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NEW EXAMPLES OF COMPLETE SETS, WITH CONNECTIONS TO A

DIOPHANTINE THEOREM OF FURSTENBERG

VITALY BERGELSON AND DAVID SIMMONS

Abstract. A set A ⊆ N is called complete if every sufficiently large integer can be written as the sum
of distinct elements of A. In this paper we present a new method for proving the completeness of a set,
improving results of Cassels (’60), Zannier (’92), Burr, Erdős, Graham, and Li (’96), and Hegyvári (’00).
We also introduce the somewhat philosophically related notion of a dispersing set and refine a theorem of
Furstenberg (’67).

1. Introduction

For each a, b ∈ N = {1, 2, . . .} such that a, b ≥ 2, let Γ(a, b) denote the multiplicative semigroup generated
by a and b:

(1.1) Γ(a, b) = aN0bN0 = {anbm : n,m ∈ N0},
where N0 = N ∪ {0}. This short note is dedicated to the refinement and generalization of two classical
results which involve sets of the form Γ(a, b). In order to formulate these results, we first need to introduce
some notation and terminology.

Definition 1.1. For each set A ⊆ N, we define the finite sum set of A:

FS(A) =

{

Σ(F ) :=
∑

n∈F

n

∣

∣

∣

∣

∣

� 6= F ⊆ A finite

}

.

The set A is called complete if FS(A) is cofinite in N, i.e. if #(N \ FS(A)) < ∞.

Definition 1.2. A set A ⊆ N is called dispersing if for every irrational α ∈ T := R/Z, the set Aα = {nα :
n ∈ A} is dense in T.

The word “completeness” was originally used to refer to a slightly different concept; namely, the set
FS(A) was required to equal N rather than to merely be cofinite in it. This definition appeared first in
a problem asked by Hoggatt and King and answered by Silver [16], and later the same year in a paper
of Brown [6]. It seems that Graham [14] was the first to use the word “completeness” in the same (now
standard) way that we use it.

By contrast, the notion of a “dispersing” set has not appeared explicitly in the literature before. It bears
some resemblance to the notion of a “Glasner set” (cf. [12, 3], and see [2] for a generalization).1 However,
the differences between these definitions are significant, and we will not discuss Glasner sets in this paper.

Although their definitions are very different, the notions of completeness and dispersion do share some
relation. Both describe some notion of “largeness” of a set of integers which measures not just the growth
rate but also in some sense the arithmetical properties of the set in question. This is manifested in the
following classical results about complete and dispersing sets, which are due to Birch and Furstenberg,
respectively:

Theorem 1.3 ([5]). For any coprime integers a, b ∈ N such that a, b ≥ 2, the set Γ(a, b) is complete.
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2 VITALY BERGELSON AND DAVID SIMMONS

Theorem 1.4 ([11, Theorem IV.1]). Fix a, b ∈ N with a, b ≥ 2 and assume that a, b are not powers of a
single integer. Then Γ(a, b) is dispersing.

These theorems indicate that some sort of “semigroup property” is useful for proving both completeness
and dispersing results. However, on its own the semigroup property is not enough. Indeed, for any a ∈ N,
a ≥ 3, the cyclic semigroup Γ(a) = aN0 = {an : n ∈ N0} is neither complete nor dispersing: since FS(Γ(a))
contains only those numbers whose base a expansion consists of zeros and ones, FS(Γ(a)) is of density
zero (so Γ(a) is incomplete), while if α ∈ T is an irrational whose base a expansion is missing some digit,
then the set Γ(a)α is nowhere dense in T (so Γ(a) is not dispersing). So it makes sense to augment the
semigroup property with some information on the size of the set in question: the sets Γ(a, b) are larger
than the sets Γ(a), and in general it is easier for larger sets to be complete and dispersing. In the case of
the sets Γ(a, b), information on the size is provided by the following lemma due to Furstenberg:

Theorem 1.5 ([11, Lemma IV.1]). Fix a, b ∈ N with a, b ≥ 2 and assume that a, b are not powers of a
single integer. Then if we write

Γ(a, b) = {n1, n2, . . .}
with n1 < n2 < · · · , then
(1.2) lim

k→∞

nk+1

nk
= 1.

An increasing sequence (nk)
∞
1 satisfying (1.2) is called sublacunary. By extension, the corresponding

set {n1, n2, . . .} is also called sublacunary.

Remark 1.6. When interpreted as a condition on sequences, sublacunarity is an “upper bound” on the
growth rate, but when interpreted as a condition on sets, sublacunarity is a “lower bound” on the size of
a set (i.e. any set which contains a sublacunary set is also sublacunary).

Just as that the semigroup property was seen to be insufficient without the sublacunarity property, so
also the sublacunarity property is not enough to guarantee that a set is complete or dispersing without an
additional property. We illustrate this fact by the following simple examples:

Example 1.7. Let α ∈ T be an irrational number, and let A = {n even : nα /∈ U}, where U ⊆ T is a
non-dense open subset of T. Then A is sublacunary but neither complete nor dispersing. Indeed, it is clear
that FS(A) contains only even numbers, while Aα is disjoint from U and therefore not dense. On the other
hand, since U is non-dense, A is syndetic and therefore sublacunary. (Recall that a set S ⊆ N is called
syndetic if there exists a number s ∈ N (the syndeticity constant2) such that for all n ∈ N, there exists
i = 0, . . . , s such that n+ i ∈ S.3)

Example 1.8. For each α ∈ T, we let ‖α‖ denote the distance in T from α to 0, or equivalently the
distance from any representative of α to the nearest integer. Fix a badly approximable4 irrational α ∈ T,
and for each k ∈ N let k3 ≤ nk < (k + 1)3 be chosen so as to minimize ‖nkα‖. By a standard result in
Diophantine approximation [17, Theorem 26], we have ‖nkα‖ ≤ C[(k+1)3 − k3]−1, where C > 0 is a large
constant depending on α. Choose k0 ∈ N large enough so that

σ :=
∞
∑

k=k0

C[(k + 1)3 − k3]−1 < 1/2,

and let A = {nk0
, nk0+1, . . .}. Then A is sublacunary but neither complete nor dispersing. Indeed, while

the bounds k3 ≤ nk < (k + 1)3 guarantee that A is sublacunary, the fact that FS(A) is disjoint from the
positive density set {n ∈ N : ‖nα‖ > σ} implies that A is not complete, and the fact that ‖nkα‖ → 0
implies that Aα is nowhere dense, so A is not dispersing.

2Technically, we should say that the syndeticity constant is the smallest number s ∈ N satisfying this condition.
3Sets which are syndetic according to our terminology are sometimes called syndetic in N, to distinguish them from sets

which are syndetic in Z. Since we deal only with sets which are syndetic in N, we abbreviate by omitting the phrase “in N”.
A similar comment applies to our definition of Bohr sets below.

4An irrational α ∈ T is called badly approximable if there exists ε > 0 such that for all q ∈ N, we have ‖qα‖ ≥ ε/q, or
equivalently if the continued fraction expansion of α has bounded entries.
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Remark 1.9. Although the set FS(A) of Examples 1.7 and 1.8 is not cofinite, it is syndetic. The syndeticity
of FS(A) for every sublacunary set A follows from Lemma 2.11 below, which is a result due to Burr and
Erdős [7, Lemma 3.2]. However, Examples 1.7 and 1.8 shows that cofiniteness of FS(A) is a much subtler
matter.

Examples 1.7 and 1.8 notwithstanding, we will show in this paper that certain rather small subsets
of Γ(a, b) (or of more general multiplicative subsemigroups of N) can be shown to be complete and/or
dispersing. We conclude this introduction with a summary of the results obtained in this paper. (The
proofs will be provided in the subsequent sections.)

Convention. From now on, numerical variables (usually lowercase Latin letters) are assumed to take
values in N, and set variables (usually uppercase Latin letters) are assumed to take values which are
subsets of N, unless otherwise specified.

Convention. If ∗ is an operation and A,B are sets, then

A ∗B := {a ∗ b : a ∈ A, b ∈ B}.
We may abbreviate {a} ∗B by a ∗B and A ∗ {b} by A ∗ b. For example, aS = {an : n ∈ S}. Note that this
convention was already used implicitly in formula (1.1) when we wrote Γ(a, b) = aN0bN0 .

Acknowledgements. The authors thank Trevor Wooley for directing them to the paper of Freeman
cited later in this paper. The first-named author was supported by NSF grant DMS-1162073. The authors
thank the anonymous referee for valuable comments.

1.1. Completeness results. To motivate our first result, we recall a remark in Birch’s paper which he
attributes to Davenport [5, para. after Theorem], namely that the proof of Theorem 1.3 in that paper can
be strengthened to demonstrate the following “finitary” version of the theorem:

Theorem 1.10 (Davenport’s remark). For every a, b ≥ 2 such that gcd(a, b) = 1, there exists N ∈ N such
that the set

{anbm : n,m ∈ N0, m ≤ N}
is complete.

A quantitative version of Theorem 1.10 was proven by Hegyvári [15]. We will strengthen Theorem 1.10
by replacing the expression bm by an arbitrary expression depending on m, subject to some mild restraints,
which should be thought of as the analogue of the condition gcd(a, b) = 1. At the same time we will improve
Hegyvári’s result by giving a better quantitative bound on the number N . Precisely, we have the following:

Theorem 1.11. Fix a ≥ 2, and let (bm)N0 be a finite sequence such that

(I) The numbers (loga(bm))N0 are distinct mod 1.
(II) gcd(b0, b1, · · · , bN−3(a−1)) = 1.
(III) #{m = 0, . . . , N − 3(a− 1) : gcd(a, bm) = 1} ≥ a− 1.

Then the set

(1.3) A = {anbm : n,m ∈ N0, m ≤ N}
is complete.

Theorem 1.10 corresponds to the special case bm = bm, where gcd(a, b) = 1. In this case, the conditions
(I)-(III) are satisfied when N = 4a − 5, which vastly improves the fourfold-exponential bound of [15].
Taking the slightly more general special case bm = bkm yields the following corollary (which implies the
aforementioned improvement of Hegyvári’s result):

Corollary 1.12. Fix a, b ≥ 2 coprime and let (km)4a−5
0 be a finite sequence of distinct integers such that

k0 = 0. Then the set

{anbkm : n,m ∈ N0, m ≤ 4a− 5}
is complete.
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Finally, we also state an infinitary version of Theorem 1.11:

Corollary 1.13. Fix a ≥ 2, and let (bm)∞0 be a sequence such that

(I) The sequence (loga(bm))∞0 contains infinitely many distinct elements mod 1.
(II) gcd(b0, b1, . . .) = 1.
(III) #{m ∈ N0 : gcd(a, bm) = 1} ≥ a− 1.

Then for some N ∈ N, the set A defined by (1.3) is complete.

Although the set A defined by (1.3) of Theorem 1.11 is not a semigroup, it contains the semigroup
Γ(a), and indeed can be decomposed as the product of Γ(a) with the finite set {bm : m = 0, . . . , N}.
This multiplicative structure is used somewhat as a substitute for the semigroup property in the proof of
Theorem 1.11. It is interesting to ask how much this multiplicative structure can be weakened without
losing completeness. For example, is the decomposition of the set as the product of two “nice” sets enough?
The following example shows that even in the best of circumstances (short of the semigroup property in
one of the factors), a single product decomposition is not enough to guarantee completeness:

Example 1.14. Fix a, b ≥ 2. Then the set

A = {an2

bm
2

: n,m ∈ N0}
is not complete. Indeed, an analysis of growth rates (cf. §A.1) shows that the set FS(A) has density zero.

To counteract the phenomenon in this example, we can include more multiplicative structure by increas-
ing the number of factors allowed without changing their form. For example, given a finite sequence (ai)

s
1,

we can consider the set

{an
2
1

1 · · ·an
2
s

s : n1, . . . , ns ∈ N0}.
Our next theorem shows that if s ≥ 6 and (ai)

s
1 are pairwise coprime, then this set is complete. Let PN

denote the collection of nonconstant polynomials P such that P (N0) ⊆ N0 and P (0) = 0. For each k, let
Pk

N
denote the collection of polynomials in PN of degree ≤ k.

Theorem 1.15. For all k ≥ 2 there exists s = s0(k) ∈ N such that for all a1, . . . , as ≥ 2 and P1, . . . , Ps ∈
Pk

N
, if

(I) gcd(a1, . . . , as) = 1, and
(II) log(a1), . . . , log(as) are linearly independent over Q,

then the set

(1.4) As :=

{

s
∏

i=1

a
Pi(ni)
i : n1, . . . , ns ∈ N0

}

is complete. Moreover, we may take s0(k) to satisfy

(1.5) s0(k) ∼ 8k log(k), s0(2) = 6.

Remark 1.16. In addition to the upper bounds (1.5), we can also give the following lower bounds:

s0(k) ≥ k, s0(2) ≥ 3.

Both of these bounds follow from growth rate calculations; see §A.2 for the first bound and §A.1 for the
second bound. It seems like a difficult problem to give better bounds on the function s0.

Remark 1.17. The general theorem which we use to prove our completeness results (i.e. Theorem 2.1
below) is somewhat similar to a theorem of Cassels [9], about which we will say more later. While Cassels’
result is not strong enough to deduce Theorem 1.11, its corollaries, or the theorems which we state below, it
is strong enough to prove Theorem 1.15 (possibly with a worse value of s0(k)) via the theorem of Freeman
mentioned above. We omit the details of this derivation, as the proof of Theorem 1.15 we give will be
based on our own main theorem.
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Our next result is a generalization of a theorem of Zannier [22]. Zannier observed that Cassels’ afore-
mentioned result implies that if P is a polynomial function (possibly with real coefficients), then the set

(1.6) A = {⌊P (n)⌋ : n ∈ N}
is complete as long as gcd(A) = 1.5 He then used elementary methods to prove another completeness
theorem which implies this statement. We are now able to generalize Zannier’s theorem as follows:

Theorem 1.18. Let A be a sublacunary set, and suppose that there exist z1, . . . , zk ∈ Z and b ∈ N such
that

(I) for all N ∈ N, there exist x1, . . . , xk ∈ A such that xi ≥ N ∀i ≤ k and

(1.7) 0 <

∣

∣

∣

∣

∣

k
∑

i=1

zixi

∣

∣

∣

∣

∣

≤ b;

(II) for all q = 2, . . . , b, FS(A) intersects every arithmetic progression of the form qN + i (0 ≤ i < q).

Then A is complete.

We now state Zannier’s result and deduce it as a corollary of Theorem 1.18:

Corollary 1.19 (Main theorem of [22]). Let A be a sublacunary set and let (x(i))∞1 be its unique increasing
indexing, and suppose that there exist z1, . . . , zℓ ∈ Z and b ∈ N such that

(I) there exists c > 0 such that for all N ∈ N, there exist ℓ-tuples (i1, . . . , iℓ) and (j1, . . . , jℓ) such that
im ≥ jm ≥ N ∀m ≤ ℓ, and the following hold:

x(im)/x(jm) → 1 ∀m ≤ ℓ as N → ∞(α)

x(iℓ) ≤ cx(i1)(β)

0 <

∣

∣

∣

∣

∣

ℓ
∑

m=1

zm(x(im)− x(jm))

∣

∣

∣

∣

∣

≤ b;(γ)

(II) for all q = 1, . . . , b, FS(A) intersects every arithmetic progression of the form qN + i (0 ≤ i < q).

Then A is complete.

Proof. Let k = 2ℓ, zℓ+m = −zm (m = 1, . . . , ℓ), xm = x(im), xℓ+m = x(jm) (m = 1, . . . , ℓ) in Theorem
1.18. �

Actually, this proof shows that in Corollary 1.19, the conditions (α) and (β) are both unnecessary.
Another application of Theorem 1.18 is that it is used in the proof of the following result:

Theorem 1.20. Fix k and let f : N → N be a function whose kth difference ∆kf is bounded, where

∆f(n) = f(n+ 1)− f(n).

Then if

A = {⌊f(n)⌋ : n ∈ N},
then FS(A) contains an arithmetic progression.

For example, we could take f(x) = xα, where α > 0 is an irrational number. Note that if f : (0,∞) →
(0,∞) is a Ck function whose kth derivative is bounded, then ∆kf is also bounded.

Another way to generalize Zannier’s result is to consider the images of “sufficiently large” sets under
polynomial mappings. It turns out that the lower bound on the size of the set of primes guaranteed by
the prime number theorem is enough to show that the image of the set of primes under any arithmetically
appropriate polynomial mapping is complete. We phrase this result more generally as follows:

5We remark that when k = gcd(A) > 1, then A = kB for some set B of the same form as A which satisfies gcd(B) = 1.
Consequently, FS(A) is cofinite in kN.
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Theorem 1.21. Fix d ∈ N and P ∈ Pd
N
, let D be a sublacunary set such that

(1.8) lim inf
N→∞

1

N1−δ
#(D ∩ [1, N ]) > 0.

where δ = 1/
[

1 + 2
(

d+1
2

)

]

. Let A = P (D), and assume that for all q ≥ 2,

(1.9) #{n ∈ A : q 6| n} = ∞.

Then A is strongly complete.

Here a set is said to be strongly complete if it remains complete after removing any finite subset.

Corollary 1.22. Let D denote the set of primes. Fix d ∈ N and P ∈ Pd
N

such that for all q ≥ 2, (1.9)
holds for A = P (D). Then A is strongly complete.

Proof. The prime number theorem guarantees that the set of primes is sublacunary and satisfies (1.8). �

In particular, Corollary 1.22 reproves a result of Roth and Szekeres [21, sequence (iii) on p.241]. More-
over, letting P (x) = x shows that the set of primes is strongly complete. This result can be compared to
Goldbach’s conjecture, in the sense that it states that any sufficiently large number can be written as the
sum of (a possibly large number of) large primes, whereas Goldbach’s conjecture claims that any number
≥ 4 can be written as the sum of at most three primes.

Our last result regarding completeness is a generalization of a theorem of Burr, Erdős, Graham, and
Li [8]. These authors propose a different way of weakening the semigroup property while keeping some
multiplicative structure, by considering the completeness of unions of sets of the form Γ(a). They go on to
conjecture that for S ⊆ N \ {1} such that no two elements of S are powers of the same integer,6 the set

SN0 =
⋃

a∈S

Γ(a)

is strongly complete if and only if gcd(S) = 1 and

(1.10)
∑

a∈S

1

a− 1
≥ 1.

While we can neither prove nor disprove this conjecture, the following result generalizes the main theorem
of [8]:

Theorem 1.23. Let S1, S2, S3, S4 ⊆ N \ {1} be finite pairwise disjoint sets such that gcd(S4) = 1, and for
each i = 1, 2, 3

(1.11)
∑

a∈Si

1

a− 1
≥ 1.

Then the set A = SN0 is strongly complete, where S =
⋃4

1 Si.

Corollary 1.24 (Main theorem of [8]). Let S ⊆ N \ {1} be a set such that

lim sup
N→∞

1

N
#(S ∩ [1, N ]) > 0

and gcd(S) = 1. Then the set A = SN0 is strongly complete.

6Although the authors of [8] do not state this assumption explicitly, it is necessary to translate between the language
of “sequences” used in their paper (which seem to really be multisets) and the set-theoretic language used in this paper.
If a, a2 ∈ S, then they seem to allow a2n and (a2)n to appear as separate terms in a decomposition of an element of
FS(SN0 ) (which the authors of [8] denote Pow(S; 0)), whereas it is a consequence of our notation that we do not consider
such decompositions legal.
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Corollary 1.24 is deduced from Theorem 1.23 by decomposing the set S appropriately, and throwing out
an infinite component. However, Theorem 1.23 applies in many circumstances where Corollary 1.24 does
not apply; for example, Theorem 1.23 applies to some finite sets S, whereas Corollary 1.24 applies only to
infinite sets S. The hypotheses of Theorem 1.23 are still significantly stronger than the conjectured (1.10),
which is known to be the necessary and sufficient condition for FS(SN0) to be syndetic. This illustrates
the great difference between syndeticity and cofiniteness for sets of the form FS(A), at least in terms of
our knowledge about them.

As another illustration of this difference, we include the following observation, which also offers a nice
transition to our discussion of the dispersing condition:

Proposition 1.25. Fix a, b ≥ 2, not both powers of the same integer. Let S ⊆ N be a syndetic set and let
T ⊆ N be a set of cardinality at least am − 1, where m is the syndeticity constant of S. Then FS(aSbT ) is
syndetic.

1.2. Dispersing results. The dispersing condition seems to be heuristically somewhat stronger than
the completeness condition. While in Corollary 1.12 we were able to replace the sequence (bm)∞0 in the
definition of Γ(a, b) by any sequence of the form (bkm)∞0 such that k0 = 0, getting a similar result regarding
dispersing sets appears to require a condition on the sequence (km)∞0 . Our first result is that it is sufficent
that the set {k0, k1, . . .} is piecewise syndetic. We recall the definition of this condition as well as some
related definitions:

Definition 1.26. A set S ⊆ N is called thick if it contains arbitrarily large intervals, and piecewise syndetic
if it is the intersection of a thick set with a syndetic set (cf. Remark 1.9). A set S is called Bohr7 if there
exist d ∈ N, α ∈ Td = Rd/Zd, and an open set � 6= U ⊆ Td such that

� 6= {n ∈ N : nα ∈ U} ⊆ S.

Finally, the intersection of a thick set with a Bohr set is called piecewise Bohr.

To state our results more concisely, it will help to introduce some new terminology regarding variants
of the dispersing condition.

Definition 1.27. Fix ε > 0. A set A ⊆ N is ε-dispersing (resp. weakly dispersing) if for every irrational
α ∈ T, the set Aα is ε-dense (resp. somewhere dense8) in T.

Theorem 1.28. Fix a, b ≥ 2 not both powers of the same integer. Let S be a syndetic set and let T be a
piecewise syndetic set. Then the set

aSbT

is weakly dispersing.

Since the product of an infinite subset of N with a nonempty open subset of T is equal to T, the product
of an infinite set with a weakly dispersing set is dispersing. Thus we deduce the following corollary:

Corollary 1.29. Fix a, b ≥ 2 not both powers of the same integer. Let S be a syndetic set, let T be a
piecewise syndetic set, and let I be an infinite set. Then the set

aSbT I

is dispersing.

Considering the case where I takes the form aJ gives another corollary:

Corollary 1.30. Fix a, b ≥ 2 not both powers of the same integer. Let S be a Bohr set and let T be a
piecewise syndetic set. Then the set

aSbT

is dispersing.

7Cf. Footnote 3.
8A set is called somewhere dense if it is not nowhere dense, i.e. if its closure contains a nonempty open set.
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Proof. Since S is Bohr, it contains a set of the form S1 + S2, where S1, S2 are both Bohr. In particular,
S1 is syndetic and S2 is infinite, so applying Corollary 1.29 completes the proof. �

Although piecewise syndetic sets can be made to grow at an arbitrarily slow rate, they are still in some
sense “large” because they have large pieces. It is possible to substitute this largeness by an additional
additive structure hypothesis on T . Specifically, if T is the finite sum set of a set R ⊆ N with certain
arithmetical properties, then aSbT is dispersing:

Theorem 1.31. Fix a, b ≥ 2 not both powers of the same integer. Let S be a syndetic set and let
T = FS(R), where R is a set such that for all k, (R/k ∩ N) logb(a) is dense mod one. Then the set

aSbT

is dispersing.

Note that the hypothesis given on R imposes no restriction on how slowly R grows; if f : N → N is any
function, then we may choose R = {n1, n2, . . .} to satisfy nk+1 ≥ f(nk) ∀k. So for example, by choosing
R appropriately we can make the upper Banach density of T equal to zero.9

Next we consider a dispersing analogue of Theorem 1.15. Again the dispersing condition appears to be
stronger than the completeness condition: to get a set which we can prove to be dispersing, we need to
take the union over all s of a sequence of sets of the form (1.4).

Theorem 1.32. Let (ai)
∞
1 be an infinite sequence of integers, no two of which are powers of the same

integer, and suppose there exists a prime p such that the set {ai : p does not divide ai} is infinite. Fix
k ≥ 2 and a sequence (Pi)

∞
1 in Pk

N
(cf. Theorem 1.15). For each s ∈ N let As be given by (1.4). Then

the set A =
⋃∞

1 As is dispersing. More precisely, for every ε > 0 there exists s such that the set As is
ε-dispersing.

It appears to be a difficult question whether or not the sets As in Theorem 1.32 are dispersing for
sufficiently large s. This may make the theorem seem trivial on some level, because the final set A is
decomposed as the product of infinitely many infinite sets. But by itself this property is not enough to
guarantee dispersing, as shown by the following theorem:

Theorem 1.33. Let (ai)
∞
1 be a sequence of integers such that ai ≥ 2 for all i. Then there exist thick sets

(Si)
∞
1 such that the set

A =

∞
∏

i=1

{1} ∪ aSi

i =
⋃

F⊆N

∏

i∈F

aSi

i

is not weakly dispersing.

Theorem 1.33 can be interpreted as saying that an infinite multiplicative decomposition property is not
enough to replace the semigroup property, while Theorem 1.32 says that it is enough if the sets Si have
an algebraic structure. The next theorem does not require further algebraic structure of the factors of
an infinite multiplicative decomposition, but only requires a growth condition (sublacunarity) as well as a
divisibility condition.

Theorem 1.34. Let S be a set with the following property: there exist infinitely many r ∈ N such that
S ∩ (rN + 1) is sublacunary. Then the finite product set

FP(S) :=

{

Π(F ) =
∏

n∈F

n : F ⊆ S finite

}

is dispersing.

9Recall that the upper Banach density of a set T ⊆ N is the number

d∗(T ) = lim sup
N→∞

1

N
sup
M∈N

#(T ∩ [M,M +N ]),

which satisfies d∗(T ) > 0 whenever T is piecewise syndetic.
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From what we have said so far, it might appear that it is always harder to prove a dispersing result
than a corresponding completeness result, or even that the dispersing property might somehow imply the
completeness one. But this is not true, as we can show in two different ways. First of all, if a, b ≥ 3 are
not powers of the same integer but gcd(a, b) ≥ 3 (e.g. a = 3, b = 6), then by Theorem 1.4 the set Γ(a, b)
is dispersing, but it follows from arithmetic considerations that Γ(a, b) is not complete. Second, and more
significantly, the completeness property is tied to growth rates in a way that the dispersing property is not.
If a set A is complete, then a counting argument implies that

#{n ∈ A : n ≤ 2N + s} ≥ N ∀N ∈ N

for some constant s ∈ N. By contrast, the following observation shows that there is no lower bound on the
growth rates of dispersing sets:

Observation 1.35. Every thick set is dispersing, and every piecewise syndetic set is weakly dispersing.

Proof. Let A ⊆ N be a thick set. Then there exists a sequence nk → ∞ such that A ⊇ {nk+m : 0 ≤ m ≤ k}
for all k. Fix α ∈ T irrational and ε > 0. Then for some k, the set {0, α, . . . , kα} is ε-dense in T. By adding
nkα, we see that Aα is ε-dense in T.

If A ⊆ N is piecewise syndetic, then A+F is thick for some finite set F ⊆ N. If α ∈ T is irrational, then
Aα+Fα = T by the above argument, so by elementary topology, one of the sets Aα+ iα (i ∈ F ) contains
a nonempty open set. Thus Aα is somewhere dense. �

This observation is “optimal” in the sense that not every syndetic set is dispersing, and no lower bound
on the growth rate of a set weaker than syndeticity is sufficient to guarantee that a set is weakly dispersing.
More precisely, given any α > 0 the syndetic set

{n ∈ N : ‖nα‖ < 1/4}
is not dispersing, and the following observation shows that any “growth rate lower bound” which is satisfied
for some density zero set is also satisfied for some set which is not weakly dispersing:

Observation 1.36. Let (mk)
∞
1 be an increasing sequence of integers such that mk+1 −mk → ∞, and fix

β ∈ T. Then for all irrational α ∈ T there exists a sequence (nk)
∞
1 such that ‖nkα‖ → β and for all k,

mk ≤ nk < mk+1. In particular, {nk : k ∈ N} is not weakly dispersing.

Proof. Choose nk ∈ {mk, . . . ,mk+1− 1} so as to minimize ‖nkα−β‖. If {0, . . . , N}α is ε-dense mod 1 and
mk+1 −mk > N , then ‖nkα− β‖ ≤ ε. Thus since mk+1 −mk → ∞, we have ‖nkα− β‖ → 0. �

The following corollary was also obtained by Porubsky and Strauch [20]:

Corollary 1.37. Let (εk)
∞
1 be a decreasing sequence of real numbers such that εk → 0, and fix β ∈ T.

Then for all irrational α ∈ T there exists a sequence (nk)
∞
1 such that ‖nkα‖ → β and k/nk ≥ εk for all k.

Proof. Take mk = ⌈k/εk⌉ and apply the previous observation. �

Outline of the paper. The proofs of all theorems regarding completeness will be given in Section 2,
while the proofs of all theorems regarding the dispersing condition will be given in Section 3. The Appendix
contains auxiliary calculations regarding the remarks surrounding Theorem 1.15.

2. Proofs of completeness results

We begin by stating the main theorem we will use to prove our completeness results.

Main Theorem 2.1. Let B1, B2, B3, C ⊆ N be four pairwise disjoint sets such that:

(I) For all i = 1, 2, 3,

(2.1) sup
{

(

n−
∑

{m ∈ Bi : m < n}
)

: n ∈ Bi

}

< ∞.

(II) For all α ∈ T irrational,

(2.2)
∑

n∈C

‖nα‖ = ∞.



10 VITALY BERGELSON AND DAVID SIMMONS

(III) For all q,

(2.3) FS(C) + qZ = Z.

Then A = B1 ∪B2 ∪B3 ∪ C is complete.

It is worth comparing this theorem to a theorem of Cassels:

Theorem 2.2 ([9, Theorem I]). Fix A ⊆ N. Suppose that

(2.4) lim
N→∞

#(A ∩ [N + 1, 2N ])

log log(N)
= ∞

and that for every α ∈ T such that α 6= 0,

(2.5)
∑

n∈A

‖nα‖2 = ∞.

Then A is complete.

Remark 2.3. Theorem 2.1 is close to being a generalization of Theorem 2.2, but does not quite succeed
at doing so due to a technical issue. To be more precise (and referring to Remarks 2.6, 2.8, and 2.9 below
for details), any set satisfying the hypotheses of Theorem 2.2 automatically satisfies (2.2) and (2.3), and
can be written as the disjoint union of arbitrarily many sets satisfying (2.1), but it is not clear whether
the decomposition can be chosen so that any member of this union satisfies (2.2) and (2.3). Nevertheless,
in practice it is usually easy to decompose a set satisfying (2.1)-(2.3) as a disjoint union as in Theorem
2.1, so Theorem 2.1 is a sort of “functional generalization” of Theorem 2.2. The converse is not true, since
many naturally occurring sets satisfy (2.1) but not (2.4), such as the sets occurring in the introduction of
this paper (with the exception of those occurring in Theorem 1.15).

Before proving Theorem 2.1, we discuss some methods for checking its hypotheses.

Remark 2.4. To check that (2.1) holds for some set Bi, it suffices to check that

(2.6) lim inf
N→∞

#
(

Bi ∩ (N, (L+ 1)N ]
)

≥ L

for some L.

Proof. Let (nk)
∞
1 be the unique increasing indexing of B, and let k0 be large enough so that for all k ≥ k0,

nk ≤ (L + 1)nk−L ≤ nk−1 + . . .+ nk−L+1 + 2nk−L.

Then an induction argument shows that for all k ≥ k0,

nk ≤
k−1
∑

i=k0

ni + Lnk0
. �

In particular, to check that a given set B can be decomposed as the union of three pairwise disjoint sets
satisfying (2.1), it suffices to check that

(2.7) lim inf
N→∞

#
(

B ∩ (N, (L + 1)N ]
)

≥ 3L

for some L. Thus we have the following corollary of Theorem 2.1:

Corollary 2.5. Let B,C ⊆ N be two disjoint sets satisfying (2.7), (2.2), and (2.3). Then B ∪ C is
complete.

Note that any sublacunary set automatically satisfies (2.7) for all L. In fact we can say more; for this
purpose we introduce some new terminology. Given λ > 1, a sequence (nk)

∞
1 is called λ-sublacunary if

nk+1/nk ≤ λ for all k sufficiently large. Note that (nk)
∞
1 is sublacunary if and only if it is λ-sublacunary

for all λ > 1. We call (nk)
∞
1 weakly sublacunary if it is λ-sublacunary for some λ > 1. As before, a set is

called λ-sublacunary or weakly sublacunary if its unique increasing indexing has that property. Then we
have:
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Remark 2.6. Any 3
√
2-sublacunary set satisfies (2.7) with L = 1. In particular, this includes the class of

sets satisfying (2.4).

When checking condition (2.2), it is useful for C to have some multiplicative structure in the form of a
factorization:

Remark 2.7. If C1 is a weakly sublacunary set and C2 is an infinite set, then the set C = C1C2 satisfies
(2.2) for all irrational α ∈ T.

Proof. Fix m0 ∈ C1 and λ > 1 such that for all m ≥ m0, (m,λm)∩C1 6= �. Fix N ∈ N. By the pigeonhole
principle, there exist n1, n2 ∈ C2, n1, n2 ≥ N , such that ‖(n2 − n1)α‖ ≤ 1/(2m0). Let m be the largest
element of C1 such that ‖(n2 − n1)α‖ ≤ 1/(2m), and note that m ≥ m0. Then since (m,λm) ∩ C1 6= �,
the maximality of m implies that

‖m(n2 − n1)α‖ = m‖(n2 − n1)α‖ > 1/(2λ).

Thus there exists i = 1, 2 such that ‖mniα‖ > 1/(4λ). Since N was arbitrary, there exist infinitely many
n ∈ C such that ‖nα‖ > 1/(4λ). This completes the proof. �

Remark 2.8. To check (2.3) it suffices to show that for all q ≥ 2, there exists r < q such that

(2.8) FS(C ∩ rN) + qZ = rZ.

Proof. Suppose this holds, and fix q ∈ N. Let q = q0 > q1 . . . > qk = 1 be a decreasing sequence such that
for each i = 0, . . . , k − 1,

FS(C ∩ qi+1N) + qiZ = qi+1Z.

Clearly, we also have

FS
(

C ∩ (qi+1N \ qiN)
)

+ qiZ = qi+1Z

and thus

FS(C) + qZ ⊇
k−1
∑

i=0

FS
(

C ∩ (qi+1N \ qiN)
)

+ q0Z = qkZ = Z. �

Remark 2.9. For fixed r < q, to check (2.8) it suffices to show that

(2.9) #{n ∈ C : gcd(n, q) = r} ≥ q/r − 1.

Proof. Let D = {n ∈ C : gcd(n, q) = r} ⊆ C ∩ rN and write D = {n1, . . . , nk}, where k ≥ q/r − 1. For
each i = 0, . . . , k write Si = FS({n1, . . . , ni}) + qZ. Fix i = 0, . . . , k − 1. If Si is forward invariant under
translation by ni+1, then the condition gcd(ni+1, q) = r guarantees that Si = rZ, completing the proof.
Otherwise, there exists m ∈ Si such that m+ni+1 /∈ Si, which implies that #(Si+1/qZ) > #(Si/qZ). Since
#(S0/qZ) = 1, an induction argument gives #(Si/qZ) ≥ i + 1 for all i, and in particular Sq/r−1/qZ =
rZ/qZ, completing the proof. �

Combining with a pigeonhole argument yields the following:

Remark 2.10. For fixed q ≥ 2, to prove the existence of r < q satisfying (2.8) it suffices to show that

(2.10) #{n ∈ C : q 6| n} = #{n ∈ C : gcd(n, q) < q} >
∑

r<q
r|q

(q

r
− 2
)

.

In particular, if (2.10) holds for all q ≥ 2, then (2.3) holds.

Note that Remark 2.10 shows that any set satisfying (2.5) also satisfies (2.3).
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2.1. Proof of Theorem 2.1. The first main idea of the proof of Theorem 2.1 is to combine a lemma
of Burr and Erdős with a theorem of Furstenberg, Weiss, and the first-named author. These results are
stated as follows:

Lemma 2.11 ([7, Lemma 3.2]). If Bi ⊆ N is a set satisfying (2.1), then FS(Bi) is syndetic.

Lemma 2.12 ([4, Theorem I]). If S1, S2 ⊆ N are syndetic sets (or more generally, sets with positive upper
Banach density), then S1 + S2 is a piecewise Bohr set.

Note that the converse of Lemma 2.11 also holds; see [1, Theorem 4.1]. Since the proof of Lemma 2.11
is easy, we include it for completeness:

Proof of Lemma 2.11. Fix n ∈ N, and define a sequence (mj)
J
1 in Bi recursively using the “greedy algo-

rithm”

(2.11) mj = max{m ∈ Bi \ {m1, . . . ,mj−1} : m1 + . . .+mj−1 +m ≤ n},
where it is understood that the algorithm terminates once the set on the right hand side of (2.11) is
empty. Clearly the algorithm always eventually terminates and satisfies m1 > m2 > . . . > mJ . Let
D = {m1, . . . ,mJ}, and let m = min(Bi \D).

Case 1: m = min(Bi). Then since the algorithm terminated at step J , we must have m1+. . .+mJ+m > n,
and thus n ∈ FS(Bi) + {0, . . . ,min(Bi)}.

Case 2: m > min(Bi). Let j be the smallest integer such that mj < m. Since the algorithm selected mj

rather than m at the jth step, we must have m1 + . . .+mj−1 +m > n. On the other hand, letting
s = sup

{(

ℓ−∑{k ∈ Bi : k < ℓ}
)

: ℓ ∈ Bi

}

< ∞ we have

n ≥ m1 + . . .+mJ = m1 + . . .+mj−1 +
∑

{k ∈ Bi : k < m} ≥ m1 + . . .+mn−1 +m− s,

and thus n+ k ∈ FS(Bi) for some k = 0, . . . , s. �

Now let B1, B2, B3, C be as in Theorem 2.1. By Lemma 2.11, the assumption (2.1) implies that the
sets FS(B1),FS(B2),FS(B3) are syndetic. Let B12 = B1 ∪ B2. Applying Lemma 2.12, we see that
FS(B12) = FS(B1) + FS(B2) contains a piecewise Bohr set. So there exist d ∈ N, α ∈ Td = Rd/Zd,
an open set U ⊆ Td, and a thick set J ⊆ N such that

(2.12) FS(B12) ⊇ J ∩ {n ∈ N : nα ∈ U} 6= �.

Now let

(2.13) G =
⋂

N∈N

FS({n ∈ C, n ≥ N})α.

Claim 2.13. G is a semigroup.

Proof. Fix n1, n2 ∈ G, ε > 0, and N ∈ N. By definition, there exists F1 ⊆ C such that min(F1) ≥ N
and ‖Σ(F1)α − n1‖ ≤ ε. By definition, there exists F2 ⊆ C such that min(F2) ≥ max(F1) + 1 and
‖Σ(F2)α− n2‖ ≤ ε. Let F = F1 ∪ F2. Then min(F ) ≥ N and ‖Σ(F )α− (n1 + n2)‖ ≤ 2ε. Since ε,N were
arbitrary, n1 + n2 ∈ G. ⊳

Since every compact subsemigroup of a group is itself a group,10 G is a group and thus by the closed
subgroup theorem (e.g. [18, Theorem 20.12]), G is an embedded Lie subgroup of Td, which implies that
G takes the form V/Zd + F , where V ⊆ Rd is a rational subspace and F ⊆ Td is a finite subgroup. It
follows that Td/G is a torus, so there exist continuous homomorphisms π1, . . . , πk : Td → T such that

G =
⋂k

1 π
−1
i (0).

Claim 2.14. There exists q ≥ 1 such that qα ∈ G.

10This fact is proven in [19, Theorem 1], but for metric spaces it can be proven more easily as follows: Let G be a compact
semigroup of a group, with the group operation written as +. Fix β ∈ G and let (nk)

∞

1 be a sequence such that the sequence

(nkβ)
∞

1 converges. Without loss of generality suppose that nk+1 ≥ nk + 2. Then −β = limk→∞(nk+1 − nk − 1)β ∈ G.
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Proof. Suppose not. Then there exists i = 1, . . . , k such that β = πi(α) is irrational. By the assumption
(2.2), the series

∑

n∈C ‖nβ‖ diverges. For each n ∈ C, let βn ∈ [−1/2, 1/2] be a representative of nβ ∈ T,
so that

∑

n∈C ‖nβ‖ =
∑

n∈C |βn|. Let C+ = {n ∈ C : βn ≥ 0}, and without loss of generality, suppose
that the series

∑

n∈C+
βn diverges. Fix N ∈ N, and let FN ⊆ C+ be a finite set which is minimal with

respect to the following properties: min(FN ) ≥ N and
∑

n∈FN
βn ≥ 1/4. Then 1/4 ≤

∑

n∈FN
βn ≤ 3/4,

so ‖Σ(FN )β‖ ≥ 1/4. Since Td is compact, we can find a convergent subsequence Σ(FN )α → x ∈ G; then

‖πi(x)‖ ≥ 1/4. But since x ∈ G and G =
⋂k

1 π
−1
i (0), we must have πi(x) = 0, a contradiction. ⊳

Let q be as in Claim 2.14, and let H = G+{0, . . . , q−1}α ⊇ Nα. By the assumption (2.3), FS(C)+qZ =
Z, so FS(C)α + G = H . Then it follows from (2.13) that H is contained in the closure of FS(C)α. In
particular, H ⊆ FS(C)α + (U ∩H), where U is as in (2.12). Since H is compact, there exists a finite set
F ⊆ FS(C) such that H ⊆ Fα+U . Now fix n ≥ max(F ). Then nα ∈ H ⊆ Fα+U , so there exists m ∈ F
such that (n−m)α ∈ U . If n−m ∈ J , then by (2.12) we have n−m ∈ FS(B12) and thus n ∈ FS(B12∪C).
So

FS(B12 ∪ C) ⊇ {n : n−m ∈ J ∀m = 0, . . . ,max(F )}.
Since J contains arbitrarily large intervals, so does FS(B12 ∪C). Thus since FS(B3) is syndetic, it follows
that FS(B ∪ C) = FS(B12 ∪ C) + FS(B3) is cofinite. This completes the proof of Theorem 2.1.

2.2. Proof of Theorem 1.11. Let M = N − 3(a− 1) and let

B = {anbm : n ∈ N, m = M + 1, . . . , N}
C = {anbm : n ∈ N, m = 0, . . . ,M}.

Then (2.7) is satisfied with L = a− 1, and by Remark 2.7 (applied with C1 = C and C2 = aN), (2.2) holds
for all irrational α ∈ T. Moreover, by assumption (I) we have B ∩ C = �. So to apply Corollary 2.5, we
need to demonstrate (2.3), to which end we will utilize Remarks 2.8 and 2.9. Thus, we fix q ≥ 2, aiming to
find r < q satisfying (2.8). First, suppose that there is a prime p dividing q which does not divide a. By
assumption (II), there exists m = 0, . . . ,M such that p does not divide bm. Then for all n ∈ N, we have
gcd(anbm, q) < q, so by Remark 2.10 we get (2.8).

On the other hand, suppose that every prime dividing q divides a; then q divides an for all sufficiently
large n. Let n be the largest integer such that q does not divide an. Applying Remark 2.9 with q replaced
by a, by assumption (III) we have FS({bm : m = 0, . . . ,M}) + aZ = Z and thus

FS({anbm : m = 0, . . . ,M}) + qZ = FS({anbm : m = 0, . . . ,M}) + an+1Z + qZ

= anZ + qZ = gcd(an, q)Z,

so (2.8) holds with r = gcd(an, q).

2.3. Proof of Theorem 1.15. We first need to recall a result of Freeman [10]. Let PR denote the set of all
nonconstant polynomials (with real coefficients), and let Pk

R
denote the set of all nonconstant polynomicals

of degree ≤ k. A finite sequence of polynomials h1, . . . , hs ∈ PR will be said to satisfy the irrationality
condition if the set of coefficients of nonconstant terms of the polynomials h1, . . . , hs contains at least two
elements which are linearly independent over Q (cf. [10, Definition on p.210]). The sequence will be said
to be positive-definite if all leading coefficients are positive and all degrees are even.

Theorem 2.15 (Corollary of [10, Theorem 2]). For all k ∈ N, there exists s = s1(k) ∈ N such that for
every positive-definite sequence h1, . . . , hs ∈ Pk

R
which satisfies the irrationality condition, for all ε > 0,

there exists M0 > 0 such that for all R ∋ M ≥ M0, there exist z1, . . . , zs ∈ Z for which
∣

∣

∣

∣

∣

s
∑

i=1

hi(zi)−M

∣

∣

∣

∣

∣

≤ ε.

Moreover, we may take s1(k) to satisfy
s1(k) ∼ 4k log(k).

By taking the polynomials h1, . . . , hs to be of the form hi(x) = Pi(x
2+1), we get the following corollary:
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Corollary 2.16. For all k ∈ N, there exists s = s2(k) ∈ N such that for every sequence P1, . . . , Ps ∈ Pk
R

which satisfies the irrationality condition and whose leading coefficients are positive, for all ε > 0, there
exists M0 > 0 such that for all R ∋ M ≥ M0, then there exist n1, . . . , ns ∈ N for which

∣

∣

∣

∣

∣

s
∑

i=1

Pi(ni)−M

∣

∣

∣

∣

∣

≤ ε.

Moreover, we may take s2(k) to satisfy

s2(k) = 2s1(k) ∼ 8k log(k).

Remark 2.17. A result of Götze [13, Corollary 1.4] implies that when k = 2, we can get s2(2) = 5 in
Corollary 2.16.

Corollary 2.18. Fix k and let s = s2(k) be as in Corollary 2.16, and fix a1, . . . , as ≥ 2, not all powers of
the same integer, and P1, . . . , Ps ∈ Pk

N
(cf. Theorem 1.15). Then the set

A =
{

a
P1(n1)
1 · · · aPs(ns)

s : n1, . . . , ns ∈ N
}

.

is sublacunary.

Proof. Apply Corollary 2.16 to the sequence of polynomials log(a1)P1, . . . log(as)Ps. Since a1, . . . , as are
not all powers of the same integer and since P1, . . . , Ps have integral coefficients, this sequence satisfies the
irrationality condition. �

We now begin the proof of Theorem 1.15. Fix k, let s = s2(k), and let

s0(k) = s2(k) + 1.

Note that s0 satisfies (1.5). Fix a1, . . . , as+1 ≥ 2 and P1, . . . , Ps+1 ∈ Pk
N
such that assumptions (I) and (II)

hold. Let

B = C1 =

{

s
∏

i=1

a
Pi(ni)
i : n1, . . . , ns ∈ N

}

C2 = {aPs+1(n)
s+1 : n ∈ N}

C = C1C2 ∪
{

a
Pi(n)
i : n ∈ N0, i = 1, . . . , s+ 1

}

.

By Corollary 2.18, B = C1 is sublacunary, so by Remarks 2.6 and 2.7, (2.7) and (2.2) both hold. Moreover,
by assumption (II) we have B ∩ C = �.

To demonstrate (2.3), we will use Remark 2.10, so fix q ≥ 2. Let p be a prime dividing q; by assumption

(I), we have p ∤ ai for some i = 1, . . . , s + 1. It follows that gcd(a
Pi(n)
i , q) < q for all n, demonstrating

(2.10). Thus by Corollary 2.5, A = B ∪ C is complete.

2.4. Proof of Theorem 1.18. For each n, find x
(n)
1 , . . . , x

(n)
k ∈ A satisfying (1.7) such that min(x

(n)
1 , . . . , x

(n)
k ) >

Nn, where the sequence (Nn)
∞
1 is chosen recursively so as to satisfy

(2.14) max(x
(n−1)
1 , . . . , x

(n−1)
k ) < Nn ∈ A ∀n ≥ 2.

Let F ⊆ A be a finite set such that for all q = 1, . . . , b, FS(F ) intersects every arithmetic progression of
the form qN + i (0 ≤ i < q). Let

C = {x(n)
j : j = 1, . . . , k, n ∈ N} ∪ F, B = A \ C.

Since A is sublacunary, the condition (2.14) implies that B is sublacunary and thus that (2.7) holds. Fix
α ∈ T irrational, and let

ε = min{‖nα‖ : n = 1, . . . , b} > 0.
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Then for all n ∈ N, by (1.7) we have
∥

∥

∥

∥

∥

∥

k
∑

j=1

zjx
(n)
j α

∥

∥

∥

∥

∥

∥

≥ ε

and thus by the triangle inequality, there exists jn = 1, . . . , k such that

‖x(n)
jn

α‖ ≥ ε/(|z1|+ · · ·+ |zk|).

Since x
(n)
jn

∈ C, it follows that (2.2) holds. Finally, to demonstrate (2.3), we will use Remark 2.8, so fix

q ≥ 2. Suppose first that q > b. Then for all n ∈ N, by (1.7) we have

k
∑

j=1

zjx
(n)
j /∈ qZ

and thus there exists jn = 0, . . . , k such that x
(n)
jn

/∈ qZ, i.e. gcd(x
(n)
jn

, q) < q. So by Remark 2.10, (2.8)

holds. On the other hand, if 2 ≤ q ≤ b, then the definition of F guarantees that (2.8) holds with r = 1.
Thus by Corollary 2.5, A = B ∪ C is complete.

2.5. Proof of Theorem 1.20. Let zi = (−1)k−i
(

k
i

)

for all i = 0, . . . , k. Then for all m ∈ N,

∆kf(m) =

k
∑

i=0

zif(m+ i)

and thus
∣

∣

∣

∣

∣

k
∑

i=0

zi⌊f(m+ i)⌋
∣

∣

∣

∣

∣

≤ b :=

k
∑

i=0

|zi|+ sup |∆kf |.

So by Theorem 1.18, we are done unless for all but finitely many m ∈ N, we have

(2.15)

k
∑

i=0

zi⌊f(m+ i)⌋ = 0.

So by contradiction, suppose that there exists m0 such that (2.15) holds for all m ≥ m0. Let g be the
unique polynomial of degree k − 1 such that g(m0 + i) = ⌊f(m0 + i)⌋ for all i = 0, . . . , k − 1. Since g is of
degree k − 1, for all m we have

k
∑

i=0

zig(m+ i) = 0,

so a strong induction argument shows that g(m) = ⌊f(m)⌋ for all m ≥ m0. So

A ⊇ {g(n) : n ≥ m0}
which reduces us to the case considered in (1.6).

2.6. Proof of Theorem 1.21. We begin this proof by introducing a new notation. If x and y are
expressions denoting numbers, then x .× y means that x ≤ cy, where c > 0 is a constant independent
of x and y (the implied constant). The constant c may depend on other variables to be determined from
context. We can now state a lemma to be used in the proof:

Lemma 2.19. Fix d ∈ N and P ∈ Pd
N
. Then for all n0, . . . , nd ∈ N distinct, there exist z0, . . . , zd ∈ Z such

that

(2.16) max
i

|zi| .× M(d+1

2 )

and

(2.17) 0 <

∣

∣

∣

∣

∣

d
∑

i=0

ziP (ni)

∣

∣

∣

∣

∣

.× M(d+1

2 ),

where M = maxi,j |nj − ni|.
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Proof. For each i = 0, . . . , d let mi = ni − n0, and write

P (x+mi) =

d
∑

j=0

aijx
j .

Note that aij ∈ Z and

(2.18) |aij | .× md−j
i .

Let D denote the determinant of the matrix whose (i, j)th entry is aij . By the Vandermonde determinant
theorem, D 6= 0. Also, the bound (2.18) implies that

|D| .× M(d+1

2 ).

Let z0, . . . , zd denote the unique solutions to the equations

d
∑

i=0

aijzi =

{

D j = 0

0 j > 0
.

By Cramer’s rule, we have zi ∈ Z, and combining Cramer’s rule with (2.18) gives (2.16). To demonstrate
(2.17), we observe that

d
∑

i=0

ziP (ni) =
d
∑

i=0

ziP (n0 +mi) =
d
∑

i=0

zi

d
∑

j=0

aijn
j
0 =

d
∑

j=0

nj
0

{

D j = 0

0 j > 0
= D. �

Lemma 2.20. Fix d ∈ N and P ∈ Pd
N
, and let D be a set such that for some N0,

(2.19) c = inf
N≥N0

1

N1−δ
#(D ∩ [1, N ]) > 0,

where δ = 1/
[

1 + 2
(

d+1
2

)

]

. Let C = P (D) = {P (n) : n ∈ D}. Then (2.2) holds for all irrational α ∈ T.

Proof. Fix α ∈ T irrational, and let p/q ∈ Q be a convergent of the continued fraction expansion of
α. By standard results in Diophantine approximation [17, Theorems 13 and 16], for all n < q we have
‖nα‖ ≥ 1/(2q). Now let N = (εq)2/(1−δ), where ε > 0 is a small constant to be chosen below. Assume
that q is large enough so that N ≥ N0. Then by (2.19), we have #(D ∩ [1, N ]) ≥ cN1−δ. Let (nk)

∞
1 be

the unique increasing indexing of D. Then

#{k : nk+1 ≤ N, nk+1 − nk > (d+ 1)c−1N δ} ≤ c

d+ 1
N1−δ.

Let S be the set of k ∈ N such that nk+d ≤ N and nk+i+1 − nk+i ≤ (d+ 1)c−1N δ for all i = 0, . . . , d− 1.
Then

#(S) ≥ (cN1−δ − d)− d
c

d+ 1
N1−δ =

c

d+ 1
N1−δ − d.

Fix k ∈ S, and note that nk+d −nk ≤ (d2 + d)c−1N δ. By Lemma 2.19, there exist z0, . . . , zd ∈ Z such that

max
i

|zi| ≤ K

0 <

∣

∣

∣

∣

∣

d
∑

i=0

ziP (nk+i)

∣

∣

∣

∣

∣

≤ K

where

K ≍× (nk+d − nk)(
d+1

2 ) .× [(d2 + d)c−1N δ](
d+1

2 ) ≍× N(d+1

2 )δ = εq.

By choosing ε sufficiently small, we get K < q. In particular, since
∣

∣

∣

∣

∣

d
∑

i=0

ziP (nk+i)

∣

∣

∣

∣

∣

< q
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we have
∥

∥

∥

∥

∥

d
∑

i=0

ziP (nk+i)α

∥

∥

∥

∥

∥

≥ 1

2q

and thus
d
∑

i=0

‖P (nk+i)α‖ ≥ 1

2q2
.

So

∑

k
nk≤N

min(1/q2, ‖P (nk)α‖) ≥
1

d+ 1

∑

k∈S

min

(

1/q2,

d
∑

i=0

‖P (nk+i)α‖
)

≥ 1

2(d+ 1)q2
#(S) ≥ 1

2(d+ 1)q2

(

c

d+ 1
N1−δ − d

)

=
c

2(d+ 1)2
− d

2(d+ 1)q2
·

As q → ∞, this inequality implies that the tails of the series
∑

k ‖P (nk)α‖ do not converge to zero. It
follows that the series (2.2) diverges. �

We now begin the proof of Theorem 1.21. Let I be an infinite subset of A such that for all q ≥ 2,

(2.20) #{n ∈ I : q 6| n} = ∞.

It is possible to choose I sparse enough so that A \ I is a sublacunary set. For each k ∈ N, let nk =
P (mk) ∈ A \ I be chosen so that k3 ≤ mk < (k + 1)3 if possible, with mk = min(D) otherwise. Then
D2 = {mk : k ∈ N} is a sublacunary set, and so is B = P (D2) = {nk : k ∈ N}. On the other hand,

lim
N→∞

1

N1−δ
#(D2 ∩ [1, N ]) ≤ lim

N→∞

1

N1−δ
(1 + ⌈N1/3⌉) = 0

and therefore (2.19) holds for D3 = D \D2. In particular, (2.2) holds for C = P (D3) = A \ B. On the
other hand, for all q ≥ 2, by (2.20) we have (2.9) and thus by Remarks 2.8 and 2.9, we have (2.3).

So by Theorem 2.1, A is complete. But if F is any finite subset of A, then A \ F also satisfies the
hypotheses of this corollary, and is therefore complete. Thus A is strongly complete.

2.7. Proof of Theorem 1.23. Let F be a finite subset of A. For each i = 1, 2, 3 let Bi = SN0

i \ F , and

let C = SN0

4 \ F . Fix i = 1, 2, 3 and n ∈ Bi. For each a ∈ Si let ma ∈ N0 be the largest integer such that
ama < n, and let ka be the smallest integer such that am /∈ F for all m ≥ ka. Then by (1.11),

n ≤
∑

a∈Si

n

a− 1
≤
∑

a∈Si

ama+1

a− 1
≤
∑

a∈Si

[

ma
∑

m=ka

am + aka

]

≤
∑

{b ∈ Bi : b < n}+
∑

a∈Si

aka ,

i.e. (2.1) holds. Since C ⊇ aka+N0aN0 for every a ∈ S4, Remark 2.7 implies that (2.2) holds. Finally, (2.3)
follows immediately from Remark 2.10 and the assumption that gcd(S4) = 1. Thus by Theorem 2.1, A \F
is complete; since F was arbitrary, A is strongly complete.

2.8. Proof of Proposition 1.25. We verify (2.6) for A = aSbT . Let s ∈ N denote the syndeticity constant
of S, and let L = as−1. Fix N ∈ N and m ∈ T , and let n ∈ S be the smallest element such that anbm > N .
Assuming N ≥ amin(S)bm, this implies that anbm ∈ (N, (L + 1)N ]. So

#
(

A ∩ (N, (L+ 1)N ]
)

≥ #{m ∈ T : N > amin(S)bm} −→
N

#(T ) ≥ L,

demonstrating (2.6). So by Remark 2.4 and Lemma 2.11, A is complete.
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3. Proofs of dispersing results

We now state the main theorem which we will use to prove some of our dispersing results, namely
Theorems 1.31, 1.32, and 1.34. Theorems 1.28 and 1.33 will be proven separately.

Theorem 3.1. Fix r ∈ N, and let (Bi)
2r
1 be a sequence of infinite subsets of rN + 1, of which at least

B1, . . . , Br are sublacunary. Then the set

A =
2r
∏

i=1

Bi

is 1/r-dispersing.

The following lemma will be used in the proof of Theorem 3.1.

Lemma 3.2. Let A be a sublacunary set. If 0 is in the closure of a set S ⊆ (0,∞), then AS is dense in
[0,∞).

Proof. Fix x > 0 and ε > 0. Let (nk)
∞
1 be the unique increasing indexing of A, and let k0 be large enough

so that |nk+1/nk − 1| ≤ ε for all k ≥ k0. Since 0 ∈ S, there exists y ∈ S with 0 < y ≤ x/nk0
. Let k be

maximal subject to nk ≤ x/y. Then

1 ≤ x

nky
≤ nk+1

nk
≤ 1 + ε.

Since ε was arbitrary, we are done. �

Since π([0,∞)) = T (where π : R → T is the natural projection), we get:

Corollary 3.3. Let A be a sublacunary set. If 0 is a limit point of a set S ⊆ T, then AS is dense in T.

Proof of Theorem 3.1. For each i = 1, . . . , r let Ci = Br+i, and let A′ =
∏r−1

i=1 BiCi. Fix α ∈ T irrational.

Case 1: A′α∩Q = �. In this case, letting k = r− 1 in the following claim shows that A′α is 1/r-dense:

Claim 3.4. For all k = 0, . . . , r − 1, there exists αk ∈ T such that

(3.1) αk, αk + r−1, . . . , αk + kr−1 ∈ Fk := B1C1 · · ·BkCkα.

Proof. For k = 0, simply let α0 = α. Fix k, and suppose that there exists αk such that (3.1) holds. Since
A′α does not contain any rational, αk is irrational, so Ck+1αk is infinite. Since T is compact, it follows
that 0 is a limit point of (Ck+1 − Ck+1)α. So by Corollary 3.3, Bk+1(Ck+1 − Ck+1)αk is dense in T, and

in particular r−1 ∈ Bk+1(Ck+1 − Ck+1)αk. It follows that there exists αk+1 ∈ Bk+1Ck+1αk such that
αk+1 + r−1 ∈ Bk+1Ck+1αk. Since Bk+1, Ck+1 ⊆ rN + 1, (3.1) gives

αk+1 + ir−1, αk+1 + (i+ 1)r−1 ∈ Bk+1Ck+1αk + ir−1 ⊆ Bk+1Ck+1Fk = Fk+1 ∀i = 0, . . . , k,

which demonstrates (3.1) for k = k + 1. ⊳

Case 2: A′α ∩ Q 6= �. Fix p/q ∈ A′α. Then 0 ∈ qA′α. By Corollary 3.3, qA′Brα is dense in T. So by
elementary topology, A′Brα is somewhere dense. Multiplying by the infinite set Cr and using the identity
A = A′BrCr shows that Aα is dense, finishing the proof. �

We now use Theorem 3.1 to prove Theorems 1.31, 1.32, and 1.34.

3.1. Proof of Theorem 1.31. Write R as a disjoint union R = R′ ∪ I, where R′ has the same property
as R and I is infinite.

Let r be a large prime, and let k = r − 1. Write R′ ∩ kN as a disjoint union R′ ∩ kN =
⋃∞

1 Ri, where
for each i, (Ri/k) logb(a) is dense mod 1. Then for each i, the set

Bi = akNbRi ⊆ rN + 1

is sublacunary. So by Theorem 3.1, aNbFS(R
′) ⊇

∏2r
i=1 Bi is 1/r-dispersing. Since r was arbitrary, aNbFS(R

′)

is dispersing. Then by elementary topology, aSbFS(R
′) is weakly dispersing. Multiplying by the infinite set

bI finishes the proof.
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3.2. Proof of Theorem 1.32. Without loss of generality we can assume that for all i, p does not divide
ai. Let s = s2(k) be as in Corollary 2.18.

Fix ε > 0, and let ℓ ∈ N be large enough so that r := pℓ > 1/ε. For each j let

Cj = {aPj(p
ℓ(p−1)n)

j : n ∈ N}
and then let

Bi =

s
∏

j=1

Csi+j .

By Corollary 2.18, the sets (Bi)
∞
1 are sublacunary, and from number-theoretical considerations they satisfy

Bi ⊆ rN+1. So by Theorem 3.1, the product
∏2r

1 Bi is 1/r-dispersing. Since
∏2r

1 Bi ⊆ A2rs, this completes
the proof.

3.3. Proof of Theorem 1.34. Fix r such that A∩(rN+1) is sublacunary, and let B1, . . . , B2r be pairwise

disjoint sublacunary subsets of A ∩ (rN + 1). Then by Theorem 3.1,
∏2r

i=1 Bi is 1/r-dispersing, and thus

so is FP(A) ⊇∏2r
i=1 Bi. Since r was arbitrary, FP(A) is dispersing.

The remaining proofs do not use Theorem 3.1.

3.4. Proof of Theorem 1.28. Fix α ∈ T irrational. Since S is syndetic and T is piecewise syndetic, there
exist constants s, t ∈ N such that S′ = S+ {0, . . . , s} is cofinite and T ′ = T + {0, . . . , t} contains arbitrarily
large intervals, say

T ′ ⊇
∞
⋃

k=1

{nk, · · · , nk + k}

for some sequence nk → ∞. By passing to a subsequence, we may assume that bnkα → β for some β ∈ T.
Let A = aSbT and A′ = aS

′

bT
′

. If we can show that A′α is somewhere dense, then we can complete
the proof using elementary topology. Namely, there exists a finite set F such that A′ = FA, and thus
⋃

f∈F fAα is somewhere dense. So for some f ∈ F , fAα is somewhere dense and thus Aα is somewhere
dense.

Case 1: β irrational. In this case, by Theorem 1.4, aS
′

bNβ is dense in T. Fix n ∈ S′ and m ∈ N.
Then for all k ≥ m,

A′α ∋ anbnk+mα → anbmβ.

So A′α ⊇ aS′bNβ = T.
Case 2: β rational. After multiplying by the denominator of β, we may without loss of generality

assume that β = 0, i.e. bnkα → 0. Fix ε > 0, and let k be large enough so that F = {0, . . . , k} loga(b) is
ε-dense mod 1. Then F + S′ is ε-dense in [c,∞) for some c ≥ 0. Choose ℓ ≥ k large enough so that

‖bnℓα‖ ≤ 1/ac.

Then F+S′+loga ‖bnℓα‖ is ε-dense in [0,∞). Since the exponential function x 7→ ax is 2 log(a)-Lipschitz on

(−∞, loga(2)], a
S′

b{0,...,k}‖bnℓα‖ is 2 log(a)ε-dense in [1, 2]. But this implies that A′α ⊇ aS
′

b{nℓ,...,nℓ+k}α
is 2 log(b)ε-dense in T. Since ε was arbitrary, this completes the proof.

3.5. Proof of Theorem 1.33. Let α ∈ T be Lebesgue random. Then for all i, aN

i α is dense in T, and in
particular 0 is a limit point of aN

i α. This will be the only fact about α we need for this proof.
Let π1, π2 : N → N be maps such that π1 × π2 : N → N× N is a bijection. We will define by recursion a

sequence (Nk)
∞
1 , and then we will show that if

Si =
⋃

k:π1(k)=i

(Nk + {0, . . . , π2(k)}),

then (Aα)′ (the derived set of Aα) is {0}.
Fix k ∈ N, and suppose that Nj has been defined for all j < k. Let

Mk = a
π2(k)
π1(k)

∏

j<k

a
Nj+π2(j)

π1(j)
.
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By our assumption on α, there exists Nk such that ‖aNk

π1(k)
α‖ ≤ (kMk)

−1. This completes the recursive
step.

Now,

A ⊆
∞
∏

k=1

{1} ∪ a
Nk+{0,...,π2(k)}
π1(k)

.

So to show that (Aα)′ = 0, it suffices to show that if

n =
∏

k∈F

aNk+sk
π1(k)

(F finite, 0 ≤ sk ≤ π2(k) ∀k ∈ F ),

then

‖nα‖ ≤ 1/max(F ).

Indeed, let k = max(F ), and let

m = askπ1(k)

∏

j∈F\{k}

a
Nj+sj
π1(j)

.

Then m ≤ Mk and n = maNk

π1(k)
. So

‖nα‖ ≤ m‖aNk

π1(k)
α‖ ≤ 1/k.

Appendix A. Growth rate calculations

A.1. Fix a, b ≥ 2 and let A = {an2

bm
2

: n,m ∈ N0}. In Example 1.14, we stated that FS(A) has density
zero. Indeed, if a = b = 2 then this follows from the fact that infinitely many integers cannot be written
as the sum of two squares, so assume that max(a, b) ≥ 3. Then for any N ,

#(A ∩ [1, N ]) ≤ #{(n,m) ∈ N0
2 : n2 ≤ loga(N),m2 ≤ logb(N)}

≤
√

loga(N)
√

logb(N)

#(FS(A) ∩ [1, N ]) ≤ 2#(A∩[1,N ]) ≤ exp
(

log(2)
√

loga(N)
√

logb(N)
)

= N
√

loga(2) logb(2).

Since a, b ≥ 2 and max(a, b) ≥ 3, the exponent is strictly less than one and thus FS(A) has density zero.
In particular FS(A) is not cofinite, so A is not complete.

We remark that a similar analysis says nothing about the density of the similar-looking set

FS
({

2(
n
2)3(

m
2 ) : n,m ∈ N0

})

,

indicating that the issue is somewhat subtle.

A.2. Fix a1, . . . , as ≥ 2 pairwise coprime and P1, . . . , Ps ∈ PN and let

(A.1) A =
{

a
P1(n1)
1 · · ·aPs(ns)

s : n1, . . . , ns ∈ N0

}

.

Theorem 1.15 stated that for all k, there exists s0 = s0(k) such that if s ≥ s0 and deg(Pi) ≤ k ∀i, then
A is complete. In Remark 1.16, we stated that s0(k) ≥ k, meaning that if s = k − 1 and deg(Pi) = k ∀i,
then A is not complete. In fact, we will prove the following more general result:

Theorem A.1. Fix s ∈ N, a1, . . . , as ≥ 2, and P1, . . . , Ps ∈ PN. If

(A.2)

s
∑

i=1

1

deg(Pi)
< 1,

then the set A defined by (A.1) is not complete.
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Proof. Let C > 0 be a constant large enough so that for all i = 1, . . . , s and s ≥ 0, Pi(x) ≥ (1/C)xdeg(Pi)−C.
Fix

s
∑

i=1

1

deg(Pi)
< α < 1.

Then for all N ∈ N,

#

({

s
∏

i=1

a
Pi(ni)
i : n1, . . . , ns ∈ N0

}

∩ [1, N ]

)

≤
s
∏

i=1

#{n ∈ N0 : a
Pi(n)
i ≤ N}

≤
s
∏

i=1

#{n ∈ N0 : ndeg(Pi) ≤ C logai
(N) + C2}

≤
s
∏

i=1

(C logai
(N) + C2 + 1)1/ deg(Pi)

≤ log2(N)α. (if N is sufficiently large)

Elementary combinatorics then gives

1

N
#

(

FS

({

s
∏

i=1

a
Pi(ni)
i : n1, . . . , ns ∈ N0

})

∩ [1, N ]

)

≤ 1

N
2log2(N)α −→

N
0,

i.e. FS({
∏s

1 a
Pi(ni)
i : n1, . . . , ns ∈ N0}) has density zero, and in particular is not cofinite. �

References

1. C. Adams, III, N. B. Hindman, and D. P. Strauss, Largeness of the set of finite products in a semigroup, Semigroup
Forum 76 (2008), no. 2, 276–296.

2. D. Berend and M. D. Boshernitzan, Densing sets, Adv. Math. 115 (1995), no. 2, 286–299.
3. D. Berend and Y. Peres, Asymptotically dense dilations of sets on the circle, J. London Math. Soc. (2) 47 (1993), no. 1,

1–17.
4. V. Bergelson, H. Furstenberg, and B. Weiss, Piecewise-Bohr sets of integers and combinatorial number theory, Topics in

discrete mathematics, Algorithms Combin., 26, Springer, Berlin, 2006, pp. 13–37.
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