincaré set of a finite pure Schottky product

G:*k 1Hj

Jj=
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can be computed by the formula
S € A(Hl *HQ) ~ p(As) > 1,

where p denotes spectral radius, and Ag denotes the matriz whose (j,j')th entry is

So(Hy) §'#7
(As)jjr = ! . e
0 j'=1
PrOOF. Let J ={1,...,k}. Then

G=) U {m—ha:heH, - h,eH,}
n=0 ji,...,jn€J

So by ([I451]), we have for all s >0

ES(G):Ze’S”g”:i 3 YooY eeniim

geG n=0 ji,....jn€J h1€H;, hn€Hj,
17 Fn

=> > e -y

n=0 ji,....jn€J =1

J1FFdn
- Es(Hy) -1
=14 [1---1]Ar7" :
e Se(H,) — 1
=00 p(4s) 21
<oo p(4s) <1
This completes the proof. O

Note that only the last step (the series converges or diverges according to
whether or not the spectral radius is at least one) uses the hypothesis that J is
finite.

Our last example of an R-tree constructed using the stapling method is similar

to the method of pure Schottky products, but differs in important ways:

EXAMPLE 14.5.10 (Geometric products). Let Y be an R-tree, let P C Y be
a set, and let (I'p)pep be a collection of abstract groups. Let I' = %pcpl'y. Let
V =T, and let
E={(y,ye):v€eTl, ael}y\{e}}.
For each v € V, let X,, = Y. For each (v,w) = (v,7a) € E, where v € I and
a € Ty\ {e}, we let A(v,w) = {p}, and we let 1, ,(p) = p. In a manner similar
to the proof of Claim [[4.5.6] one can check that every cycle in (V) E) is contained
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in one of the complete graphs vI', CV (v € I', p € P), so (V, E) has contractible
cycles. The consistency condition is trivial. Thus we can consider the stapled union
X = Hvev X, which admits a natural left action ¢ : I' — Isom(X):

(1) (v, 7)) = (v, @),
We let G = ¢(T'), and we call the pair (X, G) the geometric product of Y with
(Tp)per-

Note that if (X, G) is the geometric product of Y with (I'y),eca, then for all
9= (p1,7) " (Pn,Vn) € G, we have

n—1

(14.5.4) lgll = d(o,p1) + Y _ d(pi, pis1) + d(pn.0).
i=1

To compare this formula with (IZ51]), we observe that if n = 1, then we get
(@, ¥)]] = 2d(o, a), so that

1Pyl + -+ (P ) | = D 2d(0, pi)
i=1

n—1

= d(o,p1) + Y _[d(0,pi) + d(0,piy1)] + d(0, pn).
=1

So if (X, Q) is a geometric product, then the right hand side of (I4.51]) exceeds
the left hand side by E;:ll 2(pi|pi+1)o- The formula (IZ54) is more complicated
to deal with because its terms depend on the relation between the neighborhing
points p; and p;41, rather than just on the individual terms p;. In particular, it
is more difficult to compute the Poincaré exponent of a geometric product than it
is to compute the Poincaré exponent of a group coming from Theorem We
will investigate the issue of computing Poincaré exponents of geometric products

in [57], as well as other topics related to the geometry of these groups.

ExXAMPLE 14.5.11 (Cf. Figure[[45.3). Let (a,)$° be an increasing sequence of
nonnegative real numbers, and let (b,,)3° be a sequence of nonnegative real numbers.
Let

= ([0,00) x {0} U U ({an} x [0, bn])

with the path metric induced from R2. Let P = {pn : n € N}, where p,, = (an, bp)-
Then

(14.5.5) d(pn, pm) = bp + b + |an — am| Ym # n,
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(Y, bab) I
I (Y, 5a)
(Y,0) I
oI ) 1
|
[

(Y7 a)
(Y, adb)
(Y, aba) N

FIGURE 14.5.2. The geometric product of Y with (I'y),c p, where
Y = [O, 1], P = {O, 1}, FO = {6,")/0} = ZQ, and Fl = {6,")/1} = ZQ.
In the left hand picture, copies of Y are drawn as horizontal lines
and identifications between points in different copies are drawn
as vertical lines. The right hand picture is the result of stapling
together certain pairs of points in the left hand picture.

so (I£54) would become
n—1
lgll = b1+ a1 + D [bi + bigr + laips — ail] + bn + an
i=1

n n—1
= Z2bi +a; + Z |ai+1 — ai| + an.
=1 i=1

This formula exhibits clearly the fact that the relation between neighborhing points

p; and p;41 is involved, via the appearance of the term |a;+1 — a;].

PROPOSITION 14.5.12. Let (X, G) be the geometric product of Y with (T'y)pep,
where P C Y.

(i) If
(14.5.6) inf{d(y,2) :y,z € E,y # z} > 0,
then G = (Ga)ack is a global weakly separated Schottky product. If fur-
thermore
(14.5.7) inf{D(y,2):y,2 € E,y # 2z} > 0,

then G is strongly separated.
(ii) X s proper if and only if all three of the following hold: Y is proper,
#([y) < oo for all a € E, and #(E N B(o,p)) < oo for all p > 0.

PROOF OF (i). Suppose that (IZE5.6) holds, and for each p € P, let

Up={{g1- - 9gn,y) € X : g1 € G} U{(id,y) : y € B(p,e)},
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FIGURE 14.5.3. The set Y of Example I4.5.111 The points at the
tops of the vertical lines are “branch points” which correspond to
fixed points in the geometric product (X, G). If a geodesic in the
geometric product is projected down to Y, the result will be a
sequence of geodesics, each of which starts and ends at one of the
indicated points (either o, an element of P, or 00).

where ¢ < inf{d(y, z) : y,z € P,y # z}/2. Then (Up)pecp a global Schottky system
for G. If (I457) also holds, then it is strongly separated, because

inf{D(U,,Uy,) : p# q} > inf{D(y,2) 1 y,2 € Py # 2} — 2¢

can be made positive if ¢ is sufficiently small. Finally, if we go back to assuming

only that (IZ5.0) holds, then (Up)pep is still weakly separated, because (IZ5.7)
holds for finite subsets. g

PROOF OF (ii). The necessity of these conditions is obvious; conversely, sup-
pose they hold. Fix p > 0 and = = (g, y) € Bx (o0, p); by (IZ4ITl), we have

d(o,p1) +d(p1,p2) + ... + d(pn-1,pn) + d(pn,y) < p,

where g = hy---hp, by € Gp, \ {id}, p; € P, and p; # pi41 for all i. It follows
that ||p;]] < p for all i = 1,...,n, i.e. p; € PN B(o,p). In particular, letting
€ = Min, ge pnB(o,p) d(a,b), we have (n — 1)e < p, or equivalently n < 1+ p/e. It
follows that
ge U U (Gp, \{id}) -+ (G, \ {id}),
n<l+p/e pi,....,pn€PNB(0,p)
a finite set. Thus, Bx (o, p) is contained in the union of finitely many compact sets

of the form By (o0, p) x {g} C X, and is therefore compact. O



Part 4

Patterson—Sullivan theory



This part will be divided as follows: In Chapter [I5] we recall the definition of
quasiconformal measures, and we prove basic existence and non-existence results.
In Chapter [I6] we prove Theorem [[L4.1] (Patterson—Sullivan theorem for groups
of divergence type). In Chapter [[7, we investigate the geometry of quasiconformal
measures of geometrically finite groups, and we prove a generalization of the Global
Measure Formula (Theorem [[7.2.2)) as well as giving various necessary and /or suffi-
cient conditions for the Patterson—Sullivan measure of a geometrically finite group
to be doubling (§I74) or exact dimensional (§I7.5]).



CHAPTER 15

Conformal and quasiconformal measures

STANDING ASSUMPTION. Throughout the final part of the monograph, i.e. in
Chapters [[5HIT we fix (X, d,0,b) as in §41] and a group G < Isom(X).

15.1. The definition

Conformal measures, introduced by S. G. Patterson [142] and D. P. Sullivan
[161], are an important tool in studying the geometry of the limit set of a Kleinian
group. Their definition can be generalized directly to the case of a group acting
on a strongly hyperbolic metric space, but for a hyperbolic metric space which is
not strongly hyperbolic, a multiplicative error term is required. Thus we make the
following definition (cf. [63] Definition 4.1]):

DEFINITION 15.1.1. For each s > 0, a nonzero measurﬂ @ on 0X is called

s-quasiconformalq if

(15.1.1) H(g(4)) = /A 7O du(©)

for every g € G and for every Borel set A C 0X. If X is strongly hyperbolic and if
equality holds in (I5I)), then p is called s-conformal.

REMARK 15.1.2. For two measures 1, p2, write puy <x po if 41 and po are in
the same measure class and if the Radon-Nikodym derivative du; /dus is bounded

from above and below. Then a measure p is s-quasiconformal if and only if

pog=x[gE)m
and is s-conformal if X is strongly hyperbolic and if equality holds.

REMARK 15.1.3. One might ask whether it is possible to generalize the notions
of conformal and quasiconformal measures to semigroups. However, this appears
to be difficult. The issue is that the condition (I5I]) is sometimes impossible to
satisfy for measures supported on A — for example, it may happen that there exist
g1, 92 € G such that g1 (A)Ng2(A) = &, in which case letting A = 90X \ A in (I5110)
shows both that Supp(u) C ¢1(A) and that Supp(u) C g2(A), and thus that p = 0.

IIn this monograph, “measure” always means “nonnegative finite Borel measure”.
2Not to be confused with the concept of a quasiconformal map, cf. [92].

255
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One may try to fix this by changing the formula (I5.I.1]) somehow, but it is not
clear what the details of this should be.

15.2. Conformal measures

Before discussing quasiconformal measures, let us consider the relation between
conformal measures and quasiconformal measures. Obviously, every conformal mea-

sure is quasiconformal. In the converse direction we have:

PROPOSITION 15.2.1. Suppose that G is countable and that X is strongly hy-
perbolic. Then for every s > 0, if p is an s-quasiconformal measure, then there

exists an s-conformal measure v satisfying v <« u.

PRrROOF. For each g € G, let f; : 0X — (0, 00) be a Radon-Nikodym derivative

of o g with respect to u. Since p is s-quasiconformal, we have for p-a.e. £ € 0X

(15.2.1) fo(&) = [g'(O))".
Since G is countable, the set of £ € 0X for which (I5.21]) holds for all g € G is of

full y-measure. In particular, if

G
1O =swp 2

then f(§) <« 1 for p-a.e. £ € X. Now for each g,h € G, the equality po (gh) =
(10 g) o h implies that

For(&) = fo(h(&)) fn(§) for p-a.e. £ € OX.
Combining with the chain rule for metric derivatives, we have

fon® _ La(h©)  fa(©)
GhY©F 9 (hE)F W (e)]

Note that we are using the strong hyperbolicity assumption here to get equality

- for prae. £ € 0X.

rather than a coarse asymptotic. Taking the supremum over all g gives

_ fn(§)
We now claim that v := fu is an s-conformal measure. Indeed,
dvog .. f(g(&))dpog . _ fg(&) e

15.3. Ergodic decomposition

Let M(0X) denote the set of all measures on 90X, and let M;(9X) denote the
set of all probability measures on 9.X.
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DEFINITION 15.3.1. A measure pu € M(9X) is ergodic if for every G-invariant
Borel set A C X, we have u(A) =0 or u(0X \ 4) = 0.

It is often useful to be able to write a non-ergodic measure as the convex
combination of ergodic measures. To make this rigorous, suppose that X is complete
and separable, so that bord X and 90X are Polish spaces. Then 0X together with its
Borel o-algebra forms a standard Borel space. Let B denote the smallest o-algebra
on M(9X) with the following property:

PROPERTY 15.3.2. For every bounded Borel-measurable function f: 0X — R,

uH/fdu

is a B-measurable map from M(9X) to R.

the function

Then (M(0X), B) is a standard Borel space. We may now state the following

theorem:

ProrosITION 15.3.3 (Ergodic decomposition of quasiconformal measures). We
suppose that G is countable and that X is separable. Fiz s > 0.
(i) For every s-quasiconformal measure i, there is a measure fi on M1 (0X)

which satisfies
(15.3.1) w(A) = /V(A) dfi(v) for every Borel set A C 90X

and gives full measure to the set of ergodic s-quasiconformal measuresE
(ii) If X is strongly hyperbolic, then for every s-conformal measure p, there is
a unique measure i on M(0X) which satisfies (IE31]) and which gives

full measure to the set of ergodic s-conformal measures.
REMARK 15.3.4. Note that we have uniqueness in (ii) but not in (i).

PrOOF OF PROPOSITION [I5.3.3l Both cases of the proposition are essentially

special cases of [82] Theorem 1.4], as we now demonstrate:

(i) Let p be an s-quasiconformal measure. Let o : G x 0X — R satisfy [82]
(1.1)-(1.3)]. Then by [82] Theorem 1.4], there is a measure [ satisfy-
ing (I531]) supported on the set of ergodic probability measures which
are “p-admissible” (in the terminology of [82]). But by [82] (1.1)], we
have b2(9€) =<, g'(€)® for p-a.e. € € OX, say for all £ € X \ S, where
1(S) = 0. Then every g-admissible measure v satisfying v(S) = 0 is s-
quasiconformal. But by [I&31), »(S) = 0 for g-a.e. v, so j-a.e. v is
s-quasiconformal.

3If A is a non-measurable set, then a measure p gives full measure to A if and only if A contains a

measurable set of full y-measure. Thus we do not need to check whether or not the set of ergodic
s-quasiconformal measures is a measurable set in M1 (0X).
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(ii) Let p be an s-conformal measure. Let o : G x 0X — R satisfy [82] (1.1)-
(1.3)]. Then by [82] (1.1)], we have b2(9:€) = ¢/(£)* for p-a.e. £ € 0X, say
for all £ € 90X \ S, where u(S) = 0. Then for every measure v satisfying
v(S) = 0, v is g-admissible if and only if v is s-conformal. By [82]
Theorem 1.4], there is a unique measure fi satisfying (I5.3.1]) supported
on the set of g-admissible ergodic probability measures; such a measure is
also unique with respect to satisfying (I5.3.]) being supported on the set

of s-conformal ergodic measures.

d

COROLLARY 15.3.5. Suppose that G is countable and that X is separable, and
fix s > 0. If there is an s-(quasi)conformal measure, then there is an ergodic s-

(quasi)conformal measure.

In the sequel, we will be concerned with when an s-quasiconformal measure is

unique up to coarse asymptotic. This is closely connected with ergodicity:

PROPOSITION 15.3.6. Suppose that G is countable and that X is separable, and
fix s > 0. Suppose that there is an s-quasiconformal measure u. The following are

equivalent:

(A) p is unique up to coarse asymptotic i.e. pu =y [k for any s-quasiconformal
measure [i.

(B) Ewery s-quasiconformal measure is ergodic.
If in addition X is strongly hyperbolic, then (A)-(B) are equivalent to

(C) There is exactly one s-conformal probability measure.

PROOF OF (A) = (B). If u is a non-ergodic s-quasiconformal measure, then
there exists a G-invariant set A C X such that p(A), u(0X \ A) > 0. But then
vy =p1Aand v =pl 00X\ A are non-asymptotic s-quasiconformal measures, a

contradiction. O

PROOF OF (B) = (A). Suppose that i1, ue are two s-quasiconformal measures.
Then the measure p = p1 + o is also s-quasiconformal, and therefore ergodic. Let
fi be a Radon—Nikodym derivative of u; with respect to u. Then for all g € G,
[9'(©)]* dpi
[g'(&)]* dp

(1532)  fiogle) = Wi -

= duog (&) = fi(&) for pra.e. £ € 0X.

It follows that

hi(§) == sup f; 0 g(&) <x fi(§) for p-a.e. £ € 0X.
geG
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But the functions h; are G-invariant, so since p is ergodic, they are constant u-a.e.,
say h; = ¢;. It follows that u; <« c;u; since u; # 0, we have ¢; > 0 and thus
M1 X 2. O

PRrROOF OF (B) = (C). The existence of an s-conformal measure is guaranteed
by Proposition I5. 211 If pq, ug are two s-conformal measures, then the Radon—
Nikodym derivatives f; = du;/d(p1 + pe) satisfy (I5.3:2) with equality, so f; = ¢;
for some constants ¢;. It follows that u; = (¢1/¢2)uz2, and so if 1, po are probability

measures then p; = puo. O

PROOF OF (C) = (A). Follows immediately from Proposition [5.2.1] O

15.4. Quasiconformal measures

We now turn to the deeper question of when a quasiconformal measure exists in
the first place. To approach this question we begin with a fundamental geometrical

lemma about quasiconformal measures:

LEMMA 15.4.1 (Sullivan’s Shadow Lemma, cf. [161] Proposition 3], [152]
§1.1]). Fiz s > 0, and let u be a s-quasiconformal measure on X which is not

a pointmass. Then for all o > 0 sufficiently large and for all g € G,

p(Shad(g(0),)) =x au b=*191.

ProoOF. We have

p(Shad(g(0),0)) =<« / (gl)s dp
g~ '(Shad(g(o),o))

(by the definition of s-quasiconformality)

-/ (@)° du
Shad -1, (0,0)

oy / psllall gy
Shadg,l(o)(o,a)

(by the Bounded Distortion Lemma [£5.0])
= b_sllg”u( Shady-1(,)(0,0)).
Thus, to complete the proof, it is enough to show that
p(Shady-1(,)(0,0)) < o 1,

assuming o is sufficiently large (depending on u). The upper bound is auto-
matic since y is finite. Now, since by assumption p is not a pointmass, we have
#(Supp(i)) > 2. Choose distinct &1,&2 € Supp(p), and let € = D(&1,£2)/3. By the
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Big Shadows Lemma 5.7 we have
Diam(0X \ Shad,-1(,)(0,0)) <€
for all o > 0 sufficiently large (independent of g). Now since
D(B(&,¢), B(&2,¢)) > ¢,

it follows that
i =1,2 B(&,¢e) C Shadgfl(o)(o, o)

and thus )
( Shady-1(,)(0,0)) > m_i{lu(B({“i,a)) > 0.
The right hand side is independent of g, which completes the proof. O

Sullivan’s Shadow Lemma suggests that in the theory of quasiconformal mea-
sures, there is a division between those measures which are pointmasses and those
which are not. Let us first consider the easier case of a pointmass quasiconfor-
mal measure, and then move on to the more interesting theory of non-pointmass

quasiconformal measures.

15.4.1. Pointmass quasiconformal measures.

PROPOSITION 15.4.2. A pointmass 0¢ is s-quasiconformal if and only if

(I) € € 90X is a global fixed point of G, and

(I1) either
(ITA) ¢ is neutral with respect to every g € G, or
(IIB) s = 0.

PROOF. To begin we recall that ¢'(£) denotes the dynamical derivative, cf.
Proposition 4.2.12] For each £ € 0X,

d¢ is s-quasiconformal < d¢ 0 g < (§')%0¢ Vg € G
& g(§)=Cand [§(]" =<x 1 Vge &
g =¢and [f'(Q)"=1Vge G
s g@)=¢and (¢'(§) =1or s=0) VgeG.

COROLLARY 15.4.3.

(i) If G is of general type, then mo pointmass is s-quasiconformal for any
s> 0.

(ii) If G is loxodromic, then no pointmass is s-quasiconformal for any s > 0.
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15.4.2. Non-pointmass quasiconformal measures. Next we will ask the
following question: Given a group G, for what values of s does a non-pointmass
quasiconformal measure exist, and when is it unique up to coarse asymptotic?
We first recall the situation in the Standard Case, where the answers are well-
known. The first result is the Patterson—Sullivan theorem [161], Theorem 1], which
states that any discrete subgroup G < Isom(H?) admits a g-conformal measure
supported on A. It is unique up to a multiplicative constant if G is of divergence
type ([I38, Theorem 8.3.5] together with Proposition [5.3.6]). The next result is
negative, stating that if s < dg, then G admits no non-pointmass s-conformal
measure. From these results and from Corollary [5.4.3] it follows that if G is
of general type, then d¢ is the infimum of s for which there exists an s-conformal
measure [L61] Corollary 4]. Finally, for s > ¢, an s-conformal measure on A exists
if and only if G is not convex-cocompact ([10, Theorem 4.1] for <=, [I38 Theorem
4.4.1] for =); no nontrivial conditions are known which guarantee uniqueness in
this case.

We now generalize the above results to the setting of hyperbolic metric spaces,
replacing the Poincaré exponent dg with the modified Poincaré exponent gg, and
the notion of divergence type with the notion of generalized divergence type. By
Proposition [824((ii), our theorems will reduce to the known results in the case of
a strongly discrete group.

We begin with the negative result, as its proof is the easiest:

PROPOSITION 15.4.4 (cf. [161] p.178]). For any s < ¢, there does not exist a

non-pointmass s-quasiconformal measure.

PROOF. By contradiction, suppose that p is a non-pointmass s-quasiconformal
measure. Let o > 0 be large enough so that Sullivan’s Shadow Lemma [[5.2.T] holds,
and let 7 > 0 be the implied constant of (£52) from the Intersecting Shadows
Lemma[L5.4l Let S-41 be a maximal (7 + 1)-separated subset of G(0). Fix n € N,
and let A, be the nth annulus 4,, = B(o,n)\ B(o,n —1). Now by the Intersecting
Shadows Lemma 5.4}, the shadows (Shad(z, o))
Sullivan’s Shadow Lemma [5.4.7]

1<, p(0X)> > p(Shad(z,0))

€S- +1NA,

- — sl
=x,0,u E , b

€S- 11NA,

o b (S N Ay).

281 1nA,, A€ disjoint, and so by
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Thus for all ¢ > s,

Et(ST"rl) =x Z b_tn#(s‘r—i-l N An) SX,O’,M Z b(s_t)n < 00.
neN neN

But this implies that d¢ < ¢ (cf. ®Z2)); letting ¢ \, s gives dg < s, contradicting
our hypothesis. O

REMARK 15.4.5. The above proof shows that if there exists a non-pointmass

5-conformal measure, then
#(Sr11 N Ap) Sy b ¥ > 1.
In particular, if 5 > 0 then summing over n = 1,..., N gives
#(Sy11 N B(o,N)) <y BN ¥n > 1.
If G is strongly discrete, then for all p > 0,

Nxclp) =#{g € G: gl < p} Sx #(Sr41N Blo,p+7+1))
<>< b5|'p+‘r+1-\

- 38
=y b°P.

The bound Nx c(p)

d-conformal measure; see Corollary [6.7.11

<. b% in fact holds without assuming the existence of a

~

Next we study hypotheses which guarantee the existence of a gg-quasiconformal
measure. In particular, we will show that if gg < o0 and if G is of compact type
or of generalized divergence type, then there exists a gg—quasiconformal measure.
The first case we consider now, while the case of a group of generalized divergence
type will be considered in Chapter

THEOREM 15.4.6 (cf. [63] Théoreme 5.4]). Assume that G is of compact type
and that § < co. Then there exists a g—quasiconformal measure supported on A. If

X is strongly hyperbolic, then there exists a g—conformal measure supported on A.

REMARK 15.4.7. Any group acting on a proper geodesic hyperbolic metric
space is of compact type, so Theorem [[5.4.6] includes the case of proper geodesic
hyperbolic metric spaces.

REMARK 15.4.8. Combining Theorem[I5.4.6lwith PropositionI5.4.4land Corol-
lary [5.4.3] shows that for G nonelementary of compact type,

§ = inf {s > 0 : there exists an s-quasiconformal measure supported on A},
thus giving another geometric characterization of & (the first being Theorem [[2.3]).

Before proving Theorem[I5.4.6] we recall the following lemma due to Patterson:
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LEMMA 15.4.9 ([142] Lemma 3.1]). Let A = (a,)$° be a sequence of positive

real numbers, and let

(5=5(.A)=inf{520:2a;5<oo}.
n=1

Then there exists an increasing continuous function k : (0,00) — (0,00) such that:

(i) The series
Sok(A) = klan)a,®
n=1

converges for s > § and diverges for s < 6.
(ii) There exists a decreasing function € : (0,00) — (0,00) such that for all
y>0andz>1,

(15.4.1) k(zy) < =W k(y),

and such that limy_,o £(y) = 0.

PROOF OF THEOREM By Proposition 824l there exist p > 0 and a
maximal p-separated set S, C G(o) such that 5(G) = d(S,); moreover, this p
may be chosen large enough so that S,/ does not contain a bounded infinite set,
where S,/ is a p/2-separated set. Let A = (a,,){° be any indexing of the sequence
(bl e s,, and let k : (0,00) — (0, 00) be the function given by Lemma[I5.2.9] For
shorthand let

k(z) = k(bllxll)
e(z) = (oMl
Yok =Ysi(A) = Z k(z)b=slel.

€S,
Then ¥, < oo if and only if s > &; moreover, the function s — ¥, is continuous.

For each s > gg, let

1

15.4.2 .=
( ) =5

> k()17 € My(S,UA).

z€S,

Now since G is of compact type, the set S, U A is compact (cf. (B) of Proposition
[72). Thus by the Banach-Alaoglu theorem, the set M;(S, U A) is compact in
the weak-* topology. So there exists a sequence s, \ § so that if we let tn = s,
then pn, — p € M1(S, UA). We will show that p is Sc-quasiconformal and that

Supp(u) = A.

CrAmM 15.4.10. Supp(p) C A.
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PrOOF. Fix R > 0. Since §(S,) < oo, we have #(S, N B(o, R)) < co. Thus,

#(S, N B(o, R))k(bT)b—0R

u(B(o, R)) < limsup p15(B(o, R)) < limsup

N0 5\(5 Es,k
_ #(S, N Blo, RNk
= - =0.
Letting R — oo shows that p(X) = 0; thus Supp(n) €S, UA\ X = A. <

To complete the proof, we must show that p is g—quasiconformal. Fix g € G,

and let

vy =1@)°

We want to show that v, <« p.

plog™t.

CrLamM 15.4.11. For every continuous function f : bord X — (0, 00), we have
(15.4.3) /f dyg =<« /f dp.

PROOF. Since S, U A is compact, log,(f) is uniformly continuous on S, U A
with respect to the metric D. Let ¢ denote the modulus of continuity of log,(f),
so that
(15.4.4) D(z,y) <r = % <v*™ Vrye S, UA.

For each n € N let

Vgn = [(j)snﬂn] © 9717

so that v, , — v. Then
: n, X

1 —S8 x —/\ s —_
Vgn = S Z k(z)b nll ||[(g/) nda]oyg 1
Sn,k z€s,
=, 1 S k()b sl lpenll=l-la@ls, o g1
an,k z€s,
1
- b=sr 9@ k(25
Esn,k x; ( ) g(z)
1
= Z b—SnHmHk(g—l(x))&w,
b aeg(S,)
and so
(15.4.5) [§ dvon _ Laeqisn ¥~k @) (@)

T dun 7 3es, b TG ()
For each z € g(S,) C G(0), there exists y, € S, such that d(z,y,) < p.

OBSERVATION 15.4.12. #{x : y, = y} is bounded independent of y and g.
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PROOF. Write y = h(o); then

#{z : yo =y} < #(9(S,) N By, p)) = #(h~'g(5,) N Bo, p)).

But S, := h='g(S,) is a p-separated set. For each z € S, choose z; € S,/5 such
that d(z, z5) < p/2; then the map = — z, is injective, so

#(S},) < #(S,/2 N B(o,2p)),

which is bounded independent of y and g. <

Now

D(x,y,) < b~ (@lva)e < pp=llvall,

applying (I5.4.4) gives
Iyl
fl) <00 f(ya).
On the other hand, by (IEZ1]) we have

k(g_l(gc)) < ba(ym)[/ﬂ-l\ngk(ygg)7

and we also have
p—snllzll < psnpp—snllyell

Combining everything gives

> bl @) f (@)

z€9(Sp)

< > ey (Snp +e(ya)lp + llgll] + ¢f’(bp"‘y”””)) b vk (y,) f ()
z€g(Sp)

S D expy (2wl + glll + 6767~ o= k) £ (3),
yeS,

and taking the limit as n — co we have

/f(w) dv(z) Sx /epr (E(y)[p+ lgll] +¢f(b”‘”‘””)) Fy) dp(y) = /f(y) du(y)

since ¢f(b”_”y”) = ¢(y) = 0 for all y € 0X. A symmetric argument gives the

converse direction. <

Now let C' be the implied constant of ([I5.43]). Then for every continuous
function f: X — (0, 00),

C/fdl/—/fduzoandC/fdu—/fduzo,

i.e. the linear functionals I1(f] =C [ fdv— [ fdpand L[f]=C [ fdu— [ f dv
are positive. Thus by the Riesz representation theorem, there exist measures 71, 2

such that I,, = I; (i = 1,2). The uniqueness assertion of the Riesz representation
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theorem then guarantees that
(15.4.6) v1 4+ pu=Cvrand v +v = Cu.

In particular, Cv > pu, and Cpu > v. This completes the proof.



CHAPTER 16

Patterson—Sullivan theorem for groups of

divergence type

In this chapter, we prove Theorem [[L4.1], which states that a nonelementary

group of generalized divergence type possesses a d-quasiconformal measure.

16.1. Samuel-Smirnov compactifications

We begin by summarizing the theory of Samuel-Smirnov compactifications,
which will be used in the proof of Theorem [[LZ.1]

PROPOSITION 16.1.1. Let (Z, D) be a complete metric space. Then there exists
a compact Hausdorff space Z together with a homeomorphic embedding ¢ : Z — Z
with the following property:

PROPERTY 16.1.2. If A, B C Z, then AN B # & if and only if
D(A,B) = 0. Here A and B denote the closures of A and B relative
to Z.

The pair (2, L) is unique up to homeomorphism. Moreover, if Z1,Zs are two com-
plete metric spaces and if f : Z1 — Za is uniformly continuous, then there exists
a unique continuous map ]?: 21 — 22 such that vo f = fo t. The reverse is also

true: if f admits such an extension, then f is uniformly continuous.
The space Z will be called the Samuel-Smirnov compactification of Z.

PrOOF OF PROPOSITION [I6. 1.1l The metric D induces a proximity on Z in
the sense of [136] Definition 1.7]. Then the existence and uniqueness of a pair
(Z,1) for which Property holds is guaranteed by [136] Theorem 7.7]. The
assertions concerning uniformly continuous maps follow from [136 Theorem 7.10]
and [136] Theorem 4.4], respectively (cf. [136l Remark 4.8] and [136] Definition
4.10)). O

REMARK 16.1.3. The Samuel-Smirnov compactification may be compared with
the Stone-Cech compactification, which is usually larger. The difference is that
instead of Property [6.1.2] the Stone-Cech compactification has the property that
for all A/ B C Z, ANB # & if and only if AN BN Z # @. Moreover, in the

267
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remarks following Property I6.1.2], “uniformly continuous” should be replaced with
just “continuous”.

We remark that if d¢ < oo (i.e. if G is of divergence type rather than of
generalized divergence type), then the proof below works equally well if the Samuel—
Smirnov compactification is replaced by the Stone-Cech compactification. This is
not the case for the general proof; cf. Remark

To prove Theorem [[L4.], we will consider the Samuel-Smirnov compactification
of the complete metric space (bord X, D) (cf. Proposition B.6.13)), which we will
denote by X. For convenience of notation we will assume that bord X is a subset
of X and that ¢ : bord X — X is the inclusion map. As a point of terminology we
will call points in bord X “standard points” and points in X \bord X “nonstandard

points”.

REMARK 16.1.4. Since D = D, for all x € X, the Samuel-Smirnov compact-

ification X is independent of the basepoint o.

At this point we can give a basic outline of the proof of Theorem [[L4.1} First
we will construct a measure @ on X which satisfies the transformation equation
([IE1T). We will call such a measure fi a quasiconformal measure, although it is
not a priori a quasiconformal measure in the sense of Definition [5.1.1], as it is not
necessarily supported on the set of standard points. Then we will use Thurston’s
proof of the Hopf-Tsuji-Sullivan theorem [4, Theorem 4 of Section VII] (see also
[138, Theorem 2.4.6]) to show that [ is supported on the nonstandard analogue of
radial limit set. Finally, we will show that the nonstandard analogue of the radial
limit set is actually a subset of bord X, i.e. we will show that radial limit points
are automatically standard. This demonstrates that i is a measure on bord X, and
is therefore a bona fide quasiconformal measure.

We now begin the preliminaries to the proof of Theorem [[L41l As always
(X, 0,b) denotes a Gromov triple. Let X be the Samuel Smirnov compactification
of bord X.

REMARK 16.1.5. Throughout this chapter, S denotes the closure of a set S
taken with respect to )/f, not bord X.
16.2. Extending the geometric functions to X

We begin by extending the geometric functions d(-,-), {-|-), and B(-,-) to the

Samuel-Smirnov compactification X. Extending d(-,-) is the easiest:

OBSERVATION 16.2.1. If 2 € X is fixed, then the function f, : bord X — [0, 1]
defined by f,(y) = b~4®¥) is uniformly continuous by Remark B.6.151 Thus by
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Proposition [[6.1.1} there exists a unique continuous extension f, : X — [0,1]. We
write

d(z.5) = —log, [.(7).
We define the extended boundary of X to be the set

X = {€€ X :d(0,€) =}
Note that d(z,y) = d(z,y) if z,y € X, and 9X Nbord X = 0X.
WARNING. It is possible that X £ 0X.

On the other hand, extending the Gromov product to X presents some diffi-
culty, since the Gromov product is not necessarily continuous (cf. Example B.4.6]).
Our solution is as follows: Fix x € X and y € bord X. Then by Remark [3.6.15]
the map bord X > z — D, (y, 2) is uniformly continuous, so by Proposition [[6.1.1]
it extends to a continuous map X320 D, (y,Z). We define the Gromouv product
in X via the formula

(y[2)e = —logy Da(y, 2).
Note that if Z € bord X, then this notation conflicts with the previous definition
of the Gromov product, but by Proposition B.6.8] the harm is only an additive

asymptotic. We will ignore this issue in what follows.

OBSERVATION 16.2.2. Using (j) of Proposition B.:3:3] we may define for each

z,y € X the Busemann function

Bz(z,y) = (#[2)y — (y[2)a-
Again, if Z € bord X, then this definition conflicts with the previous one, but again

the harm is only an additive asymptotic.

REMARK 16.2.3. We note that an appropriate analogue of Proposition 3.3.3]
(cf. also Corollary B4.12) holds on X. Specifically, each formula of Proposition
B33 holds with an additive asymptotic, as long as all expressions are defined. Note
in particular that we have not defined the value of expressions which contain more
than one nonstandard point. Such a definition would present additional difficulties

(namely, noncommutativity of limits) which we choose to avoid.
We are now ready to define the nonstandard analogue of the radial limit set:

DEFINITION 16.2.4 (cf. Definitions @5 and [LT2)). Given z € X and o > 0,
let
Shad(z,0) = {£ € X : (0[&) < o},
so that S/hgi(x, o) Nbord X = Shad(z, o). A sequence (2,,)° in X will be said to
converge to a point £ € X o-radially if ||z,| — co and if € € S/hal(:zn, o) for all
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n € N. Note that in the definition of o-radial convergence, we do not require that
Ty — Z in the topology on X , although this can be seen from the proof of Lemma
[16.2.5] below.

We conclude this section with the following lemma:

LEMMA 16.2.5 (Every radial limit point is a standard point). Suppose that a

sequence (x,)3° converges to a point 2 € 90X o-radially for some o > 0. Then

e dXx.
PROOF. We observe first that

<$n|g>o =y lznll - <0|g>1n =40 [Tl 7 8(0, g) = 00.

~ ~

Together with Gromov’s inequality (T, |Zm)o 2+ Min({x,|)s, (Xm|€)s), this implies
that (x,)$° is a Gromov sequence.

By the definition of the Gromov boundary, it follows that there exists a (stan-
dard) point n € 0X such that the sequence (z,,)$° converges to 7. Gromov’s
inequality now implies that <n|A)O = 0o0. We claim now that {A“ = 7, so that E is
standard. By contradiction, suppose Z # n. Since X is a Hausdorff space, it follows
that there exist disjoint open sets U,V C X containing E and 7, respectively. Since
V' contains a neighborhood of 7, the function f,,(z) = (n|z), is bounded from
above on bord X \ V. By continuity, fom is bounded from above on m. In
particular, Z ¢ bord X \ V. On the other hand 2 ¢V, since E is in the open set U

which is disjoint from V. It follows that Egé bord X = X , a contradiction. O

REMARK 16.2.6. In fact, the above proof shows that if

(16.2.1) (Xn]€)o — 00

for some sequence (z,,)7° in X and some Z € 8/)\(, then {A“ € 0X. However, there
may be a sequence (x,)$° such that z,, — E in the topology on X but for which
(I6.2.1) does not hold. In this case, we could have £ ¢ 9X.

16.3. Quasiconformal measures on X

We define the notion of a quasiconformal measure on X as follows:

DEFINITION 16.3.1 (cf. Definition 5.1l Proposition f22.6]). For each s > 0, a

Radon probability measure i on dX is called s-quasiconformal if
N By (0,9 (o N
AGA) = [ 5F0) d(y)

for every ¢ € G and for every Borel set A C 9X. Here g denotes the unique
continuous extension of g to X (cf. Proposition [6.L1).



16.3. QUASICONFORMAL MEASURES ON X 271

REMARK 16.3.2. Note that we have added here the assumption that the mea-
sure [i is Radon. Since the phrase “Radon measure” seems to have no generally
accepted meaning in the literature, we should make clear that for us a (finite,
nonnegative, Borel) measure p on a compact Hausdorfl space Z is Radon if the
following two conditions hold (cf. [74] §7]):

p(A) =inf{u(U) : U 2 A, U open} VA C Z Borel
p(U) =sup{p(K) : K CU, K compact} YU C Z open.

The assumption of Radonness was not needed in Definition [5.1.0] since every
measure on a compact metric space is Radon [74] Theorem 7.8]. However, the
assumption is important in the present proof, since X is not necessarily metrizable,
and so it may have non-Radon measures.

On the other hand, the Radon condition itself is of no importance to us, except

for the following facts:

(i
(i

(iii) The sum of two Radon measures is Radon.

The image of a Radon measure under a homeomorphism is Radon.

Every measure absolutely continuous to a Radon measure is Radon.

—_ — —

(iv) (Riesz representation theorem, [74, Theorem 7.2]) Let Z be a compact
Hausdorff space. For each measure p on Z, let I,, denote the nonnegative

linear function
Bl = [ 1
Then for every nonnegative linear functional I : C'(Z) — R, there exists

a unique Radon measure p on Z such that I, = I. (If p; and po are not
both Radon, it is possible that I,,, = I,,, while p1 # po.)

We now state two lemmas which are nonstandard analogues of lemmas proven
in Chapter We omit the parts of the proofs which are the same as in the
standard case, reminding the reader that the important point is that no function is
ever used which takes two nonstandard points as inputs. We begin by proving an

analogue of Sullivan’s shadow lemma:

LEMMA 16.3.3 (Sullivan’s Shadow Lemma on X; cf. Lemma[I5.4.0). Fiz s > 0,
and let @ € ./\/l(g)\() be an s-quasiconformal measure which is not a pointmass
supported on a standard point. Then for all o > 0 sufficiently large and for all
g € G, we have

fi(Shad(g(0), o)) = b—*ldll.
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PROOF. Obvious modiﬁcations@ to the proof of Lemma [I5.4.] yield
7i(Shad(g(0), @) =, b~ 19173 (Shady-1 ) (0, 7)) .
So to complete the proof, we need to show that
ﬁ(S/hgigfl(o)(Oa 0)) Zx o 1,

assuming o > 0 is sufficiently large (depending on fz). By contradiction, suppose
that for each n € N there exists g, € G such that

Then for fi-a.e. £ € X,
e S/hZig;l(o)(O, n) for all but finitely many n,

which implies
(97 ()€)o 24 m = oc.

By Remark [[6.2.0] it follows that £ € X and gnt(0) — €. This implies that i
is a pointmass supported on the standard point lim,,_,+ g, ' (0), contradicting our
hypothesis. O

LEMMA 16.3.4 (cf. Theorem I5.40). Assume that & = g < co. Then there

erists a g—quasiconformal measure supported on 0X.

PROOF. Let the measures s be as in (I5.42]). The compactness of X replaces
the assumption that G is of compact type which occurs in Theorem [15.4.6] so
there exists a sequence s, \ § such that Un = ps, — [ for some Radon measure
7i € M(X). Claim [5.2.10 shows that 7i is supported on X,

To complete the proof, we must show that 1 is g—quasiconformal. Fix g € G and
a continuous function f : X — (0,00). The final assertion of Proposition I6.1.1]
guarantees that log(f) 1 bord X is uniformly continuous, so the proof of Claim
5411 shows that (I54.3]) holds.

The equation (I5.4.0) deserves some comment; it depends on the uniqueness
assertion of the Riesz representation theorem, which, now that we are no longer in
a metric space, holds only for Radon measures. But by Remark[16.3.2] all measures
involved in (I5.4.6) are Radon, so (I5.4.6) still holds. O

REMARK 16.3.5. In this lemma we used the final assertion of Proposition I6.1.1]

in a nontrivial way. The proof of this lemma would not work for the Stone-Cech

We remark that the expression g'(£) occuring in the proof of Lemma [[5.2.1 should be replaced

CBolo.a—1 ~
by b Bglo,g™ (o)) as per Proposition 2.6} of course, the expression g’(£) makes no sense, since

X is not a metric space.
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compactification, except in the case § < oo, in which case the uniform continuity
of f is not necessary in the proof of Theorem [15.4.6

LEMMA 16.3.6 (Intersecting Shadows Lemma on X; cf. Lemma E5.4). For
each o > 0, there exists T = 1, > 0 such that for all x,y,z € X satisfying d(z,y) >
d(z,z) and S/h;;lz(:z,a) N S/h;;lz(y,a) # &, we have

(16.3.1) Shad. (y, o) C Shad, (z, 7)
and
(16.3.2) d(z,y) <4+, d(z,y) —d(z,z).

PROOF. The proof of Lemma .54l goes through with no modifications needed.
O

16.4. The main argument

PROPOSITION 16.4.1 (Generalization /nonstandard version of Theorem[T.4.2[A)
= (B)). Let ji be a 0-quasiconformal measure on dX which is not a pointmass sup-

ported on a standard point. If G is of generalized divergence type, then fi(A(G)) >
0.

PROOF. Fix o > 0 large enough so that Sullivan’s Shadow Lemma[16.3.3lholds.
Let p > 0 be large enough so that there exists a maximal p-separated set S, C G(0)
which has finite intersection with bounded sets (cf. Proposition B24)iii)). Let
(n)3° be an indexing of S,. By Lemma [[6.2.5] we have

N U Shad(za,o +p) € A(G).

NeNn>N

By contradiction suppose that f(A;(G)) = 0. Fix € > 0 small to be determined.
Then there exists N € N such that

m US/hii(xn,a—l—p) <e.
n>N

Let R = p+ max,<n ||zn||. Then

il U Shad(g(o),0) | <e.
geG
llgll>R

We shall prove the following.

OBSERVATION 16.4.2. If A C G(o0) is any subcollection satisfying
(D) ||z|]| > R for all z € A, and
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(II) (ﬁi(m, 0))zeca are disjoint,
then

(16.4.1) S bsllel 5, e
z€A

ProOF. The disjointness condition guarantees that

3 fi(Shad(z,0)) <fi| |J Shad(g(o).0) | <e.

r€A geG
lgll>R
Combining with Sullivan’s Shadow Lemma [[6.3.3] yields (I6.4.1]). <

Now choose R’ > R and ¢’ > o large to be determined. Let Sk be a maximal
R’-separated subset of G(0). For convenience we assume o € Sg.. By Proposition
B2Z4(iv), if R is sufficiently large then ¥3(Sr/) = oo if and only if § is of generalized

divergence type. So to complete the proof, it suffices to show that
ES(SR’) < Q.
NOTATION 16.4.3. Let (z;)$° be an indexing of Sgrs such that i < j implies
[lz:]] < ||z;l|. For z;,z; € Sg distinct, we write x; < x; if

(I) i <jand
(II) Shad(xz;,o0’) N Shad(z;,0") # 2.

(This is just a notation, it does not mean that < is a partial order on Sg.)
LEMMA 16.4.4. If R’ and o' are sufficiently large (with o’ chosen first), then
<y = Shad,(y,0) C Shad(y,o").
PROOF. Suppose z < y; then ﬁl(x, a’)ﬁS/h;l(y, o') # &. By the Intersecting

Shadows Lemma [[6.376, we have d(z,y) <4 o |ly]| — ||z||. On the other hand, since
Sg is R'-separated we have d(z,y) > R’. Thus

(olz)y Z+.0 R

Now for any Z exX , we have

~ -~

(x[€)y Z+ min((0[5)y, (olx)y)-
Thus if £ € Shad, (y,0), then

-~

024 (0§)y oro 2y o R

Let ¢’ be o plus the implied constant of the first asymptotic, and then let R’ be o +1
plus the implied constant of the second asymptotic. Then the second asymptotic
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is automatically impossible, so
(ol¢)y < o,
ie e @(y,a’). <

If z € Sp is fixed, let us call y € Sp/ an immediate successor of x if x < y
but there is no z such that x < z < y. We denote by Sg/(z) the collection of all

immediate successors of .

LEMMA 16.4.5. For each z € Sg/, we have

(16.4.2) Z pslvll < epsl=l,
yESp/ (2)

PrROOF. We claim first that the collection (@(y, 0"))yes (=) consists of mu-
tually disjoint sets. Indeed, if S/hil(yl,a’) N S/hil(yg,a’) # & for some distinct
Y1, Y2 € Srr(2), then we would have either z < y; < y2 or z < ya < y1, contradict-
ing the definition of immediate successor. Combining with Lemma [06.4.4] we see
that the collection (S/halz (Y,0))yes, (=) also consists of mutually disjoint sets.

Fix g € G such that g(0) = z. We claim that the collection

A=g""(Sr(2))

satisfies the hypotheses of Observation [[6.4.21 Indeed, as o ¢ A (since z ¢ Sg/(2))
and as g is an isometry of X, (I) follows from the fact that Sk is R’-separated and
R’ > R. Since S/hgi(g_l(y), o) = g_l(ﬁiz(y, 0)) for all y € Sg/(z), the collection
(S/hii(x, 0))zea consists of mutually disjoint sets, meaning that (II) holds. Thus,
by Observation [[6.4.2] we have

Zb_5||””|| <, e,
T€EA
or, since ¢ is an isometry of X and z = ¢(0),
Z b—sd(z,y) SX c.
yESp (2)

Inserting (I6.3.2)) into the last inequality yields (I6.4.2]). <

Using Lemma [[6.45, we complete the proof. Define the sequence (S,)22,

inductively as follows:
SO = {0}7
Sn+1 = U SR/(I).

€S,
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Clearly, all immediate successors of all points of UnZO S, belong to UnZO Sn. We

Sr = Sn.

n>0
Indeed, let (2;)5° be the indexing of Sk considered in Notation [6.43] and by
induction suppose that z; € |J;° S, for all i < j. If j = 0, then z; = o € Sp.

claim that

Otherwise, let ¢ < j be maximal satisfying x; < x;. Then z; is an immediate
successor of z; € |J7° Sn, so z; € U7~ Sh.
Summing ([I6.4.2) over all x € S,,, we have

S il g, e 3 el

YESn+1 reSy,

Set € equal to 1/2 divided by the implied constant, so that

—slyll < L —sllal
dob <3 b .

yeSn+1 €Sy

Applying the Ratio Test, we see that the series ¥3(Sgr/) converges, contradicting
that G was of generalized divergence type. O

COROLLARY 16.4.6. Let i be a g—quasiconformal measure on 9X. If G is of
generalized divergence type, then p(A:(G)) = 1.

PROOF. By contradiction suppose not. Then 7 := [ | X \ A:(G) is a 5-
quasiconformal measure on dX which gives zero measure to A,(G), contradicting
Proposition [[6.4.11 O

16.5. End of the argument

We now complete the proof of Theorem .41}

ProoF oF THEOREM [[L4.l Let f be the g—quasiconformal measure supported
on OX guaranteed by Lemma [[6.3.4] By Corollary [5.4.3] i is not a pointmass
supported on a standard point. By Corollary[16.4.6] ji is supported on A, (G) C 0X.
This completes the proof of the existence assertion.

Suppose that 1, uo are two g—quasiconformal measures on 0X. By Corollary
[[6.4.6] p1 and pso are both supported on A, (G).

Suppose first that p, o are supported on A, , for some o > 0. Fix an open
set U C 0X. By the Vitali covering theorem, there exists a collection of disjoint
shadows (Shad(g(0),0))4eca contained in U such that

(U \ | Shad(g(0),0)) = 0.

geEA
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Then we have

pm(U) = Z p1(Shad(g(0),0)) =x Z p—sllgll

geA geA

e X a(Sha(4(0). )

geEA
< p2(U).

A similar argument shows that us(U) Sy 1 (U). Since U was arbitrary, a standard
approximation argument shows that u; =<« po. It follows that any individual
measure p supported on A, , is ergodic, because if A is an invariant set with 0 <
u(A) < 1 then ﬁu 1 A and #(A)u 1 (A; \ A) are two measures which are not
asymptotic, a contradiction.

In the general case, define the function f: A, — [0,00) by

f(§) =sup{oc>0:3g€ G g(&) € Ar v}

By Proposition[T.23] f(£) < oo for all £ € A;. On the other hand, f is G-invariant.
Now let p be a g—quasiconformal measure on A;. Then for each oy < 0o the measure
w1 f71([0,00]) is supported on A, ,,, and is therefore ergodic; thus f is constant
w1 f71([0,00])-a.s. Tt is clear that this constant value is independent of o for large
enough o, so f is constant p-a.s. Thus there exists ¢ > 0 such that p is supported

on A, ,, and we can reduce to the previous case. O

16.6. Necessity of the generalized divergence type assumption

The proof of Theorem [[LZ4.Tlmakes crucial use of the generalized divergence type
assumption, just as the proof of Theorem made crucial use of the compact
type assumption. What happens if neither of these assumptions holds? Then there
may not be a g—quasiconformal measures supported on the limit set, as we now

show:

PROPOSITION 16.6.1. There exists a strongly discrete group of general type
G < Isom(H>) satisfying § < oo, such that there does not exist any quasiconformal

measure supported on A.

PROOF. The idea is to first construct such a group in an R-tree, and then to
use a BIM embedding (Theorem [[3711]) to get an example in H*. Fix a sequence

of numbers (a;)°. For each k let Ty, = {e,vx} = Zs, and let || - || : Ty, — R be
defined by ||v&|| = ax, ||e]| = 0. Clearly, the function || - || is tree-geometric in the
sense of Definition [4.5:2] so by Theorem [[4.5.5] the function || - || : ' — [0, 00)

defined by ([I451]) is tree-geometric, where I' = s,k So there exist an R-tree
X and a homomorphism ¢ : I' — Isom(X) such that ||¢(y)]| = ||v]| Vy € T'. Let

G = ¢(I).
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CLAIM 16.6.2. If the sequences (ay)$° is chosen appropriately, then G is of

convergence type.

PrROOF. For s > 0 we have

Y(G) -1 = Z e—slgll

geG\{id}

_ Z exp (—slag, +...+ax,])

(k1,71) - (knyyn) €T E)*\{2}

:Z Z Z Z exp(—s[ak1+...+akn])

nEN k1 #ka# - #kn 1€, \{e} ¥ €Tk, \{e}

-y ¥ e

nEN ky £k Fky, =1

Se(G) <1+ Y (Zesak>

neN \keN
(@) 214 Y e,
keN

Thus, letting

—Ssa
Pszg e

keN
we have

Y¥(G) <o ifP<1

(16.6.1) .
Ys(G) =00 if Ps=0o0

Now clearly, there exists a sequence (ax)$° such that P, < 1 but Py = oo for all
s < 1/2; for example, take a, = log(k) + 2loglog(k) + C for sufficiently large C.
<

CLAaM 16.6.3. A(G) = A (G).

PRrROOF. For all £ € A, the path traced by the geodesic ray [0,&] in X/G is the
concatenation of infinitely many paths of the form [0, g(0)], where g € |, ¢, #(I'n).
Each such path crosses o, so the path traced by the geodesic ray [0,£] in X/G
crosses o infinitely often. Equivalently, the geodesic ray [0, €] crosses G(o) infinitely
often. By Proposition [[.I.1] this implies that £ € A.(G). <

Now let G be the image of G under a BIM representation (cf. Theorem [3.11).
By Remark [3.14] G is of convergence type and A(G) = A.(G). The proof is

completed by the following lemma;:

LEMMA 16.6.4. If the group G is of generalized convergence type and p is a

5-quasiconformal measure, then w(Ar) =0.
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PROOF. Fix o > 0 large enough so that Sullivan’s Shadow Lemma[I5.Z.Tlholds.
Fix p > 0 and a maximal p-separated set S, C G(o) such that ¥3(S,) < co. Then
Z p(Shad(z, p+0)) <x po Z b0l < o,

z€S, z€S,

On the other hand, A, , C limsup,cg, Shad(z,p + ). So by the Borel-Cantelli
lemma, u(A; ) =0. Since o was arbitrary, u(A;) = 0. <

O
Combining Theorem [[L4T] and Lemma [16.6.4] yields the following;:

PROPOSITION 16.6.5. Let G < Isom(X) be a nonelementary group with § < 0.
Then the following are equivalent:

(A) G is of generalized divergence type.

(B) There ezists a 8-conformal measure p on A satisfying w(Ay) > 0.

(C) Every g-conformal measure p on A satisfies u(A,) = 1.

(D) There exists a unique g—conformal measure i on A, and it satisfies p(A,) =

1.

16.7. Orbital counting functions of nonelementary groups

Theorem [[.4.2] allows us to prove the following result which, on the face of it,

does not involve quasiconformal measures at all:

COROLLARY 16.7.1. Let G < Isom(X) be nonelementary and satisfy § < oo.
Then

Nx.,alp) Sx b7 Vp > 0.
PROOF. If G is of convergence type, then the bound is obvious, as

b Nxalp) < Y b1l < 55(G) < oc.

geG
lgll<p

On the other hand, if G is of divergence type, then by Theorem [[L41] there exists
a d-conformal measure p on A, which is not a pointmass by Corollary [5.4.3] and
Proposition [0.5.4( C). Remark [5.4.5] finishes the proof. O

We contrast this with a philosophically related result whose proof uses the

Ahlfors regular measures constructed in the proof of Theorem [[.2.Tt

PROPOSITION 16.7.2. Let G < Isom(X) be a nonelementary and strongly dis-

crete. Then
log;, Nx ,G (p)

p p—r00
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PROOF. Fix s < 6. By Theorem [[L2Z1] there exist 7 > 0 and an Ahlfors s-
regular measure 4 supported on Ay, . Now fix p > 0. By definition, for all{ € Ay, -
there exists g € G such that p — 7 < [|g|| < p and (0[§) () < 7. Equivalently,

M- € U Shad(g(o).7).
geG
p—7<|lgll<p

Applying p to both sides gives

1< Z 1( Shad(g(0), 7).

geG
p—7<lgll<p

By the Diameter of Shadows Lemma, Diam(Shad(g(0),7)) <x.s b~19 and thus
since u is Ahlfors s-regular,

M(Shad(g(o),T)) SX,S b—s||g|| =x,s b,

So
1Sxs bP#H{geG:p—7<|gll <p}
and thus
#{g e G:lgll < p} Zx.s b7
Since s < § was arbitrary, we get

: <
liming 08 #19 € G 1 lgll < p} > .
p—>00 14

Combining with (8I1.2]) completes the proof. O




CHAPTER 17

Quasiconformal measures of geometrically finite

groups

In this chapter we investigate the d-quasiconformal measure or measures asso-
ciated to a geometrically finite group. Note that since geometrically finite groups
are of compact type (Theorem [[2.47)), Theorem guarantees the existence
of a d-quasiconformal measure p on A. However, this measure is not necessarily
unique (Corollary [7.1.8)); a sufficient condition for uniqueness is that G is of di-
vergence type (Theorem [[Z4T]). In Section[I7.1] we generalize a theorem of Dal’bo,
Otal, and Peigne [55] Théoreme A] which shows that “most” geometrically finite
groups are of divergence type. In Sections [7.2{T7.5 we investigate the geometry of
d-conformal measures; specifically, in Sections we prove a generalization
of the Global Measure Formula (Theorem IT7.22]), in Sections [7.4] and we
investigate the questions of when the d-conformal measure of a geometrically finite

group is doubling and exact dimensional, respectively.

STANDING ASSUMPTIONS 17.0.3. In this chapter, we assume that

(I) X is regularly geodesic and strongly hyperbolic,
(IT) G <Isom(X) is nonelementary and geometrically finite, and § < OOH

Moreover, we fix a complete set of inequivalent parabolic points P C Ay,p, and for
each p € P we write 6, = §(Gp), and let S, C &, be a p-bounded set satisfying
(A)-(C) of Lemma Finally, we choose a number ¢3 > 0 large enough so that
if

H,=H,, ={x € X :Byo,z) >t}

%:{Q(Hp) :pGP,gEG},
then the collection 7 is disjoint (cf. Proof of Theorem [ZZ45(B3) = (A)).

17.1. Sufficient conditions for divergence type

In the Standard Case, all geometrically finite groups are of divergence type
[165] Proposition 2]; however, once one moves to the more general setting of pinched
Hadamard manifolds, one has examples of geometrically finite groups of convergence
INote that by Corollary [2:4.T7(ii), we have § < oo if and only if §, < co for all p € P.

281
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type [65, Théoréme C]. On the other hand, Proposition [[6.6.5 shows that for every
d-conformal measure p, G is of divergence type if and only if u(A\ A;) = 0. Now by
Theorem 240 A\ A; = App = G(P), so the condition p(A\ A;) = 0 is equivalent

to the condition p(P) = 0. To summarize:

OBSERVATION 17.1.1. The following are equivalent:

(A)
(B)
(©)

(D) There exists a unique é-conformal measure p on A, and it satisfies u(P) =
0.

G is of divergence type.
There exists a d-conformal measure p on A satisfying p(P) = 0.
Every ¢-conformal measure p on A satisfies u(P) = 0.

In particular, every convex-cobounded group is of divergence type.

It is of interest to ask for sufficient conditions which are not phrased in terms

of measures. We have the following:

THEOREM 17.1.2 (Cf. [165] Proposition 2|, [65, Théoreme Al). If 6 > §, for
all p € P, then G is of divergence type.

PRrROOF. We will demonstrate (B) of Observation [.T.1l Let p be the measure
constructed in the proof of Theorem [I5.4.6] fix p € P, and we will show that
w(p) = 0. In what follows, we use the same notation as in the proof of Theorem
Since G is strongly discrete, we can let p be small enough so that S, = G(o).
For any neighborhood U of p, we have

(17.1.1) u(p) < lign\glf ps(U) = lign\‘i(lslf S

Z k(xz)esl=l,

ze€G(o)NU
LEMMA 17.1.3.
(h(0)|z)o <4 0 Vz € S).

PRroor. Since S, is p-bounded, Gromov’s inequality implies that

(R(0)|z)o A (R(0)[p)o =+ 0

for all h € G}, and x € S,,. Denote the implied constant by ¢. For all h € G}, such
that (h(o)|p)o > o, we have (h(o)|x), < o Vz € S,. Since this applies to all but
finitely many h € Gy, (c) of Proposition 333 completes the proof. N

Let T be a transversal of G,\G such that T'(0) C S,,. Then by Lemma [I7.13]

[p(2)[| =+ [[B]] + [lz]| Vh € Gp V& € T (o).
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Thus for all s > § and V C X

Yo ke ll= Y ST k(eleheslel

2€G(0)NU heGyp z€hT(0)NU

= S S k(eI sl

heGp z€T(0)Nh~—1(U)

Now fix 0 < € < § — dp, and note that by (I5.4.1)),

(17.1.2)

E(R) < k(AR) Sx.c Nk(R) YA>1 VR > 1.

Thus setting V = U in (I7ZL2) gives

Yo kel S 3T e G ST p(g)eslel,

z€G(0)NU heGy z€T(0)
h(S,)NU#D

while setting V = X gives
Yok = Z k(z)eslel > Z e—slinll Z k(z)eslel.
z€G(0) heG, z€T(0)
Dividing these inequalities and combining with (ITZ.11]) gives

1 1
p(p) Sx.e liminf o—— Z e~ G=alrll = Z e~ (0=alnll
0 Eal(Cy) heGy %5(Gy heGy,

h(Sp)NU#D h(Sp)NU#D

Note that the right hand series converges since § — € > J,, by construction. As the

neighborhood U shrinks, the series converges to zero. This completes the proof. [

Combining Theorem [[7.1.2] with Proposition I0.3.10] gives the following imme-
diate corollary:

COROLLARY 17.1.4. If for all p € P, G, is of divergence type, then G is of

divergence type.

Thus in some sense divergence type can be “checked locally” just like the prop-

erties of finite generation and finite Poincaré exponent (cf. Corollary [2.4.17]).
COROLLARY 17.1.5. Ewvery convex-cobounded group is of divergence type.

REMARK 17.1.6. It is somewhat awkward that it seems to be difficult or impos-
sible to prove Theorem via any of the equivalent conditions of Observation
[[TI T other than (B). Specifically, the fact that the above argument works for the
measure constructed in Theorem (the “Patterson—Sullivan measure”) but
not for other d-conformal measures seems rather asymmetric. However, after some
thought one realizes that it would be impossible for a proof along similar lines to

work for every J-conformal measure. This is because the above proof shows that
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the Patterson—Sullivan measure y satisfies
(17.1.3) w(p) = 0 for all p € P satisfying 6 > J,,

but there are geometrically finite groups for which (IZ.I3]) does not hold for all §-
conformal measures p. Specifically, one may construct geometrically finite groups
of convergence type (cf. [65, Théoréme C]) such that §, < ¢ for some p € P;

the following proposition shows that there exists a d-conformal measure for which

[IT13) fails:

PropoOSITION 17.1.7. If G is of convergence type, then for each p € P there

exists a d-conformal measure supported on G(p).

PROOF. Let

p= > (g O] 00
9(p)€G(p)
clearly p is a d-conformal measure, but we may have pu(0X) = oo. To prove that

this is not the case, as before we let T' be a transversal of G,\G such that T'(0) C S,,.
Then

pOX)= Y @ = D> [d@)=x Y e <85(E) < oo

9(p)€G(p) geT—! geT—1

O

Proposition [7.1.7] yields the following characterization of when there exists a

unique §-conformal measure:

COROLLARY 17.1.8. The following are equivalent:

(A) There exists a unique §-conformal measure on A.
(B) Either G is of divergence type, or #(P) = 1.

17.2. The global measure formula

In this section and the next, we fix a é-quasiconformal measure p, and ask the
following geometrical question: Givenn € A and r > 0, can we estimate u(B(n,r))?
If G is convex-cobounded, then we can show that p is Ahlfors d-regular (Corollary
I723), but in general the measure u(B(n,r)) will depend on the point 7, in a
manner described by the global measure formula. To describe the global measure

formula, we need to introduce some notation:

NOTATION 17.2.1. Given & = g(p) € App, let t¢ > 0 be the unique number such
that

He = vatg = Q(Hp) = g(HP7t0)7
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b(n,t)

FIGURE 17.2.1. A possible (approximate) graph of the functions

t — b(n,t) and t — logm(n,t) (cf. ((T2I) and (IT2.4)). The

graph indicates that there are at least two inequivalent parabolic
points p1,ps € P, which satisfy N, (R) <« R¥T, (R) <y R* for
some ki < 26 < ko. The dotted line in the second graph is just the
line y = —dt.

Note the relation between the two graphs, which may be either
direct or inverted depending on the functions N,. Specifically, the
relation is direct for the first cusp but inverted for the second cusp.

ie. te = to+ Be(o,9(0)). (Note that ¢, = to for all p € P.) Fix 6 > 0 large
to be determined below (cf. Proposition [7.2.5). For each n € A and ¢ > 0, let

e = [0, M), and write

e m ¢ U()
(17.2.1)  m(n,t) = ¢ e 0%[T, (!t =0) + pu(p)] n € He and t < (€[n),
675(2@'77)o*tﬁ)Np(62<E"’7>o*t7t£70) N € H£ and t > <§|17>0
(cf. Figure[I721]) Here we use the notation
L(R)= Y |nl,*

heG,
IRl =R

Np(R) = Ne, 6, (R) = #{h € Gp : |h]l, < R}

where
|Bllp = Dy(o, h(0)) = /DM v € G,



286 17. QUASICONFORMAL MEASURES OF GEOMETRICALLY FINITE GROUPS

THEOREM 17.2.2 (Global measure formula; cf. [160, Theorem 2] and [153]
Théoréme 3.2]). For alln € A and t > 0,

(17.2.2) m(n,t+0) Sx (B, e™") Sx mn,t - o),
where o > 0 is independent of n and t (but may depend on ).

COROLLARY 17.2.3. If G is convex-cobounded, then
(17.2.3) (B, 7)) =x 1 ¥YneA YO<r<1,
i.e. p is Ahlfors §-reqular.

ProoF. If G is convex-cobounded then # = &, so m(n,t) = e~% V¥n,t, and

thus (I7.22) reduces to [[7.2.3). O
REMARK 17.2.4. Corollary can be deduced directly from Lemma [[7.3.7]

below.

We will prove Theorem [17.2.2]in the next section. For now, we investigate more
closely the function ¢ — m(n,t) defined by (IZ.2.]). The main result of this section
is the following proposition, which will be used in the proof of Theorem [I7.2.2]

PROPOSITION 17.2.5. If 0 is chosen sufficiently large, then for all n € A and
0 <t <to,

(17.2.4) m(n,t2) Sx.0 m(n,t1).
The proof of Proposition itself requires several lemmas.
LEMMA 17.2.6. Fiz §,n € 0X andt >0, and let x =n;. Then
(17.2.5) Be(o,z) <y t A (2(En)o — t).

PROOF. Since (o|n), = 0, Gromov’s inequality gives (0|€), A (£|n) =4+ 0.
Case 1: (0|¢)z <4+ o. In this case, by (h) of Proposition B33

Be(o,2) = — Be(x,0) = =[2(0l¢)2 — ||zl <+ ||zl =1,
while (g) of Proposition [3.3.3] gives
1 1
(€l)o = (e + 2 Belo,2) + By(0,2)] Z 31 +1] = 1

thus Be(o,z) <4 t <4 t A (2(€]n)o — 1).
Case 2: (£|n). =<4+ o. In this case, (g) of Proposition B.33] gives

(€lnbo =+ 51Be(o,2) + Buy(o,2)] = 5[Beoa) +1] Sy gle+1] =1

thus Be(o,) =+ 2(¢lnbo — t =+ ¢ A (2(<[n)o — ).
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COROLLARY 17.2.7. The function

(17.2.6) b(n, ) = me ¢ U(Z)
t/\(2<§|77>0_t)_t5 Mt EH&

satisfies

(17.2.7) b(n,t+7) =4, b(n,t —7).

PROOF. Indeed, by Lemma [I7.2.6]

0 ne ¢ U(A)
85(0, ) — te m € He

b(n,t) <
= 0V max (B — te).
gez%bp( c(0,me) — te)

The right hand side is 1-Lipschitz continuous with respect to ¢, which demonstrates
T2m). 0

LEMMA 17.2.8. For all £ € G(p) C Avp, p € P, there exists g € G such that
(17.2.8)  £=g®), llgll <+ te, and {n € 9X : [o,n] N He # &} C Shad(g(0),0),
where o > 0 is independent of €.

Proor. Write § = g(p) for some g € G. Since z := &, € 0H¢, Lemma

[[23.6(D) shows that

d(g~*(z), h(0)) =+ 0
for some h € G,. We claim that gh is the desired isometry. Clearly ||gh| <4 |z| =
te. Fix n € 0X such that [o,n] N He # &, say 1y € He. By Lemma [I7.2.6] we have

]l = te < Be(o,ne) <4 t A (2(E[m)o — 1) < (Eln)o < (zlm)o,
i.e. n € Shad(z, o) C Shad(g(o),o + 7) for some o, 7 > 0. O

PrROOF OF PrROPOSITION 7.2 Fixn € A and 0 < t; < to.

Case 1: 1y, ,m, € He for some £ = g(p) € Avp, g satisfying (IZ2.8)). In this case,
([I724) follows immediately from (I7.2.I)) unless t1 < (§|n)o < t2. If the
latter holds, then

m(n,t1) = lim - m(y,t) = e [T, (M 0) 4 pu(p)]
t/7{€In)o

m(n,t2) < Lm  m(n,t — o= 02Emo—te) AL (plElmo—te—0Y
() <, T mn.0) g )

Consequently, to demonstrate (I7.2.4)) it suffices to show that

(17.2.9) Ny(eh) Sxo €T, (eh),

~

where t := ({|n), —te — 6 > 0.
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To demonstrate (TZ.29)), let ¢ = g~1(n) € A. We have

PIC)o = €M g0) =+ EMo — llgll =+ EM)o —te =t +0

and thus
D,(0,¢) =x 1P,

Since p is a bounded parabolic point, there exists h¢ € G, such that
D, (h¢(0),¢) Sx 1. Denoting all implied constants by C, we have
C™le'™? — O < Dy(0,¢) = Dp(he(0), ) < NIl
< Dp(0,€) + Dyl(he(0),¢) < Ce'*? + C.
Choosing 6 > log(4C), we have

2¢! < ||hellp < 2C€? unless ' < 202

If 2e! < ||h¢ll, < 2Cet*? ) then for all h € G, satisfying ||h|, < e! we have
et < ||\hehllp Sxoo €l it follows that
Tp(e') = Y llhchll, ™ =xo e > Ny(eh),
heG,

thus demonstrating (IZ2.9). On the other hand, if e/*? < 20?2, then both

sides of (T'CZ9) are bounded from above and below independent of ¢.
Case 2: No such ¢ exists. In this case, for each ¢ write n; € H, for some §; =

gi(pi) € App if such a ¢ exists. If & exists, let s1 > t1 be the smallest

number such that n,, € 0Hg,, and if & exists, let sp < ta be the largest

number such that ns;, € 0Hg,. If & does not exist, let s; = ¢;. Then

58»;

t1 < s1 < 89 < tg. Since m(n,s;) = e %%, we have m(n, s2) < m(n, $1),

so to complete the proof it suffices to show that
m(nu 81) SX,@ m(n7t1) and
m(n, s2) Zx.0 m(1, t2).
By Case 1, it suffices to show that
m(n, s1) Sx lim m(n,t) if & exists, and
t/‘sl
m(n, s2) Zx lim m(n,t) if & exists.
t\sz
Comparing with (IT2.1]), we see that the desired formulas are
e~ 951 <4 675(2<E\n>rtg1)Np(e2<§1ln>rm*t£1)

e > e 0T, (e% ") + p(p)],
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which follow upon observing that the definitions of s; and sy imply that
$1 =4 2(€|n)o — te, and s =<y t¢, (cf. Lemma [[7.2.0]).
O

17.3. Proof of the global measure formula

Although we have finished the proof of Proposition [7.2.5] we still need a few
lemmas before we can begin the proof of Theorem Throughout these lem-
mas, we fix p € P, and let

R, = sup Dy(o,z) < o0.
€Sy

Here S, C &, is a p-bounded set satisfying A \ {p} € G,(Sp), as in Standing
Assumptions [7.0.3

LEMMA 17.3.1. For all A C Gy,

(17.3.1) m <U h(sp)> = S eI = 37 2,

heA heA heA

PROOF. As the equality follows from Observation[6.2.10] we proceed to demon-
strate the asymptotic. By Lemma [I7.1.3] there exists ¢ > 0 such that S, C
Shadj,~1(,(0,0) for all h € Gj,. Then by the Bounded Distortion Lemma 5.6

H(h(,) = [ () dp o e 1M () = e 00,
Sp
(In the last asymptotic, we have used the fact that p(S,) > 0, which follows from
the fact that A\ {p} C G,(S,) together with the fact that p is not a pointmass
(Corollary I5.4.3)).) Combining with the subadditivity of u gives the < direction of
the first asymptotic of (IZ31]). To get the = direction, we observe that since S,
is p-bounded, the strong discreteness of G, implies that S, N h(S,) # & for only
finitely many h € G,; it follows that the function n — #{h € G, : n € h(Sp)} is

bounded, and thus

i (U h(S,,)) - /#{h € G, e h(S,)} duln)

heA

= u(h(S,))

heA

< 3ol

heA
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3
Nte

9(0)/\0

FIGURE 17.3.1. Cusp excursion in the ball model (left) and upper
half-space model (right). Since & = g(p) € B(n,e™!), our esti-
mate of u(B(n,e"")) is based on the function Z,, which captures
information “at infinity” about the cusp p. In the right-hand pic-
ture, the measure of B(n, e™t) can be estimated by considering the
measure from the perspective of g(0) of a small ball around &.

COROLLARY 17.3.2. For all r > 0,

(17.3.2) 7, (%) Sx u(Bp,m)\ {p}) Sx I, (%)
PROOF. Since

U 88 SB@ /RN {py =&\ Bolo,R) S [ h(Sy),

heGy hedG,
Ihllp>R+Rp Ihllp>R—Ry
Lemma [[7.3T] gives

1 1
7, (4 1,) S B 53, (- ).

thus proving the lemma if r < 1/(2R,,). But whenr > 1/(2R,), all terms of (I7.3.2)

are bounded from above and below independent of r. (I
Adding u(p) to all sides of (I7T32) gives
2 1
(17.3.3) Zp (;) + 1(p) Sx w(B(p,7)) Sx Ip <Z) + u(p)-

COROLLARY 17.3.3 (Cf. Figure[[73)). Fizn € A andt > 0 such that n, € He
for some € = g(p) € App satisfying t < (£|n)o — log(2). Then

e [T, (") + pu(p)] Sx (B, e™)) Sx e [T, (e ) + ulp)),

where o > 0 is independent of n and t.
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PROOF. The inequality (£|n), > t + log(2) implies that
B(& e '/2) € B(n,e™") € B(§,2¢7").

Without loss of generality suppose that g satisfies (IT.2.8). Since t > t¢, [@59)
guarantees that B(€,2e*) C Shad(g(o),00) for some o¢ > 0 independent of 7 and
t. Then by the Bounded Distortion Lemma [£.5.6], we have

B (p,e™719/(20)) € g7} (Blg.e™'/2))

Cg ' (B(n,e™)
C g 1 (B(E 2¢7Y)
CB (p, 2067“7%))

for some C > 0, and thus

ey (B (p,e0719/(20)) ) S n(Bln,e ™) S e (B (p,20e719)).
Combining with (I7.33]) completes the proof. O
LEMMA 17.3.4. For alln € A\ {p} and 3R, < R < D,(0,7)/2,
Dy(0,1) P Ny(R/2) S By, R)) S Dylosn) PNy (2R).

PRrOOF. Sincen € A\{p} C G,(S,), there exists h,, € G}, such that n € h,(Sp).

Since
U hnh(Sp) € By(n, R) € U hnh(Sp),

heGy heG,
IR, <R—Rp IPllp<R+Rp
Lemma [[7.3.1 gives
—925 —20
Z ||h"7h||p2 Sx 1(Bp(n, R)) <x Z ||h’77h’||p2 .
heG, heGy
IR, <R—Rp IRllp <R+Rp

The proof will be complete if we can show that for each h € G, such that ||k, <
R+ Ry, we have

(17.3.4) [finhllp =x Dp(o,n).
And indeed,
5)
Dyp(n, hyh(0)) < Dp(n, hy(0)) + [[hllp < Ry + (R+ Rp) < gDp(Oa m);
demonstrating (I7.34) with an implied constant of 6. O

COROLLARY 17.3.5. For alln € A\ {p} and 6R,D(p,n)* <r < D(p,n)/4, we
have

r

D(p,n)* N, <W

) S u(BO.0) S DNy (s )
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Proor. By [@22), for every ¢ € B, (n, m) we have that

Dy(n,¢) Dp(n,¢)
D — P )
(n,¢) Dy(0,m)Dy(0,¢) < Dy (0,n)(D,(0,m) — Dyp(n,Q))
< DI CXIE)
DP(07 77) (D;D(Ou 77) - m)
=r.

Analogously, (£22) also implies that for every ¢ € B(n,r) we have

D(n,¢)

D(p,n)D(p, ()

= D(p,n) (D(p,n) — 1)

Combining these inequalities gives us that

Dp(nu C) =

br (77, D(p,n)(D(p.n) + T)) € B € B (n, D(p,n)(D(p,n) — T))
Now since r < D(p,n)/4, we have

50 (v 30i) < 200 <5 (1 )

On the other hand, since 6R,D(p,n)* <r < D(p,n)/4, we have

3R, < — < 2r i < D)
2D(p,n)* ~ D(p,n) 2
whereupon Lemma [I7.3.4] completes the proof. O

COROLLARY 17.3.6 (Cf. Figure[I73.2). Fizn € A andt > 0 such that n, € He
for some € = g(p) € App. If

(17.3.5) Elmo +7 <t < 2o —te — T,

then
1736) e 0ot N (2(8lmo—te—t=0) < w(B(n,e™")
3. <

6—5(2<5\n>o—t5)Np(e2(£|n>o—ts—t+0)

X

where o, 7 > 0 are independent of n and t.

PRrOOF. Without loss of generality suppose that g satisfies (IT.2.8)), and write
¢ =g Yn). Since t > t¢, (E5J) guarantees that B(n,e~") C Shad(g(0),00) for
some o9 > 0 independent of 1 and ¢. Then by the Bounded Distortion Lemma

[A5.6] we have
B(Cae_(t_ts)/c) Cg ' (B(ne™)C B(ch—(t—tg))
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H
. _ /\ nti

9(0)/\0

FIGURE 17.3.2. Cusp excursions in the ball model (left) and upper
half-space model (right). Since & = g(p) ¢ B(n,e™ "), our estimate
of u(B(n,e™")) is based on the function N, which captures “lo-
cal” information about the cusp p. In the right-hand picture, the
measure of B(n,e”!) can be estimated by considering the measure
from the perspective of g(o) of a large ball around 7 taken with
respect to the D¢-metametric.

for some C > 0, and thus
e e u(B(¢, e /C)) Sk p(B(n,e ")) Sx e (B¢, Cem D)),

If

(17.3.7) 6R,D(p,1)* <

then Corollary [7.3.5] guarantees that

6_(t_t£) ¢
W) Sx ,U(B(T]ae ))

A

4Cef(t7t§) >
D(p.¢)* /)

On the other hand, since &, € Shad(g(o),00), the Bounded Distortion Lemma

4.5.6l guarantees that

§x 67&5D(?7 C)%Np <

D(p,¢) =x e€D(&,n) = e~ (Emo—te),

Denoting the implied constant by K, we deduce (I7.3.6) with o = log(4CK?). The
proof is completed upon observing that if 7 = log(4CK V 6 R,CK?), then (I7.3.5)

implies (IZ.3.7). O
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LEMMA 17.3.7 (Cf. Lemma[I5.4T). Fizn € A andt > 0 such that n, ¢ |J(F7).
Then

w(B(n,e ) =y e o

Proor. By ([I2Z4.32), there exists g € G such that d(g(0),n;) =<4+ 0. By (£5.39)),
we have B(n,e~") C Shad(g(o),o) for some o > 0 independent of n,t. It follows

that

u(Bn,e™") =x e *'u(g™ (B(n,e™)).
To complete the proof it suffices to show that u(g~1(B(n,e"))) is bounded from
below. By the Bounded Distortion Lemma [£.5.6]

g~ (B(n,e™")) 2 B(g~"(n)¢)
for some £ > 0 independent of 7,¢t. Now since G is of compact type, we have

. o
inf u(B(r.€)) > min u(B(r.</2) >0

where S, /5 is a maximal ¢/2-separated subset of A. This completes the proof. [
We are now ready to prove Theorem [I7.2.7]

PROOF OF THEOREM Let 0o denote the implied constant of ([72.1]).
Then by (IT21)), for all n € A, t > 0, and & € Ay,p,

(17.3.8)
e~ [T, (") + p(p)] te + 00 <t < (€n)o
m(n,t) = § e 0CEMetI N (e2Emo=t=te=0) - (¢]n), < t < 2(¢|n)o — te — 00
unknown otherwise

Applying this formula to Corollaries I7.3.3] and yields the following;:

LEMMA 17.3.8. There exists T > oo such that for alln € A and t > 0.
(i) If for some &, te +1 <t < (n)o — T, then (IT2.2) holds.
(ii) If for some &, (€|n)o + 7 <t < 2(&IN)o — te — 7, then (LTL22) holds.

Now fix n € A, and let

A={t>0im ¢ Jo) o U ltetr €npo—r10 | Lelmor. 2(€mo—te—7].

€Ay EE€EALp

Then by Lemmas [7.3.7 and [7.3.8, (IZ2.2),__ holds for all ¢ € A.
CLAIM 17.3.9. Ewery interval of length 27 intersects A.

PRrROOF. If [s — 7,5 + 7] does not intersect A, then by connectedness, there
exists & € App such that n, € He for all ¢ € [s — 7,5 + 7]. By Lemma [I7.2.6]
the fact that 75+, € He implies that t¢ < s < 2({|n), — t¢ (since 7 > oy). If
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V)

< (€lm)o, then [s — 7,5 + 7] N [te + 7, (E[n)o — 7] # 2, while if s > (£]n),, then
s =75+ 7] N[{E]n)o +7.2Emo —te — 7] # 2. <

Thus for all ¢ > 0, there exist t+ € A such that ¢t — 27 <t_ <t <t; <t—27;
then

m(n,t+37) Sk mn,ty +7) Sx p(B(n, e ™))
w(B(n,e)
(777 eiti)) Sx m(nv - — T) Sx m(nut - 3T)7

ie. (IZ2.2),_,, holds. O

IN

IA
=
sy

17.4. Groups for which p is doubling

Recall that a measure p is said to be doubling if for all n € Supp(u) and r > 0,
w(B(n,2r)) <x w(B(n,7)). In the Standard Case, the Global Measure Formula
implies that the §-conformal measure of a geometrically finite group is always dou-
bling (Example [7.411]). However, in general there are geometrically finite groups
whose d-conformal measures are not doubling (Example IT4T2]). It is therefore of
interest to determine necessary and sufficient conditions on a geometrically finite
group for its d-conformal measure to be doubling. The Global Measure Formula

immediately yields the following criterion:

LEMMA 17.4.1. p is doubling if and only if the function m satisfies

(17.4.1) m(n,t+7) s mn,t—7) Vp €A Vt,7 > 0.
Proor. If (IC41) holds, then (IT.22) reduces to
(17.4.2) p(B(n, ")) < m(n, 1),

and then ([CZAT]) shows that p is doubling. On the other hand, if p is doubling,
then (IT7.2.2)) implies that

m(n,t —7) Sx w(B(n, e TN < w(B(n, e )y <oomn,t +7);

combining with Proposition [[7.2.5] shows that (I7.4.1]) holds. d

Of course, the criterion (I7Z.47]) is not very useful by itself, since it refers to the
complicated function m. In what follows we find more elementary necessary and

sufficient conditions for doubling. First we must introduce some terminology.

DEFINITION 17.4.2. A function f : [1,00) — [1,00) is called doubling if there
exists S > 1 such that

(17.4.3) f(BR) Sx.p f(R) VR =1,
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and codoubling if there exists 5 > 1 such that

(17.4.4) F(BR) = F(R) 2.5 f(R) VR 1.

OBSERVATION 17.4.3. If there exists 8 > 1 such that
N,(BR) > N,(R) VR > 1,

then NV, is codoubling.

PrROOF. Fix R > 1; there exists h € G, such that 2R < ||h||, < 28R. We have
h € Gy il < BY C{j € Gy: R<|ljll, < (28+1)R},
and taking cardinalities gives
Np(R) < Np((28 + 1)R) — Np(R).
O

We are now ready to state a more elementary characterization of when p is
doubling:
PROPOSITION 17.4.4. u is doubling if and only if all of the following hold:
(I) For allp € P, N, is both doubling and codoubling.
(II) For allp € P and R > 1,
(17.4.5) Z,(R) =<x R™2N,(R).
(III) G is of divergence type.
Moreover, (IT) can be replaced by
(Il') For allp€ P and R>1,
(17.4.6) T,(R) ==Y e *FN,(e"R) <, Np(R).
k=0

Proor THAT (I)-(III) IMPLY p DOUBLING. Fixn € A and ¢,7 > 0, and we will
demonstrate (I'TZAT]). By (II), (III), and Observation [7.I1] we have

e % ne & U(E)
m(nat) =y 6*51556*25(t7tg70)./\/'p(6t—t570) n € Hg and t < <§|77>0
(17.4.7) e 0 EImo =t AT (e2Elmo—t=te=0) -, € He and ¢ > (€]n),
- =6t 1 ui ¢ U(f%ﬂ)
=« €

e MDNL (P10 g € Hyp)

where b(n,t) is as in (IZ.2.0]). Let t4 =t + 7. We split into two cases:
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Case 1: my,,m:_ € Hy(y) for some g(p) € App. In this case, (IZ4T]) follows from
Corollary [7.2.7 together with the fact that N, is doubling.

Case 2: ni+s ¢ () for some s € [—7,7]. In this case, Corollary IT7.2.7 shows
that b(n,t+) <4 » 0 and thus

m(nut-l-) =x,T 67& =x,7 m(nat—)

Before continuing the proof of Proposition [[7.4.4] we observe that

I,(R) + RPN, (R) =« Y (RVIh]l,) "> =x D D ("R)">[*R > [|h],]
heGy heG, k=1

o0

= Y ("R N,(e"R)

k=1
= R 2T, (R).

In particular, it follows that (IZ.4.0]) is equivalent to
(17.4.8) Z,(R) <x R™2°Ny(R).

PRrROOF THAT (I) and (II') iMpLY (II). Since N, is codoubling, let 3 > 1 be as

in (IT44). Then
Ip(R) =2 Z (ﬁR)iw = (ﬁR)iw(Np(BR) _NP(R)) Zx.8 Ri%Np(R)-

heG,,
R<|Ihl[p<BR

Combining with (I74.8) completes the proof. O

PROOF THAT p DOUBLING IMPLIES (I)-(IIT) AND (II). Since a doubling mea-

sure whose topological support is a perfect set cannot have an atomic part, we must
have u(P) = 0 and thus by Observation [7.1.1] (III) holds. Since

m(p, 1) o p Tyl ™) + pu(p) = T(e! 17"

for all sufficiently large ¢, setting n = p in (IZ.41]) shows that the function Z, is
doubling.

Fix n € A\ {p}. Let o9 > 0 denote the implied constant of (I7.25). For
s € [to+ 0o+ 7, (pIn)o — 7], plugging t = 2(p|n), — s into (IZAI]) and simplifying
using ([Z.3.8),_, shows that
(17.4.9) Np(ed 77070y = L Np(esT71o=0),

Since (p|n), can be made arbitrarily large, (IZ4.9) holds for all s >ty + oo + 7. It
follows that N, is doubling.
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Next, we compare the values of m(n, (p|n), £ 7). This gives (assuming (p|n), >
to + oo + T)

e—étozp(e(pln)o—f—to—G) = 6—5(2(p|n>o—to)Np(e(plmo—T—to—G)_

Letting R,, = exp((p|n)o — T — to — 0), we have
(17.4.10) T, (Ry) <x Ry Ny(Ry).

Now fix ¢ € A\ {p} and h € G, and let n = h(C). Then D,(h(0),n) <1 0, and

thus the triangle inequality gives
1< Dy(o,n) <y [Ihllp = 1,

and so R, <y Dp(0,n) =<x ¢ ||h||p. Combining with (IZ4.I0) and the fact that the

functions Z,, and N, are doubling, we have
(17.4.11) Lo (Illp) =x IRl > Ny (l1All)

for all h € G,
Now fix 1 < Ry < Ry such that || h;||, = R; for some hy, ha € G, but such that
the formula Ry < ||h||, < Rz is not satisfied for any h € G,. Then

i T,(R) = Jim T,(R) and lim Np(R) = Jim ()
On the other hand, applying (IT4TIT) with A = hy, ho gives
I,(Ri) =x R; *Ny(R:).

Since Z,, and N, are doubling, we have

Z,(R1) _ limp\ r, Zp(R) _ limpg ~g, Z,(R)
Np(Ry) 7 limpr, Np(R) — limg g, Np(R)
- Ip(R2)
o NP(R2)
and thus Ry <« Rs. Since Ry, Ry were arbitrary, Observation [7.4.3] shows that
N, is codoubling. This completes the proof of (I).

—25 _
Ry® =,

- —26
=, R,

It remains to demonstrate (II) and (II'). Given any R > 1, since N, is codou-
bling, we may find h € G, such that ||h]|, <x R; combining with (I7.4.11]) and the
fact that Z, and N, are doubling gives (IT41H) and (I7.4.8)), demonstrating (II)
and (IT'). O

We note that the proof actually shows the following (cf. (IT7.47)):

COROLLARY 17.4.5. If u is doubling, then

1 ne & U()

u(B(n,e™")) =y e
e VMONL(ePMD) € Hy(p
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for allm e A, t > 0. Here b(n,t) is as in (ITT2Z0).

Although Proposition [[7.4.4] is the best necessary and sufficient condition we
can give for doubling, in what follows we give necessary conditions and sufficient
conditions which are more elementary (Proposition I7.4.]]), although the necessary
conditions are not the same as the sufficient conditions. In practice these conditions
are usually powerful enough to determine whether any given measure is doubling.

To state the result, we need the concept of the polynomial growth rate of a

function:

DEFINITION 17.4.6 (Cf. (ILZ4)). The (polynomial) growth rate of a function
f:[1,00) = [1,00) is the limit

_ o log f(AR) —log f(R)
alf) = ,\,}alfl—r»loo log(\)

if it exists. If the limit does not exist, then the numbers
log f(AR) — log f(R)
* = lims
o’ (f) = Imsup log()

— i inf 08 f(AR) —log f(R)
U= T oy

are the upper and lower polynomial growth rates of f, respectively.

LEMMA 17.4.7. Let f: [1,00) — [1,00).
(i) f 4s doubling if and only if o*(f) < oo.
(ii) f is codoubling if and only if a.(f) > 0.
(iii)

. Jlog F(N) . log f(\)
o (f) < hArglo%f log(X) = hiisolip log(A)

In particular, o, (Np) < 25, < a*(Np).

< a*(f).

PROOF OF (i). Suppose that f is doubling, and let C' > 1 denote the implied
constant of (IT43). Iterating gives

f(B"R) < C"f(R) VneN YR >1

and thus
FOAR) Sy Aoss(@ f(R) VA >1 VR > 1.

It follows that a*(f) <logg(C') < co. The converse direction is trivial. O

PROOF OF (ii). Suppose that f is codoubling, and let C' > 1 denote the implied
constant of (I7.44]). Then

f(BR)> (1+C Y)f(R) VR> 1.
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Iterating gives
fB"R) > (1+CH)"f(R) VneN VR >1
and thus
FOR) =, Ngs(+C™ D £r(RY WA > 1 VR > 1.
It follows that cv.(f) >logg(1+ C~') > 0. The converse direction is trivial. O

PROOF OF (iii). Let R,, — co. For each n € N,
. log f(ARn) —log f(Rn) _ _
lim su =5: —_—.
Ao log(\) Aoe. log(h)
Thus given s < 3, we may find a large number A,, > 1 such that

log(An)

Since A, R, — 00 as n — oo, it follows that a*(f) > s; since s was arbitrary,

Il
=
w
=
T

a*(f) > 3. A similar argument shows that a.(f) < s.
Finally, when f = N, the equality 5§ = s = 24, is a consequence of (8I12]) and
Observation [6.2.101 O

We can now state our final result regarding criteria for doubling:

PROPOSITION 17.4.8. In the following list, (A) = (B) = (C):

(A) Forallp € P, 0 < ax(N,) < a*(N,) < 26.
(B) w is doubling.
(C) Forallp e P, 0 < a,(N,) < a*(N,) < 26.

PROOF OF (A) = (B). Suppose that (A) holds. Then by Lemma 747 (I) of
Proposition I7.4.4] holds. Since §, < a*(N,)/2 < ¢ for all p € P, Theorem I7.1.2]
implies that (III) of Proposition [7.4.4] holds. To complete the proof, we need to
show that (II') of Proposition[I7.441holds. Fix s € (a*(N,), 26). Since s > a*(N,),

we have
Npy(AR) Sx.s N*Np(R) VA>1, R>1

and thus -
No(R) S T,(R) Sx Y e PFe™ N, (R) < Np(R),
k=0
demonstrating (I7.4.6]) and completing the proof. O

PrOOF OF (B) = (C). Suppose pu is doubling. By (I) of Proposition [7.44]
a,(Np) > 0. On the other hand, by (I7.4.6)) we have

A BN,(AR) Sk Np(R) VA>1, R>1

and thus o*(N,) < 26. O
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Proposition 744 shows that if G is a geometrically finite group with J-
conformal measure u, then the question of whether p is doubling is determined
entirely by its parabolic subgroups (Gp)p,ep and its Poincaré set Ag. A natural
question is when the second input can be removed, that is: if we are told what
the parabolic subgroups (Gp)pep are, can we sometimes determine whether g is
doubling without looking at Ag? A trivial example is that if a.(N,) = 0 or
a*(N,) = oo for some p € P, then we automatically know that 4 is not doubling.
Conversely, the following definition and proposition describe when we can deduce

that p is doubling:

DEFINITION 17.4.9. A parabolic group H < Isom(X) with global fixed point
p € 0X is pre-doubling if

(17.4.12) 0< Oz*(./\/'gpﬁH) < OZ*(ngﬁH) =20 < 00
and H is of divergence type.

ProrosITION 17.4.10.

(i) If Gp is pre-doubling for every p € P, then u is doubling.

(ii) Let H <Isom(X) be a parabolic subgroup, and let g € Isom(X) be a loxo-
dromic isometry such that (g, H) is a strongly separated Schottky product.
Then the following are equivalent:

(A) H is pre-doubling.
(B) For every n € N, the §,,-quasiconformal measure p, of G, = (g™, H)
is doubling. Here we assume that 6, := 0(G,,) < 00.

PROOF OF (i). For all p € P, the fact that G}, is of divergence type implies
that 6 > 6, (Proposition [0.3.10); combining with (I7ZI2) gives 0 < . (N,) <
a*(N,) < 28. Proposition IT.4.8 completes the proof. O

PROOF OF (ii). Since (up to equivalence) the only parabolic point of G,, is the
global fixed point of H (Proposition [2.4.19), the implication (A) = (B) follows
from part (i). Conversely, suppose that (B) holds. Then by Proposition [7.4.8] we
have

0 < a(Ng, 1) < " (Ng, 1) < 20, < 0.
Since d,, — dg as n — oo (Proposition [037(iv)), taking the limit and combining
with the inequality 20y < o*(Ng, m) yields (IZLI2). On the other hand, by
Proposition [7.4.4] for each n, G, is of divergence type, so applying Proposition
[037(iv) again, we see that H is of divergence type. O

ExAMPLE 17.4.11. If

(17.4.13) Ny(R) <« R®» Ypc P,
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then the groups (Gp)pep are pre-doubling, and thus by Proposition I74T0i), p is
doubling. Combining with Corollary gives
_ o)1 m & U()
u(B(ne ")) =x e .
e(20e=0)b(nt) e [,
This generalizes B. Schapira’s global measure formula [153], Théoreme 3.2] to the

setting of regularly geodesic strongly hyperbolic metric spaces.

We remark that the asymptotic (IZ.413) is satisfied whenever X is a finite-
dimensional algebraic hyperbolic space; see e.g. [137) Lemma 3.5]. In particular,
specializing Schapira’s global measure formula to the settings of finite-dimensional
algebraic hyperbolic spacess and finite-dimensional real hyperbolic spaces give the
global measure formulas of Newberger [137, Main Theorem] and Stratmann—Velani—
Sullivan [160, Theorem 2], [165] Theorem on p.271], respectively.

By contrast, when X = H = H%, the asymptotic (IZ4.13) is usually not
satisfied. Let us summarize the various behaviors that we have seen for the orbital
counting functions of parabolic groups acting on H*°, and their implications for

doubling:

ExaMPLES 17.4.12 (Examples of doubling and non-doubling Patterson—Sullivan

measures of geometrically finite subgroups of Isom(H>)).

1. In the proof of Theorem [T.2.17] (cf. Remark IT.2.12]), we saw that if " is
a finitely generated virtually nilpotent group and if f : [1,00) — [1,00) is

a function satisfying
ap < a.(f) < a*(f) < oo,

then there exists a parabolic group H < Isom(H*°) isomorphic to I' whose
orbital counting function is asymptotic to f. Now, a group H constructed
in this way may or may not be pre-doubling; it depends on the chosen
function f. We note that by applying Proposition [7.410(ii) to such a
group, one can construct examples of geometrically finite subgroups of
Isom(H>) whose Patterson—Sullivan measures are not doubling. On the
other hand, for any parabolic group H constructed in this way, if H is em-
bedded into a geometrically finite group G with sufficiently large Poincaré
exponent (namely 20¢ > o*(f)), then the Patterson—Sullivan measure of
G may be doubling (assuming that no other parabolic subgroups of G are
causing problems).

2. In Theorem[IZT.5] we showed that if f : [0,00) — N satisfies the condition

YO S Rl S R2 f(Rl) divides f(RQ),
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then there exists a parabolic subgroup of Isom(H>) whose orbital counting
function is equal to f. This provides even more examples of parabolic
groups which are not pre-doubling. In particular, it provides examples of
parabolic groups H which satisfy either a.(Ng) = 0 or a*(Ny) = oo (cf.
Example[IT.2.T8)); such groups cannot be embedded into any geometrically

finite group with a doubling Patterson—Sullivan measure.

Note that example 2 can be used to construct a geometrically finite group
acting isometrically on an R-tree which does not have a doubling Patterson—Sullivan

measure. On the other hand, example 1 has no analogue in R-trees by Remark [6.T.8

17.5. Exact dimensionality of u

We now turn to the question of the fractal dimensions of the measure p. We
recall that the Hausdorff dimension and packing dimension of a measure p on 90X
are defined by the formulas

dimg (p) = inf {dimg(A) : p(0X \ A) =0}
dimp(p) = inf {dimp(A) : p(0X \ A) =0} .
If G is of convergence type, then p is atomic, so dimgy (u) = dimp(p) = 0. Conse-

quently, for the remainder of this chapter we make the
STANDING ASSUMPTION 17.5.1. G is of divergence type.

Given this assumption, it is natural to expect that dimgy(p) = dimp(p) = 4.
Indeed, the inequality dimpg(p) < 0 follows immediately from Theorems [[2.1] and
(245 and in the Standard Case equality holds [160] Proposiiton 4.10]. Even
stronger than the equalities dimy(u) = dimp(p) = 4, it is natural to expect that

W is exact dimensional:

DEFINITION 17.5.2. A measure p on a metric space (Z, D) is called ezact di-
mensional of dimension s if the limit
(17.5.1) du(n) = lim ~log ————
oot p(B(n,e7))

exists and equals s for y-a.e. n € Z.

For example, every Ahlfors s-regular measure is exact dimensional of dimension

If the limit in (IZ.5.1)) does not exist, then we denote the lim inf by d,(n) and
the lim sup by d,,(n).
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PROPOSITION 17.5.3 ([127] §8]). For any measure jv on a metric space (Z, D),
dimp (u) = esssupd,, (1)
nez

dimp(u) = esssupd,,(n).
nez

In particular, if p is exact dimensional of dimension s, then
dimg (u) = dimp(p) = s.

Combining Proposition I7.5.3] with Lemma [[7.3.7] and Observation [7.1T.1] im-
mediately yields the following;:

OBSERVATION 17.5.4. If p is the Patterson—Sullivan measure of a geometrically
finite group of divergence type, then

dimp (p) <6 < dimp(p).
In particular, if p is exact dimensional, then p is exact dimensional of dimension §.

It turns out that p is not necessarily exact dimensional (Example [[7.5.14)), but
counterexamples to exact dimensionality must fall within a very narrow window
(Theorem [I7.59]), and in particular if p is doubling then p is exact dimensional
(Corollary MT.512)). As a first step towards these results, we will show that exact
dimensionality is equivalent to a certain Diophantine condition. For this, we need

to recall some results from [73].

17.5.1. Diophantine approximation on A. Classically, Diophantine ap-
proximation is concerned with the approximation of a point € R\ Q by a rational
number p/q € Q. The two important quantities are the error term |z — p/q| and
the height q. Given a function ¥ : N — [0, 00), the point € R\ Q is said to be
W-approzimable if

T — B‘ < ¥(q) for infinitely many p/q € Q.
q

In the setting of a group acting on a hyperbolic metric space, we can instead
talk about dynamical Diophantine approximation, which is concerned with the
approximation of a point 7 € A by points g(§) € G(£), where € € A is a distinguished
point. For this to make sense, one needs a new definition of error and height: the
error term is defined to be D(g(€),n), and the height is defined to be bll9ll. (If there
is more than one possibility for g, it may be chosen so as to minimize the height.)
Some motivation for these definitions comes from considering classical Diophantine
approximation as a special case of dynamical Diophantine approximation which
occurs when X = H? and G = SLy(Z); see e.g. [73, Observation 1.15] for more
details. Given a function @ : [0, 00) — (0, 00), the point 1 € A is said to be @, £-well
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approzimable if for every K > 0 there exists g € G such that
D(g(€),n) < ®(Kbll9 for infinitely many g € G
(cf. 73l Definition 1.36]). Moreover, 7 is said to be -very well approzimable if
we () = Tim sup 28 D(g(€),n)

9eG llqll
9(&)—n

>1

(cf. [73L p.9]). The set of ®,&-well approximable points is denoted WAg ¢, while
the set of £-very well approximable points is denoted VWA,. Finally, a point 7 is
said to be Liouwille if we(n) = oo; the set of Liouville points is denoted Liouvilleg.

In the following theorems, we return to the setting of Standing Assumptions

703l and I75T]

THEOREM 17.5.5 (Corollary of [73] Theorem 8.1]). Fiz p € P, and let ® :
[0,00) — (0,00) be a function such that the function t — t®(t) is nonincreasing.
Then

(1) w(WAg p) =0 or 1 according to whether the series

(175.2) > e, ergiea)

geG
converges for some K > 0 or diverges for all K > 0, respectively.
(ii) w(VWA,) =0 or 1 according to whether the series
(17.5.3) Saiv(p, k) =y e M, (erlol)
geG
converges for all k > 0 or diverges for some k > 0, respectively.
(ili) p(Liouville,) = 0 or 1 according to whether the series Eaiv(p, k) converges

for some k > 0 or diverges for all K > 0, respectively.

ProOF. Standing Assumption [7.5.1] Theorem [[L4.1] and Observation I7.1.1]
imply that p is ergodic and that u(p) = 0, thus verifying the hypotheses of [73]
Theorem 8.1]. Theorem [[7.2.2] shows that

Ly (C1/1) Sxp iUB(p;7)) Sx.p Lp(Ca/7)
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for some constants C; > 1 > C5 > 0. Thus for all K > 0,

sle 1
> e, (e|g|q>(Kclengn))

geqG
< Sedlolg (G
; <ellgllq>(Kellgll)>
Sx [73L (8.1)]
< Sedlolg (G2
gezc:; <e||g||q>(Ke||g||))
ol 1
< g;; = <e||g||q>((K/cl)e||g||)>'

Thus, [73] (8.1)] diverges for all K > 0 if and only if (I752) diverges for all
K > 0. This completes the proof of (i). To demonstrate (ii) and (iii), simply note
that VWA, = |J,., WAq, ,, and Liouville, = (.., WA, p, where ®.(t) = t~1+¢),
and apply (i). The constant K may be absorbed by a slight change of . O

THEOREM 17.5.6 (Corollary of [73] Theorem 7.1]). For all { € A and ¢ > 0,
0
1+¢’
where ®.(t) =t~ as above. In particular, dimy (Liouvilleg) = 0, and VWA
can be written as the countable union of sets of Hausdorff dimension strictly less

than 6.

dimH (WA{)DE) S

(No proof is needed as this follows directly from [73] Theorem 7.1].)

There is a relation between dynamical Diophantine approximation by the orbits
of parabolic points and the lengths of cusp excursions along geodesics. A well-known
example is that a point n € A is dynamically badly approximable with respect to
every parabolic point if and only if the geodesic [0, 7] has bounded cusp excursion

lengths [73], Proposition 1.21]. The following observation is in a similar vein:

OBSERVATION 17.5.7. For nn € A, we have:

-t b(n,t
n e U VWA, < lirnsup<§|n>7g >0 < limsup _(7% ) >0
peP E€MALp £ t—00 t

tg*}OO

—1 b(n,t
n e Liouville, < limsup <§|77>7£ =00 & limsup (n,1) — 1
P r -
E€MLp 19 t—o00

peEP tg —00
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PRrROOF. If £ = g(p) € Avp, then ||g|| 2+ t¢, with < for at least one value of g

(Lemma [TT7.278]). Thus

log D
max wy(n) = max lim sup 08 Z\9\P), 1) (9(p), m) = lim sup _<§|77> ,
peP PeEP  geq 9]l gehn, Le
g(p)—n ISad/l
SO
—t
(17.5.4) lim sup Em —te _ max wy(n) — 1.
£EALy 13 peEP
te—00

On the other hand, it is readily verified that if [0, 1] intersects He, then the function
f(t) = b(n,t)/t attains its maximum at ¢t = (£|n),, at which f(t) = ({|n)o —te. Thus

we have that

b(n,t b(n,t o— 1
lim sup () = limsup sup b, 1) = lim sup<§|n>75
t—o0 t €A, t>0 t €Ay <§|77>O
(17.5.5) te—oo MEHe te—o00
1
— 1 e —
maxpe p wp(n)
Since
=00 1 € U,ep Liouville,
I;lealgcwp(n) € (1,00) n€Uyep VWA, \ U, ¢p Liouville,
=1 n & U,ep VWA,
applying (IC.5.4) and (I'C.5.85) completes the proof. O

We are now ready to state our main theorem regarding the relation between

exact dimensionality and dynamical Diophantine approximation:

THEOREM 17.5.8. The following are equivalent:
(A) u(VWA,) =0 Vpe P.
(B) w is exact dimensional.
(C) dimr (1) = 5.
(D) u(VWA;) =0 V¢ € A.
The implication (B) = (C) is part of Proposition I7.5.3] while (C) = (D) is
an immediate consequence of Theorem [[7.5.6] and (D) = (A) is trivial. Thus we
demonstrate (A) = (B):

Proor OF (A) = (B). Fix n € A\ U,ep VWA, and ¢t > 0. Suppose that
1: € He for some £ € Ayp,. Let t— <t <t satisfy

to =y te, by <q 2(€[m)o — te, and e, ¢ U(%)-

Then by Lemma [I7.3.7]
p(B(, e ")) = e,
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In particular

1
17.5.6 5t_ <y log—— <, 5ty
(17.5.6) +log g ey ~+ Ot

Now, by Observation [[7.5.7] we have

by -t 2((&|m)o — te + (constant))
t - te

—0ast— oco.

Since t— < t < tg, it follows that t_/t,t;/t — 1 as t — oco. Combining with

[I750) gives du(n) = ¢ (cf. (ITEI)). But by assumption (A), this is true for
p-a.e. n € A. Thus p is exact dimensional. (Il

17.5.2. Examples and non-examples of exact dimensional measures.

Combining Theorems [I7.5.8] and [7.5.7] gives a necessary and sufficient condition

for p to be exact dimensional in terms of the convergence or divergence of a family
of series. We can ask how often this condition is satisfied. Our first result shows

that it is almost always satisfied:

THEOREM 17.5.9. If for all p € P, the series

o0

(17.5.7) Y e MRl =k D (Bl log 1Rl =x Y e FRNG ()
heG, heG, k=0
converges, then u is exact dimensional.
ProOOF. Fix p € P and k > 0. We have
Saiv(p, k) = Z e—ollgll Z eOlInll
geG heGy
IrlI>xllgll/2
- Z e 0lRll Z e—ollgll
heG, geaG
lgll<2|lnll/~
=y Z edlnl Z e FHlgeG k—1<|g| <k}
heGy k<2||h||/r+1
< Z e 0lRll Z e*‘;kNX,G(k)
hEG, k<2||h||/r+1
<x Z e 0lnl Z 1 (by Corollary I6.7.1])

heG, E<2||h||/rk+1
y Z e—él\hIIHh”,
heG,

So if (LR converges, so does Zaiv(p, ), and thus by Theorems[TT.5.5and [7.5.8]

1 is exact dimensional. ([l

)

COROLLARY 17.5.10. If for all p € P, §, < 0, then p is exact dimensional.
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PROOF. In this case, the series (IT.5.7)) converges, as it is dominated by X4(G))
for any s € (dp,9). O

REMARK 17.5.11. Combining with Proposition [[0.3.10] shows that if p is not

exact dimensional, then

I el < oo = T bl

heGy heG,

for some p € P. Equivalently,

Z e PkNL(eF) < 00 = Z e BREN,(F).
k=0

k=0
This creates a very “narrow window” for the orbital counting function N,,.

COROLLARY 17.5.12. If p is doubling, then u is exact dimensional.

PROOF. If u is doubling, then

Z e~ 20K EAL (eF) = e~ 200+ N (R0
k=0 k=1 ¢=0
_ Z 6726kfp(6k)
k=1
=y Z e 2k N (). (by Proposition [[7.4.4])
k=1
Remark [7.5.17] completes the proof. O

Our next theorem shows that in certain circumstances, the converse holds in
Theorem 759l Specifically:

THEOREM 17.5.13. Suppose that X is an R-tree and that G is the pure Schottky
product (cf. Definition[IZ.5.7) of a parabolic group H with a lineal group J. Let p be
the global fixed point of H, so that P = {p} is a complete set of inequivalent parabolic
points for G (Proposition [12.4.19). Suppose that the series (ILL.1) diverges. Then

W is not exact dimensional; moreover, p(Liouvillep) =1 and dimg (1) = 0.

EXAMPLE 17.5.14. To see that the hypotheses of this theorem are not vacuous,

fix 6 > 0 and let
R25

B @)
or more generally, let f be any increasing function such that » 7° ek £ (eF)
diverges but 37 e =2 f(e*) converges. By Theorem [[4.1.5] there exists an R-tree
X and a parabolic group H < Isom(X) such that Ng, g =<, f. Then the series
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[ITE510) diverges, but ¥5(H) < co. Thus, there exists a unique 7 > 0 such that

> 1
2 —or - - .
;e Ss(H) — 1

Let J = rZ, interpreted as a group acting by translations on the R-tree R, and
let G be the pure Schottky product of H and J. Then X5(J) —1 =23 e %",
so (Xs(H) — 1)(Bs5(J) — 1) = 1. Since the map s — (Xs(H) — 1)(Z5(J) — 1) is
decreasing, it follows from Proposition [45.8 that A(G) = [0,4]. In particular, G
is of divergence type, so Standing Assumption [[7.5.1]is satisfied.

REMARK 17.5.15. Applying a BIM embedding allows us to construct an exam-

ple acting on H*>°.
PRrROOF OF THEOREM [I7.5.13l As in the proof of Proposition I4.5.8 we let

E=(H\{id})(J\ {id}),

so that
G=|JJE"H.
n>0
Define a measure 6 on E via the formula

0 = Z 676”9”59.

gekE

By Proposition [4.5.8] the fact that G is of divergence type (Standing Assump-
tion [I7.5.0]), and the fact that X5(J),3Xs(H) < oo (Proposition [0.3.10), € is a
probability measure. The Patterson—Sullivan measure of G is related to € by the
formula )
—5141l . N
H= mge HJHJ*W*[G I,

where 7 : EN — Ag is the coding map.

Next, we use a theorem proven independently by H. Kesten and A. RaugiB

which we rephrase here in the language of measure theory:

THEOREM 17.5.16 ([111]; see also [149]). Let 6 be a probability measure on a
set B, and let f : E — R be a function such that

/ 1£(@)] db(z) = oo,

Then for ON-a.e. (1,)3° € RY,

|f(xn+l)|

limsup —7——+— =

s |0 f@]

2We are grateful to “cardinal” of http://mathoverflow.net| and J. P. Conze, respectively, for
these references.
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Letting f(g) = ||g||, the theorem applies to our measure 8, because our assump-
tion that (I7.5.7) diverges is equivalent to the assertion that [ f(z) df(z) = oc.
Now fix j € J, and let (g,)$° € EN be a ™-typical point. Then the limit point

n= lm jgi---gn(o)
n—oo

represents a typical point with respect to the Patterson—Sullivan measure u. By
Theorem [17.5.76] we have

. llgnt1ll
limsup =5— = 0.
n—oo 27 |lgill
Write g; = h;j; for each i. Then ||g;|| = |||l + ||7:]|. Since [ [|j]|d0(hj) < oo, the
law of large numbers implies that lim,, . gﬁ‘ﬁ;”” < 00, 80
T3
: [ 7na ]
limsup —s——— = o©
noo 221 gl

But ||hn+1|| represents the length of the excursion of the geodesic [o,7] into the
cusp corresponding to the parabolic point g1 - - - g, (p). Combining with Observa-
tion [[7.5.7 shows that n € Liouville,. Since n was a p-typical point, this shows
that p(Liouville,) = 1. By Theorem [I7.5.6, this implies that dimg () = 0. By
Observation 754 p is not exact dimensional. d






APPENDIX A

Open problems

PROBLEM 1 (Cf. Chapter B Section I34). Do there exist a hyperbolic metric
space X and a group G such that §(G) < 6(G) = oo, but 6(G) cannot be “computed
from” the modified Poincaré exponent of a locally compact group via Definition
[8Z11? This question is vague because a more precise version might be contradicted
by Example [I34.9, in which a group G is constructed such that 5(G) < 8(G) = o
but the closure of G (in the compact-open topology) is not locally compact. In this
case, S(G) cannot be computed from g(@), but there is still a locally compact group
“hidden” in the argument, namely the closure of G 1 H% = 1y (T). Is there any
Poincaré irreqular group whose construction is not somehow “based on” a locally

compact group?

PROBLEM 2 (Cf. Theorem[[23)). If G is a Poincaré irregular parabolic group,

does the modified Poincaré exponent §(G) have a geometric significance? Theorem

[1.2.3 does not apply directly since G is elementary. It is tempting to claim that
(A1) §(G) = inf{dimp (A;(H)) : H > G nonelementary}

(under some reasonable hypotheses about the isometry group of the space in ques-
tion), but it seems that the right hand side is equal to infinity in most cases due
to Proposition [I0.37(iii). Note that by contrast, (Ad) is usually true for Poincaré
reqular groups; for example, it holds in the Standard Case [18].

PrOBLEM 3 (Cf. Chapter [[I Remark IT.2.12). Given a virtually nilpotent
group I' which is not virtually abelian, determine whether there exists a homomor-
phism ® : T' — Isom(B) such that 6(®(T')) = «(T')/2, where both quantities are
defined in Section [I1.2. Intuitively, this corresponds to the existence an equivari-
ant embedding of I into B which approaches infinity “as fast as possible”. It is
known [69, Theorem 1.3] that such an embedding cannot be quasi-isometric, but

this by itself does not imply the non-existence of a homomorphism with the desired

property.
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PROBLEM 4 (Cf. Chapter [Il Remark [T.2.T4)). Does there exist a strongly
discrete parabolic subgroup of Isom(H™) isomorphic to the Heisenberg group which

has infinite Poincaré exponent?

PrROBLEM 5 (Cf. Chapter [2] Section [2.2)). Is there any form of discrete-
ness for which there exists a cobounded subgroup of Isom(H) (for example, UOT

discreteness)? If so, what is the strongest such form of discreteness?
PrOBLEM 6 (Cf. Chapter [I7)). Can Theorem [17.5.13 be improved as follows?

CONJECTURE. Let X be a hyperbolic metric space and let G < Isom(X) be a
geometrically finite group such that for some p € App, the series (IZLT) diverges.

Then the 0-quasiconformal measure p is not exact dimensional.

What if some of the hypotheses of this conjecture are strengthened, e.g. X s
strongly hyperbolic (e.g. X =H>), or G is a Schottky product of a parabolic group

with a lineal group?

11t has been pointed out to us by X. Xie that this question is answered affirmatively by [59]
Proposition 3.10], letting the function f in that proposition be any function whose growth is
sublinear.
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Index of defined terms

See also Conventions on pages [kixl, 211 and

e acts irreducibly: Definition [[.G.1] p[I22]

e acts properly discontinuously: Definition B.2.11] p02]

e acts reducibly: Definition [[.6.1] p[I22

e algebraic hyperbolic space: Definition 2.2.5] p[T]

e attracting fized point: Definition [6.1.1] p05]

e ball model: 2511 pI8

e bi-infinite geodesic: Definition [£.4.2] pl67]

e BIM embedding: Definition [3.1.3] p224

e BIM representation: Definition [3.1.3] p224]

e bordification: Definition B.4.2, p[34

e ¢-bounded: Definition I2.3.1] p20T]

e bounded parabolic point: Definition [2.3.4] p202

e Busemann function: (333, pBIl

o CAT(-1) inequality: B21]), p[28]

o CAT(-1) space: Definition B.2.1] p[2§]

e Cayley graph: Example 3.1.2] p24]

e Cayley hyperbolic plane: Remark Z.1.1] p[3

e Cayley metric: Example B 1.2 p24]

e center (of a triangle in an R-tree): Definition B.I.11] p20l

e center (of a horoball): Definition [2.T.1] p[T93]

e cobounded: Definition T2Z.2.1] pI90|

e codoubling (function): Definition I7.4.2] p295

e convergence type: Definition B.1.4] pI30]

e compact-open topology (COT): pB3l

e compact type, semigroup of: Definition [[.7.1] pI23]

e comparison point: p27, Definition L4121 p[r2]

e comparison triangle: Example B.1.9] p[25t Definition £.4.12] plT2
e compatible (regarding a metametric and a topology): Definition B.6.4] pH49]
e complete set of inequivalent parabolic points: Definition T2.4.13] p 213

e cone: (IZTT), p233



316

B. INDEX OF DEFINED TERMS

conformal measure: Definition [[5.1.1] p255]

conical convergence: plI09

connected graph: Definition B.T.1] p23]

contractible cycles (property of a graph): Definition [4.2.1] p237]
convez-cobounded: Definition [[2.2.5] p[I98]

conver hull: Definition [[5.1] pI19l

convez: (LI, pI19

convez core: Definition [[.5.7] pI21]

cycle: (314), p23

Dirichlet domain: Definition [2.1.4] p[T94]

divergence type: Definition BI.4l p[T30]

domain of reflexivity: Definition B.6.1] p[4S|

doubling (metric space): Footnote 2 p[I8T7]

doubling (function): Definition I7.4.2] p295l

doubling (measure): Section [7.4] p295]

dynamical derivative: Proposition .2Z.12] pl63l
Edelstein-type isometry: Definition TT.IT.IIl pI80l
elementary: Definition [[.3.2] p[I14]

elliptic isometry: Definition [6.1.2] p03l

elliptic semigroup: Definition [6.2.2] p[99]

ergodic: Definition [5.3.1] p257]

equivalent (for Gromov sequences): Definition B4T] pl34l
extended visual metric: Proposition B.6.13] p52l

fized point (neutral/attracting/repelling): Definition [6.1.2] p[0F
fized point (parabolic): Definition 627 p[I00I

focal semigroup: Definition [6.2.13] pI0T]

free group: Remark [0.1.1] pI58

free product: Section [[0.1] pI57

free semigroup: Remark IOl pI58|

general type, semigroup of: Definition [6.2.13] p[I01]
generalized convergence type: Definition 2.3 p{I32]
generalized divergence type: Definition R.2.3] p[I32]
generalized polar coordinate functions: Definition [L.6.1] p[79
geodesic metric space: Remark 3.1.5] p24]

geodesic segment: Remark B.1.5] p24]

geodesic triangle: pl27, Definition E4.12] p[72]

geometric product: Example [4.5.10, p[249

geodesic path: Section [I4.2] p237]

geodesic ray/line: Definition [4.2] pl67]
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geometric realization: Definition B.1.1] p23]
geometric graph: Definition B.1.1] p23]
geometrically finite: Definition T2Z4.1] p[206]
Gromov boundary: Definition 3.4.2] p34]

Gromov hyperbolic: Definition 3.3.2] p30

Gromov’s inequality: (33.4), pB0

Gromov product: (3.3.2), pB0

Gromov sequence: Definition B.4.1] p34]

Gromov triple: Definition .T.1] p[E9l

global fized points: Notation [6.2.1] p0J

growth rate: (IT.2.2)), p[I84} Definition [[7.4.6] p[299
global Schottky product: Definition [[0.2.1] plI58]
group of isometries: plg

Haagerup property: 11111 plI70]

half-space: Remark 10.2.5 pI60Q

half-space model: §2.5.2 pI9

horoball: Definition TZT1] pI93l

horospherical convergence: Definition [[.T.3] pIT1]
horospherical limit set: Definition [.2.1] pI12]
hyperbolic: Definition 3.3.2] p30

hyperboloid model: §2.2 pHl

implied constant: Convention [l pkxixl

inward focal: Definition .2.15] pI02

irreducible action: Definition [(.G.1] pI22]
isomorphism (between pairs (X, bord X) and (Y, bordY)): plIdl
length spectrum: Remark [3.1.6] p225]

limit set (of a semigroup): Definition [[.2.1] p[I12]
limit set (of a partition structure): Definition @171 p[I37]
lineal semigroup: Definition [6.2.13] pI0T]

Lorentz boosts: (23.3)), p&

lower central series: §I1.2.1] p[I83

lower polynomial growth rate: Definition [7.4.6] p 299
lozodromic isometry: Definition [6.1.2] p03]
lozodromic semigroup: Definition [6.2.2] p09
Margulis’s lemma: Proposition TT.1.3] pI70l
metametric: Definition B.6.1] p48|

metric deriwative: pl6Q, pl6dl

moderately discrete (MD): Definition 5.2.1] p8T
modified Poincaré exponent: Definition 8 2.3] p[I32]
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natural action: (on a Cayley graph) Remark B1.3] p[24]
natural map (from a free product): Section [0.1] pI57]
p-net: Footnote Bl pI33]

neutral fized point: Definition [6.1.1], p93l

nilpotent: §I1.2.11 pI83

nilpotency class: §I1.2.11 pI83

nonelementary: Definition [[.3.2] pI14]

orbital counting function: Remark B.1.3 pI29
outward focal: Definition B.2.15] pI02

parabolic isometry: Definition B.1.2, p[05l

parabolic fized point: Definition B.2.7] pI00]
parabolic semigroup: Definition [6.2.2] p[09
parameterization (of a geodesic): Remark BI5] pl24]
partition structure: Definition @.1.4] p[137]

path: Section [14.2] p237]

path metric: Definition BTl p23] (I44.1), p241]
Poincaré exponent: Definition BTl pI29

Poincaré extension: Observation 2.5.6] p20]
Poincaré integral: (82.1]), pI31]

Poincaré regular/irregular: pI34

Poincaré set: Notation BT pI30

Poincaré series: Definition BT} p[I29]

polynomial growth rate: (I1.2.2)), p[I84} Definition [7.4.6] p[299]

pre-doubling (parabolic group): Definition [7.4.9] pB0T]
proper: Remark [[L1.3] p&xill

properly discontinuous (PrD): Definition E2Z.T1] p02]
pure Schottky product: Definition I4.5.7] p247
quasiconformal measure: Definition [5.1.1] p253]
quasiconvez core: Definition [[.5.7] pI27]
quasi-isometry/quasi-isometric: Definition B.:3.9] p[33]
radial convergence: Definition [[LT.2] p[IT0l

radial limit set: Definition [[.2.1] pIT2]

Radon: Remark [16.3.2] p2TI]

rank (of an abelian group): JIT.2.1] p[I83l

reducible action: Definition [[.6.1] p122]

reqularly geodesic: Definition EL4.5] pl67]

repelling fixed point: Definition [6.1.1] p[05]
Samuel-Smirnov compactification: Proposition [6.1.7] p 267
Schottky group: Definition [0.2.4] pI59
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Schottky position: Definition [0.2.1] p[I5g]

Schottky product: Definition [0.2.1] pI58

Schottky semigroup: Definition [0.2.4] pI59]

Schottky system: Definition [0.2.1] p[I5§]

p-separated set: Footnote [l pI37]

sesquilinear form: pl3

shadow: Definition 5.1 pl74]

stmilarity: Observation 2.5.6] p20]

simplicial tree: Definition B.1.7 pl25]

F-skew linear: 234), p[l

skew-symmetric: pBl

Standard Case: Convention 9 pl6Q]

standard parameterization: pllQ]

stapled union: Definition T4.4.7] p240]

strong operator topology (SOT): plR3

strongly discrete (SD): Definition B.2.1] pR7 Remark 820 pI33]
strongly (Gromov) hyperbolic: Definition B:3:6] pB32l

strongly separated Schottky group/product/system: Definition [T0.3.1] pI60l
substructure (of a partition structure): Definition Q.15 pI37]
s-thick: Definition [@.1.4] p[I37]

topological discreteness: Definition [5.2.6], p89

totally geodesic subset: Definition 2421 p[T4]

tree, simplicial: Definition B.1.7 pl25]

tree (on N): Definition @12 p[I36]

R-tree: Definition [3.1.10] p25]

Z-tree: Definition B.1.7] p23]

tree-geometric: Definition [4.5.2] p[245]

tree triangle: p27

Tychonoff topology: pR4l

uniform operator topology (UOT): pl83l

uniformly radial convergence: Definition [[.1.2] p{I10]
uniformly radial limit set: Definition [[.2.1] pI12

uniquely geodesic metric space: Remark B.1.5 p24]
unweighted simplicial tree: Definition B.1.7 pl25]

upper polynomial growth rate: Definition [[7.4.6] p 299
virtually nilpotent: §11.2.1] pI83

visual metric: plbll

weakly discrete (WD): Definition B.2.1] p87l

weakly separated Schottky group/product/system: Definition [0.31] p[I60l
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e weighted Cayley graph: Example B.1.2] p24]
e weighted undirected graph: Definition B.1T.1] p23]
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