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GRAPH SIMILARITY THROUGH ENTROPIC MANIFOLD

ALIGNMENT

FRANCISCO ESCOLANO∗, EDWIN R. HANCOCK† , AND MIGUEL A. LOZANO‡

Abstract. In this paper we decouple the problem of measuring graph similarily into two se-
quential steps. The first step is the linearization of the Quadratic Assignment Problem (QAP) in a
low dimensional space, given by the embedding trick. This is followed by the second step which is
the evaluation of an information-theoretic distributional measure which relies on deformable mani-
fold alignment. The proposed measure is a normalized conditional entropy, which induces a positive
definite kernel when symmetrized. We use bypass entropy estimation methods to compute an ap-
proximation of the normalized conditional entropy. Our approach, which is purely topological (i.e. it
does not rely on node or edge attributes although it can potentially accommodate them as additional
sources of information) is competitive with state-of-the-art graph matching algorithms as sources of
correspondence-based graph similarity, but its complexity is linear instead of cubic (although the
complexity of the similarity measure is quadratic). We also determine that the best embedding
strategy for graph similarity is provided by commute time embedding and we conjecture that this is
related to its inversibility property, since the inverse of the embeddings obtained using our method
can be used as a generative sampler of graph structure.

Key words. Graph similarity, Graph matching, Graph embedding, Graph Kernels, Non-
parametric Entropy Estimation.

AMS subject classifications. 68T45, 05C85

1. Introduction.

1.1. Motivation and Previous Work. The accurate and effective measure-
ment of graph similarity has proved to be a challenging problem in structural pattern
recognition. Since state-of-the-art methods for object matching aim at incorporat-
ing structural information, advances in measuring graph-similarity are pivotal to the
development of successful object retrieval techniques. The problem of quantifying
graph-similarity has exercised researchers for over three decades. Early approaches
included the work of Fischler and Elschlager [21] who exploited an elastic spring
analogy, and Barrow and Poppleston’s work [3] based on cliques of the association
graph. In the late 1980’s [19], with the emergence of structural pattern recognition
as a distinct field of study, several attempts were made to extend the concept of edit
distance from strings to graphs and trees. Here Fu and his co-workers [45], showed
how to associate edit costs with the insertion, deletion and relabelling of nodes and
edges, and developed greedy algorithms to find optimal matches. At about the same
time Shapiro and Haralick [46] developed an elegant framework based on consistent
clique counting, and Bunke [7] used the maximum common subgraph to define the
edit distance between graphs. However, these approaches are based on goal directed
considerations motivated by graph theory, and are not information theoretic. One
of the earliest attempts to draw on information theoretic concepts to measure graph
similarity was presented by Boyer and Kak [6] who exploited the concept of mutual
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information. Christmas, Kittler and Petrou [11] and Wilson and Hancock [53] later
showed how relaxation labelling could be applied to the graph matching problem by
modelling the probability distribution for matching errors using simple error models.
Drawing on ideas from the connectionist literature, Gold and Rangarajan [22] devel-
oped a relaxation scheme based on soft-assign, and Finch, Wilson and Hancock [20]
took this work one step further by using ideas from statistical mechanics to develop
a non-linear version of Gold and Rangarajan’s method. A Bayesian model has been
designed for learning generative models using minimum description length, and has
exploited the model to compute information theoretic edit distances [50].

There has recently been renewed interest in the graph-matching problem, stim-
ulated in part by developments in object retrieval. Here a number of authors have
attempted to extend the matching process to incorporate higher order relations. Zass
et al. [55] are among the first to investigate this problem by introducing a probabilistic
hypergraph matching framework, in which higher order relationships are marginalized
to unary order. Chertok et al. [9] improved this work by marginalizing the higher
order relationships to be pairwise and then adopt pairwise graph matching methods.
However, these two methods only approximate the hypergraph representation by using
a clique graph. It has already been pointed out in [1] that this graph approximation is
just a low pass representation of the original hypergraph and causes information loss
and inaccuracy. On the other hand, Duchenne et al. [14] have developed the spectral
technique for graph matching [29] into a higher order matching framework using the
so called tensor power iteration. Although they adopt an L1 norm constraint in com-
putation, the original objective function is subject to an L2 norm and does not satisfy
the basic probabilistic properties. The methods described by Shapiro and Brady and
Umeyama can be interpreted as implicit embedding methods, while the more recent
methods of Caelli and Kosinov [8] and Robles-Kelly and Hancock [44] make use of
explicit embeddings. However, one of the weaknesses of these methods is that they
are again not information theoretic in their development.

More recently, the factorized/deformable graph matching (FGM/DGM) approach
proposed in [56][57] has uncovered the interplay between the topological information
derived from node attributes and the attributes themselves. In this way, a unified
approach to graph matching has been proposed, using a convex-concave relaxation
of the quadratic assignment problem, similar to that used in the well known path-
following algorithm [54].

1.2. Contributions. In this paper, we decouple the problem of computing
graph similarity into that of solving an approximate graph matching problem, followed
by the estimation of an information-theoretic similarity measure computed from the
available matching. This decoupling is motivated by the need to reduce the cubic
complexity of state-of-the-art graph matching algorithms. We avoid measuring graph
similarity in terms of the number of correct correspondences, which forces the con-
tinuous improvement of polynomial solutions to the quadratic assignment problem
(QAP). Instead, we turn our attention to solving a linearized version of the QAP in
an embedding space (we exploit the embedding trick) and then use this solution to
estimate a highly discriminative graph similarity measure. In this paper, we define the
conditions that must be satisfied for a graph embedding to be a good linearizer of the
QAP problem, namely (a) the dimensionality is bounded by the intrinsic dimension,
(b) it approximates the geodesic with a L2 norm, and (c) the manifold embedding
is reversible. We focus our analysis on (c) (reversibility) and contribute a formal
development.
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We show that despite being a fairly rough approximation of the QAP solution,
the linearized solution obtained has sufficient inliers to support a low-energy global
transformation between the manifolds induced by the embeddings. Such a transfor-
mation imitates the topological regularizing role of the QAP cost function (via the
rectangle rule) but in a geometric space. Given this transformation, the computation
of graph similarity is posed in terms of a normalized conditional entropy between the
aligned manifolds. In this way we account for the high order statistical dependen-
cies between the sampled manifolds. We prove that the similarity measure obtained
induces a positive definite kernel.

The remainder of this paper is organized as follows. In Section 2 we define the lin-
earized version of QAP referred to as Structural Embedding Graph Matching (SEgm).
SEgm is purely topological, i.e. it relies exclusively on the adjacency matrices of the
graphs being matched, although it can also additionally accommodate attributes com-
ing from edges or node characteristics, depending on the application domain. This
purely topological approach allows us to understand the power of the embedding trick
without relying on node or edge attributes. Significantly, it paves the way to a distribu-
tional graph similarity measure, the so called normalized squared conditional entropy

(NSCE). We detail the NSCE in Section 3 and we also prove that its symmetrized ver-
sion is a positive definite kernel. Section 4 is devoted to approximating the kernel with
a bypass entropy estimator. This requires that we perform some simplifications for
the sake of efficiency. Then, in Section 5 we validate our approach through (a) testing
the proposed strategy of linearization + similarity, referred to as Entropic Alignment

or EA (see Fig. 1) on a standard database (Houses Images dataset), (b) evaluating
alternative information-theoretic measures and embeddings for a more challenging
database (Gator), (c) comparing with alternative algorithms, specifically FGM/DGM
and path-following, in terms of graph retrieval performance for both databases. From
the experiments, we conclude that our strategy is competitive with FGM/DGM and
path-following. Moreover, the best performance is provided when the commute time
embedding is used in the linearized step. In Section 6 we formulate the problem of
inverse embedding and prove that the commute time embedding is reversible. We
conjecture that the success of such an embedding may be motivated by this property.
Finally, in Section 7 we present our conclusions and suggest directions for future work.

2. Structural Embedding Graph Matching. Let X = (VX , EX) and Y =
(VY , EY ) be two undirected and unweighted graphs with respective node-sets VX and
VY , edge-sets EX and EY and numbers of nodes n = |VX | and m = |VY |. Also let
fX : VX → R

d and fY : VY → R
d with d ≪ max{n,m} be also two embedding

functions satisfying:

a) They induce two low-dimensional subspaces (manifolds)MX andMY of Rd

where d is bounded by the intrinsic dimensions of the manifolds.
b) For each pair i, j ∈ VX we have that gX(i, j) ≈ ||fX(i) − fX(j)||2, where

gX(i, j) is the length of the geodesic between i and j, and similarly for u, v ∈
VY and gY (u, v) ≈ ||fY (u)− fY (v)||2.

c) EX ans EY can be respectively inferred from DX = {||fX(i)−fX(j)||2, ∀ i, j ∈
VX} and DY = {||fY (u)− fY (v)||2, ∀ u, v ∈ VY } with bounded errors ǫX and
ǫY .

Embeddings fX and fY rely on topological properties computed from adjacency
matrices AX and AY , such as node degree, path-length distributions and diffusive
processes leading to random walks. When geometric properties of the nodes (position,
relative angle, local image features,...) are available, then the graphs will be weighted
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Fig. 1. Entropic Alignment. Top-Left: Inliers provided by SEgm. Top-Right: SEgm formula-
tion and manifold alignment. Bottom: After the optimal alignment we proceed to measure SNSCE :
inlier correspondences in green, outliers in red and blue; both are used for the KNN estimation of
the entropies and then the positive define kernel.

(i.e. characterized by weight matrices WX and WY ) and fX , fY will be computed
respectively from AX + αxWX and AY + αyWY , αx > 0, αY > 0.

Given two extended graphs GX = {VX , EX ,AX , fX} and GY = {VY , EY ,AY , fY },
with AX ∈ {0, 1}n×n and AY ∈ {0, 1}m×m, and embeddings fX , fY with dimension-
ality d ≪ max{n,m}, the aim of Structural Embedding Graph Matching (SEgm) is
to find the one-to-one mapping (matching or correspondence) encoded by a partial
permutation matrix X ∈ Π, Π = {X|X ∈ {0, 1}n×m,X1m ≤ 1n,X

T1n ≤ 1m} maxi-
mizing

JSEgm(X, T ) = tr
(
Kf (T )TX

)
− ψ(T ) ,(2.1)

where:

a) T (.,W) is a global non-rigid transformation parameterized by W and ψ(.) is
a regularization function typically given by ψ(T ) = λtr(WTGW) where G

a Green’s function.
b) Kf ∈ R

n×m is a structural deformation matrix given by

K
f
iu = ||fX(i)− T (fY (u);W)||2 ,

i.e. by the deformation costs associated with the alignment ofMX andMY .
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Therefore, SEgm a can be seen as a linearization of the purely structural version of
the Quadratic Assignment Problem (QAP), whose objective is to maximize

JQAP (X) = tr
(
KT

q

(
GT

XXGY ◦HT
XXHY

))
,(2.2)

where: KT
q ∈ R

|EX|×|EY | is the edge attributes matrix (only applying when WX

and WY are defined), ◦ is the Hadamard product, and GX ∈ {0, 1}n×|EX|, GY ∈
{0, 1}m×|EY | are the binary node-edge incidence matrices (Gic

X = H
jc
Y = 1 if the c−th

edge starts from i and ends at j, and similarly for GY and HY ). Here we follow the
Factorized Graph Matching formulation [56].

SEgm relies on the assumption thatXSEgm, the global optimizer of JSEgm(X, T )
is a reasonable approximation of XQAP , the global optimizer of JQAP (X). The error
of the approximation depends on two factors:

1. The quality of the embedding trick. Graph embedding methods are de-
signed to capture high-order similarities between nodes. If the approximation
gX(i, j) ≈ ||fX(i) − fX(j)||2 is sufficiently good, we capture the long-range
interactions between nodes which are by far more informative than the exis-
tence of edges and the node degrees. In this regard, the inversibility property

(to what extent the original edges can be recovered from all pairs of Eu-
clidean distances ||fX(i) − fX(j)||2) plays a critical role in the effectiveness
of an embedding for the purposes of graph matching.

2. The regularizing power of T . The apparent simplicity of Kf
iu = ||fX(i) −

T (fY (u);W)||2 is misleading. The role of the non-rigid transformation T in
SEgm is purely structural (i.e. it does not rely on node attributes) and it
simulates the role of the topological regularization imposed by GT

XXGY ◦
HT

XXHY in QAP. It is well known that the rectangle rule represented by

XiuA
ij
XAuv

Y Xjv , imposes the constraint that the adjacent nodes i ∈ VX ,
j ∈ VX should match adjacent nodes u ∈ VY , v ∈ VY . This is the role
of the quadratic cost of QAP and the origin of the NP-hard complexity of
graph matching. Similarly, T enforces that the d−dimensional neighbors of
both fX(j) ∈ MX and fY (v) ∈ MY match if ||fX(i) − T (fY (u);W)||2 is
sufficiently small. Therefore, the combinatorial requirements are replaced by
the regularizing power of a geometric transformation.

We should not expect the SEgm approximation to be sufficiently good for low-error
correspondence recovery, even after a careful choice of the embedding and the regu-
larizer. The reason for this is that the above linearization resembles that used in
Deformable Graph Matching (DGM) [57], and which is designed for graph recovery.
If our final objective is graph recovery or classification, then SEgm provides a set of
inliers supporting the global alignment of MX and MY . Given such an alignment,
it leads to a similarity measure that is sufficiently discriminative to work effectively
since such similarity is distributional.

3. The SNSCE Distributional Graph Similarity. Let ΘX and ΘY be two
random variables whose realizations are points in R

d belonging to MX and MY

respectively. Then, the conditional probability of observing ΘX given ΘY after the
alignment T (.;W) can be modeled by the factorization

p(ΘX |ΘY , T ) =
m∏

u=1

pu(fX(c(u))|fY (u), T ) ,(3.1)
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where

pu(fX(c(u)|fY (u), T ) ∝ exp−1

2

{∣∣∣∣
∣∣∣∣
fX(c(u))− T (fY (u);W)

σ

∣∣∣∣
∣∣∣∣
2
}
,(3.2)

where i ∈ VX , u ∈ VY are graph nodes, c : VY → VX is a correspondence function

given by the optimal solution of the Structural Embedding Graph Matching Problem

(SEgm), and σ a bandwidth parameter determined during the alignment. The band-
width parameter σ is proportional to the global error, i.e. σ ∝∑n

i=1

∑m
u=1 ||fX(i)−

T (fY (u)W)||2 =
∑

i

∑
j K

f
iu, where K

f
iu is the structural deformation matrix.

Given the conditional density p(ΘX |ΘY , T ) our similarity function relies on the
contitional entropy H(p(ΘX |ΘY , T )) defined as:

H(p(ΘX |ΘY , T )) ≈ Ĥ (p(ΘX))− Ĥ (p(ΘX |ΘY , T )) ,(3.3)

where H(.) denotes the Shannon entropy and Ĥ(.) is an estimator of the Rényi en-
tropy [28] whose limit is the Shannon entropy. As we will see later in Section 4, it is
the choice of estimators of the Rényi type that validates the approximation in Eq. 3.3.

Then, the normalized conditonal entropy between two random variables ΘY and
ΘX after the alignment is given by

H̄(ΘX |ΘY , T ) =
Ĥ(p(ΘX))− Ĥ(p(ΘX |ΘY , T ))
Ĥ(p(ΘX)) + Ĥ(p(ΘX |ΘY , T ))

,(3.4)

Then, H̄(ΘX |ΘY , T ) has the following properties:
a) The numerator is the conditional entropyH(p(ΘX |ΘY , T )) between the (sam-

pled) manifolds given the transformation T , i.e. it is the reduction in entropy
of p(ΘX) after the alignment. If the alignment provides two identical mani-
folds then the conditional entropy is zero.

b) Normalization by Ĥ(p(ΘX))+Ĥ(p(ΘX |ΘY , T )) is key when we compare man-
ifolds induced by graphs with a significantly different number of nodes. We
prefer this form of the numerator to the alternative Ĥ(p(ΘX)) + Ĥ(p(ΘY )),
since it enforces the role of the conditional probability and the transformation.

c) H̄(ΘX |ΘY , T ) is directional, i.e. T : ΘY → ΘX so that pu(fX(c(u)|fY (u), T ) >
0 whenever it is possible given the smoothness constraint imposed by the min-
imization of ψ(T ).

The above properties lead us to define a kernel between the probability functions for

the manifolds and, thus, implicitly between the graphs. Such kernels are of pivotal
importance for principled comparisons of the probability distributions associated with
the manifolds [33]. In this regard, we have that:

• Since the Shannon/Rényi entropy is negative definite (nd), and negative defi-
niteness is closed under the sum, we have that Ĥ(p(ΘX))+ Ĥ(p(ΘX |ΘY , T ))
is nd. Then

1

Ĥ(p(ΘX)) + Ĥ(p(ΘX |ΘY , T )) + a

is pd for any a > 0 (see Proposition. 20 in [33]).
• Since H(p(ΘX |ΘY , T )) is nd, to ensure positive definiteness we add a non-
negative constant and square the alignment-based conditional entropy, i.e.

(H(ΘX |ΘY , T ) + b)
2
=
(
Ĥ(p(ΘX))− Ĥ(p(ΘX |ΘY , T )) + b

)2
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is pd for b > 0.
In addition to the above considerations is the fact that the product of two pd measures
is pd, i.e. we have that

K(p(ΘX)|p(ΘY ), T ) =
(H(ΘX |ΘY , T ) + b)

2

Ĥ(p(ΘX)) + Ĥ(p(ΘX |ΘY , T )) + a
(3.5)

is a pd measure, for a, b > 0, between the density functions of ΘX and ΘY . We refer
to this measure as the Normalised Squared Conditional Entropy (NSCE) between the
two densities, and consequently between the extended graphs GX and GY given the
alignment T .

However, the NSCE is still not a kernel, since it is not symmetric due to the
directionality of the transformation T : ΘY → ΘX . Then, let T ′ : ΘX → ΘY be the
non-rigid transformation given by T ′ = (.;W′). Such a transformation optimizes

JSEgm(X′, T ′) = tr
(
K′f (T ′)TX′)− ψ(T ′) ,(3.6)

where X′ ∈ {0, 1}m×n and K′f ∈ R
m×n is the structural deformation matrix which

has ui entries given by

K
′f
ui = ||fY (u)− T ′(fX(i);W′)||2 .

Then, the definition of p(ΘY |ΘX , T ′) in terms of pui(ΘY |ΘX , T ′) gives

H̄(ΘY |ΘX , T ′) =
Ĥ(p(ΘY ))− Ĥ(p(ΘY |ΘX , T ′))

Ĥ(p(ΘY )) + Ĥ(p(ΘY |ΘX , T ′))
,(3.7)

which in turn leads to

K(p(ΘY )|p(ΘX), T ′) =
(H(ΘY |ΘX , T ′) + b)

2

Ĥ(p(ΘY )) + Ĥ(p(ΘY |ΘX , T ′)) + a
.(3.8)

Finally, the Symmetrized Normalized Squared Conditional Entropy between two ex-
tended graphs GX and GY is the pd kernel given by

SNSCE(GX ,GY ) = K(p(ΘX)|p(ΘY ), T ) +K(p(ΘY )|p(ΘX), T ′) .(3.9)

We can then exploit the kernel trick to classify graphs, and thus recover or recognize
objects by their structure, as in [15].

4. Leonenko et al. Entropy Estimator. The SNSCE(GX ,GY ) similarity mea-
sure is distributional. Here, the term distributional emphasizes the continuous nature
of manifoldsMX andMY sampled at fX(i), i ∈ VX and fY (u), u ∈ VY . Actually, the
computation of SNSCE(., .) requires, in principle, the estimation of densities p(ΘX),
p(ΘY ), p(ΘX |ΘY , T ) and p(ΘY |ΘX , T ′). When d is very low (for example 2D/3D)
data we can exploit non-parametric kernel density estimators such as the Parzen win-
dows [37]. However, Parzen windows do not scale well with d and tend to overestimate
entropy for medium/high dimensions, which is the case of graph embedding.

Therefore, instead of using a plug-in entropy estimator (inferring the probabil-
ity density function before computing the Shannon entropy), here we use a bypass

entropy estimator. Bypass estimators account for the neighborhood structure of the
samples. In Appendix A, we analyze the Kozackenko-Leonenko Rényi-type entropy
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X = {1,2,3}  Y’=Y+ T={a,b,c}

1 3

2

a c

b

1 3

2

c

b

1
3

2

c

CORRESPONDENCE
        from SEgm 

H(X|Y’=a,T) = logA1’+ logB1’ 
                   =  logA1’+ logB1’
                   = log(A-a1) + logB
                   = log(A)+log(1-a1/A) + logB
                   = H(X) + log(1-a1/A)
                   
     

1 3

2

a

A 

A1’=A-a1

B1’=B

A

B

H(X|Y’=b,T) = logA2’+ logB2’ 
                = log(A-a2)+log(B-b2)
                = H(x) + log[(1-a2/A)*(1-b2/B)]
     

A2’=A-a2 B’=B-b2

A3’=A+a3

B’=B+b3

H(X|Y’=b,T) = logA3’ + logB3’ 
               = log(A+a3)+log(B+b3)
               = H(x) + log[(1+a3/A)*(1+b3/B)]
     

1
3

2

a c

b

Dac

D13

Dbc

D23

H(X|Y’=a,T) = logA1’+ logB1’ 
                   =  logA1’+ logB1’
                   = log(A-a1) + logB
                   = log(A)+log(1-a1/A) + logB
                   = H(X) + log(1-a1/A)

H(X|Y’=b,T) = logA2’+ logB2’ 
                = log(A-a2)+log(B-b2)
                = H(x) + log[(1-a2/A)*(1-b2/B)]
     

H(X|Y’=b,T) = logA3’ + logB3’ 
               = log(A+a3)+log(B+b3)
               = H(x) + log[(1+a3/A)*(1+b3/B)]
     

H(X|Y’,T) = Ey’[H(X|Y’=y’,T)] = H(X) + DefA/N + DefB/N
    DefA/N = log[(1-a1/A)*(1-a2/A)*(1+a3/B)]/3
    DefB/N = log[(1-b2/A)*(1+b3/B)]/3 
     
        H(X|Y,’T) = logDac +logDbc = log(A1’+c1) +  log(B1’-c2) 
                 = log(A-a1+c1) +  log(B-c2) 
                 = H(X) + log(1+(c1-a1)/A1) + log(1-c2/B2) 

H(X|Y’,T) = Ey’[H(X|Y’=y’,T)] = H(X) + DefA/N + DefB/N
    DefA/N = log[(1-a1/A)*(1-a2/A)*(1+a3/B)]/3
    DefB/N = log[(1-b2/A)*(1+b3/B)]/3 
     

Estimation 
From the Average
         

Estimation 
‘Once at a time’
         

Fig. 2. Estimating Conditional Entropy (toy example). Blue dots are samples of X and red

ones are those of Y ′ = Y + T . After the optimal alignment we proceed to compute Ĥ(X|Y ′, T ).
Top-right: we replace each X y a value of Y ′ and recompute the entropy. Rényi entropy is encoded
by the neighborhood structures: of X (in green) and of X after replacing Xi by the corresponding
Yi (magenta). Bottom: the average distortion is similar to that of making all the replacements at a

time, and they both depend of Ĥ(X). In all cases k = 1.

estimator [28] and its implications in estimating mutual information (MI) [27], because
mutual information satisfies:

I(ΘX ,ΘY ) = H(ΘX)−H(ΘX |ΘY ) = H(ΘY )−H(ΘY |ΘX) ,(4.1)

that is, it is closely related to conditional probabilities: MI it is the amount of uncer-
tainty reduction due to the conditioning. Actually it should be more desirable to use
mutual information as a similarity measure instead of conditional entropy. However,
the Kozackenko-Leonenko is better adapted to the alternative definitions of MI:

I(ΘX ,ΘY |c) = H(ΘX) +H(ΘX)−H(ΘX ,ΘY ) ,(4.2)

where I(ΘX ,ΘY ) is the joint entropy and c : VY → VX is the correspondence function.
This function is key to construct an estimator of H(ΘX ,ΘY ) so that the samples
zu = (fX(c(u)), fY (u)) of the variable ZXY = (ΘX ,ΘY ) are properly built. The
correpondence function establishes a common reference system as in the case of image
alignment [36][40]. However, the optimal transformation T is no needed here since it
is not going to be applied to fY (u) with u ∈ VY .

However, when applying the Kozackenko-Leonenko/Kraskow et al.’s approach,
we obtain the following entropy estimator

ĤN,k,1 = −Ψ(k) + Ψ(N) + logVd +
d

N

N∑

i=1

log ǫ(i)(4.3)
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and its associated estimator of I(ΘX ,ΘY ; c):

ÎN,k,1 = Ψ(k)− 1

k
−Ψ(N)− 1

N

N∑

u=1

(Ψ(nx(c(u)) + Ψ(ny(u))) ,(4.4)

where: ǫ(i) is twice the Euclidean distance of the i−th point of the manifold to its
k−th neighbor, N is the number of i.i.d. samples of X ′ = {fX(c(u)), c(u) ∈ VX} and
Y = {fY (u), u ∈ VY }, i.e. |X ′| = |Y|. Let ǫx(c(u)) be the distance between fX(c(u))
and its k−th nearest neighbor in X ′, and let ǫy(u) be the distance between fY (u) and
its k−th nearest neighbor in Y (here the max norm is used); then nx(c(u)) and ny(u)
are respectively the number of points xj ∈ X ′ with ||fX(c(u)) − xj || < ǫx(c(u))/2
and the number of points yj ∈ Y with ||fY (u) − yj || < ǫy(u)/2. In addition Ψ(k) =
Γ′(k)/Γ(k) = −γ + Ak−1 is the digamma function with γ ≈ 0.5772 (Euler constant)

and A0 = 0,Aj =
∑j

i=1 1/i.

The ÎN,k,1 estimator does not include explicitly the distances ǫx(c(u)) and ǫy(u).
It embodies these distances in rank data: accounting from the expected number of
points surrounding a given one in a ball of radius ǫx(c(u)) or ǫy((u)) gives an idea of the
amount of joint entropy. However, nx(.) and ny(.) are the result of a marginalization of
ǫ(u) (the distance between zu = (fX(c(u), fY (u)) and its k−th nearest neighbor). The
marginalization is imposed by the fact that designing a 2d ball imposes a neighboring
structure quite different from that used for estimating the marginal entropies and this
leads to larger systematic errors when d grows because ǫ(u) tends to be much larger
than the marginals. As a result, our experiments included in Section 5 show that the
ÎN,k,1 estimator leads to a poor discrimination.
As an alternative, the Symmetrized Normalized Squared Conditional Entropy (Eq. 3.9)
relies on the conditional entropy H(ΘX |ΘY , T ) (see Eq. 3.3). Despite the conditional
entropy is less effective than the MI for pattern discrimination, it is better adapted
than MI when the Kozackenko-Leonenko/Kraskow et al.’s estimator is used. This is
due to the following properties:

a) We avoid the marginalization of ǫ(u) while preserving the consistency of the
estimator. This is ensured by the compatibility of the ranges associated both
with the samples of X = ΘX and those of ZX|Y = (ΘX |ΘY , T ).

b) We choose the samples for ZX|Y = (ΘX |ΘY , T ) so that they are compatible
with the conditional entropy H(ΘX |ΘY , T ) in conjunction with the samples
of X = ΘX .

To commence, let us characterize the entropy conditioning in R
d in terms of replacing

each point fX(c(u)) by its corresponding point fY (u)
′ = fY (u)+T after the transfor-

mation T and then computing an entropy. The average of the m entropies is a proper
approximation of the conditional entropy, since:

H(ΘX |ΘY , T ) =
m∑

u=1

p(ΘX)H(ΘX |ΘY = fY (u)
′, T )(4.5)

≈ 1

m

m∑

u=1

H(ΘX |ΘY = fY (u)
′, T )

≈ C
m

m∑

u=1

Ĥm,k,1({ΘX ∼ fX(c(u))} ∪ {fY (u)′})

.
=
C
m

m∑

u=1

Ĥm,k,1(X |u) ,
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where C is a constant. It can be proved that

C
m

m∑

u=1

Ĥm,k,1(X |u) = Hm,k,1(ΘX) + C
∑

e

Eu

(
log

(
1± δe

|e|

))
,(4.6)

where e are the edges of the k−th neighborhood system of the points of ΘX (see an
example in Fig. 2 where we drop C for the sake of clarity). We denote by |e| the
length of the edges and by δe the difference between their original lengths |e| when
a new point of ΘY is introduced. Then Eu (log (1± δe/|e|)) is the expectation of the
log-relative errors for each edge over all choices of u defining fY (u)

′. We refer to this
approximation as estimation from the average.

However, if we fix the edges e of ΘX and express those e′ of ΘY in terms of e we
have that

Ĥm,k,1(ΘY
′) ≈ Hm,k,1(ΘX) + C

∑

e

log

(
1± δ2e

|e|

)
,(4.7)

i.e. each expectation can be approximated by the log of a second-order error (as in
the variance). This leads to the following approximation of the conditional entropy:

H(p(ΘX |ΘY , T )) ≈ Hm,k,1(ΘX)− Ĥm,k,1(ΘY
′) = K

∑

e

log

(
1± δ2e

|e|

)
.(4.8)

This approximation can be interpreted in terms of a sum of log-likelihood ratios since
for n = m we have that for the Leonenko et al.’s entropy estimator [28] used in this
paper (see more details in Appendix A):

H(p(ΘX |ΘY , T )) = Ĥm,k,2(X )− Ĥm,k,2(Y ′)(4.9)

=

(
−Ψ(k)

m
+

log(m− 1)

m
+ logVd +

d

2m

m∑

i=1

log ǫX(i)

+
Ψ(k)

m
− log(m− 1)

m
− logVd −

d

2m

m∑

u=1

log ǫY ′(u)

)

=
d

2m

m∑

i=1

log
ǫX(i)

ǫY ′(u)
,

where i = c(u), and ǫX(.), ǫY ′(.) are respectively twice the distances to the k−th
neighbor of the point i = c(u) of X and of the k−th neighbor of the u − th point of
Y ′ . The Euclidean norm is used in order to avoid the marginalization of ǫ(.). When
m 6= n we have either positive or negative deviations/penalizations from this sum of
log-likelihood ratios. Our estimator measures the neighborhood distortion and this
distortion is highly compatible, through not exactly so, with the conditional definition
of entropy. For instance, when ΘX = Θ′

Y we have that the conditional entropy is zero
as expected. Furthermore, in this way conditional entropy is consistent with the
concept of approximate entropy insofar it captures incremental variations [38].

Consequently, we then use the approximation in Eq. 4.9 (replacing Ĥm,k,1 by

Ĥm,k,2) to compute SNSCE(GX ,GY ) (Eq. 3.9).
Finally, the i.i.d. assumption for entropy estimation is dictated by our ignorance

about the type of graph to embed and the effect of the embedding function. Recent
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advances in cryptography [26], where estimating the correct amount of uncertainty is
critical, point towards learning techniques that exploit the knowledge available about
the random sources (the graphs and the embedding functions). In Section 5.5, where
we validate the commute time embedding as the most successful embedding function
for graph matching/similarity purposes, we will analyze the impact of this choice in
the entropy estimator.

Fig. 3. Houses dataset. Top: from left to right example frames of CMU, MOVI and
Chalet/York. Bottom: examples of inliers obtained by SEgm when matching frames 1 and 4 in
CMU for different embedding dimensions (d = 4 - left, and d = 11 - right).
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Fig. 5. Performance of EA vs FGM . Left: Stability of EA’s AUCs with respect to the embedding
dimension d. Right: Analysis of total recalls for the three houses categories: EA vs FGM.

5. Experimental Results.

5.1. Entropic Alignment Settings. We refer to the proposed strategy of lin-
earization + symilarity as Entropic Alignment (EA). In our experiments, Structural
Embedding Graph Matching (SEgm) relies on the CPD (Coherent Point Drift) algo-
rithm [34] because it generalizes the non-rigid alignment to an arbitrary number of
dimensions, say d, of the input data (manifolds in this case). CPD follows a similar
approach to that in [25], where the samples are considered the centers of variance-
isotropic d−dimensional Gaussian Mixtures (GMM). For the Leonenko’s entropy es-
timator, which is the key element for measuring SNSCE , we set k = 4.

5.2. Houses Images Dataset. The Houses (CMU+MOVI+Chalet) dataset
consists of 10 frames of the CMU-VASC sequence1, 10 frames of the INRIA MOVI
sequence and another 10 frames of the Swiss chalet sequence created at The Univer-
sity of York (UK). These sequences have associated with them 30 graphs (Delaunay
triangulations) and they have been tested (totally or partially) in many papers ad-
dressing pure topological (attribute-free) graph matching methods (usually of spectral
nature) such as [31],[48],[43] and [32]. In Fig. 3-Top we show examples of frames for
the three categories, a) CMU, b) MOVI and c) Chalet.

We commence our experimental evaluation with this dataset because the topolog-
ical variability increases from CMU to MOVI and Chalet. CMU has low intra-class
variability and high inter-class variability, MOVI can be easily discriminated from
CMU but confused with Chalet (it is by far more confused with Chalet than CMU).
In addition, Chalet is the class with maximal intra-class structural variability and
minimal inter-class variability. The number of nodes ranges from 30 to 31 in CMU,
130− 141 in MOVI and 40− 136 in Chalet.

For the Entropic Alignment (EA) method, the first question to address is the
supporting quality of the inliers provided by Structural Embedding Graph Matching
(SEgm). The quality depends on the dimensionality of the embedding d. In Fig. 3-
Bottom we show two extremal cases in CMU, where we have ground truth. For a
low dimensionality (d = 4) we obtain 10 inliers (1/3 of the matchings), whereas for
d = 11 this number is reduced to 5 (1/6 of the matchings). For each SEgm matching

1http://vasc.ri.cmu.edu//idb/html/motion/house
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(CMUi, CMUj) the number of inliers varies significantly with d, i.e. there is no
significant correlation (positive or negative) between d and the number of inliers for a
given pair of matched CMU frames, which can be zero. The number of pooled inliers
for (CMUi, CMUj) is in the range 98− 1061 and in the interval 395.7± 205.1. In all
these experiments the graph embedding functions fX(.) and fY (.) are given by the
commute time (CT) embedding [39].

Despite the high variance in the number of inliers with respect to d, we have that
the SNSCE similarity is quite robust with respect to variations of d in this dataset.
In Fig. 4-Left, we show the evolution of the Area Under the Curve (AUC) of the
Average Recall/Retrieval curves for d in the range 1 − 29. We found that the most
discriminative value of d for this dataset is d = 6 (we cannot trust on estimators of the
intrinsic dimension since they tend to overestimate due to the curse of dimensionality).

In Fig. 4-Right we show that the pure topological version (SEgm based on adja-
cency matrices) of EA outperforms state-of-the-art graph matching algorithms such
as Factorized Graph Matching (FGM) [56], Spectral Matching with Affine Constraint
(SMAC)[13], Reweighted Random Walks [10], Graduated Assignment (GA) [22],
when node and/or edge attributes are used and graph similarity relies on their respec-
tive cost functions. In Table. 5.2 (where complexity refers to complexity per iteration,
where applicable) we summarize the results obtained for the AUCs of such algorithms.
It is important to stress that, despite the best result for EA is provided by d = 6 (the
optimal choice), we have that even with the minimal d = 2 EA outperforms the second
best alternative (Factorized Graph Matching) in terms of AUC. This reveals that the
choice of d is not critical in this dataset.

A more detailed analysis of the curves in Fig. 5-Right reveals that EA with d = 6
outperforms FGM even for a small number of retrievals. Since the Average Re-
call/Retrieval curves show how the performance improves when an increasing number
of examples are considered for evaluation, we found that EA begins to improve the
FGM method after only 3 retrievals.

The performance stability of EA with respect to d is detailed in Fig. 5-Left,
where we show the Average Recall/Retrieval curves of EA for different values of d.
The curve for EA is only below that for FGM for d = 2. Close to the optimal
value d = 6 AUC is maximal and decreases slightly for higher dimensions. The
performance of the FGM method diverges significantly from that obtained with EA
after 9 retrievals for d > 2, and later (12 retrievals) for d = 2. A closer class-by-class
analysis of the divergence (see Fig. 5-Right) reveals that FGM is competitive (up to
10 retrievals) when discriminating classes CMU and MOVI. After 10 retrievals we find
that there is a constant gap between EA and FGM for these classes. This is mainly
attributable to the fact that the quadratic cost function of FGM induces significantly
more intra-class variability than EA when measuring the similarity between examples
of CMU and MOVI. However, the main bulk of the performance divergence comes
from the fact that FGM poorly discriminates the most structurally complex class,
Chalet, from CMU and MOVI (at least such discrimination is worse than that given
by EA). This means that EA is able to deal with high intra-class variability and low
inter-class variability. FGM, on the other hand, basically relies on the number of
correspondences and the associative effects of the rectangle rule, and is limited by the
size of the smallest graphs in each class. This is why in CMU data, where all graphs
have close to 30 nodes, FGM is (to some extent) competitive.

All of the above differences are exacerbated by the fact that EA does not rely
on node or edge attributes whereas FGM exploits this information. In the following
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section we focus our analysis on the differences between both algorithms when only

topological information is used. To this end, we need a more complex and challenging
dataset which is provided by the Gator database.

Table 1
Summary of Experiments with Houses and Gator

Algorithm Complexity Attributed? Dataset AUC
Entropic Alignment O(n) No Houses 21.5967

Factorized Graph Matching [56] O(n3) Yes Houses 19.4800
Graduated Assignment[22] O(n4) Yes Houses 19.4367
Spectral Maching with Affine Const.[13] O(n2) Yes Houses 19.2667
Reweighted Random Walks [10] O(m2) Yes Houses 18.8167

Kernelized Graduated Assignment [31] O(n4) No Houses 17.4867
Kernelized Graduated Assignment [31] O(n4) Yes Houses 20.9600

Entropic Alignment O(n) No Gator 59.6056

PATH Algorithm [54] O(n3) No Gator 58.6746
Graduated Assignment[22] O(n4) No Gator 39.6155
Kernelized Graduated Assignment [31] O(n4) No Gator 33.2810
Kernelized Graduated Assignment [31] O(n4) Yes Gator 53.2810
Spectral Maching with Affine Const.[13] O(n2) Yes Gator 49.0744
Reweighted Random Walks [10] O(m2) Yes Gator 46.3757
Reweighted Random Walks [10] O(m2) No Gator 46.0969
Tensor-Based Matching [14] O(n3 log n) Yes Gator 50.5456
Caelli-Kosinov [8] O(n3) No Gator 39.8606

Fig. 6. Examples of the Gator database (left) and average recall curves (right)

5.3. The Gator Dataset. The Gator 100 Dataset is a topological version of
the UCF Fish Shape Database2. It consists of 100 Delaunay triangulations extracted
from images of fishes drawn from 30 different classes (see Table 2 where vertical lines
separate examples of different classes). Since the classes are associated to fish genus
and not to species, we find high intra-class variability – see a) in Fig. 6-Left where the

2http://www.cise.ufl.edu/ anand/publications.html
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Table 2
Graphs based on Delaunay triangulations for the Gator Database

corresponding class has 8 species. There are also very similar species from different
classes (row b)) and few homogeneous classes (row c)). There are 10 classes with one
species, and these are not included in the analysis and performance curves. There are
11 with 1− 3 individuals, 5 with 4− 6 individuals and only 4 classes with more than
6 species.

The design of the Gator dataset was motivated by initial shape recognition ex-
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Fig. 7. Left: Comparing Kraskow estitators: Conditional Entropy estimation vs MI estimation.
Right: Entropic alignment outperforms our previous method using structural attributes [31].

periments showing that the SNSCE was very competitive in terms of Average Re-
call/Retrieval for the standard MPEG7-B 2D shape dataset [18]. These results have
encouraged us to explore the same similarity measure for higher dimensions and to
compare manifolds coming from graph embedding [16], where the embedding function
was the commute time.

In our shape recognition experiments the most discriminative similarity measure
was the Henze-Penrose divergence [36] followed by SNSCE (previously referred to
as SNESV or Symmetrized Normalized Entropy Squared Variation). However, when
applied to measure purely structural graph similarity, the most discriminative measure
was SNSCE-SNESV followed by Henze-Penrose (see Fig. 6-Right). This result suggests
that the distributional behavior of the similarity is good, in contrast with the 2D
setting used for shape recognition. We have also analyzed alternative similarities based
on bypass entropy estimators. These include a) the symmetrized Kullback-Leibler
divergence, b) the Jensen-Tsallis divergence for q = 0.1 (both estimated through
Leonenko’s method), and c) the total variation (L1) divergence (KDP) where the
entropy is estimated through k-d tree partitions.

In addition, the Gator dataset is ideal for comparing different choices of Kraskow
et al.’s estimators, either for the conditional entropy or the mutual information (MI),
used for implementing our structural similarity measure. In Fig. 7-Left we show
the performance curves for these choices. The best one is the conditional entropy
approximation described in Eq. 4.9 (AUC=59.60). The second best choice consists
of taking the distances between the deformed points and their corresponding ones
as variables for the conditioning. This leads to characterize the conditional entropy
which controls the smoothness of the optimal matching field. It outperforms the
approximation in Eq. 4.9 for a mid-low number of retrievals, which is very promising.
However, as the number of retrievals increases, this second approximation is more
prone to problems caused by the Gator’s inter-class variability and this leads to an
AUC=58.16. Finally, when the Kraskow estimation of MI for joint entropy is used, the
performance is very poor, giving an AUC of 44.73 when the optimal transformation is
not applied, and AUC=38.24 when joint entropy relies on pairs of deformed-original
corresponding points.

The Gator dataset thus provides an encouraging setting for testing graph-matching
algorithms by using only topological information i.e. that contained in the Delaunay
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triangulations, when it is possible. As with the Houses dataset, we commenced by
analyzing to what extent the embedding dimension d is critical in determining perfor-
mance. For the Gator dataset we found that the optimal choice was d = 5, whereas the
estimates of the intrinsic dimension of the data were in the interval (11.6307±2.8846).
This overestimation of the intrinsic dimension is due to the curse of dimensionality.
For instance, for d = 10D we obtained a near-diagonal Average Recall/Retrieval curve.
The number of graph nodes in this dataset is in the range 20−609 and this scenario of
high intra-class variability together with low/mid inter-class variability is significantly
more challenging than that explored with the Houses dataset.

We compare Entropic Alignment (EA) with a) the classical non-attributed version
of the Graduated Assignment (GA) method and b) the attributed and non-attributed
versions of Reweighted Random Walks (RRW). In addition we test the tensor-based
(TB) [14] method and the Caelli-Kosinov spectral method [8]. Tensor computation
is not tractable for the raw Gator graphs due to their size. The problem of size
also limits the applicability of the Reweighted Random Walks (RRW) method since it
relies on a (weighted) association graph. Then, for these comparisons we use Delaunay
triangulations obtained by decimating the original point sets by an order of magnitude.

We plot the obtained Average Precission/Retrieval curves in Fig. 8-Left and show
their associated AUCs in Table 5.2. The most competitive retrieval strategy is pro-
vided by EA (which is non-attributed). The second best choice is the TB method.
Here we use the 2D coordinates to compute the triangle, and the relatively good per-
formance is due to the high-order information provided by its triangular potentials.

Finally, we compare our Entropic Alignment (EA) method with the path-following
(PATH) algorithm [54]. In the Factorized/Deformable Graph matching method, the
convex-concave relaxation process leading to approximate solutions (doubly stochastic
matrices) for the QAP is key to its performance. At each iteration, the Frank-Wolfe
algorithm leads to a local optimum. Each iteration takes O(n3 +2m2) where n is the
number of nodes and m is the number of edges. The cubic complexity is due to the
Hungarian algorithm used to compute the gradient.

The Structural Embedding Graph Matching (SEgm) of EA is driven by Coherent
Point-Drift [34] which can be done in O(n) when the fast Gaussian transform is applied
in conjunction with a linear system solver.

In Fig. 8-Right we compare the results obtained with EA, PATH, the Caelli and
Kosinov (CK) method and SMAC. We obtain that EA outperforms PATH in terms
of Average-Recall/Retrieval. The AUC for EA is 59.6, and for PATH is 58.7. This
indicates that the values of the concave cost function of the PATH method capture the
main structural similarities between graphs belonging to the same class and discrimi-
nates them from graphs belonging to different classes. This is due to the fact that the
usual convex quadratic function only dominates the first iterations of the algorithm.
The PATH algorithm evolves towards a concave version of this function. This concave
function accounts for the spectra and the correlations (Kronecker products) between
the Laplacian of the graphs being compared. Since EA, especially the SEgm step,
also relies on the Laplacian matrices, we have that the linearlization step of EA yields
a fast approximation that is properly complemented by the SNSCE similarity. As a
result PATH starts outperforming EA after 54 retrievals.

Our approach therefore combines both elements (good matching and good dis-
similarity) by combining information furnished by graph embedding and information
theory. Only the PATH algorithm is competitive with our approach, and this is purely
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Fig. 8. Left: Comparison of several graph matching algorithms: EA (Entropic Alignment), two
versions of RRW (Reweigthed Random Walks), TB (Tensor Based Matching) and GA (Graduated
Assignment). Right:Comparison with PATH, SMAC and Caelli and Kosinov.

5.4. The Importance of Topological Information. The method proposed
in this paper is characterized as exploting purely structural/topological information.
It does not rely on additional attributes associated with the nodes such as distances
and/or angles. Our alternative results are partially due to the embedding trick. We
analyze the consequences of this trick in detail in Section 6 of this paper. However,
there are alternative ways of exploiting topological information. In [31] we kernelized

the Gold and Rangarajan method. There, we obtained node attributes from different
types of graph kernels, mainly from the regularization kernel family (heat kernels, p-
step kernels, and so on). When applying this strategy to the Houses data set we obtain
an AUC of 17.48 (see Table 5.2), a performance similar to that of Reweighted Ran-
dom Walks (AUC = 18.81) with feature-based attributes. This performance reaches
an AUC of 20.96 when we add feature-based attributes. Moreover, this method is
outpeformed by Entropic Alignment but it slightly outperforms Factorized Graph
Matching (AUC=19.48). However, this is not the case with a more complex dataset
such as Gator. PATH is still the second best choice, even when feature attributes are
considered. Entropic Alignment improves on Kernelized Graduated Assignment with
feature attributes (Fig. 7-Right).

5.5. Embedding Comparison. Given a similarity measure like SNSCE, the
choice of the embedding is critical for determining the quality of the retrieval results.
Here, we consider the Commute Time (CT) embedding [39], Laplacian Eigenmaps
(LEM) [5], Diffusion Maps (DM) [35], Heat Kernels (HK) [2], and ISOMAP [49]
(in this latter case we use the shortest path lengths between nodes as geodesics) as
alternative embeddings. The alternative embeddings rely on a function of the eigen-
values (diagonal of Λ) and/or eigenvectors (columns of Φ) of a property matrix. For
instance, HK and CT embeddings result from a function F(.) applied to the Lapla-
cian F(L) = ΦF(Λ)ΦT = ΘTΘ, where the matrix of embedding co-ordinates Θ results
from the Young-Householder decomposition of the kernel. For CT, F(L) =

√
volΛ−1/2

while for HK we have F(L) = exp
(
− 1

2 tΛ
)
where t is time. For DT we have F(L) = Λt

3MATLAB code and data for reproducing all the experiments in this paper can be found in
http://sites.google.com/site/scohomepage/ and will be soon submitted to IPOL.
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where Λ results from a generalized eigenvalue/eigenvector problem as in the case of
LEM where F(L) = Φ. Finally, ISOMAP considers the leading eigenvectors of the
geodesic distance matrix. Different embeddings yield different point distributions for
the same dimensionality. For instance, CT produces denser point clouds than LEM
(see [39]). For structural retrieval with a distributional measure such as SNSCE , lo-
cating the optimal function is critical, and must be determined empirically. Thus,
we have obtained the retrieval-recall curves on the Gator database for each of the
aforementioned embeddings with the setting d = 5. We plot the results in Fig. 9-Left.
The CT embedding outperforms the alternatives. However, reasonable performance
is obtained with ISOMAP and DM for t = 64 (a time setting that is sufficiently large
to give an unfragmented embedding, given the size of the sub-sampled graphs).

Although CT gives good results, there are recent theoretical results which point
to limitations of CT as a global characterization of kNN graphs for point-sets resulting
from the denseness of the embedding (see for example the recent work of von Luxburg
et al. [52][51]). More precisely, when we construct a kNN graph G over a large
point-set, this implies a high edge density. Under these conditions, we have that the

resistence distance R(i, j) = CT (i,j)
vol(G) satisfies the condition R(i, j) ≈ 1

D(i,i) +
1

D(j,j) .

In other words, it becomes meaningless as a measure of distance between vertices in
a graph since it depends only on their degree and not their separating path length
or edge weights. An experimental means of quantifying proximity to this limit is
to analyze the ratio |R(i, j) − 1/D(i, i) − 1/D(j, j)|/R(i, j). If we plot the log(.) of
the median of the ratio versus the size of the graphs, this should be monotonically
decreasing with the size of the graphs. However, this is not the case for the Delaunay
triangulation representations of graphs since the edge density is relatively low. In
fact, for the Gator database the median of the edge densities is 0.3409(34%) and
independent of graph size. In Fig. 9-Right we show that the ratio defined above
is not decreasing. More importantly, the values of the ratio are even higher when
d = 5. This better performance for the five dimensional case is explained by the fact
that ĈT (i, j) ≤ CT (i, j), where ĈT (i, j) = ||f(i) − f(j)||2 is the squared Euclidean
distance between the d−dimensional embeddings of nodes i and j. This has the
result of increasing the manifold density without loosing the global topology of the
graph. This is not the case for the HK embedding which produces dense but poorly
discriminating manifolds. Consequently it yields the poorest retrieval behavior.

Fig. 9. Embedding Analysis. Left: CT vs ISOMAP, DM, HK and LEM. Right: Luxburg et al.
ratio scatter plots.
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5.6. The optimality of the CT embedding. In addition to the deviation
of Delaunay triangulations from the von Luxburg law, we conjecture that the better
behavior of the CT embedding derives from the reversibility of the embedding (that we
explore in Section 6). In turn, such reversibility depends on the degree distribution
of Delaunay triangulations, since node degree plays an important role in the CT
embedding.

Let X = {x1,x2, . . . ,xn} be the points in R
n to be embedded into a subspace

included in R
d with d ≪ n, and Wij = exp(−||xi − xj ||2/σ2) the similarity matrix.

Then, the CT embedding is given by the rows of n× d matrix Z minimizing [39]

ǫ′ =

∑n
i=1

∑d
j=1 ||Z(i)− Z(j)||2Wij

∑n
i=1

∑d
j=1 ZijD(j, j)

= tr

(
ZTLZ

ZTDZ

)
,(5.1)

where L = D −W is the Laplacian matrix and D is the diagonal degree matrix.
Since the denominator of ǫ′ relies on the degrees, the optimal embedding can assign
large coordinate values to nodes with large degree. This degree-of-freedom allows
the scattering of embedded points so that the local structure of the original graph is
preserved, because such local structure is determined by the degrees.

Recent studies [24] suggest that the degree distribution of Delaunay triangulations
barely follows a power law. Following a power law means that few nodes have a large
degree whereas most of them have small degrees. This produces an exponential decay
of the sorted degrees and gives a linear behavior with negative slope in the log-log
space. However, as we can see in Fig. 10, the slope of the decay is small (κ = −0.3)
which means that the exponential decay is quite moderate. This increases the entropy
of the degree distribution with respect to those with more pronounced decays. Then,
since most of the nodes tend to have a moderate-high degree, the embedded points
can be scattered according to their degrees. This maximizes the distances between the
embedded points, at least globally. Since the numerator of Eq. 5.1 must be minimized,
the CT embedding tends to map close points (or neighboring nodes, when adjacency
matrices are considered instead of weight matrices) to the same cluster. However, the
simultaneous minimization of the denominator tends to separate these clusters. In
this way, the CT embedding amplifies the distance between tight groups.

This behavior in turn has an impact in entropy estimation since it relies on kNN
tests. Nearest neighbors are frequently found in isolated clusters. It is well known that
the curse of the dimensionality compromises the performance of kNN rules. However,
when CT are used for embedding Delaunay triangulations entropy estimation is quite
robust for high d, as this is the case with the Houses dataset.

Since the embedded nodes are not i.i.d., the bypass entropy estimator used in
this paper tends to underestimate the Shannon entropy. The use of this estimator
produces consistent results provided that we do not mix the graphs being compared,
which is a relatively mild assumption in the computer vision domain.

The above rationale explains the discriminative power of the CT embedding, since
the Laplacian Eigenmap, for instance, tends to minimize the numerator of Eq. 5.1
subject to a normalized version of the denominator. In this way, the embedding
coordinates are uniformly scaled, which leads to a more entropic distribution of the
embedded nodes. This configuration leads to a Average-Retrieval/Recall performance
close to that for ISOMAP and lower than the performance for Diffusion Maps which
is the best alternative to CTs. Actually CTs come from the integral of diffusion times
over time [39]. Consequently, since the nodes embedded by the Laplacian Eigenmap
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are quite uniformly spaced, the embedding is prone to the curse of the dimensionality
and then the kNN rules (and in turn the entropy estimator) fail.

As we will see in the next section, the combination of the properties of Delaunay
triangulation and the nature of the CT embedding have a significant impact in the
reversibility of the embedding.
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Fig. 10. Slight Power Law of degree distributions for Delaunay triangulations (Gator graphs).
Left: degree distribution. Right: log-log curve and linear model fitting the data: slope is κ = −0.3.

6. From Distances to Structure. So far we have analyzed the CT embedding
in its direct form. It provides a means of transforming the nodes of a graphG = (V,E)
into points in a d−dimensional vector space. When d = |V |, then the Euclidean dis-
tance between the point positions of pairs of nodes is equal to the commute time
between them on the graph. When the embedding is into a subspace, i.e. d < |V |,
then the Euclidean distance is upper bounded by the commute time. The embed-
ding allows us to pose the problem of graph matching in terms of non-rigid point-set
alignment (SEgm), and we then measure graph similarity through the SNSCE of the
aligned samples. SNSCE is designed to compare two d-dimensional probability distri-
butions, and implicitly this means that we are representing the graphs to be matched
as multidimensional probability distributions. This interpretation opens up additional
and intriguing novel perspectives. For instance, to what extent does the metric infor-

mation in the embedding encode graph topology? One way of answering this question
is to explore to what extent metric information is preserved under the embedding and

the extent to which it is reversible. In other words, under what conditions can we
recover the original graph from its embedding? Moreover, if this is the case then can
we use the inverse of a vectorial generative model for the distribution of points in the
embedding space, as a means of sampling graphs? This is of pivotal importance for
constucting generative models for graphs since state-of-the-art methods [23] are sub-
ject to the combinatorial constraints associated with the original topological space.
We conjecture that these constraints can be bypassed by constructing the prototype
in a sub-space and then inverting the embedding.

In this section we propose an optimization algorithm (inverse embedding) to that
end and also prove its convergence. Here we extend the formal results presented
in [17].

6.1. Inverse Embedding. Let x1,x2, . . . ,xN be a collection of N -dimensional
points in the Euclidean space and generated by a node embedding of an unknown



22 F. ESCOLANO, E.R. HANCOCK, M.A. LOZANO

graph G = (V,E) with |V | = N and adjacency matrix A. The problem of learning
or inferring the graph G from the latter collection of multi-dimensional points can be
posed as the following optimization problem

Max
∑

j>i

Aij

s.t. Θij = ||xi − xj ||2

0 ≤ Aij ≤ 1; ∀ i, j ,(6.1)

where Θij = ||Θ(i) −Θ(j)||2 = CT (i, j) and Θ(i),Θ(j) are the N−dimensional coordi-
nates of the embedded nodes i and j respectively. Following [39] we have

CT (i, j) = vol
N∑

z=2

1

λz
(φz(i)− φz(j))2 ,(6.2)

where vol is the volume of the graph and λz , φz denote z−th the eigenvalues and
eigenvectors of the unknown normalized Laplacian L. The embedding matrix is con-
structed with

Θ =
√
volΛ−1/2ΦT ,(6.3)

where Λ = diag(λ1 = 0, λ2, . . . , λN ) and Φ = [φ1 φ2 . . . φN ] is the matrix of eigenvec-
tors which satisfies

||Θ(i) −Θ(j)||2 = CT (i, j) .(6.4)

The maximization of
∑

j>iAij is consistent with finding the closest graph to the
complete one – the initial proposal – which satisfies all the embedding constraints.

Using Lagrange multipliers (one for each constraint) the problem is equivalent to
maximizing Eq. 6.5 where the second (entropic) term relies on both a x log(x) barrier
function and also depends on β [41]. The third term contains the N(N − 1)/2 − N
Lagrange multipliers αij (one multiplier per constraint).

E(A, {αij}) =
∑

ij:j>i

Aij +
1

β

∑

ij:j>i

Aij(logAij − 1) +(6.5)

∑

ij:j>i

αij(Θij − ||xi − xj ||2)

.

The fixed point equations for updating the Aij are given by

∂E

∂Aij
= 1 +

1

β
logAij + αij

∂Θij

∂Aij
.

∂E

∂Aij
= 0⇒ 1

β
logAij = −1− αij

∂Θij

∂Aij

⇒ Aij = expβ

(
−1− αij

∂Θij

∂Aij

)
,(6.6)

where
∂Θij

∂Aij
(which can be approximated numerically) is the gain, in terms of the

squared distance between Θi and Θj , with respect to the variation of a single com-
ponent Aij . On the other hand, the update of the multipliers has no available closed
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form solution and must be performed through gradient ascent, given the previously
available estimates of the multipliers and distances:

∂E

∂αij
= Θij − ||xi − xj ||2

⇒ αt+1
ij = αt

ij + µ(Θt
ij − ||xi − xj ||2) ,(6.7)

where µ ∈ [0, 1] is the learning factor. In practice this factor must be set so that
it decreases with the size of the graphs. The convergence of the inverse embedding
procedure is dependant on the setting and control of this parameter.

6.2. Deterministic Annealing Algorithm. The fixed point equations for up-
dating Aij and the gradient ascent equations designed for updating the multipliers
αij motivate the following deterministic annealing algorithm:

Initialize β = β0, Aij = 1/N, αij = 0, j > i, µ
Begin: Deterministic Annealing. Do while β ≤ βf

H ← ComposeAdjacencyMatrix({Aij})
Θ← Embedding(H)
αij ← αij + µ(Θij − ||xi − xj ||2)
∂Θij

∂Aij
← ComputeDerivative(i, j, A)

Aij ← expβ
(
−1− αij

∂Θij

∂Aij

)

β ← ββr
End

G =MDLCleanup({αij})

In the algorithm above, the initialization Aij = 1/N, ∀ i 6= j, that is a barycenter
depending on the complete graph (Aij = 1, ∀ i 6= j), ensures that the N−dimensional
points of the embedding matrix Θ are initially equally spaced. More precisely, in
this case we have that H = 1

NKN is the adjacency matrix of the uniformly weighted

complete graph with N nodes, and the diagonal degree matrix is DH = N−1
N I. These

two settings imply that LH = I− 1
N−1KN = LKN

. Consequently, the commute times

for both graphs (encoded by KN and 1
NKN ) are the same.

In a classic study on random walks [30] Lovász used a power series expansion to
prove that in a complete graph of N nodes the hitting time between every pair of
nodes is N − 1. For this type of graph we therefore have that the hitting times are
symmetric and hence CTH(i, j) = 2(N − 1) ∀ i, j ∈ VH . Lovász also derived universal
lower and upper bounds for CTs for any type of graph. The bounds are given in
Eq. 6.8 where λ2 is the Fiedler eigenvalue of the normalized Laplacian LG, that is,
the so called spectral gap of G. Since for a complete graph we have λ2 = N

N−1 , it
is straightforward to proof that CTH(i, j) = 2(N − 1) where 2(N − 1) is the upper
bound. For any regular graph the lower bound is N . An in depth analysis by von
Luxburg et al. [51] shows that the probability of obtaining an incorrect CT in a
kNN graph tends to unity when k/(logN)→∞, and this occurs when a single node
is connected directly to the remainder. This type of structural pattern may appear
in certain clustering problems, but does not arise for the types of graphs used in our
target domain, i.e. computer vision. Here planar graphs are typically derived from
region adjacency relations or are Delaunay triangulations of points.

In Fig. 11-Left we show that the spectral gap decays in a non-linear way with
increasing graph size for the Gator database. This decay results in a large value for the
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upper bound appearing in Eq. (6.8), and this in turn means that large values of CT are
admissible. For each graph in Gator we also show the distribution of the differences
between CT and the quantity 2(N−1), where N is the size of the corresponding graph.
We observe that the difference is positive and varies approximately linearly with N .
This suggests that most of the commute times between pairs of nodes are longer
than the expected value for a complete graph of the same size. However, it is highly
improbable that this is the case for immediately adjacent nodes. In Fig. 11-Right
we distinguish between the commute times between immediately adjacent nodes and
those between the remaining non-adjacent ones. As expected, the median values of
CT (i, j)−2(N−1)∀(i, j) ∈ E for the adjacent nodes tend to be negative. However, the
distribution of commute time is dominated by CT (i, j) ∀(i, j) 6∈ E for the remaining
nodes and this is why CT (i, j) − 2(N − 1) ∀(i, j) 6∈ E is both highly positive (≫ 0)
and also increases with N .

vol(G)

2

(
1

D(i, i)
+

1

D(j, j)

)
≤ CT (i, j) ≤ vol(G)

λ2

(
1

D(i, i)
+

1

D(j, j)

)
.(6.8)
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Fig. 11. CT analysis of Gator. Left: CT-2(N-1) medians and spectral gaps(×103 for a better
visualization). Right: CT-2(N-1) modes both for adjacent (×50) and non-adjacent nodes.

The analysis of CT above is key to understanding the dynamics of our inverse
embedding method and how to initialize it. We commence with an initialization that
ensures equal squared distances between embedded points, i.e. Θij = 2(N − 1). More
importantly we have Θij − ||xi − xj ||2 = Θij −CT (i, j) which is usually negative. In
addition to the advantages of CT that we observe in Fig. 11, we have also provided
a more principled argument for its use in Section 5.5. The moderate power law
behavior of Delaunay triangulations in combination with the introduction of large
distances between clusters in the CT motivates Θij − CT (i, j) < 0 in many cases.

The deterministic annealing (DA) algorithm progresses by maximizing Eq. 6.5,
which is dominated by the second term 1

β

∑
ij:j>i Aij(logAij − 1) for low values of β.

However, the elements of the adjacency matrixAij depend on the Lagrange multipliers
αij (see Eq. 6.6) which in turn depend on Θij−||xi−xj ||2 = Θij−CT (i, j) (Eq. 6.7).
As a result in most cases the quantity Θij − CT (i, j) < 0 plays an important role in
the dynamics of the algorithm. More precisely, the optimization process is focused on
how the less negative multipliers emerge as β increases so that at convergence these
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multipliers will be associated to edges of the recovered graph. In the Supplementary
Material we detail the proof of convergence.

Once the algorithm has converged, we must extract the edges from the less nega-
tive multipliers. We address this task using an MDL (Minimum Description Length)
approach. We do not know in advance how many edges the hidden graph contains.
We assume that it has a single connected component. Therefore, it seems reason-
able to postprocess the multipliers so that we select the minimum number such that
the resulting graph is connected. This procedure does not preclude us from using
statistics regarding the number of edges, should these become available. We use the
blind inverse embedding, and sort the multipliers in ascending order according to
their absolute value. We commence by selecting the first k = N − 1 multipliers to
check whether we have found a connected graph of N vertices (N − 1 is the minimal
number of edges that give a connected component on N vertices). If the multiplier
αij satisfies this condition then (i, j) is selected as an edge, i.e. Aij = 1 and Aji = 1.
If the condition is not satisfied we set Aij = Aji = 0 to the not selected edges. If the
resulting graph is not singly connected we makeA = 0 and repeat the latter procedure
for k + 1 until convergence to a single component (the number of connected compo-
nents is detected using spectral graph theory). This part of the algorithm is called
MDLCleanup({αij}) and returns the MDL maximization of the objective function.
The computational cost of the DA algorithm is O(N2 ×N3) = O(N5) since for each
iteration we update a quadratic number of multipliers. Each update requires the com-
putation of an embedding and thus the computation of eigenvalues and eigenvectors,
which takes O(N3). However, as we will see in the experimental results for this part
of the paper, for practical purposes the speed of convergence is very fast.

6.3. Results for Gator. We have successfully tested the proposed DA inverse-
embedding on several types of graphs including linear ones. Linear graphs are difficult
to obtain due to the fact that they are characterized by a small number of constraints
(just (N − 1) sufficiently large multipliers are required). In general, each type of
graph requires a different value of the parameter µ (for example µ = 0.00001 for a
linear graph of N = 50 nodes and µ = 0.01 for a grid graph with 10 × 4 nodes each
one with a maximum of 4 neighbors). In order to determine whether the required
original (hidden) structure is recovered, we define an reconstruction error measure.

We have used E =
∑

ij

|Aij−A∗

ij |
vol(G) where G is the known graph (adjacency matrix) and

G∗ is the recovered adjacency matrix through inverse embedding. We consider both
(i, j) and (j, i) as different edges, and thus we normalize by the volume of the graph.
As a result E defines a relative error. For instance, the linear graph was recovered
with zero error, whereas the grid-like graph was recovered with E = 0.3647 (36.47%).
These preliminary results encouraged us to test our method on the challenging Gator
database as a proof-of-concept of the usefulness of CT inverse embeddings to decode
metric relations which are encoded by CT direct embeddings.

In Fig. 12 we show the inverse embeddings of two example graphs of Gator
(Fig. 12-Top-left). In both cases we set µ = 0.000000001 = 10−8, β0 = 0.5, βr = 1.075
and βf = 10. In Fig. 12-Top-right we show the convergence of the concave energy
function. Errors forGator#1 and Gator#5 are 34.30% and 39.53% respectively. Most
of the topology is consistently recovered (see Fig. 12-bottom). However, the numeric
results may be misleading because we apply an MDL criterion in the reconstruction
and our method halts as soon as we detect a connected graph. This means that we
may recover a graph which while very closely related to the original one, may be some-
what simpler in structure. Entropic graph matching provides a way of testing this
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Fig. 12. Inverse embedding in Gator. Top-left: examples of Gator#1 and Gator#5 CT em-
beddings for 3D (for visualization purposes since the complete dimensions are used in both cases).
Top-right: evolution of the respective concave energy functions. Convergence speed is very fast.
Bottom: comparison between the adjacency matrix A and the inferred graph A∗; in each image we
represent: 2A − A∗ so that coincident edges have value +1, edges in A but not in A∗ have value
+2 and edges in A∗ but not it G have value −1. Most of the values are +1 with errors 34.30% for
Gator#1 and 39.53% for Gator#2.

hypothesis and it is the underpinning mechanism for learning prototypical manifolds,
and thus generative models, in the future.

7. Conclusion. This paper decouples the measurement of graph similarity into
two sequential steps. The first step is the linearization of the Quadratic Assignment
Problem (QAP) in a low dimensional space, given by the embedding trick. This is
followed by the second step which is the evaluation of an information-theoretic (IT)
distributional measure which relies on deformable manifold alignment. Manifolds are
obtained from the CT embedding of Delaunay graphs. The proposed IT-based mea-
sure, the Symmetrizerd Normalized Squared Conditional Entropy (SNSCE) induces a
p.d. kernel between manifolds and, thus, between graphs. Moreover, we have suc-
cessfully tested the SNSCE on two datasets and compared the CT with alternative
state-of-the-art methods for embedding. We have also compared our approach with
alternative competitive graph-matching algorithms including Factorized/Deformable
Graph Matching and Path Following. Our algorithm outperforms most of them and
it is very competitive with FGM and PATH, despite relying only in topological in-
formation. Finally, we have addressed to what extent the original topology of the
graph can be recovered from Euclidean distances (inverse embedding - see proof of
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convergence of the proposed Deterministic Annealing Algorithm in appendix B) as
well as the impact of reversibility in the high discriminability of CTs .

Future work includes establishing formal links with graph edit distance. We
are also investigating the joint role of entropic alignment and SNSCE in learning
prototypical manifolds from input exemplars. We are also developing alternative IT
dissimilarities.

Appendix A. Kozachenko-Leonenko Entropy Estimators. In a multidi-
mensional setting, where a random variable X is given by a set of i.i.d. samples
(points) x1, . . . ,xN in R

d, a well known bypass estimation of the Shannon entropy
H(X ) = −

∫
X p(X ) log p(X )dX consists of approximating the density p(xi) in terms

of the distribution of the kNN neighbors of xi. In [27], for instance, Pk(ǫ)dǫ is the
chance that: (1) there is one point within distance r ∈ [ǫ/2, ǫ/2 + dǫ/2] from xi, (2)
there are k − 1 additional points at smaller distances, and (3) there are N − k − 1
points with larger distances from xi. These three conditions lead to a trinomial model
for Pk(ǫ)dǫ

Pk(ǫ)dǫ =
(N − 1)!

1!(k − 1)!(N −K − 1)!

dpi(ǫ)

dǫ
dǫ× pi(ǫ)k−1 × (1 − pi(ǫ))N−k−1 ,(A.1)

where pi(ǫ) =
∫
||ξ−xi||<ǫ/2 p(ξ)dξ is the mass of the ǫ ball centered at xi. Using the

formal link between Dirichlet-like distributions and digamma functions we obtain the
expectation of log pi(ǫ) for point i:

E(log pi(ǫ)) =

∫ ∞

0

log pi(ǫ)Pk(ǫ)dǫ(A.2)

= k

(
N − 1

k

)∫ 1

0

pi(ǫ)
k−1 × (1− pi(ǫ))N−k−1 log pi(ǫ)dpi

= Ψ(k)−Ψ(N) ,

where the expectation is taken over the positions of all remaining N − 1 points with

xi fixed and where Ψ(x) = Γ′(x)
Γ(x) = d

dx log Γ(x) is the digamma function, whose

properties are similar to those of the natural logarithm. Assuming that the den-
sity p(xi) is constant inside the ǫ ball we have pi(ǫ) ≈ Vdǫ

dp(xi), where Vd is
the volume of the d−dimensional unit ball in R

d (Vd = 1 for the maximum norm
and Vd = Γ(1 + d/2)/2d for the Euclidean norm). Then, following the asymptotic
equipartition property (a consequence of the law of large numbers) we have that

−E(log(p(xi)) = (−1/N)
∑N

i=1 log(p(xi)) → H(X ) as N → ∞. This leads to the
following estimator of the Shannon entropy:

ĤN,k,1 = −Ψ(k) + Ψ(N) + logVd +
d

N

N∑

i=1

log ǫ(i)(A.3)

and to its Rényi-like counterpart [28]:

ĤN,k,2 = −
Ψ(k)

N
+

log(N − 1)

N
+ logVd +

d

2N

N∑

i=1

log ǫ(i) ,(A.4)

where ǫ(i) is twice the distance to the k − th nearest neighbor of xi. Then, both
ĤN,k,1 and ĤN,k,2 can be understood as the result of quantifying entropy in terms
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of the KNN distances and then adding correction terms related to the digamma
function.

We can follow a similar rationale for estimating mutual information I(X ,Y) (see
details in [27]). In this case, a two-dimensional joint space must be constructed
since I(X ,Y) = H(X ) +H(Y) +H(X ,Y). Let zi = (xc(i),yi) be the samples of Z =
(X ,Y) resulting from stacking the samples xi and yc(i) according to a correspondence
function c : N → N. The correspondence function is typically given beforehand,
i.e. the notation zi = (xi,yi) assumes that the samples of Y have been previously
reordered with respect to those of X or vice versa. For the sake of simplicity, we
follow the zi = (xi,yi) notation in this appendix.

When using the maximum norm, the construction of the joint probability dis-
tribution Pk(ǫx, ǫy) relies on hyper rectangles of sides ǫx(i) and ǫy(i), where ǫx(i) is
twice the distance of xi to the k−th nearest neighbor from the set of samples of X
and ǫy(i) is similarly defined, in this case with respect to yi and Y. Then we have

Pk(ǫx, ǫy) =

(
N − 1

k

)
d2[qki ]

dǫxdǫy
(1−pi(ǫ))N−k−1+(k−1)

(
N − 1

k

)
d2[qki ]

dǫxdǫy
(1−pi(ǫ))N−k−1 ,

(A.5)
where qi = qi(ǫx, ǫy) is the mass of the rectangle of size ǫx × ǫy centered at (xi,yi),
and pi(ǫ) is the mass of the square of size ǫ = max{ǫx, ǫy}. Then, E(log qi) is given
by

E(log qi(ǫx, ǫy)) =

∫ ∞

0

∫ ∞

0

log qi(ǫx, ǫy)Pk(ǫx, ǫy)dǫxdǫy(A.6)

= Ψ(k)− 1

k
−Ψ(N) ,

which leads to the following estimator of I(X ,Y):

ÎN,k,1 = Ψ(k)− 1

k
−Ψ(N)− 1

N

N∑

i=1

(Ψ(nx(i)) + Ψ(ny(i))) ,(A.7)

where nx(i) and ny(i) are respectively the number of points with ||xi−xj || < ǫx(i)/2
and ||yi − yj || < ǫy(i)/2.

Appendix B. Proof of DA Convergence. Following the methodology in [42]
in order to prove the convergence of the Determinisic Annealing method proposed
for maximizing Eq. 6.5 we must find a Lyapunov function ∆E = Et+1 − Et > 0
so that the increment of energy between iteration t and iteration t + 1 is always
positive. Let φ(Aij) = Aij(logAij−1) be the barrier function. Then, we have Eq. B.1.
The convexity of φ(Aij) implies Eq. B.2. For the Aij we have that 1

β (logAij) =

−1− αij
∂Θij

∂Aij
and therefore setting d2ij = ||xi − xj ||2 we obtain Eq. B.3.

Proving ∆E > 0 involves proving in turn:
1. Negative increment: ∆A < 0, that is At+1

ij < At
ij

2. Mostly positive products involving multipliers and derivatives: αij
∂Θij

∂Aij

3. Positive increment of the sum of products involving multipliers and degree of
constraint satisfaction:

∑
ij:j>i αij(Θij − ||xi − xj ||2).

Firstly, considering how the Aij are updated, equality

Aij = expβ

(
−1− αij

∂Θij

∂Aij

)
≥ 0



GRAPH SIMILARITY THROUGH ENTROPIC ALIGNMENT 29

implies that for µ small enough we have thatAt
ij = expβt(−1−ǫt) ≈ exp(−βt)∀t >

0 for ǫt = αt
ij

∂Θt
ij

∂At
ij

≪ 1. Consequently, under these conditions At+1
ij < At

ij ∀t > 1 since

A0
ij = 1/N and β0 is a free parameter. If we choose β0 so that expβ0(−1) < 1/N we

will have a positive increment but the function is dominated by the barrier function
and the overall energy will increase with respect to t = 0. In any case we must set
β0 ≫ µ (which is a mild assumption since µ ∈ [0, 1]) to ensure ∆A < 0. Then, as β
increases with the number of iterations, ∆A < 0 is also ensured for large values of β.
Therefore we may assume that At+1

ij ≈ exp(−βt+1) = exp(−βtβr) because the per-

turbations induced by ǫt+1 are attenuated by βt+1. Summarizing, µ should be small
enough for setting ǫt ≪ 1 but it should be also large enough to provide significant
updates of the multipliers.

∆E(A, {αij}) =
∑

ij:j>i

∆Aij +
1

β

∑

ij:j>i

φ(At+1
ij )− 1

β

∑

ij:j>i

φ(At
ij) +

+
∑

ij:j>i

αt+1
ij (Θt+1

ij − ||xi − xj ||2)−
∑

ij:j>i

αt
ij(Θ

t
ij − ||xi − xj ||2) .(B.1)

∑

ij:j>i

φ(At+1
ij )−

∑

ij:j>i

φ(At
ij) ≥

∑

ij:j>i

φ′(Aij)∆Aij ≡
∑

ij:j>i

(logAij)∆Aij .(B.2)

∆E(A, {αij}) ≥
∑

ij:j>i

∆Aij +
∑

ij:j>i

(
−1− αij

∂Θij

∂Aij

)
∆Aij +

+
∑

ij:j>i

αt+1
ij (Θt+1

ij − d2ij)−
∑

ij:j>i

αt
ij(Θ

t
ij − d2ij)

=
∑

ij:j>i

−
(
αij

∂Θij

∂Aij

)
∆Aij +

∑

ij:j>i

αt+1
ij (Θt+1

ij − d2ij)

−
∑

ij:j>i

αt
ij(Θ

t
ij − d2ij) > 0

(B.3)

Secondly, we must prove that ǫt > 0 in most of the cases, despite we set µ so that

ǫt ≪ 1. Since ǫt = αt
ij

∂Θt
ij

∂At
ij

we must find many coincidences between the sign of the

multipliers and the one of the derivatives. Multipliers are mostly negative along the
process because αt

ij = αt−1
ij + µ(Θt−1

ij − ||xi − xj ||2) = αt−1
ij + µ(Θt−1

ij −CT (i, j)) and
Θt−1

ij − CT (i, j) are usually negative. Therefore, we must prove that the derivatives
are mostly negative. In order to do so, we approximate the derivatives at any time

by ∆Θij = Θ
Aij+h
ij − Θij where Θ

Aij+h
ij is the perturbed Θij after replacing Aij by

Aij + h (the same for Aji) and then computing the CT embedding. Let β be the
inverse temperature corresponding to a given iteration and let us approximate the
current adjacency matrix as suggested above: A = 1

r (11
T − I), where r = exp(β).

Let E be the so called N ×N perturbation matrix defined by

Eab =

{
h if a = i and b = j
0 otherwise ,

(B.4)
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where h > 0. Then, Â = A + E is the linearly perturbed adjacency matrix.
It is straightforward to verify that LA = LKN

. Consequently, from the eigen-
decomposition LA = ΦLA

ΛLA
ΦT

LA
we have

• Spectrum: λ
(1)
LA

= 0 < λ
(2)
LA

= . . . = λ
(N)
LA

= N
N−1 (see [12]).

• Eigenvectors: φ
(1)
LA

= αD
1/2
A 1, where α ∈ R and DA is the degree matrix of

A. Eigenvectors are orthonormal and also satisfy
∑N

i=1 φ
(z)
LA

(i) = 0 for z ≥ 2.
In order to relate the spectrum and eigenvectors of LA with those of LÂ our first
intuition is to exploit matrix perturbation theory [47]. This theory relies on pessimistic
bounds. For instance, the Bauer-Fike theorem [4] states that if LÂ = ΦLÂ

ΛLÂ
ΦT

LÂ

and a eigenvalue λLÂ
, we have

min
λLA

∣∣λLÂ
− λLA

∣∣ ≤ ||ΦLA
||p
∣∣∣∣Φ−1

LA

∣∣∣∣
p
||E||p = κp(ΦLA

) ||E||p(B.5)

for eigenvalues λLA
(not necessarily all),where p is the type of norm used (for example

p = 1, p = 2, p = ∞) and κp(.) is the so called condition number for such norm.
Assuming p = 2, we have that κp(ΦA) = 1 for Φ−1

A = ΦT
A (matrix ΦA is orthonormal).

Therefore minλLA

∣∣λLÂ
− λLA

∣∣ ≤ ||E||2. Since λ
(1)
E = −h, λ(2)E = . . . = λ

(N−1)
E = 0

and λ
(N)
E = h we have

∣∣λLÂ
− λLA

∣∣ ≤ h. In addition, the fact that h is small implies
any eigenvalue of LÂ is very similar to some eigenvalue of LA. However, the latter
theorem does not provide a way of predicting which value of λLÂ

is the most divergent
one. At this point we complement the matrix perturbation analysis with the spectral
analysis of graph-cuts. It is well known that the Fiedler vector of the normalized
Laplacian encodes the bi-partition of the graph. When we change Aij to Aij + h,
we induce the partition {i, j}⋃V − {i, j} in the complete attributed graph. The

existence of this partition implies a reduction of the spectral gap (λ
(1)
LÂ

= 0 for any

Laplacian and also φ
(1)
LÂ

= α′D1/2

Â
1). Then we have λ

(2)
LA

> λ
(2)
LÂ

= λ
(2)
LA
− γ > 0. The

larger h the smaller the gap (the larger is γ) until a minimal non-zero gap is reached

independently of h. In addition, φ
(2)
LA

is perturbed in such a way that

• Different value: φ
(2)
LÂ

(i) = φ
(2)
LÂ

(j) 6= φ
(2)
LÂ

(k) k 6∈ {i, j}.
• Different sign: sign(φ

(2)
LÂ

(i))sign(φ
(2)
LÂ

(j)) = +1 and sign(φ
(2)
LÂ

(i))sign(φ
(2)
LÂ
k)) =

−1 k 6∈ {i, j}.
• Same value and sign: both φ

(2)
LÂ

(k) = φ
(2)
LÂ

(l) and sign(φ
(2)
LÂ

(k))sign(φ
(2)
LÂ

(l)) =

+1 for k, l ∈ V − {i, j}.
• Non-zero sum:

∑N
i=1 φ

(2)
LÂ

(i) 6= 0

As far as the rest of the spectrum of LÂ is concerned, we have that λ
(3)
LÂ

= . . . =

λ
(N−1)
LÂ

= N
N−1 as is the case in LA. It is straightforward to check that N

N−1 is a root

of
∣∣LA − λLÂ

I
∣∣ = 0 with multiplicity N − 2. Consequently, λ

(N)
LÂ

= λ
(N)
LA

+ γ so that

trace(LÂ) = N . This means that the spectral perturbation induced by h is confined
to both the Fiedler eigenvalue and the highest one. This result is consistent with the
Bauer-Fike theorem in the sense that there is a correspondence of eigenvalues from
the 3rd to the (N − 1)th. In this particular case we have minλLA

∣∣λLÂ
− λLA

∣∣ = 0.

However, for λ
(2)
LA

and λ
(N)
LA

we cannot find an eigenvalue of LÂ satisfying the Bauer-
Fike bound unless h→ 0.

Given the latter eigenvalues λ
(3)
LÂ

= . . . = λ
(N−1)
LÂ

= N
N−1 and the orthonormality
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requirements we have that the corresponding eigenvectors are of the form φ
(z)
LÂ

(k) = 0

for k = i and k = j. Finally, since
∣∣∣φ(N)

LÂ
(k)
∣∣∣ =

{
0 if k 6= i and k 6= j√
2
2 otherwise .

(B.6)

More precisely sign(φ
(N)
LÂ

(i))sign(φ
(N)
LÂ

(j)) = −1 and this form is consistent with the

similar form of the eigenvectors of E.
Given the spectral analysis described above, we exploit now the spectral definition

of CT in order to prove that ∆Θij = Θ
Aij+h
ij − Θij is negative provided that A

encodes a uniformly weighted complete graph. Let us rename Θ
Aij+h
ij and Θij as

follows: CTÂ(i, j) = Θ
Aij+h
ij and CTA(i, j) = Θij . Our purpose is to prove that

CTÂ(i, j)− CTA(i, j) < 0. We have

CTÂ(i, j) = volÂ

N∑

z=2

1

λ
(z)
LÂ


 φ

(z)
LÂ

(i)
√
DÂ(i, i)

−
φ
(z)
LÂ

(j)
√
DÂ(j, j)




2

.(B.7)

However, due to the facts that φ
(2)
LÂ

(i) = φ
(2)
LÂ

(j) (Fiedler vector components) and

φ
(z)
LÂ

(i) = φ
(z)
LÂ

(j) = 0 for z = 3 . . .N − 1, (largest eigenvalue componets) Eq. B.7 is

reduced to only one summand

CTÂ(i, j) =
volÂ

λ
(N)
LÂ


 φ

(N)
LÂ

(i)
√
DÂ(i, i)

−
φ
(N)
LÂ

(j)
√
DÂ(j, j)




2

=
volÂ

λ
(N)
LÂ


2

φ
(N)
LÂ

(i)
√
DÂ(i, i)




2

=
volÂ

λ
(N)
LÂ

(
2

DÂ(i, i)

)
.(B.8)

Considering that DÂ(i, i) =
1
r (N − 1) + h we have that volÂ = N(N−1)

r + 2h. Since

λ
(N)
LÂ

= λ
(N)
LA

+ γ = N
N−1 + γ we have

CTÂ(i, j) =
N(N−1)

r + 2h
N

N−1 + γ

(
2

1
r (N − 1) + h

)

=

(
1

r

)
N(N − 1) + 2hr

N
N−1 + γ

(
2r

(N − 1) + hr

)

=
N(N − 1) + 2hr

N
N−1 + γ

(
2

(N − 1) + hr

)

<
N(N − 1) + 2hr

(N − 1) + hr

(
2

N
N−1 + γ

)

< N

(
2

N
N−1 + γ

)
< N

(
2
N

N−1

)

= N

(
2(N − 1)

N

)
= 2 (N − 1) .(B.9)
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Therefore CTÂ(i, j) < CTA(i, j), that is, ∆Θij = Θ
Aij+h
ij − Θij is negative provided

that both A encodes a uniformly weighted complete graph and h > 0,γ > 0. However,
since At

ij = expβt(−1− ǫt) with ǫ≪ 1, it is possible to find some positive increments,

but most of them are negative. Therefore
∑

ij:j>i −
(
αij

∂Θij

∂Aij

)
∆Aij > 0 (first term

of Eq. B.3) for most of the multipliers αij are negative.
Finally, since we encode emerging edges of the true graph with the less negative

(ideally zero) multipliers αt+1
ij = αt

ij + µ(Θt
ij − ||xi − xj ||2) this means that we must

evolve from an initial situation (low values of β > β0) where almost all multipliers are
negative towards a state where some of them are zero or positive . Therefore, negative
multipliers always dominate non-negative ones. This is due to the fact that we seek

to meet vol(G)
2 = |E| constraints with the highest degree of satisfaction and typically

|E| << N(N−1)
2 in computer vision. Consequently

∑
ij:j>i α

t
ij(Θij − ||xi − xj ||2) >

0 ∀t > 0.
For proving that

∑
ij:j>i α

t+1
ij (Θt+1

ij − d2ij) −
∑

ij:j>i α
t
ij(Θ

t
ij − d2ij) > 0 (second

term of Eq. B.3), we exploit the facts Θt+1
ij ≈ 2(N−1) and Θt

ij ≈ 2(N−1). Therefore,
Θt+1

ij ≈ Θt
ij and the latter term is reduced to

∑
ij:j>i(α

t+1
ij − αt

ij)(Θ
t+1
ij − d2ij). Since

αt+1
ij − αt

ij = µ(Θt
ij − d2ij) are usually negative, then the complete term is positive.

Therefore we have proved that Eq. B.3 satisfies ∆E(A, {αij}) > 0 for t > 0 and
it defines a Lyapunov function.The proposed DA algorithm converges. �.
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