UNIVERSITY OF LEEDS

This is a repository copy of Bright spots among the world’s coral reefs.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/112677/

Version: Accepted Version

Article:
Cinner, JE, Huchery, C, MacNeil, MA et al. (36 more authors) (2016) Bright spots among
the world's coral reefs. Nature, 535 (7612). pp. 416-419. ISSN 0028-0836

https://doi.org/10.1038/nature18607

© 2016 Macmillan Publishers Limited, part of Springer Nature. This is an author produced
version of a paper published in Nature. Uploaded in accordance with the publisher's
self-archiving policy.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Bright spots among the world’s coral reefs

Joshua E. Cinnér, Cindy Huchery, M. Aaron MacNeit** Nicholas A.J. Grahaht,
Tim R. McClanahat) Joseph Mairi, Eva Mairé"’, John N. Kittinget®, Christina C.
Hicks"*® Camilo Mora®, Edward H. Allisort!, Stephanie D’Agafa’**2 Andrew
Hoey', David A. Fear}?, Larry Crowdef, Ivor D. Williams™, Michel Kulbicki'®,
Laurent Vigliold? Laurent WantieZ®, Graham Edgaf, Rick D. Stuart-SmitH,
Stuart A. Sanditf, Alison L. Greef’, Marah J. Hardf, Maria Beget, Alan
Friedlandet™?* Stuart J. CampbéllKatherine E. Holmés Shaun K. Wilsoff?*
Eran BrokovicR’, Andrew J. Brook®, Juan J. Cruz-Motf4 David J. Bootff,
Pascale ChabarfétCharlie Gougff, Mark Tuppet', Sebastian C.A. Fer&eU.

Rashid Sumaif¥, David Mouillot"’

'Australian Research Counélentre of Excellence fa€oral Reef Studies, James
Cook University, Townsville, QLD 4811 Australia

Australian Institute of Marine SciendeMB 3 Townsville MC, Townsville, QLD
4810 Australia

3Department of Mathematics and Statistidalhousie University, Halifax, NS B3H
3J5 Canada

“Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
>Wildlife Conservation Society, Globsarine Program, Bronx, NY 10460 USA
®Australian Research Coungkentre of Excellence fdnvironmental Decisions,
Centre for Biodiversity and Consenati Science, University of Queensland,

Brisbane St Lucia QLD 4074 Australia



25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

"MARBEC, UMR IRD-CNRS-UM-IFREMER9190, Université Montpellier, 34095
Montpellier Cedex, France

8Center for Ocean Solutions, Stanford University, CA 94305 USA
Conservation International Hawaii, Betind Gordon Moore Center for Science and
Oceans, 7192 Kalaniana‘ole Hwy, Suite G230, Honolulu, Hawai‘i 96825 USA
“Department of Geography, University ldawai‘i at Manoa, Honolulu, Hawai'i
96822 USA

Y1School of Marine and Envinmental Affairs, Universitpf Washington, Seattle,
WA 98102 USA

nstitut de Recherche pour le Déwepement, UMR IRD-UR-CNRS ENTROPIE,
Laboratoire d’Excellence LABEX CRAIL, BP A5, 98848 Nouméa Cedex, New
Caledonia

13Ecology & Evolution Group, Schoaf Life Sciences, University Park, University
of Nottingham, Nottingham NG7 2RD, UK

“Coral Reef Ecosystems Division, NOAA Plicislands Fisheries Science Center,
Honolulu, HI 96818 USA

SUMR Entropie, Labex Corail, —IRD, lersité de Perpignan, 66000, Perpignan,
France

®EA4243 LIVE, University of New Caltonia, BPR4 98851 Noumea cedex, New
Caledonia

YInstitute for Marine andntarctic Studies, University of Tasmania, Hobart,
Tasmania, 7001 Australia

83cripps Institution of Oceanography, Univeysif California, San Diego, La Jolla,
CA 92093 USA

%The Nature Conservancy, Brisbane, Australia



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

®Future of Fish, 7315 Wisconsin Ave, Suite 1000W, Bethesda, MD 20814, USA
IFisheries Ecology Research Lab, Departt# Biology, University of Hawaii,
Honolulu, HI 96822, USA

#National Geographic Society, PristiSeas Program, 1145 17th Street N.W.
Washington, D.C. 20036-4688, USA

#Department of Parks and Wildlif§ensington, Perth WA 6151 Australia
#40Oceans Institute, University of Westehustralia, Crawley, WA 6009, Australia
*The Israeli Society of Ecology and Emimental Sciences, Kehilat New York 19
Tel Aviv, Israel

*Marine Science Institute, Universiof California, Santa Barbara, CA 93106-6150,
USA

*’Departamento de Ciencias Marin&ecinto Universitdo de Mayaguez,
Universidad de Puerto Rico, 00680, Puerto Rico

85chool of Life Sciences, Univetgiof Technology Sydney 2007 Australia

UMR ENTROPIE, Laboratoire d’Exceliee LABEX CORAIL, Institut de
Recherche pour le Développement, £1995, 97495 Sainte Clotilde, La Réunion
(FR)

%9Blue Ventures Conservation, 39-41moRoad, London N7 9DP, United Kingdom
$lCoastal Resources Association, St. phsgt., Brgy. Nonoc, Surigao City, Surigao
del Norte 8400, Philippines

%2 eibniz Centre for Tromial Marine Ecology (ZMT)Fahrenheitstrasse 6, D-28359
Bremen, Germany

%Fisheries Economics Research Unit, Wmaity of British Columbia, 2202 Main

Mall, Vancouver, B.C., V6T 174, Canada



75  *Correspondence to: dhua.cinner@jcu.edu.au

76



77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

Ongoing declines among the world’s coral reef€ require novel approaches to
sustain these ecosystems and the riols of people who depend on thefnA
presently untapped approach that draws on theory and practice in human health
and rural development"® is systematically identifying and learning from the
‘outliers’- places where ecosystems are substantially better (‘bright spots’) or
worse (‘dark spots') than expectedgiven the environmental conditions and
socioeconomic drivers they are exposdd. Here, we compile data from more
than 2,500 reefs worldwide and develop a Bayesian hierarchical model to
generate expectations of how standing@tks of reef fish bomass are related to
18 socioeconomic drivers and environmenta&onditions. We then identified 15
bright spots and 35 dark spots among our gbal survey of coral reefs, defined as
sites that had biomass levels more #&n two standard deviations from
expectations. Importantly, bright spotswere not simply comprised of remote
areas with low fishing pressure- they inlude localities where human populations
and use of ecosystem resources is high, potentially providing novel insights into
how communities have successfully cordnted strong drivers of change.
Alternatively, dark spots were not necessaly the sites with the lowest absolute
biomass and even included some remote, uninhabited locations often considered
near-pristine®. We surveyed local experts abut social, institutional, and
environmental conditions at these sites to reveal that bright spots were
characterised by strong sociocultural ingtutions such as customary taboos and
marine tenure, high levels of local egagement in management, high dependence
on marine resources, and beneficial environmental conditions such as deep-
water refuges. Alternatively, dark spotswere characterised by intensive capture

and storage technology and a recent histy of environmental shocks. Our
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results suggest that investments istrengthening fisheries governance,
particularly aspects such as participaion and property rights, could facilitate
innovative conservation actions that helgommunities defy expectations of

global reef degradation.
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Main text

Despite substantial international consemafforts, many of the world's ecosystems
continue to decline’. Most conservation approacheis to identify and protect

places of high ecological integrity under minimal thte¥et, with escalating social
and environmental drivers of change, canation actions are also needed where
people and nature coexist, especiallyere human impacts are already seléiere,

we highlight an approach for implemergiconservation in coupled human-natural
systems focused on identifying and learnirapfroutliers - places that are performing
substantially better thaaxpected, given the socioeconomic and environmental
conditions they are exposed to. By their very nature, outliers deviate from
expectations, and consequently can gtewnovel insights on confronting complex
problems where conventional solutions have failed. This type of positive deviance, or
‘bright spot’ analysis has been used glds such as busirgshealth, and human
development to uncover local actiomglaggovernance systems that work in the

context of widespread failut&™, and holds much promise in informing conservation.

To demonstrate this approach, wengiled data from 2,514 coral reefs in 46
countries, states, and territories (heredftation/states’) and deloped a Bayesian
hierarchical model to generate expectedditions of how standp reef fish biomass
(a key indicator of resource availability and ecosystem funcfionss related to 18
key environmental variables and socioeamic drivers (Box 1; Extended Data
Tables 1,2; Methods). A key and significdinding from our global analysis is that
the size and accessibility of the nearest market, more so than local or national
population pressure, management, emrvinental conditions, or national

socioeconomic context, was the strongestairof reef fish biorass globally (Box 1).



132

133 Next, we identified 15 ‘bright spots’ and 3tark spots’ among the world's coral reefs,
134  defined as sites with biomass levels mihvan two standard deviations higher or

135 lower than expectations from our gldlba@odel, respectively (Fig. 1; Methods;

136 Extended Data Table 3). Rather than simggntifying places in the best or worst
137  condition, our bright spots approach ralgethe places that most strongly defy

138  expectations. Using them to inform the conservation discourse will certainly

139 challenge established ideas of where and bomservation efforts should be focused.
140  For example, remote places far from hunmapacts are conventionally considered
141 near-pristine areas of high conservation Valyet most of the bright spots we

142 identified occur in fished, populated ar€Bstended Data Table 3), some with

143  biomass values below the global averag¢emitively, some remote places such as
144  parts of the NW Hawaiian Istas underperform (i.e. weidentified as dark spots).
145

146  Detailed analysis of why bright spots carade the fate of similar areas facing

147  equivalent stresses will requiaenew research agenda gathg detailed site-level
148 information on social and institutional conditions, technologimabvations, external
149 influences, and ecological processdkat are simply not avable in a global-scale
150 analysis. As a preliminary hypothesis-geteg exercise to begin uncovering why
151  bright and dark spots maywdirge from expectations, wersayed data providers and
152  other experts about the presence or atsef 10 key social and environmental

153  conditions at the 15 bright spots, 35 daplots, and 14 average sites with biomass
154  values closest to model expectations (dethods for details). Our survey revealed
155  that bright spots were moligely to have high levelsf local engagement in the

156 management process, high dependence astalresources, and the presence of
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sociocultural governance iftsttions such as customary tenure or taboos (Fig. 2,
Methods). For example, in one bright spot, Karkar Island, Papua New Guinea,
resource use is restricted through aapide rotational harvest system based on
ecological feedbacks, marine tenure thiaives for the exclusion of fishers from
outside the local village, and initiation righkst limit individuals’ entry into certain
fisheries”. Bright spots were alsgenerally proximate to deep water, which may help
provide a refuge from distbance for corals and fiSh(Fig. 2, Extended Data Fig. 6).
Conversely, dark spots were distinguigiy having fishing technologies allowing
for more intensive exploitation, suchfesh freezers and potentially destructive
netting, as well as a recent history of environmental shacgscpral bleaching or
cyclone; Fig. 2). The latter garticularly worrisome in #context of climate change,

which is likely to lead to increased coral bleaching and more intense cy&lones

Our global analyses highlightvo novel opportunitieto inform coral reef governance.
The first is to use bright spots as aigenf change to expand the conservation
discourse from the current focus pmtecting places under minimal thféaoward
harnessing lessons from places that aeeessfully confronted high pressures.

Our bright spots approach can be used to inform the types of investments and
governance structures that may help to creaiee sustainable pathways for impacted
coral reefs. Specifically, ounitial investigation highlights how investments that
strengthen fisheries governanparticularly issues suas participation and property
rights, could help communities to innovateways that allow them to defy
expectations. Conversely, the more typieiiibrts to providecapture and storage
infrastructure, particularly where there are environmental shocks and local-scale

governance is weak, may lead to social-ecological tfalpat reinforce resource



182  degradation beyond expectatiois$fectively harnessing thgotential to learn from

183  both bright and dark spots will require scietsti® increase research efforts in these
184  places, NGOs to catalyze lessons from other areas, donors to start investing in novel
185  solutions, and policy makers to ensure that governance structures foster flexible
186 learning and experimentatioimdeed, both bright and dark spots may have much to
187  offer in terms of how to creatively confrodtivers of change, identify the paths to

188 avoid and those offering novel managensaittions, and prioritizing conservation
189 actions. Critically, the bright spots we idiéied span the development spectrum from
190 low (Solomon Islands and Papua New Guirted)igh (territories of the USA and

191 UK; Fig. 1) income, showing that lessasisout effective reef management can

192 emerge from diverse places.

193

194 A second opportunity stems from a renéviecus on managing the socioeconomic
195 drivers that shape reef conditions. Many abdrivers are amenable to governance
196 interventions, and our comprehensive arialf8ox 1) shows how an increased policy
197  focus on social drivers such as markets and development could result in

198 improvements to reef fish biomass. Foaewle, given the important influence of

199 markets in our analysis, reef managdmor organisations, conservation groups, and
200 coastal communities could improve sustainability by developing interventions that
201 dampen the negative influence of marlatgeef systems. A portfolio of market

202 interventions, including eco-labelling@ sustainable harvisg certifications,

203 fisheries improvement projects, and vatinain interventions have been developed
204  within large-scale industrial fisheriesiticrease access to markets for seafood that is
205 sourced sustainabfy 23 Although there is considergbscope for adapting these

206 interventions to artisanal @ reef fisheries in both local and regional markets,

10



207  effectively dampening the negative infleenof markets may also require developing
208 novel interventions that address the raofyerays in which markets can lead to

209 overexploitation. Existing resech suggests that marketreate incentives for

210 overexploitation not only byfeecting price and price vibility for reef product®, ,
211  but also by influeniag people’s behavidt, including their willingress to cooperate in
212 the collective management of natural resoufces

213

214  The long-term viability of coral reefs will ultimately depend on international action to
215  reduce carbon emissidfisHowever, fisheries remain a pervasive source of reef
216  degradation, and effective local-level fisheries goveraas crucial to sustaining

217  ecological processes that give reefsItest chance obping with global

218  environmental changeSeeking out and learning frobmight spots has uncovered
219  novel solutions in fields as diverse as human health, development, and B&Siness
220 and this approach may offer insightsoiconfronting the complex governance

221  problems facing coupled human-natural systems such as coral reefs.

222

11
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Figure 1 | Bright and dark spots among the world’s coral reefqa) Each site’s deviation from expect@dmass (y-axis) along a gradient of
nation/state mean biomass (x-axis). Sites Witimass values >2 standard deviationsva or below expected values were coad bright and

dark spots, respectively. The 15 bright &ddark spots are indicated with yellomdablack dots respectively. Each grey waitline represents
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a nation/state in our analysis. Nation/statéh bright or dark spots are laballand numbered, corresponding to the numimepanel b. There
can be multiple bright or dark spots in each nation/state, thus the 50 bright and dark spots are distributed among dtéake/st
conservative precaution, we did not considsit@a bright or dark spot if there meefewer than 5 sites sampled in a nation/state (Methods);
consequently there is one site with biomass levels lower tidht&Elow expectations that is Habelled as a dark spot. BI@British Indian
Ocean Territory (Chagos); PNG= Papua Nevwn@a; CNMI= Commonwealth of the Northelfariana Islands; NWHI= Northwest Hawaiian
Islands; PRIA= Pacific Remote Island Area3.ap highlighting bright spots and dasgots with large circles, and other site small circles.
Bright spots are mostly concentrated dansls of the Pacific and Southeast Asia, while dark spots are spread among eveiopiegh ocean

basin.
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236
237  Figure 2 | Differences in social and enronmental conditions between bright

238  spots, dark spots, and ‘average’ sites. *=p<0.05, **=p<0.01, ***=p<0.00R.
239 values are determined using Fisher’s Exest. Intensive nettingpcludes beach seine

240  nets, surround gill nets, and muro-ami.
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Box 1

Drawing on a broad body of theoretical andpéinal research ihe social sciencé&s?®?’and
ecology®?®on coupled human-natural systems, we quadtiiow reef fish biomass (panel a) was
related to distal social drivessich as markets, affluence, govence, and population (panels b,c),
while controlling for well-known environmental catidns such as depth, habitat, and productivit
(panel d) (Extended Data TableMethods). In contrast to many gldisdudies of reef systems that
are focused on demonstrating theverity of human impaét®ur examination seeks to uncover
potential policy levers by highligimg the relative role of specific social drivers. Critically, the
strongest driver of reef fish biomas®(the largest standardized effect size) was our metric of
potential interactions with urbaentres, called market gravityfExtended Data Fig. 1, 2, 3;
Methods). Specifically, we found that reef fisloimiass decreased as theesand accessibility of
markets increased (Extended Data Fig. 2b, andhBlgte Data Fig. 3). Somewahcounter-intuitively,
fish biomass was higher in places with high Ideaman population growttates, likely reflecting
human migration to areas bétter environmental qualitta phenomenon that could result in
increased degradation at these sites trer. We found a strong pitise, but less certain
relationship ie. a high standardized effesize, with >75% of the pogier distribution above zero)
with the Human Development Indexganing that reefs tended toibébetter condition in wealthief
nations/states (panel c). Our an@yaso confirmed the role thatarine reserves can play in
sustaining biomass on coral reefs, but only when compliance is high (panel b), reinforcing the
importance of fostering complianéar reserves to be successful.

Egz 88 ~
| ~— | ©
80 <
o
72 X
6.4 /g\
®©
56 E
<]
4.8 _6
40 g’
b c d
; ) ' i
High compliance reserve . —— . 1 Productivity i
Human development index —=C— 1
Local population growth - ' 1
, Depth o
Low compliance reserve - Voice & accountability <= |
' Reef slope
Fishing restricted «I} Tourism ﬂr.k .
' Reef crest O
Openly fished 0 | |
Population size —O— Reef | '
Nearest settlement gravity -Q—: ' et lagoon '.':
'
Market gravity - | Reef fish landings -0~ | Reef flat -

-1.0 -05 0.0 05 1.0 -1.0 -05 0.0 05 1.0 -1.0 -05 0.0 05 1.0

Standardised effect size

Global patterns and drivers of reef fish biomass(a) Reef fish biomas [in (log)kg/ha] among
918 study sites across 46 nations/states. For 8luation purposes and to avoid the overlap of
sites in a global map, we display sites as poirtisat vary in size and colour proportional to
amount of fish biomass, with small, red dots idicating low fish biomass and large, green dots
indicating high biomass. b-d) Stadardised effect size of local ste social drivers, nation/state
scale social drivers, and environmental covaates, respectively. Parameter estimates are
Bayesian posterior median values, 95% uncertainty intervals (UI; thin lines), and 50% Ul
(thick lines). Black dots indicate that the 95%JI does not overlap 0; Grey closed circles
indicates that 75% of the posteror distribution lies to one sideof 0; and grey open circles

<

indicate that the 50% Ul overlaps 0.
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Methods

Scales of data

Our data were organized at three spadales: reef (n=2514), site (n=918), and
nation/state (n=46).

i) reef (the smallest scale, which had average of 2.4 surveys/transects -
hereafter 'reef’).

i) site (a cluster of reefs). We clusténeeefs together that were within 4km
of each other, and used the centroidh&fse clusters (hereafter ‘sites’) to
estimate site-level social and slével environmental covariates
(Extended Data Table 1). To make these clusters, we first estimated the
linear distance between adlafs, then used a hierarchical analysis with the
complete-linkage clustering teclynie based on the maximum distance
between reefs. We set the cut-off atto select mutually exclusive sites
where reefs cannot be more distéman 4km. The choice of 4km was
informed by a 3-year study of theadj@l movement patterns of artisanal
coral reef fishers, corsponding to the highest density of fishing activities
on reefs based on GPS-derived effomsiy maps of artisanal coral reef
fishing activitie§™. This clustering analysis was carried out using the R
functions ‘hclust’ and ‘cutree’, resuly in an average of 2.7 reefs/site.

iii) Nation/state (nation, state, or territonp).larger scale irour analysis was
‘nation/state’, which are jurisdions that generally correspond to
individual nations (butcould also include states, territories, overseas

regions, or extremely remote areaghim a state such as the northwest

16
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Hawaiian Islands; Extended Data Table 2), within which sites and reefs

were nested for analysis.

Estimating Biomass

Reef fish biomass can reflect a broad cted@ of reef fish functioning and benthic
conditions?*#3* and is a key metric of resource aahility for reef fisheries. Reef

fish biomass estimates were based oramsineous visual counts from 6,088 surveys
collected from 2,514 reefs. All surveys used standard belt-transects, distance sampling,
or point-counts, and were conductestween 2004 and 2013. Where data from

multiple years were available from a singtef, we included only data from the year
closest to 2010. Within each survey aregf mssociated fishes were identified to

species level, abundance counted, and ketagjth (TL) estimated, with the exception

of one data provider who measdrbiomass at the family level. To make estimates of
biomass from these transect-ledata comparable among studies, we:

i) Retained families that were consistently studied and were above a
minimum size cut-off. Thus, we retad counts of >10cm diurnally-active,
non-cryptic reef fish that are residenmt the reef (20 families, 774 species),
excluding sharks and semi-pelagiesies (Extended Data Table 4). We
also excluded three groups of fisheatthre strongly associated with coral
habitat conditions and are rarg@fyrgets for fisheries (Anthiinae,
Chaetodontidae, and Cirrhitidae). Weatdhted total biomass of fishes on
each reef using standard published sgpetevel length-weight relationship
parameters or those available on FishBas®hen length-weight
relationship parameters were notidable for a species, we used the

parameters for a closely related species or genus.

17



290 i) Directly accounted for depth and hab#éa covariates in the model (see

291 “environmental conditins” section below);

292 i) Accounted for any potential biasnong data providers (capturing

293 information on both inter-observer differences, and census methods) by
294 including each data provider agandom effect in our model.

295

296 Biomass means, medians, and standard tiengawere calculatedt the reef-scale.
297  All reported log valuesare the natural log.

298

299  Social Drivers

300 1. Local Population GrowthWe created a 100km buffer around each site and used
301 this to calculate human population witlihe buffer in 2000 and 2010 based on the
302 Socioeconomic Data and Applicationr@e (SEDAC) gridded population of the

303 world databas® Population growth was the gartional difference between the

304 population in 2000 and 2010. We chose a 100km buffer as a reasonable range at
305 which many key human impacts from popida (e.g., land-use and nutrients) might
306 affect reefd’,

307

308 2. Managementtor each site, we determined if it was: i) unfished- whether it fell
309 within the borders of a no-take marine mege We asked data providers to further
310 classify whether the reserve had high av levels of compliance; ii) restricted -

311 whether there were active restrictions oargge.g. bans on the use of nets, spearguns,
312  ortraps) or fishing effort (which could ¥ included areas inside marine parks that

313  were not necessarily no take); or iighied - regularly fished without effective

18
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338

restrictions. To determine these classificatjoms used the expeopinion of the data

providers, and triangulated this with @lghl database of mae reserve boundari@s

3. Gravity: We adapted the economic geography concegtafity, also called
interactanc®, to examine potential interactiohstween reefs and: i) major urban
centres/markets (defined as provincial capital cities, major population centres,
landmark cities, national capitals, and ports); and ii) the nearest human settlements
(Extended Data Fig. 1). This applicationtleé gravity concept infers that potential
interactions increase with population sikat decay exponentiallyith the effective
distance between two points. Thus, we gegld data on both population estimates and

a surrogate for distance: travel time.

Population estimations

We gathered population estimates fbrthe nearest major markets (which
includes national capitals,gurincial capitals, major popafion centres, ports,
and landmark cities) using the World Cities base map from B'SBhd 2) the
nearest human settlement witlir500km radius using LandS¢&r2011
database. The different datasets weggired because the latter is available in
raster format while the former is akable as point data. We chose a 500km
radius from the nearest settlemantthe maximum distance any non-market

fishing activities for fresh redish are likely to occur.

Traveltimecalculation

Travel time was computed using a cost-distance algorithm that computes the

least ‘cost’ (in minutes) dfavelling between two locations on a regular raster

19



339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

grid. In our case, the twodations were either: 1) tleentroid of the site (i.e.
reef cluster) and the neatrsgttlement, or 2) the ceaid of the site and the
major market. The cost (i.e. time) tohvelling between the two locations was
determined by using a raster gridlafd cover and road networks with the
cells containing values that represtre time required ttravel across thefth
(Extended Data Table 5), we termed this raster ghictt@on-surface(with the
time required to travel across differéypes of surfaces analogous to different
levels of friction). To develop the frictiesurface, we used global datasets of
road networks, land cover, and shorelines:

- Road network data was extracted from the Vector Map Level 0

(VMapO0) from the National Imagery and Mapping Agency's (NIMA)

Digital Chart of the World (DCW®)We converted vector data from

VMapO0 to 1km resolution raster.

- Land cover data were extracted from the Global Land Covef2000

-To define the shorelines, we usbeé GSHHS (Global Self-consistent,

Hierarchical, High-resolution Sheline) database version 2.2.2.

These three friction components (road networks, land cover, and water bodies)
were combined into a single frictiaurface with a Behrmann map projection.

We calculated our cost-distance models fhiRing theaccCostfunction of
the'gdistancepackage. The function uses Dijkstra’s algorithm to calculate
least-cost distance between two cells on the grid and the associated distance
taking into account obstacles ane thcal friction ofthe landscag@ Travel

time estimates over a particular surface could be affected by the infrastructure

(e.g. road quality) and types of techogy used (e.g. types of boats). These
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types of data were not availablesaglobal scale but could be important

modifications in more localised studies.

Gravity computation
i) To compute the gravity to the neat market, we calculated the population
of the nearest major market and ded that by the cuared travel time
between the market and the site. Although other exponents can B& wsed
used the squared distance (or in ousecaravel time), which is relatively
common in geography and economics. This decay function could be
influenced by local considerations, sugh infrastructureguality (e.g. roads),
the types of transport technology (i.essels being used), and fuel prices,
which were not available in a comparabbemat for this global analysis, but
could be important considerations inmadocalised adaptations of this study.
i) To determine the gravity of the neat settlement, we located the nearest
populated pixel within 500ks, determined the populati of that pixel, and
divided that by the squarachvel time between thaell and the reef site.
As is standard practice in maagricultural economics studfsan assumption in
our study is that the nearest major captdandmark city represents a market.
Ideally we would have used a global datbaf all local andegional markets for
coral reef fish, but tls type of database not available at a global scale. As a
sensitivity analysis to help justify oassumption that capital and landmark cities
were a reasonable proxy for reef fish nesk we tested a series of candidate
models that predicted biomass based ormub)ulative gravity of all cities within
500km; 2) gravity of the nearest city; tBavel time to tke nearest city; 4)

population of the nearest city; 5) gravitythe nearest human population above 40
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389 people/km (assumed to be a small peri-urtzara and potential local market); 6)

390 the travel time between tmeef and a small peri-urbamea; 7) the population size
391 of the small peri-urban population; §avity to the nearest human population
392 above 75 people/kh{assumed to be a large peri-urban area and potential market);
393 9) the travel time betweendheef and this large perrhan population; 10) the
394 population size of this laggperi-urban populationnd 11) the total population

395 size within a 500km radius. Model selectirevealed that the best two models
396 were gravity of the nearest city and gtgwf all cities within 500km (with a 3

397 AIC value difference between them; Extended Data Table 6). Importantly, when
398 looking at the individual components gifavity models, the travel time

399 components all had a much lower AIC value than the population components,
400 which is broadly consistent withrevious systematic review studigsSimilarly,

401 travel time to the nearest city had a lowdC score than any aspect of either the
402 peri-urban or urban measures. This sstgeur use of capital and landmark cities
403 is likely to better capturexploitation drivers from mikets rather than simple

404 population pressures. This may be beeamarket dynamics are difficult to

405 capture by population threshold estimates example some small provincial

406 capitals where fish markets are locatedeheery low population densities, while
407 some larger population centres may nateha market. Downscaled regional or
408 local analyses could attemnio use more detailed knéedge about fish markets,
409 but we used the best proxyaahable at a global scale.

410

411 4. Human Development Index (HDHDI is a summary measure of human

412  development encompassing: a long andthgdife, being knowledgeable, and having
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a decent standard of living. tmses where HDI values waret available specific to

the State (e.g. Florida and Hawaii), wedishe national (e.4¢JSA) HDI value.

5. Population Size~or each Nation/state, wetdamined the size of the human
population. Data were derived mainlpifn census reports, the CIA fact book, and

Wikipedia.

6. Tourism We examined touristravals relative to the nen/state population size
(above). Tourism arrivals were gatedrmprimarily from the World Tourism

Organization’s Compendium of Tourism Statistics.

7. National Reef Fish Landing€atch data were obtaihérom the Sea Around Us
Project (SAUP) catch database (www.seaadus.org), except for Florida, which

was not reported separately in the databdseidentified 200 reef fish species and
taxon groups in the SAUP catch dataadeote that reef-associated pelagics such as
scombrids and carangids normally form pHrteef fish catches. However, we chose
not to include these species because #reyalso targeted and caught in large

amounts by large-scale, non-reef operations.

8. Voice and Accountabilityfhis metric, from the World Bank survey on governance,
reflects the perceptions tife extent to which a country's citizens are able to
participate in selecting thegovernment, as well as freedom of expression, freedom
of association, and a free dia. In cases where governance values were not available
specific to the Nation/state (e.g. FloridadeHawaii), we used national (e.g. USA)

values.
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438

439  Environmental Drivers

440 1. Depth The depth of reef surveywere grouped into thelfowing categories: <4m,
441  4-10m, >10m to account for broad diffeces in reef fish community structure

442  attributable to a number of inter-linkelépth-related factors. Categories were

443  necessary to standardise methods used tayptaviders and were determined by pre-
444  existing categories used bgveral data providers.

445

446 2. Habitat: We included the following habitat temories: i) Slope: The reef slope
447  habitat is typically on the oceaide of a reef, where the reef slopes down into deeper
448  water; ii) Crest: The reef crest habitat is sieetion that joins aeef slope to the reef
449  flat. The zone is typified by high wave eggr(i.e. where the wavdsgeak). It is also
450 typified by a change in the angle of the rigef an inclined slopé& a horizontal reef
451 flat; iii) Flat: The reef flat habitat ig/pically horizontal and extends back from the
452  reef crest for 10’s to 100@&f metres; iv) Lagoon / badkef: Lagoonal reef habitats
453  are where the continuous reef flat breaks up into mpatehy reef environments

454  sheltered from wave energy. These habitatsbe behind barrier / fringing reefs or
455  within atolls. Back reef habitats arersiar broken habitats where the wave energy
456  does not typically reach the reefs and tfaums a less continuous 'lagoon style' reef
457  habitat. Due to minimal representatimmong our sample, we excluded other less
458  prevalent habitat types, such as chanaetsbanks. To verify the sites’ habitat

459 information, we used the Millenniu@oral Reef Mapping Project (MCRMP)

460 hierarchical dat& Google Earth, and site depth information.

461
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469

470

471
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479

480

481

482

483

484

485

3. Productivity We examined ocean productivity for each of our sitesinmg C/ m2/
day (http://www.science.oregdase.edu/ocean.productivitylysing the monthly data
for years 2005 to 2010 (in hdf format), weported and converted those data into
ArcGIS. We then calculated yearly averagel finally an average for all these years.
We used a 100km buffer around each of our sites and examined the average
productivity within that rdius. Note that ocean prodiwty estimates are less

accurate for nearshore environments, butiaed the best available data.

Analyses

We first looked for collinearity among ouovariates using bivaate correlations and
variance inflation factor estimates (Exted Data Fig. 4, Extended Data Table 7).
This led to the exclusion of severaivariates (not deribed above): ilseographic
Basin(Tropical Atlantic, western Indo-Pacifi€entral Indo-Pacific, or eastern Indo-
Pacific); ii) Gross Domestic Produ¢purchasing poweparity); iii) Rule of Law
(World Bank governance index); iQontrol of Corruption(World Bank governance
index); and y SedimentationAdditionally, we removed an index of climate stress,
developed by Maina et &, which incorporated 1different environmental
conditions, such as the mean and valitgtof sea surface temperature due to
repeated lack of convergence for this parameter in the model, likely indicative of
unidentified multi-collinearity. A other covariates had correlation coefficients 0.7 or
less and Variance Inflation Factor scoesss than 5 (indicating multicolinearity was
not a serious concern). Care must be takexausal attribution afovariates that were
significant in our model, but demonstratedirearity with candidge covariates that

were removed during the aforementionedgesss. Importantljthe covariate that
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exhibited the largest effect size in onodel, market gravity, was not strongly

collinear with other candidate covariates.

To quantify the multi-scale social, environmental, and economic factors affecting reef
fish biomass we adopted a Bayesian her@al modelling apprach that explicitly

recognized the three scalessphtial organization: reeff)( site k), and nation/states),

In adopting the Bayesian approach weealeped two models for inference: a null
model, consisting only of the hierarchicatits of observation .@. intercepts-only)
and a full model that included all of our conaes (drivers) ointerest. Covariates
were entered into the model at the relevsaatle, leading to a hierarchical model
whereby lower-level intercepts (average®re placed in theomtext of higher-level
covariates in which they we nested. We used the nolbdel as a baseline against
which we could ensure that our full mdgerformed better than a model with no
covariate information. We didot remove 'non-significarntovariates from the model
because each covariate was carefully imred for inclusion and could therefore
reasonably be considered as having aecgfeven if small or uncertain; removing
factors from the model is equivalent twifig parameter estimates at exactly zero - a
highly-subjective modelling decision after coates have already been selected as

potentially importan®.

The full model assumed the observed, emvinental-scale observations of fish

biomass Yixs) were modelled using a noncentral-T distribution, allowing for fatter

tails than typical log-normahodels of reef fish bioma¥s
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log(yijks)~NoncentralT(,ul-jks, Treefs 3.5)

Uijrs = Bojks + Breeereef

‘Ereef~U(0,100)_2

with Xeer representing the matrix of observeavironmental-scale covariates and

Breer the array of estimate@ef-scale parameters. The., (and all subsequenmts)

were assumed common across observatiottgifinal model and were minimally
informative®. Using a similar structure, the environmental-scale intercBpts X

were structured as a function of site-scale covariags (

ﬁojks“'N(.ujksr Tsit)
Hjks = Yoks + VsitXsit

T4:~U(0,100) 2

with y;, representing an array of site-scpgrameters. Building upon the hierarchy,

the site-scale interceptgyf) were structured as a funmti of state-scale covariates

(Xsta):
Yoks ~N(ﬂksr Tsta)
Hks = Yos + VstaXsta

Tsra~U(0,100)72

Finally, at the top scale of the analysis al®@wed for a global (overall) estimate of

average log-biomasg():
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Yos NN(MO! Tglo)
1o ~N(0.0,1000)

T410~U(0,100)72.

The relationships between fish biomasd anvironmental, site, and state scale
drivers was carried out using the PyMC pacRafm the Python programming
language, using a Metropolis-Hastings (MH) sampler run foitéfations, with a
900,000 iteration burn in, leaving 10,000 samptethe posterior distribution of each
parameter; these long burn-in times atemfequired with a complex model using

the MH algorithm. Convergence was mong by examining posterior chains and
distributions for stability and by running multiple chains from different starting points
and checking for convergenceng Gelman-Rubin statistitsfor parameters across
multiple chains; all were at or closelpindicating good convergence of parameters

across multiple chains.

Overall model fit

We conducted posterior predictive checksgoodness of fit (GoF) using Bayesian p-
valued® (BpV), whereby fit was assessedthe discrepancy between observed or
simulated data and their expected valdesdo this we simulated new datg@'{") by
sampling from the joint posterior of our mod@) &nd calculated the Freeman-Tukey
measure of discrepancy for the obseryg¥¥ or simulated data, given their expected

values fs):

DIO) = Ly —m)?
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yielding two arrays of median discrepanc2g°°16) and D(y™"{6) that were then
used to calculate a BpV for our modey recording the proportion of timé&(y°*36)

was greater thaD(y"®"|0) (Extended Data Fig. 5). A BpV above 0.975 or under 0.025
provides substantial evidender lack of model fit. Evaluated by the Deviance
Information Criterion (DIC), the full mdel greatly outperformed the null model

(ADIC=472).

To examine homoscedasticity, we checkesildgals against fitted values. We also
checked the residuals against all covasgancluded in the model, and several
covariates that were notcluded in the model (primarily due to collinearity),
including: 1)Atoll - A binary metric of whether the reef was on an atoll or not; 2)
Control of Corruption:Perceptions of the extentwdhich public power is exercised
for private gain, including both petty agdand forms of corruption, as well as
‘capture’ of the state by elites and ptevinterests. Derived from the World Bank
survey on governance; @eographic Basiwhether the site was in the Tropical
Atlantic, western Indo-Pacific, Centraldo-Pacific, or eastern Indo-Pacific; 4)
Connectivity- we examined 3 measures basethenarea of coral reef within a 30km,
100km, and 600km radius of the site;:38®dimentation6) Coral Cover(which was
only available for a subset of the sites)Climate stres¥: and 8)Census method
The model residuals showed no patterith ¥hese eight additional covariates,

suggesting they would not explain additional information in our model.

Bright and dark spot estimates

Because the performance of site scatations are of substantial interest in
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uncovering novel solutions for reef conservatiwe,defined brighéind dark spots at
the site scale. To this end, we defifeht (or dark) spots as locations where

expected site-scale intercepyg;) differed by more than two standard deviations
from their nation/state-scale expected vajyg) given all the covariates present in

the full hierarchical model:

SSspot = |(Urs — Yoks)| > 2[SD (ks — Yoks)]-

This, in effect, probabilistically identifiethe most deviant sites, given the model,
while shrinking sites toward their grp-level means, thereby allowing us to
overcome potential bias due to low and vagysample sizes that can lead to extreme
values from chance alone. As a conservaineeaution, we did not consider a site a
bright or dark spot if th group-level (i.e. nation/s®tmean had fewer than 5

estimates (sites).

Analysing conditionat bright spots

For our preliminary investigation of whyright and dark spots may diverge from
expectations, we surveyed data prevedand other experts about key social,
institutional, and environmental conditionstla¢ 15 bright spot5 dark spots, and
14 sites that performed rsioclosely to model specifications. Specifically, we
developed an online survey using Survey MonKesoftware, which we asked data
providers who sampled those sites to conepléth input from local experts where
necessary. Data providersngeally filled in the survey in consultation with
nationally-based fiel team members who had digd local knowledge of the
socioeconomic and environmental conditionsah of the sites. Research on bright

spots in agricultural developméhhighlights several types of social and
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environmental conditions that may leadotight spots, which we adapted and

developed proxies for as the basis of ouwey into why our bright and dark spots

may diverge from expectations. These include:

1)

ii)

Social and institutional condition¥Ve examined the presence of
customary management institutions such as taboos and marine tenure
institutions, whether there was a highel of engagement by local people
in management, whether there waghhlevels of dependence on marine
resources (whether a majority of locakidents depend on reef fish as a
primary source of food or income)lIAocial and institutional conditions
were recorded as presence/aiage Dependence on resources and
engagement were limited to sites thatl adjacent human populations. All
other conditions were recorded redass of whether there is an adjacent
community;

Technological use/innovatiollVe examined the presence of motorised
vessels, intensive capture equipm@uich as beach seine nets, surround
gill nets, and muro-ami nets), astbrage capacity (i.e. freezers); and
External influencegsuch as donor-driven projects). We examined the
presence of NGOs, fishery developmprojects, develpment initiatives
(such as alternative livelihoods), aligheries improvement projects. All
external influences were recordedpassent/absent then summarised into
a single index of whether externabpects were occurring at the site;
Environmental/ecological process@sg. recruitment & connectivity). We
examined whether sites were witlikm of mangroves and deep-water

refuges, and whether there had baey major environmental disturbances
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such as coral bleaching, tsunami, andayes within the past 5 years. All

environmental conditions were recorded as present/absent.

To test for associations between these d¢andi and whether sites diverged more or
less from expectations, we used two ctanpentary approaches. The link between the
presence/absence of the aforementiommediitions and whether a site was bright,
average, or dark was assessed using a Bdbeact Test. Then we tested whether the
mean deviation in fish biomass frompected was similar between sites with
presence or absence of the mechanismsi@stion (i.e. the presence or absence of
marine tenure/taboos) using an ANOV#saming unequal variance. The two tests
yielded similar results, but provide slightly different ways to conceptualise the issue,
the former is correlative while the latexplains deviation fnm expectations based

on conditions, so we provide both @bre 2, Extended Data Fig. 6).
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End Notes
Supplementary Information is linked to the online versibthe paper at

www.nature.com/nature.
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Extended Data Tables

Extended Data Table 1 | Summary of social and environmental covariates.

Further details can be found in the Supmetal Online Methods. The smallest scale

is the individual reef. Siteonsist of clusters of regfvithin 4km of each other.

Nation/states generally correspond to couriity,can also includer territories or

states, particularly when geogtacally isolated (e.g. Hawaii).

Covariate Description Scale Key data sources
Local Difference in local Site Socioeconomic Data and
population  human population Application Centre (SEDAC)
growth (i.e. 100km buffer gridded population of the work

around our sites) databas®

between 2000-201!
‘Gravity’ of  The population of Site Humarpopulaton size, land cover,
major the major market road networks, coastlines
markets divided by the
within squared travel time
500km between the reef

sites and the

market. This value

was summed for all

major markets

within 500km of

the site.
‘Gravity’ of  The population of  Site Human population gg, land cover,
the closest the nearest human road networks, coastlines
human settlement divided
settlement by the squared

travel time betweer

the reef site and thi

settlement.
Protection =~ Whether the reefis Reef Expert opinion, global map of

40



status openly fished, marine protected areas.
restricted (e.qg.
effective gear bans
or effort
restrictions), or

unfished

Population  Total population ~ Nation/  World Bank, census estimates,
Size size of the state Wikipedia

jurisdiction

Voice and Perceptions of the Nation/  World Bank

accountabili extent to whicha state
ty country's citizens
are able to
participate in
selecting their
government.



National Results from Nation/ Mora et a!.!

fisheries survey of national state
poaching fisheries managers
about levels of
compliance with
national fisheries

regulations

Productivity The average (2005-Site http://www.science.oregonstate.edu/
2010) ocean ocean.productivity/
productivity in mg
C/m2/day

Depth Depth of the Reef Primarydata

ecological survey
(<4m, 4.1-10m,
>10m)
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807
808
809
810
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Extended Data Table 2 | List of ‘Natim/states’ covered in study and their

respective average biomass (ptuor minus standard error) In most cases,

nation/state refers to an initiual country, but can alsodlude states (e.g. Hawaii or

Florida), territories (e.g. British Indian Oce@arritory), or other jurisdictions. We

treated the NW Hawaiian Islds and Farquhar as segaraation/states’ from

Hawaii and Seychelles, respectively, becahsg are extremely isolated and have

little or no human population. jpractical terms, this meant different values for a few

nation/state scale indicatdigat ended up having relativedynall effect sizes, anyway

(Fig. 1b): Population, tourism visitations)din the case of NW Hawaiian Island, fish

landings.
Nation/states Average biomass (= SE)
American Samoa 235.93 (x17.75)
Australia 735.01 (x136.85)
Belize 981.16 (£ 65.32)
Brazil 663.35 (x115.17)
British Indian Ocean Territory (Chagos) 2975.58 (+603.99)
Cayman Islands 464.09 (x25.41)
Colombia 846.07 (£ 162.49)
Commonwealth of the Northern Mariana Islands 505.54 (£99.3)
Comoros Islands 305.62 (£ 38.73)
Cuba 2107.37  (+466.34)
Egypt 552.73 (= 70.18)
Farquhar 2665.48 (£ 492.62)
Federated States of Micronesia 377.90 NA (n=1)
Fiji 1464.54  (+ 144.39)
Florida 1661.35 (+198.42)
French Polynesia 1077.20 (x101.4)
Guam 118.98 (x16.81)
Hawaii 380.45 (£ 25.11)
Indonesia 275.76 (= 19.89)
Israel 445.16 (£ 105.13)
Jamaica 275.77 (= 50.75)
Kenya 335.25 (£ 65.81)
Kiribati 1219.93 (x93.2)
Madagascar 409.48 (£ 46.1)
Maldives 688.64 (x97.07)
Marshall Islands 707.72  (x174.38)
Mauritius 166.93 (x73.7)
Mayotte 631.43 (= 68.25)
Mexico 1930.81 (x 737.09)

43



812

Mozambique
Netherlands Antilles
New Caledonia

NW Hawaiian Islands
Oman

Palau

Panama

Papua New Guinea
Philippines

Pacific Remote Island Areas (PRIA), USA
Reunion

Seychelles

Solomon Islands
Tanzania

Tonga

United Arab Emirates
Venezuela

461.01
428.01
1460.27
729.71
282.79
3212.26
373.78
566.70
202.62
641.47
172.32
446.99
1280.30
346.29
1149.97
81.35
1472.39

(+ 60.14)
(+ 53.99)
(+ 143.18)
(+ 46.33)

(+70.22)

(+ 332.02)

(+ 85.41)
(+ 31.76)
NA(n=1)
(£ 79.25)

(+ 30.67)

(+ 46.6)
(£ 216.74)
(+ 41.51)
(+ 151.27)
(+ 28.66)
(+ 496.95)
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Extended Data Table 3| List of Bright and Dark Spot locations, population status,

and protection status.

Bright Nation/State Location Populated Protection
or Dark
_?_rltlgh Indian Ocean Chagos Unpopulated Unflshed (high
erritory compliance)
Commonwealth of  Agrihan Unpopulated Fished
ngrll\ld(;rthern Mariana Guguan Unpopulated Fished
Raja Ampat 1 Populated Restricted
Indonesia Raja Ampat 2 Populated Restricted
Kalimantan Populated Restricted
Bright Kiribati Tabueran 1 Populated Fished
Tabueran 2 Populated Fished
Papua New Guinea Karkar Populated Restricted
PRIA Bakgr Unpopulated Restrictgd
Jarvis Island  Unpopulated Restricted
Choiseul Populated Fished
Solomon Islands Isabfel Populated Fished
Makira Populated Fished
New Georgia Populated Fished
Australia LordHowe  Populated Unflsh_ed (high
compliance)
Hawaii Populated Fished
Kauai 1 Populated Fished
Kauai 2 Populated Fished
Lanai Populated Fished
Maui 1 Populated Fished
Maui 2 Populated Fished
Hawalii Molokai Populated Fished
Oahu 1 Populated Fished
Oahu 2 Populated Fished
Oahu 3 Populated Fished
Dark Oahu 4 Populated Fished
Oahu 5 Populated Fished
Oahu 6 Populated Fished
Tarlmunjawa Populated Fished
Karimunjawa Unfished (low
. Populated .
Indonesia 2 compliance)
Karimunjawa Unfished (low
Populated .
3 compliance)

Pulau Aceh Populated Fished
Montego Bay Unfished (low

Populated

. 1 compliance)
Jamaica Montego Bay
2 Populated Fished
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Rio Bueno Populated Fished

Kenya Diani Populated Fished
Madagascar Toliara Populated Fished
Mauritius Anse Raie Populated Fished
Grand Sable  Populated Fished
Lisianski Unpopulated Unﬂsh_ed (high
compliance)
NW Hawaii Pearl & Unfished (high
Unpopulated .
Hermes 1 compliance)
Pearl & Unfished (high
Hermes 2 Unpopulated compliance)
Reunion Reunion Populated Fished
Seychelles BeDmbre Populated Restricted
Bongoyo Populated Unflsh_ed (high
compliance)
Tanzania Chapwani Populated Fished
Mtwara Populated Fished
Stong Town, Populated Fished
Zanzibar
Venezuela Chuspa Populated Fished

816
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Extended Data Table 4| List of fish fanilies included in the study, their common

name, and whether they are commonly targed in artisanal coral reef fisheries.

Note: Targeting of reef fishes can varylbgation due to gear, cultural preferences,

and a range of other considerations.

Fish family Common family nhame Fishery target
Acanthuridae Surgeonfishes Target
Balistidae Triggerfishes Non-target
Diodontidae Porcupinefishes Non-target
Ephippidae Batfishes Target
Haemulidae Sweetlips Target
Kyphosidae Drummers Target
Labridae Wrasses and Parrotfish Target >20cm
Lethrinidae Emperors Target
Lutjanidae Snappers Target
Monacanthidae Filefishes Non-target
Mullidae Goatfishes Target
Nemipteridae Coral Breams Target
Pinguipedidae Sandperches Non-target
Pomacanthidae Angelfishes Target >20cm
Serranidae Groupers Target
Siganidae Rabbitfishes Target
Sparidae Porgies Target
Synodontidae Lizardfishes Non-target
Tetraodontidae Pufferfishes Non-target
Zanclidae Moorish Idol Non-target
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Extended Data Table 5 | Travel time estimates by land cover typAdapted from

Nelsorf®

Global Land Cover Global Class Speed associated (km/h)

Tree Cover, broadleavededduous & evergreen, closed; 1
regularly flooded Tree Cover, Shrub, or Herbaceous Cover
(fresh, saline, & brackish water)

Tree Cover, broadleaved, deciduous, open 1.25
(open= 15-40% tree cover)

Tree Cover, needle-leavetkciduous & evergreen, mixed 1.6
leaf type; Shrub Covecjosed-open, deciduous &

evergreen; Herbaceous Covelnsed-open; Cultivated and
managed areas; Mosaic:dptand / Tree Cover / Other

natural vegetation, Croplan&hrub or Grass Cover

Mosaic: Tree cover / Other naal vegetation; Tree Cover, 1.25

burnt

Sparse Herbaceous or sparse Shrub Cover 2.5
Water 20
Roads 60
Track 30
Artificial surfaces and associated areas 30
Missing values 1.4
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831

Extended Data Table 6 | Variance Inflatim Factor Scores (VIF) for continuous

data before and after removing variables due to colinearityX = covariate

removed.
Covariate starting ending
VIF VIF
Market gravity (log) 1.9 15
nearest settlement 1.4 1.3
gravity
Population growth 1.4 1.3
Climate stress 2.7 2.0
Ocean productivity 6.5 2.2
Sedimentation 6.0 X
Tourism 2.5 X
Control Corruption 10.5 X
GDP 8.2 X
HDI 5.5 3.3
Population size 1.9 1.8
Reef fish landings 3.1 2.2
Rule of Law 33.8 X
Voice and 3.2 3.2

Accountability
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Extended Data Table 7| Model selection of potential gravity indicators and

components.
Model Covariates AIC Delta

AIC
M2 Gravity of nearest city 2666.4 0
M1 Gravity of all cities in 500km 2669.5 3.1
M3 Travel time to nearest city 2700.0 33.6
M5 Gravity of nearest small perroan area (40 people/km2) 2703.9 37.5
M11 Total Population in 500km radius 2712.0 45.6
M9 Travel time to the neast large peri-urban area (75 people/km2) 2712.1 45.7
M6 Travel time to nearest small peri-urban area (40 people/lkm2 2713.8 47.4
M8 Gravity to the nearest large pamban area (75 people/km2) 2722.9 56.5
M7 Population of nearest small peri-urban area (40 people/km2) 2792.7 126.3
M4 Population of the nearest city 2812.8 146.5
M10 Population of the nearest largeri-urban area (75 people/km2, 2822.2 155.8
MO Intercept only 2827.7 161.27
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Extended Data Figure Legends

a

o
@
o

Log Gravity

i

People (millions)

0.2

o 20h 40h 80h 80h 100h
Travel time (hours)

Extended Data Figure 1] a) A heuristic of the gravity concept where interactions
between people and reefs are a functiopagfulation size (p) and the time it takes to
travel to the reef (ttBeginning in the 1800s, the amept of ‘gravity’ has been
applied to measure economic interactianigration patterns, and trade fldwg">°
Drawing on an analogy from Newton’s LakGravitation, the gravity concept
predicts that interactions between tworngsiare positively related to their mass (i.e.,
population) and inversely re&d to the distance betwetrem. Here, we adapt the
gravity concept to examine interactidmetween people anédefs. We posit that

human interactions with r@ef will be a function ofhe population of a place (p)
divided by the squared time it takes to traglto the reefs (i.etravel time). Thus,
gravity values could be similar for placestlare large but far from the reefs (e.g. p

= 30,000 people,.t 10hours) as to those with smadipulations that are close to the
reef (e.g. p= 300 people, §=1 hour). We used travel time instead of linear distance
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852  to account for the differences incurred gvelling over differensurfaces (e.g. water,
853 roads, tracks—see Methods). We developed gravity measures for the nearest human
854 settlement and for the nearest major mafttetined as provincial capitals, ports, and
855 other large, populated places- see Methdaskravity isoclines along gradients of

856  population size and travel time.

857
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865
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868
869

Extended Data Figure 2 | Marginal relationships between reef fish biomass and
site-level social driversa) local population growth, lmharket gravity, c) nearest
settlement gravity, d) tourism, e) natistate population size, f) Human development
Index, g) high compliance marine reserve (fisked baseline), h) restricted fishing
(O is fished baseline), i) low compliance nmarireserve (O is fished baseline), j) voice
and accountability, k) reefdn landings, 1) ocean productivity; m) depth (-1= 0-4m,
0=4-10m, 1=>10m), n) reef flat (0 is reebge baseline), o) reefest flat (0 is reef
slope baseline), p) lagoon/badef flat (O is reef slopkaseline). All X variables are
standardized. ** 95% of the posterior densstgither a positive or negative direction
(Box 1); * 75% of the posterior densityegher a positive or negative direction.

a. Local Population Growth b. Market Gravity 1o €. Nearest Settlement Gravity d. Tourism ;v @. Nation/state population size ;. f. Human Development Index

Beta=0.40{0:25, 0.56)" : Beta=-0.52(-0.72, 0.33)" 3 Beta=-0.22-0.41,-0.04)*" 45 Beta=-0.03(037, 031) 45 Beta=-0.16{-062, 0.24) . Beta= 0.16(-0.27, 0.60)*

. High Compliance Reserve h. Restricted F ishing ) 1. Low Compliance Reserve j. Voice any dA countability + 5 k. Reef Fish Landings

=~

" Beta=0.51(03, 0751 - Beuis 008 08, 024) “Betam 00801, 026 ‘ Betas 003041, 0.41) . Betas 025063, 0.17)"

n Productivity - m. Depth ) " jan. Reef Flat --oReeICmsl p. Lageon/back Reef ’

—

Beta=0.1500.12, 0.41)* - Bela 000002, 015 Beta=-025(-041,-0.1)* Beta= -0.01(-0.18,0.17)* *  Beta=-021(-034,-007¥*
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871 Extended Data Figure 3 Market gravity and fish biomass.Relationship between
872  market gravity and a) reef fish biomass; b) targeted reef fish biomass (using fish
873 families targeted by artisanal fisheries spediin Extended Data Table 2); ¢) non-
874 target reef fish biomass. The strong rellaship between gravity and reef fish biomass
875 is very similar for the biomass of fishesgeally targeted by artisanal fisheries, but
876  very different for non-target fishes. Thisggests that the relationship between market
877  gravity and fish biomass is primarily dem by fishing, rather than other potential

878 human impacts of urban areas (ssehtation, nutrients, pollution, etc.).
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879 Extended Data Figure 4[Correlation plot of candidate continuous covariates bef@ accounting for colinearity (Extended Data Table 7).
880  Colinearity between continuous and categoramadariates (including biegpgraphic region, habitgirotection status, and déptwere analysed
881  using boxplots.

882
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Bayesian p-values

BpV=0.63

Simulated

884 > Observed ‘
885 Extended Data Figure 5 Model fit statistics. Bayesian p Values (BpV) for the full

886  model indicating goodness of fit, based ontpoer discrepancy. Points are Freeman-
887  Tukey differences between observed anceetgd values, and simulated and expected
888  values. Plot shows no evidence for lackipbetween the model and the data.

889
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