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Abstract—Direct device-to-device (D2D) communication
presents as an effective technique to reduce the load at the base
station (BS) while ensuring reliable localized communication. In
this paper, we propose a large-scale M2M data Aggregation and
Trunking (MAT) scheme, whereby the user equipments (UEs)
aggregate M2M data from the nearby MTDs and trunk this
data along with their own data to the BS in the cellular uplink.
We develop a comprehensive stochastic geometry framework by
considering a Poisson hard sphere model for UE coverage. The
main motivation of this model is to capture the fact that a UE
can gather data from short range, low-power MTDs located only
in its close proximity while ensuring that an MTD is associated
to at most one UE. We explore the inherent trade-off between
the time reserved for aggregation and successful trunking of
data to the BS and compare our results with the baseline case
where no aggregation mechanism is used. We show that while
the baseline case of connecting a bulk of MTDs directly with
the BS is prohibitive, MAT scheme can efficiently gather data
from selected MTDs in a distributed manner.

I. INTRODUCTION

Machine-to-Machine (M2M) communication is the key en-

abler of the Internet of Things (IoTs) as sensing and actuating

devices are present virtually in every industry nowadays. To

fully realize the potential of IoTs, there is a need to develop

sophisticated techniques to inter-connect these short range

machine-type-devices (MTDs) with each other and the cloud to

analyze their data and extract meaningful information. Cellular

networks present as a suitable candidate to unify the data

generated from MTDs due to their extensive global cover-

age. However, the existing cellular infrastructure is optimized

for the Quality-of-Service (QoS) requirements of human-to-

human (H2H) communication, which is based on fewer and

longer sessions with the main focus on providing higher data

rates. Conversely, MTDs are low power devices sending small

amounts of data sporadically. Connecting a sheer bulk of

MTDs with the cellular network will cause congestion at the

core network. This poses a number of challenges on cellular

networks and necessitates efficient resource management and

clustering techniques with minimal signaling overhead [1].

A number of recent studies have proposed random access

for MTDs over random access channel (RACH) in the cel-
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lular long-term evolution (LTE) [2], [3]. These techniques

however, are not scalable for ultra dense scenarios due to

increased collisions on RACH. Techniques like aggregation

and clustering of MTDs have also proved to significantly

mitigate the congestion problems [4]. Only recently, Device-

to-Device (D2D) communication was identified as a fitting

solution to aggregate M2M data and reduce the burden on

the base stations (BSs) of scheduling and signaling [5]. D2D

communication proximity service (ProSe) is an integral part of

4G and 5G networks as it enables low power devices in close

proximity to communicate with each other [6]. Thus, cellular

UEs can serve as ideal candidates for D2D enabled aggregators

due to their abundance and high computation capabilities.

A single cell, single UE framework for the aggregation and

trunking of M2M traffic via D2D links with the UEs is

provided in [7]. However, the analysis is only limited to a

single cell and is not scalable as it does not take into account

the physical locations of the MTDs and the UEs and more

importantly, it does not consider the impact of interference

from MTDs and UEs transmitting in other cells in aggregation

and trunking phases respectively. Motivated by the above

literature, we develop a large scale analytical framework for

the aggregation of M2M data with the help of user equipments

(UEs). The UEs collect M2M data by establishing D2D links

with the nearby MTDs and pass this information to the base

station (BS) with their own data.

The contributions of this paper are highlighted as follows.

We propose a M2M data Aggregation and Trunking (MAT)

scheme, where the UEs collect data from the MTDs and

forward it along with their own data in cellular uplink (UL) ra-

dio resources. The Voronoi tessellation assumption commonly

used for BS coverage regions in cellular networks [8] is not

suitable for UE coverage modeling due to lower sensitivity

of UE receivers and low MTD transmit power. A number of

works on wireless networks assume some kind of interaction

between the devices to model them as clustered point process.

Popular choices for clustered processes include Matern cluster

process [9] and Thomas process [10]. The deployment of

dense, large-scale MTD networks, however, is not necessarily

dependent on the presence of UEs. Therefore, we develop a

clustering technique using Poisson hard sphere (PHS) model

to represent the coverage regions of the UEs after the MTDs

have been homogeneously deployed in a given area. For the

aggregation phase, we consider that the MTD transmissions



are coordinated by the UEs. The coordinated MTD transmis-

sions do not interfere with each other, but cause extensive

signaling and control overhead at the BS. For the trunking

phase, we assume that the UEs employ constrained UL channel

inversion power control. We obtain tight approximations of the

rate coverage for both the aggregation and trunking phases. We

explore the inherent trade-off between the time reserved for

aggregation by the UEs and the successful data delivery in both

the aggregation (MTD-UE) and trunking phases (UE-BS). In

fact, larger aggregation periods results in better aggregation

opportunities from multiple MTDs but at the cost of trunking

performance degradation.

II. THE MAT SCHEME

We propose a novel M2M data Aggregation and Trunking

(MAT) scheme, where the UEs relay the M2M data to the

BS along with their own data. We consider that the BSs, UEs

and the MTDs are distributed independently in R
2 according

to homogeneous Poisson point processes (HPPPs) Φb, Φu,

and Φm with intensities λb, λu and λm respectively. In our

proposed scheme we focus in the cellular UL. The UEs

associate to the nearest BS, which implies that the macrocells

form a Voronoi tessellation in R
2. The transmissions from both

the MTDs and UEs suffer form channel impairments including

small scale Rayleigh fading and path loss. As a consequence,

the channel power gain h ∼ exp (1) is a unit mean exponential

random variable. Throughout this paper, we assume a simple

power law path loss function r−α for a distance separation r
where α is the path loss exponent. We consider the same value

of α to account for MTD-UE and UE-BS links, however, the

presented framework can be easily extended to account for

various propagation environments. The key stages involved in

our proposed MAT scheme are presented as follows.

A. Clustering MTDs using Poisson Hard Sphere (PHS) Model

The first step is to determine how a UE collects data from

its nearby MTDs and how we can ensure that each MTD is

associated to at most one UE. According to the PHS model

in 2-d, the interiors of the disks centered at the points of

the parent process do not overlap almost surely (a.s.). The

nearest neighbor model (NNM) proposed by Stienen in [11] is

a type of PHS extensively used in disk packing and percolation

problems. In case of NNM, the diameter of the disk centered

at a given particle is the distance to it’s nearest neighbor of

the same process. To understand this better in the context of

wireless networks, consider a UE zj , where zj ∈ Φu. The

radius of the Stienen disk of zj is then given as

X = min
zl

η‖zj − zl‖, zl, zj ∈ Φu, l 6= j, (1)

where the Stienen cell (S-cell) Bzj =
{

y ∈ b(zj , X), y ∈ R
2
}

is a disk of radius X and η = 1/2 for the NNM. We extend

this model to a more general case where the scalar η may

take any value from the range 0 < η ≤ 1/2. This gives us

control on accurately modeling the coverage regions of UEs

especially when the UEs are sparsely populated. Notice that

for any value of η, the UE S-cells form disjoint sets such that

Aggregation TrunkingɒT 

T 

(1-ɒ)T 

Figure 1. Division of the uplink time slot

Bzl ∩Bzj = ∅, ∀zj 6= zl. This implies that the MTDs inside a

UE’s S-cell are only associated to it.

The distribution fX(x) of the radius of the S-cell can be

quantified using the concept of void probability of Poisson

processes. The probability that the radius X exceeds a certain

threshold x is the probability that there is no UE at a

distance η−1x from the given UE. It can be expressed as

P [X ≥ x] = exp
(

−λuπη
−2x2

)

. The resulting process of

MTDs inside the S-cells constitute a modified Matern cluster

process [9], where the radius of the disks is random and

is distributed according to fX(x). Using the S-cell radius

distribution of the radius of the S-cell, the probability mass

function of the number of MTDs inside an arbitrary S-cell can

be easilty derived using the fact that the MTDs are Poisson

distributed in a S-cell with mean measure λmπx2. It is given as

[12] P [Nm = n] = µ (1 + µ)
−n−1

, where µ = λuη
−2/λm.

B. Communication Framework

We consider that the UL time slot is further divided into two

slots as shown in Fig. 1. In the first slot, the UEs establish D2D

links with the nearby MTDs to aggregate the M2M data. In

the second slot, regular UL transmission takes place whereby

UEs employ power control to transmit their own data as well

as the collected M2M data to the BS. We now describe the

transmission schemes for aggregation and trunking phases.

1) Aggregation: We consider that the MTDs transmit at a

fixed power Pm and MTD transmissions are multiplexed (MX)

in frequency or time. The MTDs employ frequency division

multiple access (FDMA) or time division multiple access

(TDMA). Both TDMA and FDMA result in the same average

data rate so we do not make further distinction between the

two in the rest of the paper. To account for the extra signaling

for multiplexed transmission, we consider that the available

aggregation time Teff = τT − kTsig is effectively smaller by

kTsig , where Tsig is the time spent by the MTDs in contending

for a transmit opportunity and channel reservation by the UE.

2) Trunking: In this phase, the UEs transmit their own

data along with the collected M2M to the BS. We consider

that the cellular bandwidth Wu is equally divided among the

UEs inside a macrocell and there in no intra-cell interference.

For energy efficient operation, the UEs employ UL channel

channel inversion power control. The transmit power under

the truncated UL channel inversion power control is written

as

Pu = min
(

Pmax
u , ρ0l(y)

−1
)

. (2)

Notice that that the transmit power is constrained by the

upper limit Pmax
u , which is the maximum transmit power

of a UE and l(y) = y−α is the path loss when the UE

and the BS are separated by a distance y. The distribution



of the distance between an arbitrary UE and its associated

BS follows a well known Rayleigh distribution and is given

as [8] fY (y) = 2πλbyexp
(

−λbπy
2
)

. The term ρ0 is the

normalizing factor depending on the receiver sensitivity of the

BS. We can see from (2) that the UEs only at a certain distance

Rmax =
[

Pmax
u

ρ0

]1/α

can successfully invert the path loss. The

UEs outside a disk of radius Rmax will transmit at maximum

power. Unlike the truncated channel inversion power control

presented in [13], where the UEs farther from Rmax are forced

to go into outage, we present a more realistic power control

scheme as the disadvantaged UEs still get a chance to transmit.

C. Probability of Successful Aggregation and Trunking (PSAT)

For cellular downlink scenarios, network operators are inter-

ested in load balancing and maximizing the rate experienced

by a UE and the overall area spectral efficiency of the

network [14]. On the contrary, the performance metrics are

quite different for cellular UL and M2M applications, where

ensuring reliability and enhancing connectivity is the primary

focus. Based on this criteria, we define a key performance

determining metric for the analysis of the aggregation and

trunking communication framework described above.

Definition 1. PSAT: The probability that a UE is able to

successfully aggregate M2M data from k MTDs in time τT
and can trunk it along with its own data in time (1− τ)T , can

be expressed as the product of rate coverage in aggregation and

trunking phases. It is given as PMX
k = RMX

a × Rt, where,

RMX
a is the rate coverage in aggregation phase and Rt is the

rate coverage in trunking phase. The description and derivation

of the rate coverage for each phase is given in the following

subsections.

1) Aggregation Phase: In this phase, the MTDs within the

UEs S-cell transmit to it. Assuming that the MTDs transmit a

fixed payload of size Dm bits using the available bandwidth

Wm in time τT , aggregation is successful only when the

the M2M data from k MTDs is successfully decoded. We

consider Shannon’s capacity formulation to characterize the

rate coverage for various transmission schemes. The rate

coverage for multiplexed transmission can be represented as

RMX
a =

(

P

[

Wm

k
log2(1 + SIRMX

a ) ≥
Dm

Teff

])k

=
(

P
[

SIRMX
a ≥ θMX

a

])k
, (3)

where θMX
a = 2

kDm
WmTeff − 1 and Teff = τT − kTsig is

the effective time available for MTD transmission after the

signaling and channel reservation for k MTDs. The SIR of the

received signal at the UE is given as SIRMX
a = hR−α

arb/Im,
where Im =

∑

wj∈Φint
m

hj ||ωj ||
−α is the aggregate interfer-

ence power experienced by the UE from MTDs in the other

S-cells and Rarb is the distance between an arbitrary MTD

and its closest UE, given that the MTD is located inside the

UE’s S-cell. The distribution of this distance is given by the

following Lemma.

Lemma 1. If an arbitrarily selected MTD is present inside

the coverage region of a UE, the distribution of the distance

between the UE and the MTD is given as

fRarb
(r) = 2πrλarb exp

(

−πr2λarb

)

, (4)

where λarb = λu

(

1 + η−2
)

.

Proof: The unconstrained distribution of the distance

between an arbitrary MTD and the nearest UE is Rayleigh dis-

tributed and is given as fRuncon
(r) = 2πr λuexp

(

−λuπr
2
)

.
However, in this case, the MTD must also lie in the S-cell of

the nearest UE. We need to find P [Runcon = r|X ≥ Runcon],
which is the PDF of distance with the condition that the S-cell

encapsulates the arbitrary MTD. Therefore, we have

fRarb
(r) =

P [X ≥ r]P [Runcon = r]

P [X ≥ Runcon]
, (5)

where P [X ≥ r] = exp
(

λuπr
2η−2

)

and P [X ≥ Runcon] =
´

∞

0
(1− FX(t)) fRuncon

(t) dt =
(

1 + η−2
)−1

. Substituting

these expressions in (5) gives (4).

Lemma 1 reveals that the distribution with S-cell restrictions

differ with the unconstrained case HPPP case in density

only. As λarb ≥ λu, the average distance between UE and

an arbitrary MTD is smaller. This implies that the current

network with S-cell boundary restrictions can be translated

into a denser unconstrained HPPP network. The following

proposition gives the coverage probability for the aggregation

phase with MX transmission.

Proposition 1. For a given SIR threshold θ, the probability

that the UE successfully decodes the data from an arbitrary

MTD within its S-cell is given as

SMX
a (θ) ≈

∞̂

0

exp

(

−2πλint
m EQ [C (α, sa, q)]

)

fRarb
(r)dr,

(6)

where Q is distributed according to fQ(q) =
2πλint

m q exp
(

−λint
m πq2

)

, λint
m = λu(1 + µ)−1 and

C(α, β, d) = βd(2−α)

(α−2) F
(

α, dα

β

)

where F
(

α, dα

β

)

=

F2 1

(

1, 1− 2
α ; 2−

2
α ;−βd−α

)

and F2 1 (., .; .; .) is the

generalized hypergeometric function.

Proof: Please refer to Appendix A.

2) Trunking Phase: In this phase, the UEs transmit the

data collected from k MTDs along with their own data to

the BS. Assuming the UEs require a fixed data rate Ru =
Du/T , the rate coverage in trunking phase can be written

as ENu
[P [SIRt ≥ θt]] , where θt = 2

n(Du+kDm)
Wu(1−τ)T − 1 and

Nu is the number of UEs inside a macrocell to which the

arbitrarily chosen UE belongs (Ref (3) in [15]). To simplify

things, we adopt the mean-load approximation as in [14].

The average number of UEs inside a macrocell is given by

Navg
u = 1+1.28λu/λb. Therefore, the rate coverage simplifies

to

Rt = P

[

Wu

Navg
u

log2(1 + SIRt) ≥
Du + kDm

(1− τ)T

]

, (7)



Parameter Value

Densities of BS λm, UE λu, and MTD, λm,
Ratio of densities λm/λu

[2, 20, 200]/π5002, 1

Max. transmit power of MTD Pm, UE
Pmax
u and BS receiver sensitivity ρ0

[−18, 23,−80] dBm

PHS coefficient η, Path loss exponent α, UL
slot fraction τ

1/2, 4, 0.2

MTD and UE bandwidth Wm,Wu 180 kHz, 10 MHz

M2M Payload Dm, Desired UE data rate for
its own data Ru

100 bits, 10 Kbps

UL slot time period T , Signaling time per
MTD Tsig

1 ms, 0.1 ms

Table I
LIST OF SIMULATION PARAMETERS

and θt = 2
N

avg
u (Du+kDm)
Wu(1−τ)T − 1. We will make use of this

approximation throughout the course of this paper. The SIR

at the BS in trunking phase can be represented as SIRt =
PuhY −α

Iu
,where Pu is the variable transmit power given in (2)

depending on the distance Y between the UE and the BS it

is associated with and Iu =
∑

zj∈Φint
u

Pu,jhj ||zj ||
−α, where

||zj || is the distance of the interfering UE zj from the typical

BS and Φint
u comprises of the interfering UEs from other cells

as we assume that there is no intra-cell interference. In the

following Lemma, we obtain the average power transmitted

by a UE which will help characterize the coverage in trunking

phase.

Lemma 2. Under constrained UL channel inversion power

control, the average power transmitted by a UE is given as

P avg
u =

ρ0Γ (δ)

(λbπ)
α/2

γ
(

λbπR
2
max, δ

)

+Pmax
u exp

(

−λbπR
2
max

)

,

(8)

where δ = 1 + α/2, Rmax =
[

Pmax
u

ρ0

]1/α

and γ (b, a) =

1/Γ(a)
´ b

0
ta−1exp(−t) dt is the normalized lower incomplete

gamma function.

Proof: The average transmit power is calculated by taking

expectation of (2) with respect to Y.
The coverage probability for a generic UL with constrained

channel inversion power control is given by the following

proposition.

Proposition 2. When a generic user transmits to the nearest

BS by employing constrained channel inversion power control,

the probability that the BS can successfully decode this signal

can be expressed as

St(θ) =

Rmax
ˆ

0

exp

(

−2πλbEPu
[C (α, s1Pu, y)]

)

fY (y)dy +

∞̂

Rmax

exp

(

−2πλbEPu
[C (α, s2Pu, y)]

)

fY (y)dy(9)

where s1 = θ/ρ0, for 0 ≤ y ≤ Rmax and s2 = θyα/Pmax
u

for y > Rmax.

Proof: The sketch of the proof is as follows. The condi-

tional coverage probability of the UE can be expressed as

St(θ)|y =







P

[

ρ0h
Iu

≥ θ
]

= LIu (s1) 0 ≤ y ≤ Rmax,

P

[

Pmax
u h y−α

Iu
≥ θ

]

= LIu (s2) y > Rmax,

Here, LIu(.) is the Laplace transform of the interference expe-

rienced by the BS from the active UEs in other macrocells. We

assume the interfering UEs comprise a HPPP 1 Φint
u with the

intensity equal to the BS intensity
(

λint
u = λb

)

. After using

similar mathematical manipulations as the proof of Prop. 2,

we obtain (9).

Corollary 1. The UL coverage probability can be simplified

as

St(θ) ≈

Rmax
ˆ

0

exp

(

−2πλbC (α, s1P
avg
u , y)

)

fY (y)dy +

∞̂

Rmax

exp

(

−2πλbC (α, s2P
avg
u , y)

)

fY (y)dy(10)

Proof: The function inside the integral in

C (α, s1Pu, y) =
´

∞

y
ν

1+(stPu)
−1να dν is strictly concave

in Pu. We employ Jensen’s inequality in (9) to shift the

expectation with respect to Pu inside to obtain a lower bound

for coverage.

III. RESULTS AND DISCUSSION

In this section, we verify our analysis using Monte-Carlo

simulations and provide some useful design insights for the

aggregation and trunking framework. To compute the distri-

bution of distance and coverage, we conduct 104 iterations.

In each iteration, the BSs, UEs and MTDs are distributed

independently according to HPPPs with densities λb, λu and

λm respectively in a circular area of radius 1.5 km. The list of

simulation parameters and their description is given in table

I unless stated otherwise. We begin with the verification of

Lemma 1. For the distance between the UE and an arbitrarily

distributed MTD, we generate the S-cells and fix the location

of the MTD at the origin. The distance between the UE and

MTD is recorded if the MTD lies inside the nearest UE’s

S-cell. The iterations where the MTD lies outside the S-

cell are ignored. For clear comparison with the unconstrained

HPPP case, we obtain the cumulative distribution function

(CDF) of the distance Rarb, which is given as FRarb
(r) =

1− exp
(

−λarbπr
2
)

, where Γ (a, b) =
´

∞

b
ta−1exp(−t) dt is

the upper incomplete gamma function. As shown in Fig. 2,

the simulation accurately matches our analytical results for

various values of η and i. As η decreases, the size of S-cell

also decreases and therefore, the distance between the UE and

MTDs inside the cell also decreases. As expected, the distance

between the UE and an arbitrary MTD within its S-cell is

statistically smaller compared to the unconstrained case.

1Even though the HPPP assumption does not encapsulate the correlations
in the UE locations, it is shown to be quite accurate in [13]
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Moving on, we validate the expressions for SIR coverage

probability for the aggregation and trunking phases derived in

Propositions 1, and 2 in Fig. 3. The plots demonstrate a strong

agreement between the simulations and the derived analytical

results. Fig. 3 further shows that the coverage probability in

aggregation phase SMX
a decreases when λm/λu increases.

The drop in SMX
a is attributed to the increase in the interferer

intensity λint
m = λu(1 + µ)−1 as λm/λu → ∞, λint

m = λu.
This implies that each S-cell has at least one MTD transmitting

to its UE. On the contrary, the trunking coverage St does not

depend on λu or λm as evident from (9) and (10). In case of

trunking, Fig. 3 reveals that the equi-dense HPPP assumption

in (10) for the interfering UEs is quite accurate. The simplified

lower bound derived in Corollary 1 is also in good agreement

with the analysis and simulations. Notice that the coverage for

the aggregation phase is better compared to the trunking phase.

This is because the smaller path loss between the UE-MTD

link improves the received signal strength at the aggregation

stage.

After validation of the preliminary results using network

simulations, we investigate the factors affecting PSAT and the

scenarios where aggregation and trunking is feasible. Fig. 4

explores the effect of k and τ (the fraction of UL time slot

reserved for aggregation) on the rate coverage. The results are

intuitive as the increase in k causes both Rt and RMX
a to
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Figure 4. Rate Coverage in aggregation and trunking phases.

degrade. However, for a given k, an interesting trade off in τ
is revealed. As we increase τ , the trunking rate coverage Rt

drops, while the aggregation rate coverage RMX
a increases.

This is because a higher τ corresponds to a better aggregation

opportunity for k MTDs as θMX
a decreases whereas, it results

in a degraded trunking performance as θt increases because

lesser time is available for trunking UE and M2M data from

k MTDs (Du + kDm). Hence, there must exist an optimal

τ = τ∗MX which maximizes PMX
k . Another important factor to

take into consideration while deciding the transmission scheme

in aggregation phase is the signaling overhead in MX case.

Even though MX transmission is generally more robust, we see

that even slightly increasing Tsig results in complete outage

for small values of τ. This is because there is no time left for

data transfer as τT ≤ kTsig .

In Fig. 5, we study the variation in PMX
k with respect

to τ and k. As expected, the maximum achievable PSAT

decreases with the increase in k as both Rt and RMX
a

decrease. The increase in k also causes τ∗MX to increase and

the optimal point shifts further right. This implies that the

degradation in RMX
a is higher than in Rt. We also compare

PMX
a with the baseline case, where the MTDs transmit to the

BS directly with power Pm without hierarchical aggregation.

For fairness in comparison, we consider that the BS has to

decode the data from kNavg
u MTDs, which is the average

number of of active MTDs inside the cell under the MAT

scheme. Because of the centralized control, only one MTD

transmits to the BS at a given snapshot of the network.

Therefore, the rate coverage probability for the baseline case is

given by PBase = EY

[

exp

(

−2πλbC
(

α, θMX
a,B yα, y

)

]kNavg
u

[8], where θMX
a,B = 2

k N
avg
u Dm

WmT − 1. We observe that when

k = 1, and the average number of MTDs inside the cell is

small, no hierarchical aggregation is required. However, as k
increases, our proposed MAT scheme provides exceedingly

good performance compared to the baseline. This is because,

coordinating access for a high number of MTDs at the BS

will cause congestion at the BS and result in performance
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degradation. For k = 3, the probability of successful data

delivery is about 55% better than what can be achieved with

the baseline case.

IV. CONCLUSION

In this paper, we propose the MAT scheme for aggregation

and trunking of M2M data with the help of D2D links in the

cellular uplink. A PHS model is formulated to characterize

the coverage regions of UEs performing D2D communications

with its MTDs. The performance evaluation also accounts for

the scheduling and signaling overhead for coordinating MTD

transmission at the UEs. For the proposed MAT scheme, the

fraction of time slot reserved for data aggregation by the UEs

plays a crucial role in determining the probability of successful

data delivery at the BS. Simulation results show the efficiency

of the proposed MAT scheme with huge performance gains

compared to the baseline case, where the MTD transmit

directly to the BS.

APPENDIX A

PROOF OF PROPOSITION 1

The coverage probability for MX transmission of MTDs

can be characterized as SMX
a (θ) = ERarb

[

h r−α

Im
≥ θ

]

. Since

the channel power h is exponentially distributed, SMX
a (θ) =

ERarb
[LIm (sa)], where sa = θrα and LIm(.) is the Laplace

transform of Im, which is the interference experienced by

the UE from the MTDs outside its S-cell . For analytical

tractability, we assume that the set of active MTDs in MX

case constitute a HPPP Φint
m with density λint

m . At a given

time, as only one MTD inside a S-cell (if there is any)

will be transmitting, the effective density of Φint
m will be

λint
m = λu × P [Nm ≥ 1] = λu(1 + µ)−1. Hence, we have

LIm(sa) = E

[

∏

uj∈Φint
m

exp

(

−sahj ||uj ||
−α

)]

(b)
= EQ



exp



−2πλint
m

∞̂

q

ν

1 + s−1
a να

dν







 ,

where (b) follows from the PGFL of PPPs and taking the

expectation with respect to h as the channel power gain is

independent of Φint
m . The lower limit of integral q represents

the minimum distance separation between the UE and the

interfering MTD. Because of the HPPP assumption, this

distance is the distance to the nearest UE having at least

one MTD in its S-cell. It is Rayleigh distributed according to

fQ(q) = 2πλint
m q exp

(

−λint
m πq2

)

. For further simplification,

we exploit the convexity of the exponential function and apply

Jensen’s inequality to shift the expectation operator inside the

exponential function to obtain (6).
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