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Undrained cavity expansion analysis with a unified state
parameter model for clay and sand

P. Q. MO� and H. S. YU†

This paper presents a new analytical solution for undrained expansion of spherical and cylindrical
cavities in soils with a unified state parameter model for clay and sand (CASM). Large strain and
effective stress solutions are derived for soils in the elastic, plastic and critical-state regions. The key
advantage of using the state parameter model CASM is that it can model both clay and sand and is
generally able to capture overall soil behaviour as observed in the laboratory. The newly developed
solution provides the stress and strain fields during the expansion of a cavity from an initial to a
final radius. Following the validation with the original Cam Clay solution, a simple parametric study
is conducted to investigate the effects of key model parameters on stress distributions and cavity
expansion curves. Applications to the analysis of pile installation and self-boring pressuremeter tests
highlight some important implications in geotechnical practice.

KEYWORDS: in situ testing; plasticity; stress path; theoretical analysis

INTRODUCTION
Cavity expansion theory has been extensively developed
and widely applied to geotechnical problems, such as in situ
soil testing, pile foundation and tunnelling (Yu, 2000). In
addition to classical cavity expansion solutions in elastic
materials, a range of analytical solutions have been proposed
using more sophisticated constitutive soil models, from
elastic perfectly plastic soils (Vesic, 1972; Carter et al.,
1986; Yu & Houlsby, 1991; Mo et al., 2014) to elastic
plastic strain hardening soils (Palmer & Mitchell, 1971;
Collins & Yu, 1996; Chen & Abousleiman, 2012, 2013).
Although numerical simulations are gaining popularity for
boundary value problems when sophisticated soil models
are employed (Carter, 1978; Yu, 1990; Yu et al., 2005), ana-
lytical solutions remain highly useful both for validation of
numerical simulations and providing insight into the relative
importance of various soil parameters.
As the most widely used strain-hardening/softening

models in soil mechanics and geotechnical engineering,
critical state soil models (Schofield & Wroth, 1968) have
been used to derive cavity expansion solutions under both
drained and undrained conditions in the past two decades.
Similarity solutions for drained and undrained cavities
from zero initial radius in critical state soils were presented
by Collins et al. (1992) and Collins & Stimpson (1994),
and these provided predictions of the limit effective cavity
pressure and excess pore pressure for both spherical and
cylindrical cavities. Subsequently, Collins & Yu (1996) pres-
ented a complete large strain solution procedure for cavity
expansion from an arbitrary initial radius in a variety
of Cam-clay critical state soils. The general effective stress
analyses for large strain cavity expansions were provided
with simple quadratures. Analytical effective stress solutions
were derived, but only for the original Cam clay.

These critical state solutions were applied to a pile installa-
tion (Collins & Yu, 1996) and a self-boring pressuremeter
(Yu & Collins, 1998). Cao et al. (2001) presented an analysis
of the undrained expansion of a cavity in modified Cam clay,
by applying small strain in the elastic zone and large strain in
the plastic zone. More recently, further semi-analytical sol-
utions for undrained and drained expansions of cylindrical
cavities in modified Cam clay soils have been reported by
Chen & Abousleiman (2012) and Chen & Abousleiman
(2013). By introducing an out-of-plane in situ stress around
the cylindrical cavity, the solutions removed the limitation
on the initial condition of isotropic stress state, in order
to simulate the more general case where the in situ vertical
stress may be different from the horizontal one. However, in
terms of constitutive models, there have been difficulties
in modelling heavily overconsolidated clays using critical
state models, and most critical state models were used with
an associated flow rule, which showed very low accuracy
for prediction of soil behaviour in loose sand and normally
consolidated clays. In consideration of the limitations for
modelling granular materials using conventional critical state
models, cavity expansion solutions with a unified soil model
for clay and sand are still not available.
In this paper a novel analytical effective stress solution

for undrained expansion in both spherical and cylindrical
cavities in a unified state parameter model for clay and sand
(CASM), developed by Yu (1998), is presented. After intro-
ducing the unified state parameter model with Rowe’s stress
dilatancy relation, the complete large strain analyses are
provided for soil in elastic, plastic and critical-state regions.
The solution is then validated against the existing results
for the original Cam-clay model. Further results on stress
paths, stress distributions and cavity expansion curves are
investigated with the variation of soil parameters and over-
consolidation ratio. Brief applications to pile installation and
self-boring pressuremeter are also provided, followed by
concluding remarks.

PROBLEM DEFINITION
The present paper is concerned with the expansion of a

spherical/cylindrical cavity with initial radius a0 in an infinite
soil under undrained conditions. The geometry and kine-
matics of cavity expansion are illustrated schematically in

� State Key Laboratory for GeoMechanics and Deep Underground
Engineering, China University of Mining and Technology, Xuzhou,
Jiangsu, P. R. China.
† School of Civil Engineering, University of Leeds, Leeds, UK.

Manuscript received 23 November 2015; revised manuscript
accepted 14 November 2016.
Discussion on this paper is welcomed by the editor.

1





standard model for modifications to describe soil behaviour.
However, the critical state models were mostly limited to
saturated clays and silts; the yield surfaces overestimated the
failure stresses on the ‘dry side’; and granular materials were
rarely modelled by critical state models (Yu, 1998, 2006).
The state parameter ξ is defined by Been & Jefferies (1985)

as the difference of specific volume between the current and
critical states at the same mean effective stress (see Fig. 2(a))

ξ ¼ νþ λ ln p′� Γ ð6Þ

It has shown its ability to describe the behaviour of gran-
ular material over awide range of stresses and densities (Been
& Jefferies, 1985; Sladen et al., 1985; Sladen & Oswell, 1989).
It is also established that the state parameter can be used to
determine the soil responses for both clay and sand (Yu,
1998).
With the benefits of the concept of state parameter, Yu

(1998) proposed a unified state parameter model for clay and
sand, which is referred to as CASM. It is a simple constitutive
model with two additional material constants introduced to
the standard Cam-clay model, whereas the overall behaviour
of clay and sand can be satisfactorily modelled by CASM
under both drained and undrained loading conditions.
The state boundary surface of CASM is described as

η

M

� �n

¼ 1�
ξ

ξR
ð7Þ

where η¼ q/p′ is known as stress ratio; n is the stress-state
coefficient, which is a new material constant and typically
between approximately 1·0 and 5·0; ξR¼ (λ� κ)ln r* is
the reference state parameter; and r* is the spacing ratio,
defined as p′y= p′x (Fig. 2(a)). Equation (7) also represents the
stress-state relation and the yield function. In terms of
preconsolidation pressure, p′y, the yield surface can be
rewritten as follows

η

M

� �n

¼ �
ln p′= p′y

� �

ln r�
ð8Þ

The variations of state boundary surfaces (equation (8))
with stress-state coefficient are shown in Fig. 2(b), with
normalisation of preconsolidation pressure. Rowe’s stress
dilatancy relation (Rowe, 1962), as expressed by

δ̇
p

γ̇p
¼

9 M � ηð Þ

9þ 3M � 2Mη
�

m

mþ 1
ð9Þ

is adopted to define the plastic potential, which has been
widely accepted as having the greatest success in describing
the deformation of sands and other granular media. Note
that the relationship between the volumetric and shear strains
in this paper and the conventional definitions is given by
δ̇
p
=γ̇p ¼ ε̇pp=ε̇

p
q �m=mþ 1 . The plastic potential can then be

obtained by the integration of the stress dilatancy relation
(equation (9)), and the plastic flow rule is shown to be
non-associated. The hardening law is adopted based on a
typical isotropic volumetric plastic strain hardening, as
shown to be

p′y ¼
ν p′y

λ� κ
δ̇
p

ð10Þ

ANALYTICAL SOLUTION
The analytical solution is provided in this section, for a

cavity expanded from a0 to a until the soil around the cavity
reaches the critical state (i.e. soil medium is deformed to have
elastic, plastic and critical-state regions). ‘c’ is the radius of
the elastic plastic boundary, and ccs is the radius where the
soil starts to be in critical state. Thus, for r.c, soil is in the

elastic region; whereas for ccs, r,c, the soil is in the plastic
region, and the critical-state zone is for soil at a, r,ccs (see
Fig. 1).

Solution for soil in elastic region
In terms of the undrained condition, the soil volume

within an arbitrary radius (r) can be assumed as constant
(ε̇p ¼ 0), and the relation can be written as

rmþ1 � rmþ1
0 ¼ amþ1 � amþ1

0 ¼ T ð11Þ

where T is the variable representing the volumetric change at
an arbitrary radius. To describe the stress strain relationship
in the elastic region, the elastic strain rates are expressed as
follows

δ̇
e
¼

1

K
ṗ′

γ̇e ¼
1

2 G
q̇

ð12Þ

where K is the elastic bulk modulus, which is equal to νp′/κ;
G is the elastic shear modulus, which is determined
by (1þm)(1� 2μ)νp′/{2[1þ (m� 1)μ] κ} (the derivation of
isotropic linear elastic material can be found in Collins &
Stimpson (1994)). In the elastic region, the elastic volumetric
strain rate equals the total volumetric strain rate
(δ̇ ¼ δ̇

e
¼ 0); thus the mean stress rate is zero based on

equation (12), and p′ ¼ p′0.
For the cumulative changes since the initial condition,

the radial and tangential stresses can be written as:
σ′r ¼ p′0 þ Δσ′r; σ′θ ¼ p′0 þ Δσ′θ. Thus, Δσ′r ¼ �m Δσ′θ, based
on the relation of ṗ′ ¼ 0. Δσ′θ can then be derived as a
function of radius r, based on equations (2), (3), (12)

Δσ′θ ¼ 2G0εθ ¼ 2G0 ln
r0

r

� �

¼
2G0

mþ 1
ln

rmþ1 � T

rmþ1

� �

¼ A rð Þ
ð13Þ

With the aid of equilibrium equation (1), the incremental
form of the radial total stress can be obtained as

@σr ¼
m mþ 1ð Þ

r
A rð Þ@r

¼ 2G0m
ln½ðrmþ1 � TÞ=rmþ1�

r
@r ð14Þ

The integration of equation (14) from r to r¼∞ gives

σr � p0 ¼ 2G0m

ð

ln½ðrmþ1 � TÞ=rmþ1�

r
@r ð15Þ

and introducing the series expansion (ln x ¼ �
P

1

k 1 �1ð Þk

� �1þ xð Þk=k for 0, x, 2) leads to the following
expression

ð

ln rmþ1�T
� �

=rmþ1
� �

r
@r ¼

1

mþ 1

X

1

k 1

T=rmþ1
� �k

=k2¼BðrÞ

ð16Þ

Therefore, the distributions of stresses and strains in the
elastic zone are formulated as follows

σ′r ¼ p′0 �mA rð Þ

σ′θ ¼ p′0 þ A rð Þ

Δu ¼ð2G0ÞmB rð Þ þmA rð Þ

εr ¼�m=ð2G0Þ � A rð Þ

εθ ¼1=ð2G0Þ � A rð Þ

ð17Þ
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For soil at the elastic plastic boundary (r¼c), the stress
state is on the initial yield surface (i.e. p′ ¼ p′0; q¼ q|r c;
p′y ¼ p′y0). With the yield surface function (equation (8)), the
deviatoric stress (q|r c) is derived as

qjr c¼
lnR0

ln r�

� �1=n

M p′0 ð18Þ

On the other hand, the deviatoric stress can be
obtained from the distributions in the elastic region
(equation (17))

qjr c¼ � mþ 1ð ÞA cð Þ ¼ �2G0 ln
cmþ1 � T

cmþ1

� �

ð19Þ

Combining equations (18) and (19) gives

c ¼
T

1� exp � lnR0= ln r�ð Þ1=n
M p′0
2G0

	 


8
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>
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>

>
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9

>

>

=

>

>

;

1= mþ1ð Þ

c0 ¼ cmþ1 � T
� �1= mþ1ð Þ

ð20Þ

Tyield can be solved from equation (20) for c¼ a, which is used
to indicate the plastic stage when T.Tyield.

Solution for soil in plastic region
When soil is in the plastic region (ccs, r,c), the elastic

moduli (K and G) are not constant but functions of
mean effective stress p′; and the undrained condition gives:
δp¼�δe. Following the integrations from r¼c to r, the
elastic and plastic volumetric strains (equation (21)) are
derived based on the elastic modulus (equation (12)) and
the hardening relation (equation (10)), respectively

δe ¼

ð

dδe ¼

ð p′

p′0

κ

ν

1

p′
d p′ ¼

κ

ν
ln

p′

p′0

� �

δp ¼

ð

dδp ¼

ð p′y

p′y0

λ� κ

ν

1

p′y
d p′y ¼

λ� κ

ν
ln

p′y

p′y0

! ð21Þ

Combining equations (21) and (8) gives

η

M

� �n

¼ A1 þ A2 � ln p′ ð22Þ

where

A1 ¼
lnR0 þ Λ

1 ln p′0
ln r�

A2 ¼�
Λ

1

ln r�

Λ ¼
λ� κ

λ

ð23Þ

The differential forms of q and ln p′y are obtained based
on the differentiation of equation (22), and expressed as
follows

dq¼M� A1þA2�ln p′½ �1=nþ
A2

n
A1 þ A2�ln p′½ �1=n 1

� �

d p′

d ln p′y ¼
κ

κ λ
d ln p′ ¼

κ

κ λ

n

A2Mn
ηn 1dη

ð24Þ

Together with the boundary condition: γe|r c¼
�(mþ 1)/(2G0)A(c) based on equation (17), the elastic

deviatoric strain (γe) is obtained through the integration
ð

dγe ¼ γe�γejr c ¼
1þ m�1ð Þμ½ � κ

1þmð Þ 1�2μð Þ ν

ðq

qjr c

1

p′
dq

¼
1þ m�1ð Þμ½ � κM

1þmð Þ 1�2μð Þ ν

(

n

ð1þnÞA2

A1þA2� ln p′½ �1=nþ1

þ A1þA2 � ln p′½ �1=n�
n

1þnð ÞA2

� A1þA2�ln p′0½ �1=nþ1�½A1 þ A2 � ln p′0�
1=n

)

ð25Þ

The integration of the plastic deviatoric strain (γp)
is derived with the aid of the stress dilatancy relation
(equation (9))

γp ¼

ðln p′y

ln p′y0

9þ 3M � 2Mηð Þ λ� κð Þ mþ 1ð Þ

9ν M � ηð Þm
d ln p′y

¼
�κn mþ 1ð Þ

9νA2Mnm

(

2M

n
ηn�ηnc
� �

þ 9þ3M�2M2
� �

�

ðη

ηc

ηn 1

M � η
dη

)

ð26Þ

where ηc ¼ qjr c= p′0, and

ð

ηn 1

M � η
dη ¼

0 ηc ¼ Mð Þ

ηn

M

X

1

k 0

1

nþ k
�

η

M

� �k
	 


ηc , Mð Þ

P

1

k 0

�Mk ηn 1 k

n� 1� k

	 


ηc . Mð Þ

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

ð27Þ

When the plastic potential is defined by the associ-
ated flow rule of the standard Cam-clay model:
δ̇
p
=γ̇p ¼ M � ηð Þ �m= mþ 1ð Þ, the plastic deviatoric strain

can be derived as

γp ¼
�κn mþ 1ð Þ

νA2Mnm

ðη

ηc

ηn 1

M � η
dη ð28Þ

For a soil element at an arbitrary position (r) in the plastic
region, the radial and tangential strains can be obtained
based on the kinematic relationship of undrained expansion.
Hence the distributions of radial and tangential stresses can
be described by combining equations (3), (21), (25) and (26),
according to the relation of γ¼ γeþ γp. However, to obtain
the total stresses and the excess pore water pressure, a
numerical integration is required based on the equilibrium
equation (1)

ð

@σr ¼ �m

ð

q

r
dr ð29Þ

Solution for soil in critical-state region
When the cavity is expanded further, critical state is

reached for the soil close to the cavity. The boundary of the
critical state soil is referred as to ccs, and the critical-state
region is for soil where a, r,ccs. In the critical-state region,
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the deviatoric and mean effective stresses are constant, and
expressed as

p′cs ¼
R0

r�

� �

Λ

p′0 ¼ exp
Γ� ν

λ

	 


qcs ¼ p′cs �M

p′y;cs ¼ p′cs � r* ¼
R0

r�

� �

Λ

r� p′0

ð30Þ

Considering the scenario of infinite expansion (i.e. a¼∞),
the limit solution of cavity pressure can be achieved by taking
the plastic region as the critical state region, since ccs� c for
infinite expansion. Thus the limit cavity pressure can be
simplified from equation (29) and expressed as

σrjr a;lim¼ σrjr c¼ �mqcs ln
a

c
ð31Þ

where c and σr|r c are given by equations (20) and (17), as
functions of cavity radius a. Regardless of cavity radius, the
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limit cavity pressure can also be presented explicitly as

σrjr a;lim¼ p′0 �
m

mþ 1
qcs lnA3 þ 2G0mA4 ð32Þ

where

A3 ¼
T

cmþ1
¼ 1� exp �

lnR0

ln r�

� �1=n

�
Mp′0

2G0

" #

A4 ¼B cð Þ ¼
1

mþ 1

X

1

k 1

Ak
3

k2

ð33Þ

RESULTS AND DISCUSSION
In this section, results based on the analytical solution are

presented for both spherical and cylindrical cavity expansion
in soils under undrained condition. Unless stated otherwise,
the material parameters are chosen to be relevant for London
Clay: Γ=2·759, λ=0·161, κ=0·062, the critical state friction
angle ϕ′cs =22·75°; according to Wood (1990) and Collins &
Yu (1996). The Poisson ratio μ is assumed to be 0·3, and the
specific volume of the soil ν is equal to 2·0. The frictional
constant M is determined by the critical state friction angle,
using M ¼ 6 sin ϕ′cs= 3� sin ϕ′csð Þ for spherical cavities and
M ¼ 2 sin ϕ′cs for cylindrical cavities (Wood, 1990). The
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cavity radius a and plotted in logarithmic scale. The
distributions of σ′r and σ′θ overlap in the elastic and critical-
state regions, while the effective stresses vary in the plastic
regions. It should be noted that both σ′r=su and σ′θ=su in the
critical-state regions are independent of n and R0. Since
the undrained shear strength su is equivalent to p′cs=2, the
critical value of σ′r=su can be derived as 2/Mþ 2m/(1þm),
and σ′θ;cs=su ¼ 2=M � 2= 1þmð Þ. Therefore, the critical
values are 3·586 and 1·586, respectively, for the spherical
scenario. For R0=1·5, both σ′r and σ′θ increase with n in
the plastic region, whereas σ′r and σ′θ generally decrease
with n for R0=4. The distributions of Δu/su (Figs 5(d) and
6(d)) show the rapid growth of excess pore pressure in
both the plastic and critical-state regions. For R0=1·5, Δu
for soil close to the cavity wall increases with n, and the sizes
of both plastic and critical-state regions (c and ccs) decrease
with n. For R0=4, ccs decreases with n, while c increases
with n.
Figures 5(e) and 6(e) present the spherical cavity expansion

curves for a/a0=1 to 10. The radial stress at the cavity wall is
normalised by the undrained shear strength su, and the radius
of cavity a is normalised by the initial cavity radius a0. The
cavity pressure increases rapidly with expansion to a limit

value, which increases with n for R0=1·5 and decreases with
n for R0=4.
Similarly, the results of spherical cavity expansion with

variation of spacing ratio r* are shown in Figs 7 and 8. Both
R0=1·5 and 4 are presented to compare the effect of over-
consolidation ratio; the spacing ratio varies from 2 to 5, and
the stress-state coefficient remains as 1. As shown in Figs 7(a)
and 8(a), the stress paths end at critical states, which are
dependent on r* (see equation (30)). A larger size of the yield
surface is observed for smaller r*, and both critical-state
mean and deviatoric stresses are higher. For the cases of
R0=4 and r*= 4, critical state is reached when the soil comes
to the initial yield surface (i.e. the soil does not experience the
plastic stage during undrained expansion). It is also clear to
see the negative excess pore pressure in the early plastic stage
for the case of R0=4 and r*= 2.
Figures 7(b), 7(c) and 8(b), 8(c) present the effective stress

distributions with variation of r*. The critical values of σ′r=su
and σ′θ=su are also independent on r*, and equal to 3·586 and
1·586, respectively. It needs to be noted that the undrained
shear strength varies with the spacing ratio, according to the
variation of critical state on CSL in Figs 7(a) and 8(a).
Therefore, critical values of σ′r and σ′θ decrease with r*.
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as one of the best in situ tests for geotechnical investigation
(Wroth, 1984; Clarke, 1995; Yu, 2000). The pressure/
displacement response from the inflated cylindrical mem-
brane of the pressuremeter is analysed to determine soil
parameters (e.g. undrained shear strength, shear modulus,
consolidation coefficient, state parameter). Gibson &
Anderson (1961) were among the first to propose a simple
relationship between pressuremeter pressure (ψ) and
undrained shear strength (su) using cavity expansion in a
Tresca model, in which the plastic part of the pressuremeter
loading curve has a linear relation within the log scale of
volumetric strain

ψ ¼ ψlim þ su � ln
ΔV

V

� �

ð34Þ

where ψlim is the pressuremeter limit pressure and
ΔV=V ¼ ða2 � a20Þ=a

2 is the volumetric strain. Note that
this expression can also be recovered from this solution for
infinite expansion (equations (31) and (32)).
Although the overestimation of su for normally con-

solidated clays using the interpretation procedure of
Gibson & Anderson (1961) was reported by Clarke (1993),
the analytical solution (Yu & Collins, 1998) and numerical
simulation (Khong, 2004) suggested that the undrained shear
strength using Gibson and Anderson’s method was under-
estimated for heavily overconsolidated clays. Therefore, the
proposed effective stress analysis is applied to investigate
the interpretation of pressuremeter tests in both soft and
stiff clays.
As Yu & Collins (1998) reported that initial specific

volume (ν) has little effect on the undrained shear strength
derived from a pressuremeter test, the analysis in this

section is focused on the effects of the soil parameters
and the overconsolidation ratio. Regardless of the effect
of pressuremeter geometry, the pressuremeter pressure ψ can
be predicted as the radial stress at cavity wall σr|r a for
cylindrical expansion. Fig. 10(a) shows the normalised cavity
pressure against the log-scale volumetric strain, in which the
influence of stress-state coefficient n and overconsolidation
ratio R0 are investigated with a constant spacing ratio
r*= 2·7183. The results indicate that the normalised pres-
suremeter pressure ψ/su increases slightly with stress-state
coefficient n, while larger overconsolidation ratio decreases
the value of ψ/su. However, the inclinations of the pressure-
meter curves are comparable in the plastic stage. As
suggested by Gibson & Anderson (1961), the derived
undrained shear strength sm from pressuremeter curves was
obtained based on the stage for cavity strain (a� a0)/a0
between 5% and 15%.
The variation of the ratio of sm to the theoretical triaxial

undrained shear strength su with the value of overconsolida-
tion ratio R0 is presented in Fig. 10(b) for the effects of
stress-state coefficient. It can be seen that the pressuremeter
shear strength is close to the triaxial undrained shear strength
for soft clays (R0, 3), and the ratio of shear strength sm/su
varies with R0. For n. 2·0, the derived shear strength sm is
smaller than the triaxial undrained shear strength su
for heavily overconsolidated clays, which is also shown by
a previous analytical solution (Yu & Collins, 1998) and
numerical simulation (Khong, 2004). However, the results
in Fig. 10(b) suggest that the value of n has a large influence
on the variation of sm/su with overconsolidation ratio R0.
Slightly overestimated shear strength for heavily overconso-
lidated clays is also found for n=1·0.
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Similarly, the influence of spacing ratio r* on the results of
a self-boring pressuremeter test is provided in Fig. 11. The
spacing ratio has large effects on the increasing of the
normalised pressuremeter pressure, especially for clays with
smaller values of R0 (Fig. 11(a)); while the influence of r* is
relatively small compared to that of the stress-state coefficient
(Fig. 11(b)), with a similar decreasing trend of sm/su against
R0. Therefore the more precise prediction of shear strength
for clays is suggested by using the proposed cavity expansion
solution and the evaluation of soil properties for CASM.

CONCLUSIONS
Undrained expansion of both spherical and cylindrical

cavities with a unified state parameter model for clay and
sand (CASM) is presented in this paper. CASM is a critical
state soil model with two additional material constants (when
compared with standard Cam clay models), which has the
ability to capture the overall behaviour of clay and sand
under both drained and undrained loading conditions. The

complete analytical solution for large strain cavity expansion
is derived for soil in the elastic, plastic and critical-state
regions. The scenario of original Cam clay, as a special case
of CASM, is recovered to compare with the data of previous
study and validate the proposed solution, with the cavity
expansion curves and stress distributions in the plastic region.
The variations of stress-state coefficient and spacing ratio are
investigated for the parametric study of stress paths, stress
distributions and cavity expansion curves. Applications to
pile installation and self-boring pressuremeter are provided,
showing some practical insights into the prediction of excess
pore pressure generated at the pile soil interface and the
estimation of undrained shear strength based on the
pressuremeter curves.
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NOTATION
a radius of cavity
c radius of elastic/plastic boundary

ccs radius of critical state region boundary
e void ratio of granular material
G elastic shear modulus
K elastic bulk modulus

M, κ, λ, Γ, Λ critical state parameters
m parameter to combine cylindrical (m 1) and

spherical (m 2) analysis
n stress state coefficient for CASM
p′ mean effective stress
p′0 initial mean effective stress
p′y0 preconsolidation pressure
q deviatoric effective stress

R0 isotropic overconsolidation ratio, defined as p′y0= p′0
r radial position of soil element around cavity

r* spacing ratio for the concept of state parameter
sm derived undrained shear strength from pressure

meter curve
su undrained shear strength of soil
T parameter for volumetric change of cavity, defined

as amþ1 amþ1
0

Δu excess pore pressure
ΔV/V volumetric strain
δ, γ volumetric and shear strains

εr, εθ radial and tangential strains
η stress ratio, defined as q/p′
μ Poisson ratio of soil
ν specific volume, defined as 1þ e
ξ state parameter

ξR reference state parameter
σ′θ; σθ effective and total tangential stresses
σ′r; σr effective and total radial stresses
ϕcs critical state friction angle
ψ pressuremeter pressure
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