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The flagellar beat is extracted from human sperm digital imaging microscopy and used to
determine the flow around the cell and its trajectory, via boundary element simulation. Comparison
of the predicted cell trajectory with observation demonstrates that simulation can predict fine-scale
sperm dynamics at the qualitative level. The flow field is also observed to reduce to a time-dependent
summation of regularized Stokes flow singularities, approximated at leading order by a blinking
force triplet. Such regularized singularity decompositions may be used to upscale cell level detail
into population models of human sperm motility.

PACS numbers: 47.63.mf, 47.63.Gd, 87.19.ru

The flagellum is a moving whip-like cellular appendage
found on numerous protozoa and the spermatozoa of
almost all species. In particular, the subject of male
sub-fertility has led to extensive quantitative studies
of human sperm motility [1–4], while even single cell
studies can generate extensive information, in particular
from digital imaging microscopy. However, the tools for
examining human sperm digital imaging microscopy are
founded from an era where only the cell body, and not
the flagellum, could be readily resolved [1, 2]. Apart
from some simulations of velocity magnitude [5] and
surface attraction [6], there is relatively less detailed
characterisation of the fluid dynamics associated with the
human sperm flagellar beat.

More extensive characterisation of the fluid dynamics
of other flagellates is available. For instance, flows have
been reconstructed from the flagellar waveform for the
algae C. reinhardtii, using numerical simulation [7, 8],
though validation of simulations to actual swimmer dy-
namics has been limited to the approximation of resistive
force theory [9] and required resistance coefficients that
varied extensively between different sperm. Furthermore,
flows around microswimmers have been measured using
micro-PIV for Gardia protozoan flagellates [10], though
reported with limited resolution. Analogous studies have
been pursued for C. reinhardtii, though reported with
an averaging, either temporal or spatial, [11, 12] or in a
single plane [12, 13]. Such simplifications in the reported
data particularly emphasize the need to simplify the
velocity flow fields, even in focused studies.

Principal component analysis (PCA) has been used
to reduce the dimensionality of flagellar data [14, 15],
though such approaches have not been applied to the
associated flow fields generated by the flagellum beat,
despite the complexity of these datasets. Instead, small

number of viscous flow singularities have been used
to approximate time-averaged microswimmer flows (e.g.
[11]) and are popular since singularity flows have a clear
theoretical interpretation, as the first terms of a multi-
pole expansion. However temporal averaging may be ill-
advised [8], since the time dependence of microswimmer
flows persists on lengthscales associated with cell-cell
hydrodynamic interaction, increasing the complexity of
information that needs to be retained.

Thus the primary objective of this letter is demonstrate
that it is possible to systematically reduce the flow field
associated with a swimming human sperm in terms of a
time-dependent superposition of regularized viscous flow
singularities, via an intermediate PCA analysis of the
flow field. In turn this has prospective use as a framework
to facilitate theoretical interpretation and investigation.
In the intermediate steps of these procedures, we dig-
itize the flagellar waveform and use boundary element
simulation to determine the fluid flow surrounding the
sperm, which will also generate predictions for the cell
trajectory. Thus, en-route to the singularity representa-
tion of the flow field, we will also have the objective of
comparing predictions for the human sperm trajectory
with observation, to assess both the use of digitized flag-
ellar waveforms and numerical simulation for predicting
fine-scale human sperm motility at the qualitative level.
Once the singularity representation of the flow field has
been obtained, our final objective will be to analyze
the representation in terms of concepts from dynamical
systems theory to consider potential insights concerning
the dynamics of human sperm swimming and the flows
it induces.

Imaging. The experimental methodology is further
detailed in Smith et al. [3]. In summary, human sperm
samples were collected from a normozoospermic research
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FIG. 1. Sperm flagellar waveform and its reconstruction.
(a) Flagellar reconstruction using three PCA modes. (b)
Flagellar tangent angle, ψ(s, t). Note that approximately 10%
of the distal flagellum data are lost during image capture. (c)
The first three PCA modes of the flagellum angle, ψ, where
ψ̄ is the temporal average of the angle. (d) The trajectory of
the first two PCAmode coefficients (blue), with the associated
limit cycle orbit, in the phase space (red).

donor; sperm that had penetrated approximately 2 cm
into a capillary tube containing saline medium were
imaged in the region of cell accumulation approximately
10-20 µm from the capillary tube inside surface (Supple-
mentary Movie 1). The imaging was conducted with an
Olympus (BX-50) microscope with halogen illumination
and a positive phase contrast lens (20x/0.40 ∞ /0.17 Ph1
together with a depth of field of approximately 5.8µm)
and a Hamamatsu Photonics K.K. C9300 CCD camera
at 292 frames per second, streaming data directly to a
Dell Dimension workstation, running Wasabi software
(Hamamatsu Photonics).

A time sequence of flagellar position data in the micro-
scope focal plane was extracted from the imaging data,
using custom MATLAB c⃝ software [3]. This analysis
provided the angle ψ(s, t), between the local tangent
of the flagellum and the sperm head, with s denoting
arclength along the flagellum from the proximal to the
distal end, and with t denoting time. The extracted
flagellar waveform contains more than six flagellar pe-
riods (Fig. 1a,b), with a primary beat and a series of
smaller undulations in the proximal region possessing an
approximately three-fold higher frequency, as reported in
Smith et al. [3].

Reconstruction of the flagellar waveform. Following
the shape analysis of bull spermatozoa by Ma et al. [14],
as reviewed in Ref. [15], we implemented PCA for the
angle ψ to determine a flagellar shape decomposition.

In particular, with arclength discretized into m values,
s1, . . . sm, and time discretized into n values, t1, . . . tn, we
have the angle matrix ψiα = ψ(ti, sα), and its temporal
average ψ̄iα = (1/n)

∑n
p=1 ψpα for any i ∈ {1 . . . n}.

The eigenvectors of the m × m covariance matrix,
Sαβ = (1/n)

∑n
i=1(ψiα− ψ̄iα)(ψiβ − ψ̄iβ), provide a basis

for the flagellar wave, with m eigenvectors, {a1, . . . am},
ordered by the size of the associated eigenvalues λ1 ≥
. . . ≥ λm. Each eigenvector corresponds to a set of
angles that define a flagellum shape and the first four
eigenvectors, also known as PCA modes and associated
with eigenvalues λ1, . . . λ4, are plotted in Fig. 1c. In
particular the first two PCA modes capture 95.9% of the
cumulative variance, that is (λ1 + λ2)/trace(S) = 0.959,
while the first three capture 99.3%. Thus, respectively
there is a 4.1% and 0.7% variation in the flagellar shape
that is not accounted for in projecting the flagellar data
for all arclength and time onto the span of these PCA
modes, demonstrating data reduction with limited sacri-
fice in accuracy.

The time-dependent coefficients when expressing the
flagellar angle as a summation of PCA modes also de-
fine trajectories in the PCA phase shape-space; for the
expansion in the first two modes this yields dumbbell-
like trajectories, as plotted in Fig. 1d. By mapping
the time-dependent trajectory in the phase space with
a phase parameter [14, 16], a phase space limit cycle can
be determined, as given by the red curve in Fig. 1d, and
will be used below to provide a characteristic waveform
for the human sperm.

Boundary elements and the swimming trajectory. The
fluid flow field around the sperm and its predicted tra-
jectory were determined via boundary element methods
(BEM) [17] (Supplementary Movie 2). The computa-
tional human spermatozoon has a prolate ellipsoid head
connected to a cylindrical flagellum, as shown in Fig.
1a. The waveform is reconstructed the two-dimensional
phase space limit cycle in Fig. 1d.
Before considering the velocity vector field, we com-

pare the predicted and observed sperm trajectory. Sur-
prisingly, despite the fact that the two-dimensional PCA
mode expansion loses only 4.1% of the waveform vari-
ance, the resulting swimming trajectory fails to capture
characteristics of sperm yawing, as displayed in Fig 2.
When the limit cycle associated with the first three PCA
modes is used for the waveform, the predicted swimming
trajectory compares substantially better with observa-
tion, although the overall progressive speed is generally
lower (Fig. 2), emphasizing a sensitivity of the hydro-
dynamics to small changes in the flagella beat pattern.
Including the presence of a nearby wall also marginally
increases the numerical swimming speed, highlighting
the hydrodynamic influence of nearby no-slip boundaries.
The system is also prone to other sources of error: the
precise height of the sperm from the cover-slip is not
available whilst, in addition, small 3D flagellar movement
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FIG. 2. Observed and predicted sperm head trajectories
for different PCA mode truncation. The overall swimming
direction is indicated by the arrow. Upper left inset shows
the BEM virtual sperm swimming near a solid boundary
(Supplementary Movie 2).

inducing non-planar motions near the distal flagellar tip
are not captured. Despite these empirical uncertainties,
the overall qualitative agreement between the BEM cal-
culation and observation demonstrates that both sim-
plified three-mode PCA approximation and numerical
simulation can be used for understanding and predicting
fine-scale sperm motility at the qualitative level.

Velocity field around a spermatozoon. For simplicity,
the BEM calculations for the fluid velocity field relative
to the sperm head-tail junction are considered with no
external boundaries and presented in Fig 3 and Supple-
mentary Movie 3. The time-averaged velocity field in the
near and far-field of the flagellar beat plane (xy plane),
and in a plane perpendicular to the beat plane (x = 0
plane) is shown in Fig. 3 with its magnitude decaying
like r−2 in the far-field (Fig. 3a), with r the distance
from the head neck junction. This is expected since
the swimmer is force-free and thus the leading term in a
multipole expansion of the flow field is λGd, where Gd is
a Stokeslet-dipole. The sign of λ classifies the swimmer
as a pusher (λ > 0), or conversely a puller, and fluid
moving away from the cell along its long axis in Fig. 3
demonstrates that λ > 0; hence, unsurprisingly, the time-
averaged swimming of the sperm corresponds to a pusher
[6].

Singular decomposition of the flow. Before attempting
to summarize the spatial-temporal fluid velocity field
from the BEM calculation in terms of Stokes-flow sin-
gularities, PCA is used to reduce complexity. Once more
we have n time values, t1, . . . tn and withm the number of
mesh points in a spatial discretization let α ∈ {1 . . . 3m}
index the set (eq1(α),xq2(α)) where, respectively, q1(α) ∈
{1, 2, 3} is the axis associated with α, and q2(α) ∈
{1, . . .m} is the mesh point associated with α. Then with
uiα = eq1(α) ·u(ti,xq2(α)), and the velocity field temporal
average ūiα = (1/n)

∑n
p=1 upα for any i ∈ {1 . . . n}, PCA

can be implemented for the 3m × 3m covariance matrix
Svel
αβ = (1/n)

∑n
i=1(uiα − ūiα)(uiβ − ūiβ).

In Fig. 4a, the first five PCA modes are depicted

FIG. 3. The time-averaged fluid flow around a human sperm.
The flagellum length is L = 50µm and the beat period is
T ≈ 0.42 sec. The velocity magnitude is given in units of L/T .
(a) The time-averaged far-field flow in the beating plane (xy
plane). (b) The time-averaged near-field flow. (c) The time-
averaged near-filed flow in x = 0 plane, perpendicular to the
beating plane. Streamlines are also depicted in white.

and the cumulative variance is close to one for the
first five terms of a PCA mode expansion, as shown in
Fig. 4b. While Klindt & Friedrich [8] suggest using
unsteady Stokes singularities in multipole expansions,
we approximate the steady PCA modes with Stokeslets,
though these are regularized [18] in order to avoid actual
singularities. Hence for the velocity field of PCA mode

s, we consider ũs(x) =
∑K

k=1 f
(s,k) · Gϵ(s,k)(x,x

(s,k)
0 ),

where Gϵ = [(r2 + 2ϵ2)I + rr]/(r2 + ϵ2)3/2 is the reg-

ularized Stokeslet [18], with r = x − x
(s,k)
0 , r = |r|,

and I denoting the identity tensor. The position of
each singularity x(s,k), the associated magnitude f (s,k)

and regularization parameter ϵ(s,k) are calculated via
least-square fitting. We use the minimal number of
singularities that provide a reasonable fit for each flow
PCA mode, in this case K = 3, 3, 4, 6, 5 for the lowest 5
modes. The coefficients for the Stokeslet decomposition
are provided in the Supporting Material.

For each time point i ∈ {1, . . . n}, projecting the 3m
dimensional vector uiα of the original velocity field onto
the span of the velocity vectors ũsα = eq1(α) · ũ

s(xq2(α)),
s ∈ {1, . . .K} generates an approximation of the ve-
locity field. With uK∗

iα denoting the projected 3m di-
mensional vector at timepoint i, one can generate a
covariance matrix, S∗K

αβ = (1/n)
∑n

i=1(u
∗K
iα −ū∗Kiα )(u∗Kiβ −

ū∗Kiβ ), with the temporal average ū∗Kiα defined analo-
gously to the average of the observed velocity field.
Then trace(S∗K)/trace(Svel) gives the proportion of the
variance in the original flow captured by the K-level
regularized Stokeslet approximation, as plotted in the
inset of Fig. 4b. Furthermore, the lowest two flow PCA
modes are each well approximated by a regularized force
triplet, with no net force and consisting of one lateral
force, together with a force at the sperm head and one
near the distal flagellar tip, as summarized in Fig. 4c.
In particular, the force triplet 1 is associated with flow
PCA mode 1, whereas force triplet 2 is associated with
flow PCA mode 2 in Fig. 4a.
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FIG. 4. (a) The first five PCA modes of the time-dependent fluid velocity field, with same units used in Fig. 3. (b) The
associated contribution rate of the PCA modes of the velocity field. The inset depicts the cumulative variance of the PCA
modes and the regularized Stokeslet approximations. (c) Force triplet approximation for the first two PCA modes of the
velocity field. The size and direction of the arrows give the location, magnitude and direction of the force singularities. The
circle radius corresponds to the regularization parameter, ϵ. (d) Top. The upper plot shows the phase space of the first two
PCA modes of the velocity field, with color changing with increasing time (blue to yellow). The numbers 1-4 match the labels
of (d) lower figure, which shows the time-evolution of the coefficients derived from the regularized force triplet approximation,
nondimensionalised by the beat period T . (e) The associated dynamical system approximation of the blinking force triplet, as
presented in (d).

The time-dependent coefficients of two triplet bases
are shown in Fig. 4d. One can observe from Fig. 4b,
that these modes capture about 68% of the cumulative
variance to provide an overall view of the flow field, and
similarly for the corresponding force triplet, even if finer
details are not represented. This figure is augmented
to 90% if five modes are considered instead (inset in
Fig. 4b). At point 1 in the phase plane in Fig. 4d,
which also corresponds to t/T ≈ 0 in the time evolution
in Fig. 4d lower figure, the flow is essentially that of
PCA mode 2, or the equivalent force triplet, with a
negative coefficient. Hence the fluid is moving away from
the sperm along its long axis and thus the sperm is a
pusher at this point. En-route to point 2 in the PCA
phase portrait in Fig. 4d, the flow evolves to one with
essentially no contribution from force triplet 2 and with
the coefficient of force triplet 1 becoming increasingly
positive. Hence at point 2 the fluid is moving from the
sperm along its long axis and the sperm is now a puller.
On transitioning to point 3 in the phase plane, the flow
field reverses, so that force triplet 1 acquires a negative
coefficient, and the sperm is a pusher once more. These
changes in the coefficients of the force triplets during this
evolution along the phase plane orbit are given in Fig 4d,
bottom plot, with the further changes in the coefficients
also depicted as the beat cycle passes through point 4,
where the sperm is a puller, and then back to point 1, to
complete the orbit. The regularized Stokeslet parameters
and time-dependent coefficients for the lowest five PCA
modes of the velocity field are available in the Supporting
Material Fig. 1.

With this breakdown of the beat cycle from the sys-
tematic reduction of the flow field one has that the

sperm continually switches between pusher and puller
modalities, as previously observed for C. reinhardtii [8].
In addition, the cross-like structure of the PCA phase
portrait orbit in Fig. 4d emphasizes that one of the PCA
modes, or its associated force triplet, is always essentially
off, as also highlighted in Fig. 4e. This structure and
temporal dependence is directly analogous to that of the
blinking Stokeslet [19] and, with the coefficient approxi-
mation indicated in Fig. 4e, the leading order flow is that
of a blinking regularized force triplet. In addition, we
note that the systematic reduction not only reveals the
blinking as an emergent feature but also automatically
determines how improved accuracy can be achieved via
additional regularized singularities.
Finally, while we observed in Fig. 2 that boundary

effects only perturb the predicted trajectory, and hence
our simplification of neglecting external boundaries for
the above velocity field study, it is nonetheless recognized
that the fluid flow close to a no-slip boundary is non-
trivially modified [20]. Hence we have also considered
BEM simulations for the case of a spermatozoa swimming
parallel to a wall with a height of z = 0.3L ∼ 15µm.
The resulting flow field can still be decomposed into a
small number of PCA modes and regularized singularity
approximations that capture essentially as much of the
variance as the results with no external boundaries, as
can be observed by comparing Supplementary Fig. 2 and
Fig. 4b. Thus the use of PCA modes and singularity ex-
pansions to summarize, and further explore, the flow field
induced by a sperm also retains accuracy in the vicinity
of a no-slip boundary despite the added hydrodynamic
complexity.
Summary and Conclusions. We have digitized a swim-
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ming human sperm beat pattern, using its associated
limit cycle in a phase space of PCA modes to determine
the flow field round the sperm via boundary element
numerical simulations. We have also shown that the fluid
flow surrounding the cell can be systematically decom-
posed into a small number of regularized Stokeslets with
time dependent coefficients and the core features of the
flow field can be approximated by a blinking regularized
force triplet. This decomposition also highlights that
while the sperm head is, on average, pushed by its flagel-
lum it is also periodically pulled backwards and sideways,
as reflected in the observed and predicted swimming
trajectories. The general qualitative agreement between
observed and predicted trajectories also demonstrates
that both simulation and the digitized waveforms can
be used for making theoretical predictions about fine-
scale human sperm swimming. Finally, we note that the
ability to use a small number of regularized singulari-
ties to summarize the flow field, including complexities
such as the presence of a no-slip boundary, provides a
methodology for coarse-graining the time-dependent flow
around a human sperm for use in developing population
level models that retain individual cell dynamics.
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