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Abstract 

Recent developments of synchrotron X-ray sources and dedicated high-energy 
beamlines are now enabling strain measurements from large volumes of industrially 
relevant metallic materials.  Such capability is allowing the validation of novel and 
alternative non-destructive experimental methods of strain measurement or 
computational models of complex deformation processes.  This study describes the 
first dynamic contact strain measurement of a ball bearing using stroboscopic Energy 
Dispersive X-ray Diffraction (EDXD).  The experiment probed the dynamic contact 
strain in the outer raceway of a test bearing.  The inner raceway of the bearing was 
attached to a shaft rotating at 150 revolutions per minute and the outer raceway, 
where the measurements were made, was fixed in a stationary bearing housing.  A 
triggering system was used to synchronise the data acquisition of the EDXD detector 
with the bearing rotation.  Specifically, diffraction data was acquired, 
stroboscopically, from the material volume within the raceway, in a known location, 
when the ball was positioned directly below it.  A total of 20 seconds of accumulated 
diffraction signal was recorded, acquiring 2 milliseconds of data per revolution, 
providing diffraction patterns of sufficient quality for the dynamic contact strain to be 
measured.  Macromechanical stress field was calculated from the micromechanical 
strains measured from five lattice planes.  This allowed a comparison of the 
experimentally measured stress field and that of finite element (FE) simulations.  
Good agreement was observed between the FE results and experimental 
measurements indicating the applicability of this novel dynamic strain measurement 
technique for tribological systems. 
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1 Introduction  

1.1 Background  

Knowledge of the remaining life of gearbox bearings allows an operator to suitably 
schedule maintenance of machinery.  It is therefore desirable to equip bearings with 
quantitative health monitoring systems.  Bearings typically fail by rolling contact 
fatigue, with factors such as overload in the form of plastic deformation, impact 
damage, or buckling acting as accelerants.  Since direct measurements of torque on 
the rotor shafts cannot reliably be used to determine the load history in the bearings, it 
is difficult to determine whether events such as overload, which govern the residual 
life of the rolling bearing [1], have occurred.  This is further complicated by the 
applied load not being uniformly distributed on each of the rolling elements [2].  The 
load applied to the whole bearing, therefore, does not represent the stress state on the 
individual rolling elements or raceways.  Advanced techniques such as acousto-elastic 
measurements have been developed in recent years that aim to determine the contact 
stress in tribological machine elements [3, 4].  However, it is difficult to validate such 
complex measurement techniques because, to date, there have not been alternative 
independent methods of dynamic in-situ measurement.  Finite element simulations 
may be used to validate the techniques [5], although, such models themselves need 
validation by independent experimental techniques.  X-ray and neutron diffraction 
techniques are now being used as routine techniques to map static micromechanical 
strains by measuring the change in the lattice spacing of crystalline materials (e.g. see 
[6]) which can be employed to validate the acousto-elastic measurements.  
Application of such techniques for dynamic measurements, however, have been rare.  
Dynamic strain measurement by a diffraction method was the objective of this study. 

To select an appropriate diffraction technique, a brief comparison of the advantages 
and drawbacks of each technique is given here.  Neutron diffraction offers higher 
penetration depth than X-ray diffraction.  For example, the Engin-X beamline at the 
ISIS neutron source, UK, can measure the strain in ferritic steels with a 50 µε 
resolution and a 2×2×2 mm3 gauge volume at a depth of 20mm in 3-5 minutes [7].  
Such measurements are suitable for engineering components but their inherently slow 
acquisition time makes dynamic strain measurements difficult [8–10].  
Comparatively, a synchrotron high energy monochromatic X-ray powder diffraction 
technique allows measurements with high spatial resolution and low acquisition 
times.  Collection times are typically seconds or less for thin sheets of steel (of the 
order of a couple of millimetres), making dynamic experiments feasible.  However, 
the penetration depth is limited and only small volumes of materials can be 
interrogated; for example, a ferritic steel measured by a monochromatic beam at 
approximately 90keV on the Joint Engineering, Environmental and Processing (JEEP) 
beamline at Diamond Light Source, UK, with 0.5×0.5×0.4 mm3 gauge in 4 seconds 
has an accuracy of ~150 µε [11].  High-energy synchrotron X-ray white beam 
scattering (alternatively known as Energy Dispersive X-ray Diffraction – EDXD), is a 
comparatively fast technique with high penetration depth.  The latter benefit arises 
from the use of the full wavelength spectrum of photons produced by synchrotron 
radiation, rather than the more commonly used monochromatic powder diffraction 
method that only uses a very narrow band of photon wavelengths.  For example, we 
will have shown in the present study that the average strain in a gauge volume of 
0.25×0.25×6.7 mm3 can be measured in 120 seconds with a 60 µε accuracy using a 
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white (i.e. 53 - 150 keV photons) beam.  Detailed description of the EDXD technique 
has been published elsewhere [12]. 

Although stroboscopic measurement is a routine method (e.g. see a review of 
stroboscopic laser interferometric measurements in reference [13]), there is a very 
limited body of work on stroboscopic strain measurement with diffraction methods.  
Of note are the work by Podolsky et al. [14] who used stroboscopic small angle X-ray 
scattering to measure the force applied by a sartorius muscle of a frog.  Wulff and co-
workers [15] touched on the feasibility of stroboscopic Laue diffraction in a review of 
ESRF’s (European Synchrotron Radiation Facility) ID09 beam-line capabilities.  
Harrison et al [16] used a stroboscope laboratory diffraction technique to characterise 
the motion of ferroelectric domain walls.  Daymond and Withers used stroboscopic 
neutron diffraction technique to measure micromechanical strain induced within an 
Aluminium-SiC metal matrix composite under cyclic loading [8].  Recently, Baimpas 
et al. [17] measured strain in a connecting rod in a running motorcycle engine by 
stroboscopic EDXD at JEEP.  The same technique was used in the present study to 
measure contact strain in the fixed raceway of a rotating ball bearing. High energy 
synchrotron radiation has also been used to quantify other dynamic effects.  For 
example Brömmelhoff and co-workers used X-ray diffraction to investigate the phase 
transformation in chips formed during in-situ cutting at PETRA III in DESY [18]. 

1.2 Aims and structure 

Our main aims in this study were to (a) measure the static strain that a ball exerts on 
the outer raceway of a test ball bearing when it is stationary (b) measure the dynamic 
strain that the ball exerts on the outer raceway of the test bearing while the bearing 
was rotating at 150 revolutions per minute.  The outer raceway was fixed in the 
bearing housing and the inner raceway was attached to a rotating shaft (c) convert the 
static and dynamic micromechanical strains measured by EDXD to macromechanical 
stress and compare them with those estimated by finite element simulations.  In the 
subsequent sections, details of the experiments and simulations are given, followed by 
the results obtained and finally the discussion is presented.   

2 Methods 

2.1 Mechanical setup 

A bearing test rig was used in this study to apply loads on the test bearing while it was 
stationary or rotating.  The bearing test rig consists of an electric motor, rotation of 
which is transferred to a shaft via a belt and pulley system.  The shaft is supported by 
two self-aligning bearings 50 mm apart with the test bearing fixed in the centre within 
a bearing housing. Figure 1a shows a schematic cross-section of the test bearing 
within the bearing housing.  The bearing test rig was modified to allow for the X-ray 
incident and diffracted beams to pass through.  An ultra-slim ball bearing (REALI-
SLIM, KD047CP0) with an approximately 13 mm raceway width (inner raceway 
diameter of 65.024 mm and outer raceway diameter of 73.025 mm) and 33 balls was 
selected.  The relatively thin width of this bearing allows for approximately 10% 
transmission of the incident polychromatic x-ray beam.  This was deemed to be 
sufficient for suitable counting statistics and data acquisition time.  The bearing test 
rig is equipped with a lever attached to the bearing housing that encompasses the test 
bearing.  The bearing housing is supported by a pivot, shown schematically in Figure 
1a.  The lever carries a deadweight which exerts a load onto the test bearing through 
the bearing housing.  This was deemed more suitable than the more commonly used 
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hydraulic system as the bearing test rig was not equipped with a load cell nor a 
feedback loop to maintain constant oil pressure during the experiment.  Preliminary 
tests showed that the hydraulic system gradually lost pressure and the applied load in 
long duration experiments (e.g. during an estimated 8 hours X-ray acquisition time) 
would gradually diminish, which was deemed unacceptable.  Considering the low 
capacity of the selected test bearing, the deadweight provided enough load to induce a 
reasonable load (33% of the test bearing's maximum dynamic limit load).  

2.2 Stroboscopic triggering system 

The aim of the dynamic (stroboscopic) part of the experiment was to measure the 
contact strain exerted on the fixed outer raceway of the test bearing by a ball as it 
passed over the width of the gauge volume.  Therefore, in stroboscopic mode, the X-
ray data acquisition had to be gated on the EDXD detector, so that the data are only 
collected in a time interval determined by a trigger signal from the experimental 
equipment.  It was assumed that every time the ball comes into contact with the 
raceway, the same strain field is developed in the raceway for 2 milliseconds 
calculated from the time required for the ball to travel the width of the gauge volume 
at 150 rpm.  Therefore, X-ray diffraction data was recorded at every revolution, only 
when the ball was passing along the width of the gauge volume.  The data acquired 
during each pass was summed, cumulatively, to produce the X-ray diffraction pattern.  

To enable the synchronisation of the rotating shaft attached to the test bearing and the 
EDXD detector gate, a Hall sensor on the bearing rig was used to generate the gating 
signal.  A transistor was attached to the fixed outer raceway of the test bearing and a 
magnet was fixed to the bearing cage.  Every time the transistor passed over the 
magnet a signal was generated which was passed through an oscilloscope to be 
conditioned.  The conditioned triggering signal was used as an input into a National 
Instrument function generator which provided a square pulse triggering Transistor-
Transistor Logic (TTL) signal indicating that the ball is in position; the TTL signal 
was fed into the ZEBRA signal processing equipment (developed by Diamond Light 
Source [19]) at 10kHz; ZEBRA operated the gate on the EDXD detector.  To finely 
tune the ZEBRA signal, high-speed radiography was used which is described in the 
next section.  The gate pulse phase lag and width was determined to be 23 
milliseconds and 2 milliseconds respectively when the shaft was rotating at 150 rpm.  
This means that X-ray signal accumulation only over 2 milliseconds, which 
corresponded to the period during which the ball was in position, took place at every 
revolution.  

2.3 High-speed radiography 

Before carrying out the EDXD dynamic experiment, high-speed radiography was 
performed while the test bearing was running at 150 rpm.  This was to confirm the 
triggering system provided the correct signal for the EDXD detector gate, only when 
the ball was in position.  A scintillator was positioned behind the outer raceway of the 
test bearing, in the area that was to be examined by EDXD, to convert the X-rays 
transmitted through the bearing to visible light [20].  The scintillator was imaged via a 
mirror and a lens using a Vision Research Miro 310M CMOS camera with a 
resolution of 1280 × 800 pixels at 3200 frames per second.  The trigger from the Hall 
Sensor on the bearing was used as an event marker in the high-speed X-ray video 
radiography recorded by the camera.  The high-speed video was used to see where the 
ball position was when the trigger signal was received.  Knowing the precise inter-
frame time from the camera, the phase lag required for the EDXD gating signal was 
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calculated.  The lag was programmed into the beamline's ZEBRA system, and finally 
another video was recorded to confirm that the ball was in the correct position when 
the trigger signal was received.  A video was also recorded at the end of the 
experiment which confirmed consistency throughout the experiment.  A high speed 
X-ray video is included in the supplementary electronic material to this paper.  An 
example of single frame radiograph is shown in Figure 1b . 

2.4 Strain measurement 

2.4.1 X-ray diffraction 

Measurements using X-ray diffraction are based on the Bragg's law [21]: 

2𝑑#$%𝑠𝑖𝑛𝜃 = 𝑛𝜆 Eq.  2.1 

where 𝑑#$% is the characteristic distance between crystallographic planes (i.e. lattice 
spacing), specific to the hkl Miller indices, θ is the X-ray beam incidence angle, n is 
the order of reflection and 𝝀 is the X-ray wavelength.   

Monochromatic powder diffraction, a well-established and documented method, 
measures the distance between the lattice planes (i.e. 𝑑#$%) by shining an incident 
beam of photons with a known wavelength onto a polycrystalline material. The 
present study is based on a less frequently used Energy Dispersive X-Ray Diffraction 
method.  In EDXD the X-ray beam does not have a single value wavelength.  To 
deduce the lattice spacing in this case, θ is fixed whilst 𝜆	varies.  Thus, only diffracted 
beam at a specific angle is recorded by the EDXD detector; fixed at 2θ =5º at the 
JEEP beamline [22].  This is achieved with a sample slit fixed between the sample 
and the EDXD detector.  The rationale for choosing the diffraction angle 2θ =5º has 
been given elsewhere [23].  The energy range at JEEP is 50 keV to 150 keV [22].  

The JEEP beamline uses a Canberra custom made EDXD detector which is cooled 
cryogenically.  It is a high-purity germanium (Ge) detector with 23 detector elements 
(0 to 22) arranged in a semi-circular array with 8.18o angular spacing.  The angular 
positions of the detector elements correspond to a rotation about the incident beam 
direction, denoted the azimuthal angle, 𝜑 (see Figure 1d).  The diffraction signal from 
the sample is therefore collected as a function of azimuthal angle.  Detector element 
number 0 corresponds to an azimuthal angle at mean angle of 𝜑 = 0 º, detector 
element number 1 at 𝜑 = 8.18º, detector element number 2 at 𝜑 = 16.36º and so on, up 
to detector element number 22 at 𝜑  = 180º.  Each germanium semiconductor 
spectroscopic detector element counts photons as a function of their energy E.  
Therefore, the intensity of the diffracted beam as a function of energy is measured by 
each detector element.  Bragg’s law can be rewritten to calculate lattice spacing via: 

𝑑#$% =
ℎ𝑐

2	𝐸𝑠𝑖𝑛 𝜃
 Eq.  2.2 

Where h is Planck’s constant and c is the speed of light.  

2.4.2 Static strain measurement 

Before the dynamic EDXD experiment, i.e. test bearing rotating, a static EDXD 
experiment was performed to compare the contact strains in the fixed outer raceway 
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under similar loads in the dynamic conditions.  The bearing test rig was fixed onto the 
experimental stage in the External Experiment Hutch (EH2) of the JEEP beamline.  
Figure 1c shows the experimental setup schematically.  The rotation axis of the 
bearing was aligned along the direction of the incident X-ray beam; i.e. Z-axis shown 
in Figure 1c.  Precise alignment of the bearing with the X-ray beam was confirmed 
using the high-speed X-ray imaging camera as discussed in section 2.3 in detail.  

In the EDXD setup, the diffracted beams are collimated by a semi-annular slit array 
mounted on the entrance window of the detector (the detector slit) and a second semi-
annular slit with a fixed gap mounted close behind the sample (the sample slit).  The 
sample slit together with the size of the collimated incident beam define the three-
dimensional gauge.  In this study, an incident beam size 0.25 × 0.25 mm2 was used, 
with a 0.15 mm sample slit and 0.2 mm detector slit.  Details of calculating the gauge 
volume can be found elsewhere [24] and therefore are not repeated here.  Using this 
setup, the gauge length, was calculated to be 6.4 mm.  The distance between the 
specimen and the detector was 2215 mm. 

Three different loadings, p, were used while the test bearing was stationary: p =0, 710 
N, and 1420 N.  The loads were applied by hanging a deadweight on the lever 
attached to the bearing housing supported by a pivot as described in section 2.1 and 
shown in Figure 1a.  X-ray diffraction patterns were collected from 11 equally 
distanced points, along the Y-axis, A to K, shown in Figure 1a.  The first point, 
denoted by A in Figure 1a, measures the diffraction pattern averaged over the 0.25 × 
0.25 × 6.4 mm3 gauge volume in the outer raceway of the test bearing, with its centre 
125 µm from the point of the contact between the ball and the outer raceway along the 
Y-axis.  A 125 µm interval was defined between each measurement point resulting in 
125 µm overlap in each measurement gauge volume along the Y-axis.  Therefore, the 
centre of the gauge volume of the next measuring point, B in Figure 1a, was 250 µm 
from the point of contact between the ball and the outer raceway.  The last 
measurement point, K, was 1.375 mm from the point of contact.  For each point, X-
ray data was collected for 120 seconds. 

2.4.3 Dynamic strain measurement 

The setup in the dynamic strain measurement was similar to that used in the static 
case.  Note that the dynamic strain is the strain induced in the fixed raceway by the 
moving balls as the inner raceway of the test bearing rotates.  As described in section 
2.2, the diffraction signal in each germanium detector element were recorded for 2 
milliseconds, corresponding to a 250 µm (the gauge volume width) ball travel at 150 
rpm.  An accumulated 20 seconds count time was used in the dynamic case.  Five 
different loadings were considered: p = 0, 710, 1180, 1420, and 2365 N, and 
diffraction patterns were collected.  Measurements were carried out only at one point, 
B (see Figure 1a, with its centre 0.250 µm from the point of contact; section 3.3 for 
the justification.  

2.5 Material and microstructural characterisation  

The test bearing's raceway was fabricated from SAE-AISI 52100 type steel, the 
composition of which is reported in Table 1.  Following the diffraction experiment a 
sector of the outer raceway was characterised post-mortem.  A section of the outer 
raceway of the test bearing, which was interrogated during the EDXD experiment, 
was cut using a precision saw, then the surface was prepared using progressively fine 
abrasive media and finishing with colloidal silica; enabling the observation of grain 
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size, morphology and texture.  Electron Back-Scatter Diffraction (EBSD) was used, 
observing the surface perpendicular to the X-ray beam direction and parallel to the 
radial-circumferential plane of the bearing.  A JEOL-6500F scanning electron 
microscope equipped with a TSL/EDAX OIM v6 system was used, operating with a 
beam current of 15 nA and an accelerating voltage of 20 keV.  Data was acquired 
over an area 24 µm × 24 µm with a step size of 0.1 µm.  Diffraction indexing was 
performed using the Hough method on 1000 × 1000 pixel images with a 2 ×2 camera 
binning.   

The cut sector was also intended to be used as the strain free reference specimen, also 
known as the d0 specimen [25].  The specimen was annealed after EBSD for 8 hours 
at 600ºC [26] to relieve any locked-in stress.  The specimen was re-scanned with the 
EDXD detector at a later date, albeit with a re-aligned and re-calibrated system to 
collect the strain free lattice spacing.   

2.6 Finite element simulations 

In order to investigate the effects of possible misalignment of the force on the contact 
stress field in the outer raceway of the test bearing, a series of three-dimensional 
quasi-static elastic finite element (FE) simulations were performed.  Abaqus Standard 
6.14 finite element package was used to simulate the bearing with 250,000 8-node 
brick elements.  Macromechanical properties of steel were Young’s modulus, E = 207 
GPa and Poisson’s ratio ν = 0.3 [27].  The bearing housing and the shaft were not 
simulated explicitly; instead they are resented by two rigid faces modelled using 
10,000 rigid shell elements.  Two reference points, each associated with the bearing 
housing and the shaft were defined.  Movements of all six degrees of freedom 
(displacements along X, Y, and Z axes as well as rotations around them Rx, Ry, and Rz) 
of the nodes defining the rigid bodies, representing the bearing housing and the shaft, 
are identical to the movements of their respective reference points.  Frictionless 
tangential and hard normal contact was defined between the bearing and the rigid 
elements.  Nonlinear geometry was considered in the simulations as significant 
nonlinear geometry has been observed in the previous contact simulations [28].   

For the simulations, the reference point associated with the shaft was fixed in all six 
degrees of freedom while the reference point associated with the bearing housing was 
fixed in Z, Rx, Ry, and Rz.  To apply the load, an arbitrary displacement was assigned 
to the reference point associated with the bearing housing in the X and Y directions 
depending on the degree of misalignment (see section 4).  Because the model is fully 
elastic, the reaction force recorded at the reference points has a linear relationship 
with the magnitude of the applied displacement.   

3 Results and analysis 

3.1 EDXD  

Examples of the X-ray diffraction patterns are given in Figure 2a for static and 
dynamic (stroboscopic) tests.  They show the intensity of diffracted beam as a 
function of energy in detector element number 11.  Five ferrite peaks are detectable in 
the patterns associated with {110}, {200}, {211}, {220}, and {310} diffraction 
planes.  The peaks that are not indexed are associated with fluorescence. They are 
coherent or incoherent scattering from the slits. It can be seen that the intensity of the 
peaks in the dynamic pattern is lower than those of the static case.  This was expected 
as the count time in the static case was 120 seconds whereas the accumulative count 
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time in the dynamic case was 20 seconds. The change in the peak width in static and 
dynamic case is the result of averaging over a varying strain volume in time which 
takes place in dynamic test and not in static. The full width half maximum in static 
peak is 0.014 Å and for dynamic peak 0.032 Å. 

The location of the peaks in an X-ray diffraction pattern, i.e. 𝑑#$% , can be identified, 
each corresponding to a reflection plane defined by hkl indices.  If the diffraction 
patterns before and after a deformation are recorded, the micromechanical strain for 
each diffraction plane, 𝜀#$%, is calculated by: 

𝜀#$% =
𝑑#$% − 𝑑6

#$%

𝑑6
#$%

 Eq.  3.1 

This process can be repeated for each of the 23 detector elements, providing 
micromechanical strain in every 8.18 º from 𝜑 = 0º to 𝜑 = 180 º.  Figure A1 illustrates 
the orientation of the detector and the detector element number in correlation with the 
azimuth 𝜑, the scattering vector, 𝜃, and diffraction planes hkl.  By neglecting the 
small out-of-plane component of the scattering vector, the micromechanical strain 
calculated from the patterns along a known azimuth φ	can be expressed as [29]: 

𝜀7
#$% = 𝑝99

#$%𝜎99 + 𝑝9<
#$%𝜎9< + 𝑝<<

#$%𝜎<< Eq.  3.2 

where 𝑝=>
#$%are the stress factors and 𝜎=> are the components of the two-dimensional 

macromechanical stress tensor in the coordinate system shown in Figure A1.  The 
stress factors incorporate both the direction of the detector element (i.e. azimuth φ) 
and their corresponding elastic moduli 𝐸#$%.  Assuming perfect alignment of the beam 
and the sample coordinate systems the stress factors are [30]: 

𝜀7
#$% =

?

@
𝑆@
#$% 𝜎99cos

@𝜑 + 𝜎9< sin 2𝜑 + 𝜎<<sin
@𝜑

+ 	𝑆?
#$% 𝜎99 + 𝜎<<  

Eq.  3.3 

𝑝99,7
#$% = 	𝑆?

#$% +
?

@
𝑆@
#$%cos@𝜑 

𝑝9<,7
#$% =

?

@
𝑆@
#$% sin 2𝜑  

𝑝<<,7
#$% = 	𝑆?

#$% +
?

@
𝑆@
#$%sin@𝜑 

where diffraction elastic constants (also known as X-ray elastic constants) for a hkl 

diffraction plane 𝑆?
#$% ,

?

@
𝑆@
#$% are defined as [29]: 

𝑆?
#$% = −𝜈#$%/𝐸#$% 

?

@
𝑆@
#$% = 1 + 𝜈#$% /𝐸#$% 

Eq.  3.4 

A comprehensive review of 𝜀7
#$% conversion to 𝜎=> can be found in reference [31] and 

therefore is not repeated here.  It should be noted that a constant external load or a 
steady state internal residual stress field can induce different levels of 
micromechanical strains in different diffraction planes.  The strain in a diffraction 
plane is a function of the elastic modulus of the diffraction plane and the boundary 
conditions of the grain, i.e. the orientation of the surrounding grains and their elastic 
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moduli.  Therefore, the micromechanical strains measured at different azimuths for 
different diffraction planes, 𝜀7

#$%, do not necessarily satisfy macroscopic mechanics' 

compatibility equations.  If the micromechanical strains are converted into the 
macromechanical stress field, however, equilibrium is satisfied and the stress 
calculated at a particular azimuth can be converted to a different azimuth by a simple 
use of the stress transformation equations.  

Finally, it should be noted that the residual stresses that are locked in the component 
during the manufacturing processes can be measured by comparing the diffraction 
patterns of a strain free specimen and the patterns obtained from the component [25] 
without any applied load.  The strain free sample is commonly known as a d0 

specimen and the methods for its preparation is discussed in details in reference [25]. 

Peak search and fitting was performed using a scale-space representation (ridge 
search) method, by a Laplacian of Gaussian kernel, followed by non-linear least 
squares refinement using a Gaussian peak profile [32].  Five peak positions in all 
cases was identified for the 3 loading conditions (p = 0, 710, and 1420 N) at 11 
points, A-K, in the static experiment and 5 loading conditions (p = 0, 710, 1180, 1420, 
and 2365 N) at one point, B, in the dynamic test.  The micromechanical strain 
developed for each reflection could be calculated using Eq. 3.1 for 23 azimuths 𝜑 =0º 
to 𝜑  =180º at 8.18º intervals.  The free strain lattice parameters, i.e. 𝑑6

#$% , were 
required to calculate the residual stress.  As discussed in section 2.5, it was intended 
to use the X-ray diffraction patterns obtained from the strain free, cut, and annealed d0 
specimen to measure 𝑑6

#$%.  However, because the d0 specimen could not be scanned 
at the same time as the test bearing and EDXD, measurements were carried out on a 
re-aligned and re-calibrated detector, the measured 𝑑6

#$% values from the d0 specimen 
were therefore deemed invalid for strain calculations and therefore the residual stress 
could not be measured.  For strain measurements in the static and dynamic tests, the 
strain free lattice parameter for each reflection was determined by introducing an in-
plane deviatoric stress, σdev, and a pseudo-hydrostatic stress σph, the details of this 
assumption have been discussed elsewhere [29]: 

𝜀7 =
𝑑7
#$% − 𝑑6

#$%

𝑑6
#$%

= (𝑝99	 − 𝑝<<)𝜎LMN + 𝑝9<𝜎?@ + 𝑝O#𝜎O# Eq.  3.5 

where 

𝑝O# =
1

2
𝑆@ + 3𝑆? Eq.  3.6 

where 𝑑6
#$%  is an approximation of the strain free lattice spacing.  The pseudo-

hydrostatic stress is dominated by the portion from an incorrect 𝑑7
#$% but potentially 

includes any hydrostatic portion of the in-plane stress.  The pseudo-hydrostatic stress 

(𝜎O#) is defined as the summation of normal stresses divided by 3 
QRRSQTTSQUU

V
, 

which quantifies the dilatation of the diffraction ring whereas the deviatoric stress, 
𝜎LMN, (i.e. 𝜎99 − 𝜎<<) quantifies the distortion of the ring. 

After obtaining an average σph for each lattice plane and for all specimens, the strain 
free lattice spacing 𝑑6

#$% for each reflection was calculated according to: 
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𝑑6
#$% = 𝑑7

#$% 1 − 𝑝O#𝜎O#
#$%  Eq.  3.7 

Inspection of the strain values at boundary conditions (i.e. traction free surface) and 
equilibria suggested the approximation is sufficient.  No geometry dependence was 
observed in the measured 𝑑6

#$%  value for all detector elements validating the 
appropriateness of the assumed 𝑑6

#$%.  However, the residual stress of the specimen 
could not be evaluated as only the physically meaningless pseudo-hydrostatic stress 
could be measured from the d0 sample by this method.  The pseudo-hydrostatic stress 
measured from the d0 specimen was found to be a constant value (within 2.5%), 
indicating proof for the suitable approximation. 

As an example, the micromechanical strain distribution calculated in the dynamic 
condition at the load p = 1420 N is shown in Figure 2b.  The root mean square strain 
for all diffraction planes in all azimuths at p = 0 N for static test is calculated to be 60 
µε.  Similarly, the root mean square strain of all diffraction planes in all azimuths at p 

= 0 N for dynamic test is calculated to be 230 µε.  These was deemed to be the 
accuracy with which the hkl micromechanical strains were measured in static and 
dynamic cases respectively.  

3.2 Microstructure 

An EBSD inverse pole figure map of the cut bearing steel section is shown in Figure 
3a.  The figure shows that the grain size of the material is ~1 µm.  The obvious 
randomness of the colours, each indicating the orientation of the indexed grain, in the 
map shows that there is no texture in the material.  The larger green region observed 
in the plot is an agglomerated cluster of grains, all orientated similarly.  An 
orientation distribution function (ODF) of this data, shown in Figure 3b, plots the 
orientation of each data point on a pole figure.  The points are distributed quite 
uniformly, indicating no preferred texture is present.  This is an important finding as 
both the bulk macroscopic response and the accumulation of lattice strains are known 
to be affected by texture [11, 33].  As such, the validity of the analysis described in 
the section 3.3 depends on random grains from which the micromechanical strains 
have been measured.   

3.3 Macroscopic stress calculation 

The low diffraction angle of EDXD experiments means the scattering vectors 
essentially lie within a single plane.  This allows for the determination of the in-plane 
components of stress in a single measurement [34], however, out-of-plane stresses 
cannot be determined.  For the interrogated gauge volume, whose 2D plane strain 
macromechanical stress tensor can be defined fully by three independent components, 
23×5 (23 detector elements/azimuths, 5 diffraction peaks) micromechanical strains 
were calculated.  In order to convert the micromechanical strains to a single 
macromechanical stress tensor, the following equations system was used: 

𝜺 ?×??Y = 𝝈 ?×V 𝒑 V×??Y 

𝜺 = 𝜀6
??6 𝜀6

@66 𝜀6
@?? 𝜀6

@@6 𝜀6
V?6 𝜀?

??6 … 𝜀@@
V?6  

𝝈 = 𝜎99 𝜎9< 𝜎<<  

Eq.  3.8 
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𝒑 =

𝑝99,6
??6 𝑝99,6

@66 𝑝99,6
@?? 𝑝99,6

@@6 𝑝99,6
V?6 𝑝99,?

??6 ⋯ 𝑝99,@@
V?6

𝑝9<,6
??6 𝑝9<,6

@66 𝑝9<,6
@?? 𝑝9<,6

@@6 𝑝9<,6
V?6 𝑝9<,6

??6 ⋯ 𝑝9<,@@
V?6

𝑝<<,6
??6 𝑝<<,6

@66 𝑝<<,6
@?? 𝑝<<,6

@@6 𝑝<<,6
V?6 𝑝<<,6

??6 ⋯ 𝑝<<,@@
V?6

 

where the unknowns are 2D stress tensor with three components, 𝝈 ?×V, while the 
strain values, 𝜺 ?×??Y, with 115 values are measured and the stress factor matrix, 
𝒑 V×??Y, with 345 components is constructed using Eq. 3.3.  In the strain matrix 𝜺  

the subscript denotes detector element number/azimuth and superscript denotes the 
diffraction plane.  For example, 𝜀6

??6 is the micromechanical strain measured from the 
detector number 0 (see Figure 1c for detector element numbers) at {110} diffraction 
plane.  In the stress factor matrix, 𝒑 , the first subscript denotes the direction of 
stress, the second the detector element number/azimuth and the superscript the 
diffraction plane.  For example, 𝑝9<,@

@@6  is the stress factor for 𝜎9< , in the second 
detector on {220} plane.  

Diffraction elastic constants for ferrite diffraction planes are well documented [35] 
and therefore there was no need to measure them; they were obtained from ISODEC 
software without texture [36] and are reported in Table 2.  Eq.  3.8 describes an over-
determined system of linear equations.  Therefore, the stress tensor that best fits Eq.  
3.8 was calculated using a simple optimisation technique: 

𝝈 ?×V = 𝜺 ?×??Y 𝑝 S
??Y×V Eq.  3.9 

where 𝑝 S
??Y×V  denotes the Moore-Penrose pseudo-inverse of 𝑝 V×??Y .  The 

components of the static stress tensor, 𝜎=>
^ , at two different loads (p= 710, and 1420 N) 

for the static case at 11 locations in the Y direction from the contact point (see section 
2.4.2) were calculated and are shown in Figure 4a. Single peak shift analysis at the 
time of the experiment showed an increase between strains measured in points A and 
B, the increase was interpreted as the gauge volume having a partial overlap with the 
ball.  It was therefore judged more appropriate to measure the critical dynamic strains 
at point B.  Therefore, the dynamic stresses, 𝜎=>

L , while the bearing was rotating, were 
calculated at point B using a similar procedure to the one carried out for the static 
condition.  The centre of the gauge volume at point B was at 0.250 µm from the 
contact point.  The dynamic stresses were calculated at 5 loading conditions (p =0 , 
710, 1180, 1420, and 2365 N), results of which are plotted in Figure 4b.  Note that the 
error bars shown in Figure 4 represent the variation between the stresses calculated 
from different lattice planes.  

3.4 Finite element results 

Ten finite element models with an arbitrary 0.1 mm vertical displacement (Vy) and 
varying horizontal displacements (Vx from 0 to 0.1 in 10 steps), representing the 
experimental misalignment, were analysed.  The displacements were applied to the 
reference point associated with the rigid body representing the bearing housing.  
Although the model had linear elastic material properties, nonlinearity was observed 
in volumes located closer than 100 µm to the contact point.  This was nonlinearity in 
the relationship between the applied load and the stress field.  This is due to high 
levels of deformation at the contact point and is an indication that adopting a 
nonlinear geometry option in the simulation was necessary.  
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A contour of the compressive stress component (−𝜎<<) of stress tensor at the middle 
of the 2ms trigger at p = 1420 N is shown in Figure 5a.  The gauge volume is 
superimposed on the contour to show the area over which the experimental averaging 
was carried out.  It is important to note that the spatial resolution of the data in the FE 
simulation and in the experiment are different.  The components of the stress tensor 
averaged at the centre of each element can be extracted from the FE results but the 
volume of the finite elements in the model are much smaller than the gauge volume 
used in the experiment.  Adopting such small elements were necessary and were 
determined via a straight forward mesh dependency study that was carried out using 
the reaction force at the reference point as the target value which should converge to a 
single value as the element sizes were reduced step-wise.  It was, therefore, important 
to extract an average stress value over a volume similar to that which was used during 
the experimental measurements.  

To this end, the average values of the stress tensor components at the centre of each 
element were extracted from the simulation as well as the coordinates of each node 
that formed the element.  An in-house Matlab® code was developed to take a 
weighted average of stresses, with respect to each element’s volume, over a volume 
that corresponded to the gauge volume used in the experiment at points corresponding 
to A to K.  This allows a direct comparison between the EDXD measured stress field 
and that calculated by the FE simulation.   

By using the finite element results, the level of ‘blurring’ caused by both time and 
volume averaging during the experiment could be quantified.  Figure 5b shows the 
variation of the compressive stress over time at the point of contact between the ball 
and the raceway.  Also shown in the figure is the variation of the compressive stress 
over the time averaging which was resulted from the 2 ms width of the trigger.  The 
ratio of the averaged stress over 2ms over the maximum compressive stress is 0.25 
indicating a 75% blurring as a result of such averaging.  Figure 5c shows the variation 
of the compressive stress along the 6.7 mm gauge length.  It shows that the average 
compressive stress over the gauge length is 37% of the maximum stress which is 63% 
‘blurring’ in the measurement.  

The difference between the magnitude of von-Mises stress at point B between FE 
simulations and experimental measurement of static experiment at p = 1420 N was 
calculated for different levels of misalignment (i.e. horizontal Vx disablement).  By 
interpolating the differences as a function of 𝛼 = 𝑎𝑡𝑎𝑛(𝑉9 𝑉<) , the minimum 
difference was observed at 𝛼 = 3c indicating a small experimental misalignment in 
applied load which could have been resulted from the pivot.  A finite element model 
with the optimised misalignment was performed whose results are reported below. 

Figure 6a and b show the difference between the stress tensor components measured 
in static case at p = 710 N and p = 1420 N.  A general good agreement can be seen 
between the FE and experiment.  However, the biggest component of stress, i.e. 𝜎<<

^ , 
shows the best agreement and the least correlation is observed between the shear 
stresses.  A trend can also be seen, in particular in Figure 6b, that the larger the stress 
(the closer to the contact point) is, the better the agreement between FE and 
experiment.  For the dynamic stress measurements, the static FE stress in y direction, 
𝜎<<
^ , shows a good agreement with the dynamic stress measurement, 𝜎<<

L .  
Considering the relatively low speed of the shaft rotation (150 rpm) this is expectable 
and in agreement with previous studies [37].  
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4 Discussion 

It is clear that the data quality of diffraction reflections obtained during static loading 
was much higher than the dynamic case, providing comparably higher peak position 
fit accuracy.  Counting statistics were better for the static case.  However, this novel 
experiment showed the opportunities that high-energy synchrotron beamlines such as 
JEEP provide in measuring macroscopic dynamic stress fields.  

The root mean square of stress tensor components at p = 0 N in the static case was 
calculated: σxx= 7, σyy= 12, σxy= 5 MPa which is considered to be the accuracy of the 
stress calculation technique in the static condition.  The root mean square of stress 
tensor components at p =0 N in the dynamic case was σxx = 19, σyy = 14, and σxy= 10 
MPa representing the accuracy of the stress calculation in dynamic case.  
Unsurprisingly, the accuracy in the static case is higher. 

It can be seen in Figure 4 that the stress components calculated at the same external 
load in static and dynamic conditions are comparable.  The highest stress component, 
i.e. stress in Y direction, 𝜎<<, at point B with a load p = 1420 N is 𝜎<<

^ = -84±12 MPa 

in the static and 𝜎<<
L =	-80±14 MPa in the dynamic conditions.  For p = 710 N, there 

is less agreement between the static stress 𝜎<<
^ = -60±12 and dynamic stress 𝜎<<

L = -
67±14.  It could be argued that the confidence in the measured stress, particularly in 
dynamic case, grows as the stress level increases as the signal to noise ratio of the 
obtained diffraction patterns improves, resulting in more accurate identification of the 
peak position and consequently, the stress calculation.   

The static finite element stress along the Y-axis at p = 710 N is 𝜎<<= -81 MPa and at p 

= 1420 N, 𝜎<<= -58 MPa which is only a 3% different from the static experimental 
values; the difference increases to 15% in the case of dynamic experiment.  However, 
it could be argued that there is a misalignment of the applied load on the bearing 
housing through the pivot with respect to a pure vertical direction along the Y-axis. FE 
simulation showed that considering a 3o misalignment the difference between FE 
results and dynamic experiment is minimised to 12%. All FE values reported here are 
averaged over time and distance similar to that measured experimentally. 

Figure 4a shows that the algebraic value of the stress components decrease as the 
distance from the contact point increases.  The stress tensor components plateau after 
approximately 1 mm from the contact point to a uniform far field stress.  The stress 
components at the first point of the profile, i.e. point A whose centre is at y=125 µm, 
however, do not follow the decreasing trend.  This is consistent with the FE 
simulation results.  During the experiment the deviation observed in the measurement 
was interpreted as the gauge volume being partially filled with the ball.  Therefore, 
the decision was made to measure the dynamic strain at point B.  FE simulation shows 
that the deviation was, with hindsight, expectable and the gauge volume was not 
partially filled but was fully contained in the fixed outer raceway. 

Figure 4b shows that the four compressive stresses in dynamic case, 𝜎<<
L , at loads p = 

710, 1180, 1420, and 2365 N have a linear relationship with their respective applied 
loads with a goodness of fit R2= 0.9851. Other stress components, 𝜎99

L  and 𝜎9<
L  , are 

within the noise level of the technique and such a uniform trend cannot be observed.   
Thus, to compare all the results, the stress values could be normalised with respect to 
the applied load: 
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𝑆=> =
𝜎=>

𝑝
𝑊×𝑅c

 Eq.  4.1 

where 𝑆=> is the normalised stress, 𝜎=> is the stress tensor component, p is the applied 
force, W is the bearing width (2 inches or 25.6 mm), and Ro is the bore radius (2.875 
inches or 73 mm).  Figure 7a, b, and c show the normalised compressive (Syy), 
horizontal (Sxx), and shear (Sxy) stress components.  Each individual static and 
stroboscopic measurements are illustrated in the plots by symbols: circular for 
stroboscopic and square for static.  It can be seen that the uncertainty in the 
stroboscopically calculated stresses are much bigger than those that were calculated 
from the static tests.  This is due to the uncertainty calculated from fitting the stress 
field to 5 diffraction peaks at all 23 detector elements.  The FE results are also shown 
in the figures with a continuous line.  It can be observed in the figure that throughout 
the stress profiles, static normalised compressive and horizontal stress components 
show a good agreement with that of the finite element model.  Close to the contact 
point (up to 0.5 mm), the shear stress shows a good correlation between FE and 
experiment but after 0.5mm, significant deviation between the two methods is 
observed.  

Concluding remarks 

• The contact micromechanical static strain in a fixed outer raceway of a bearing 
was successfully measured along a radial profile at 11 points for two levels of 
external loads by energy dispersive X-ray diffraction technique.  The dynamic 
strain, i.e. when the bearing was rotating at 150 rpm, was also measured at a 
single point on the fixed outer raceway of the bearing at five levels of external 
load.   

• The components of the macroscopic 2D plane strain stress tensor were 
extracted from the measured micromechanical strains at different diffraction 
planes. 

• Good correlation was observed between the stress tensor components 
measured in static and dynamic cases and both agreed well with the finite 
element results, increasing the confidence in the stroboscopic stress 
measurement. 

• Having established the confidence in the stroboscopic strain measurement, 
future in-situ experiments are being designed to investigate crack initiation in 
the bearing raceway in real-time.  The dynamic measurements will also be 
used to verify the acousto-elastic measurements. 
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Tables 

 

Table 1 – Chemical composition of SAE 51200 bearing bainitic steel [38] 

Element Fe C Si Mn P S Cu Ni Cr Mo 

wt.% Balance 0.98 0.16 0.38 0.12 0.06 0.12 0.07 1.39 0.02 

 

 

Table 2 – Diffraction Elastic Constants calculated by ISODEC software using macromechanical 

elastic modulus 207 GPa and Poisson ratio 0.3 

Diffraction plane {110} {200} {211} {220} {310} 

Diffraction elastic 

constants (
ffg

h
×10i) 

𝑆? -1.29 -1.94 -1.29 -1.29 -1.71 

?

@
𝑆@ 5.80 7.74 5.80 5.80 7.05 
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Figures 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 1– (a) schematic of the test bearing in the bearing testing rig (b) single frame from high-

speed X-ray radiography, part of the ball and the outer raceway can be seen (c) Schematic of the 

Energy Dispersive X-ray Diffraction experiment – distance between the sample slit and the 

detector was 1455 mm and the distance between the sample and the detector was 2210 mm (d) 

Diffraction geometry for two example detection positions at detector element number 11 (left) 

and detector element number 22 (right) - Note that the detector element numbers start from 0 
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(a) 

 

(b) 

Figure 2  –(a) Example of diffraction patterns in static and dynamic (stroboscopic) modes (b) 

example of the measured micromechanical strains associated with 5 diffraction planes along φ = 

0-180
o
 azimuths at 8.18

o
 intervals in dynamic mode at p = 1420 N – the fitted stress field is shown 

as a dashed line 
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(a) 

 

(b) 

Figure 3  – Microstructure (a) EBSD inverse pole figure map showing grain structure of bainitic 

steel with colours showing crystal directions; the randomness of the colour shows the lack of 

texture in the examined volume (b) orientation distribution function (ODF) map calculated from 

the EBSD map; the lack of texture is shown by randomness of the distribution. 
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(a) 

 

(b) 

Figure 4  –Measured components of the stress tensor (a) in static case at 2 levels of loads at points 

A - K (b) in dynamic (stroboscopic) case at 4 levels of load at point B – see Figure 1a 
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(a) 

 

(b) 

 

(c) 

Figure 5  – Finite element results at p = 1420 N (a) Stress field in XY and YZ planes in the middle 

of 2 ms triggering period - the gauge volume is plotted as a white box (b) the distribution of 

compressive stress at the point of contact as function of time (c) the distribution of compressive 

stress along the gauge volume in the middle of 2 ms triggering period 
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(a) 

 

(b) 



26

 

(c) 

Figure 6  – Difference of stress tensor components between finite element simulation and 

experimental measurements (a) static at p = 710 N at points A - K (b) static at p = 1420 at points A 

- K (c) dynamic at point B at various loads 

 

(a) 

 

(b) 
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(c) 

Figure 7  –Comparison of normalised stress tensor components for static, dynamic (stroboscopic) 

and finite element simulations (a) normalised normal stress in X direction Sxx (b) normalised 

stress in Y direction Syy (c) normalised shear stress in XY direction Sxy 

 


