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Topological phases from higher gauge symmetry in 3 + 1 dimensions
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We propose an exactly solvable Hamiltonian for topological phases in 3 + 1 dimensions utilizing ideas from
higher lattice gauge theory, where the gauge symmetry is given by a finite 2-group. We explicitly show that
the model is a Hamiltonian realization of Yetter’s homotopy 2-type topological quantum field theory whereby
the ground-state projector of the model defined on the manifold M3 is given by the partition function of the
underlying topological quantum field theory for M3 × [0,1]. We show that this result holds in any dimension
and illustrate it by computing the ground state degeneracy for a selection of spatial manifolds and 2-groups. As
an application we show that a subset of our model is dual to a class of Abelian Walker-Wang models describing
3 + 1 dimensional topological insulators.
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I. INTRODUCTION

Topological phases of matter have received considerable
interest recently due to their practical applications related
to various quantum Hall effect phenomena [1–4] and for
the realization of topological quantum computation [5,6].
Topological phases of matter have an underlying effective
(infrared limit) description given by a topological quantum
field theory (TQFT) [4,7–9]. Such theories are independent
of the metric structure of space time, so low-energy physical
processes are insensitive to local perturbations. Amplitudes
of these physical processes are global quantities, topological
invariants of the configuration space. In a canonical approach,
the Hamiltonian is a sum of mutually commuting constraints,
so the ground-state space is their joint eigenspace [5,10,11].
The degeneracy of the ground state and types, fusion, and
braiding of possibly exotic excitations fully characterize such
a theory [12,13]. An important property of TQFTs is negative
corrections to the experimentally observable entanglement
entropy (due to global constraints on the correlations)
[8,14–16].

In 2 + 1D, all phases of quantum matter with topological
order are described by Chern-Simons-Witten/BF theories
[17], (twisted) quantum double (QD) models [5,18], and Levin
Wen string nets [10]. In 3 + 1D there are few known examples
of TQFTs. As such there is limited knowledge of the kinds of
observables and quasiexcitations which could be expected to
exist in 3 + 1D topological phases of matter. So far in 3 + 1D
1 only the Dijkgraaf-Witten topological gauge theory [19,20]
which provides a dual description of symmetry protected topo-
logical (SPT) phases when the symmetry is gauged [21], and
the Crane-Yetter TQFT [22–24], which describe topological
insulators and gauge theories when the input is given by a pre-
modular category, have been studied in the physical literature.
Both TQFTs give observables which depend on at most the
fundamental group and the signature of the space time. They
both support quasiexcitations given by point particles with
charge like quantum numbers and fermionic/bosonic mutual
statistics and loop excitations which carry both charge and flux
like quantum numbers [20,24]. In the search for self correcting
quantum error codes, novel Hamiltonian models have been
developed in 3 + 1D which exhibit properties of topolog-
ical phases such as a topologically dependent ground-state

degeneracy but do not admit a TQFT description [25]. Models
such as Haah’s code [25] are given by a lattice gauge theory
description [26,27] but are not fixed under renormalization and
instead bifuricate into possibly different phases [28].

In this paper we will describe a Hamiltonian formalism for a
third type of TQFT, the Yetter homotopy 2-type TQFT [29,30].
Yetter’s TQFT uses a 2-group (equivalently a crossed module)
to define a TQFT utilizing the ideas of topological higher lat-
tice gauge theory. Unlike the previous theories, such a theory is
also sensitive to the homotopy 2-type information of the space
time, e.g., the second homotopy group. This feature is likely
to be necessary to find nontrivial (meaning neither bosonic nor
fermionic) representations of the loop braid group1 [31–33],
since the evolution of loop excitations are world sheets.

The aim of this work is to better understand candidate
theories for topological phases of matter in 3 + 1D space
time. Many questions understood in the 2 + 1D case are still
without a full resolution in 3 + 1D. It is known that local2 (fully
extended) n + 1D TQFTs can be defined by appropriate weak
n categories [34]. In 2 + 1D this description is captured by
fusion categories [35]. In 3 + 1D there is still no suitably
general description of the analogous 3-categories, as such
the most general formulation of possible 3 + 1D topological
phases remains unknown. For known models there are further
open questions. For example, what is the relation between
the ground-state degeneracy and the number of quasiparticle
excitations? In 2 + 1D it is known that there exists a 1-1
correspondence between the ground-state degeneracy on the
torus and the number of irreducible quasiparticle excitations,
but the analog in 3 + 1D with the ground-state degeneracy on
the 3-torus and the number of irreducible excitations is known
not to hold [20,36,37]. Another related question is what are the
topological quantum numbers needed to classify the ground
states and quasiexcitations in 3 + 1D. Such quantum numbers
are expected to be related to the generators of the mapping

1This group is the 3 + 1D analog of the braid group, which governs
particle statistics in 2 + 1D.

2Here local is the physical requirement that the total space-time
partition function can be evaluated in submanifolds of space time and
be appropriately “glued” to evaluate the total partition function [74].
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class group of the 3-torus SL(3,Z), but a full proof is still
lacking. In this paper we will outline a model of topological
phases of matter in 3 + 1D with a 2-group gauge symmetry. (In
an accompanying paper we explicitly verify the mathematical
consistency of such models and also further discuss the
topological observables and quantum numbers of the model.)

Defining Hamiltonian formalisms for TQFTs in 2 + 1D
and 3 + 1D has been an effective strategy for understanding
the spectrum of observables and physical manifestations of
topological phases of matter [5,10,18,20,23]. This is the ap-
proach taken in this paper, where we will present a Hamiltonian
formalism for the Yetter TQFT in 3 + 1D. The structure of the
text is as follows. We introduce the basic components of higher
lattice gauge theory (HLGT) in Sec. II, including the definition
of a crossed module (Sec. II A). This serves as a framework for
the remaining structure. We will then outline the Hamiltonian
model in Sec. III. Section IV explains why our model is a
Hamiltonian formalism of the 4D Yetter TQFT. Finally we
describe an inclusion of a class of our Hamiltonian models
into the class of Walker-Wang models [23,24] (which form a
Hamiltonian presentation of the Crane-Yetter TQFT) in Sec. V.

II. HIGHER LATTICE GAUGE THEORY

In this section we will establish the lattice formulation
of higher gauge theories. These are more complicated than
ordinary lattice gauge theory. Instead of a group (the gauge
group) on lattice edges, here we need two groups, the group
of holonomies of ordinary and higher gauge fields. The latter
types of holonomies sit on plaquettes and can be thought to
arise from surface integral of a non-Abelian 2-connection
[38]. Beside the two groups, the physical edge/plaquette
geometry induces two maps between them, which satisfy
certain compatibility conditions. This collection of data is
called a crossed module (crossed modules are equivalent to
2-groups [39]) and replaces the notion of the gauge group in
ordinary gauge theories. Just as the structure of the gauge group
ensures that gauge-invariant and measurable quantities are
independent of the choices made when defining the holonomy
and the way holonomies are composed, it is the structure
encoded in a crossed module which takes care of the same
independence in a higher gauge theory.

For the proof of independence, some algebraic topology
is needed. The proof will be published in a companion paper
[40]. Here we lean instead on existing work [41] and only
sketch the internal consistency of the theory we derive our
Hamiltonian model from.

A. Crossed modules

Let G and E be groups, ∂ : E → G a group homomorphism
and � an action of G on E by automorphisms (i.e., the
maps G × E → E,(g,e) �→ g�e are homomorphisms for
both variables). If the Peiffer conditions

∂(g�e) = g∂(e)g−1 ∀g ∈ G,∀e ∈ E, (1)

∂(e)�f = ef e−1 ∀e,f ∈ E (2)

are satisfied then the tuple (G,E,∂,�) is called a crossed
module.

An example is (G,G,id,�) with g �h = ghg−1, the double
DG of the group G. Another example is (G,AUT(G),ad,�),
where AUT(G) is the automorphism group of G. Here ad
sends a g ∈ G to conjugation by g, and the action is simply
by evaluation of AUT(G). If V is a representation of a group
G then we can build a crossed module (G,V,∂,�) where V

is a group as a vector space, ∂(V ) = {1G} and where � is the
given action of G on V . Now, we need a lattice encoding the
physical space of the theory.

B. Lattices and lattice paths

Given a manifold x we write bd(x) for the boundary and (x)
for x \ bd(x). Given a set K of subsets of a set we write |K|u
for the union. Given a d-manifold M , a lattice L for M is a set
of subsets Li , for each i = 0,1,2,3, where x ∈ Li is a closed
topological i-disk embedded in M , satisfying the following
requirements, with Mi := | ∪i

j=0 Lj |u.
For i = 1,2,3 and for x,y ∈ Li we have bd(x) ⊂ Mi−1;

(x) ∩ y = ∅; (x) ∩ Mi−1 = ∅.
Finally, either d � 3 and M3 = M or an extension of L

exists so that Md = M , with all additional cells in L4 or above.
(1) An element in L0 is a point of M , called a vertex.
(2) An element in L1 is called an edge or a track.
(3) An element in L2 is called a face or a plaquette.
(4) An element in L3 is called a blob.
A lattice for M is essentially the same as a regular CW-

complex decomposition for M (a CW complex is said to be
regular if each attaching map is an embedding [42]). Examples
are triangulations and cubulations [43].

To describe field configurations succinctly, we need to
give extra structure to the lattice. Let us fix a total order
on L0 denoted <. We give reference orientation to each
element of L1 such that the source vertex is smaller than the
target vertex. (Note that the lattice does not contain 1-gons.)
For every element of p ∈ L2 we distinguish the smallest
vertex v0(p) and fix an orientation for p according to which,
for p with n > 2 boundary edges, v1(p) < vn−1(p) for the
two neighbors of v0(p). The default target tp of p is the
edge whose source is v0(p), target is vn−1(p), the default
source sp of p is the path with consecutive boundary vertices
v0(p),v1(p),v2(p), . . . ,vn−1(p). In figures, if the target path
of a face p is an edge then we indicate the target edge by a
double arrow, thus the default case is:

v0 vn−1

v1

v2 v1<vn−1

ep

For simplicity here we exclude lattices with 2-gons in L2.
Let us call the lattice with chosen total order the dressed lattice.

A simple path from vertex v to vertex v′ in L is a path in the
1-skeleton M1 without repeated vertices. Thus a simple path is
a 1-disk in M1 with its boundary decomposed into an ordered
pair of vertices (the source and target). Similarly a 2-path is a
disk surface P in M2 with bd(P ) decomposed into an ordered
pair of simple paths.
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Remark. By the time we introduce the Hamiltonian
(Sec. III) we will restrict to the subclass of lattices that are
triangulations. Before that we will also consider an interme-
diate restriction on lattices which makes for simple notation.
Both of these steps are in the interests of balancing technical
utility with clear exposition, rather than matters of necessity.

C. Gauge fields

Given a crossed module (G,E,∂,�) and a dressed lattice L,
a gauge field configuration is an analog of a conventional one,
which is encoded by a map L1 → G assigning an element
of gauge group G to each edge of L. Beside 1-holonomies
associated to directed paths, 2-holonomies are associated to
surfaces between two paths with common source and target.
Akin to 1-holonomies which describe parallel transport of
point particles, 2-homolomies describe the parallel transport
of extended 1D objects, with fixed end points over a surface.
This is shown diagramatically below where γ,γ ′ ∈ G are two
directed paths in L1 between points v1 and v2 and � ∈ E is the
2-holonomy associated with the parallel transport of the path
γ to the path γ ′ along a surface in L2.

v0 v1

γ

γ′

Γ (3)

The 2-holonomy is encoded by functions L1 → G,i �→ gi and
L2 → E,p �→ ep. More precisely, we associate an element of
G to each oriented edge and an element of E to each face
with reference source and target. We call them the 1- and
2-holonomy with given source and target, respectively. Let
us assume that a specific oriented edge i is determined by
its vertices v,w (with v < w). Then we may write i = vw,
and gi = gvw. We denote a complete ‘coloring’ of the dressed
lattice with such reference-oriented data by Lc and write GL =
G|L1| × E|L2| for the full set of colorings.

Given i = vw ∈ L1, the 1-holonomy gwv with w > v is
given by gwv = g−1

vw . The 1-holonomy along a path in the
1-skeleton of the lattice is given by the multiplication of the
group elements of subpaths (and hence eventually of gis,
or their inverses, depending on the direction of the edge
with respect to that of the path) along the path. Note that
1-holonomy is well defined by (existence of inverses and)
associativity of G. Similarly, we can compose 2-holonomies of
disk surfaces, where the target of one coincides with the source
of the next. By (nonobvious) analogy with 1-holonomy, 2-path
2-holonomy is well defined by the crossed module axioms.
Below we explain the analog of inverses and (more briefly)
associativity.

First we will establish some notation. In figures, 2-
holonomies of faces and other disk-surfaces will be depicted by
double arrows, which point toward the reference target edge,
just as for the 2-paths themselves. For a face p we will call the
1-holonomy gsp

of the source sp the source of the 2-holonomy
ep. For example in the next figure we say that the 2-holonomy

associated to the triangle has source g1g2 and target g3.

v1

v0 v2

g1 g2

g3

e = v0 v2

g1g2

g3

e (4)

Note, that our conventions for composing 1-holonomies
throughout the paper is g1g2 for consecutive edges 1 and 2.
The right hand side of equation (4) demonstrates how each
triangle can be viewed as a bigon in the graphical calculus for
ease of presentation.

In the following we will adopt a restriction on the lattice:
We assume that there can be at most one edge between two
vertices and that a face is determined by its boundary vertex
set. This is not strictly necessary, but the notation becomes
simpler, we will use vw for the unique edge oriented from
vertex v to w and vwu for the unique triangle with distinct
boundary vertices v,w,u.

The terminology of source and target above comes from the
axioms of 2-categories, which is the language used in Pfeiffer
[41], for example, to define higher lattice gauge theories. In
this paper, we will not define 2-categories but simply write
down rules from that formalism which we can use to define
our model.

We are now ready to compute the 2-holonomy of an
arbitrary 2-path. As already noted, it is intrinsic to the notion
of a gauge field that changing the direction of an edge is
equivalent to changing the associated group element to its
inverse. One can compute the 1-holonomy along a path in
the 1-skeleton of the lattice by using these transformations to
ensure that the target of the 1-holonomy of an edge in the path
coincides with the source of the next.

The 2-holonomy of a 2-path is constructed from the
reference 2-holonomies of its plaquettes using a set of rules
relating the reference 2-holonomy of each p ∈ L2 with the
2-holonomy at p with different source and target. This way
one multiplies all 2-holonomies of the elements of L2 that are
parts of the surface transformed appropriately so that the target
of one is the source of the next.

The fact that the procedure is consistent and independent of
the choices made is explained in a companion paper (theorem
5 and lemma 10) [40] (using the language of crossed modules
of groupoids equivalent to that of 2-groupoids). Here we only
illustrate the composition rules in indicative cases.

For each face p ∈ L2 we define a 1-holonomy operator

H1(p) ≡ ∂ep gsp
g−1

tp
. (5)

It is also called the fake curvature and it corresponds to the
curvature 1-form [44] of higher gauge theory.3 In what fol-
lows, we will only consider configurations (unless otherwise
stated) where H1(p) = 1 ∈ G for p ∈ L2. This is needed for
consistency of the lattice formulation of 2d holonomy.

3In the differential formulation of higher gauge theory, the equations
of motion analogous to the vanishing of the field strength in ordinary
gauge theory has an additive contribution of the derivative of the map
∂ . So whenever the latter is nontrivial the equation H1(p) = 1 is not
equivalent to flatness of the 1-connection, hence the adjective “fake.”
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Let us write down the multiplication convention and the
rules of changing source and target of 2-holonomies. We can
multiply (compose) the 2-holonomy e with e′ if te = se′ (= g2

in the figure):

g1

g2

g3

e

e

=
g1

g3

ẽ (6)

We use the convention to multiply the group elements from
right to left ẽ = e′ · e. The ‘whiskering’ rules [41] for changing
the source and target of a 2-holonomy are as follows:

(1) We can switch source and target of the 2-holonomy by
changing e to e−1.

(2) We can change the direction of the source gs ∈ G and
target gt ∈ G of the 2-holonomy simultaneously by changing
e to g−1

s � e−1.
(1) We can change the source of both se and te simultane-

ously and also the target of both as shown in the figure.

g1

h1

h2

g2
e =

g1h1g2

g1h2g2

(g1�e) (7)

Here is an example of changing the source s and target t

from the reference ones s = g1g2,t = g3 of the 2-holonomy
e associated to the triangle depicted in the first figure. In the
second figure s = g3g

−1
2 ,t = g1; in the third s = g−1

1 g3,t =
g2. The transformation of the value of the 2-holonomy written
on the double arrow is computed using the above described
rules.

v1

v0 v2

g1 g2

g3

e =

v1

v0 v2

g1 g2

g3

e−1 =

v1

v0 v2

g1 g2

g3

g−1
1 �e−1

(8)

Note that the fake flatness H1(p) = 1 ∈ G [the lhs is defined
by (5)] of the face p is a crucial condition for consistency of
the above: Changing the basepoint (the vertex corresponding
to the source of se and te) of the 2-holonomy of the face p back
to the beginning gives

gng
−1
n−1g

−1
n−2 . . . g−1

1 � ep = ∂ep � ep = epepe−1
p = ep

by the second Peiffer condition of crossed modules (2). The
next example illustrates the composition of 2-holonomies
associated with faces with a common boundary edge, where
the condition of matching first target and second source is not
satisfied.

v0 vn−1

v1

v2 v1<vn−1

vk vk+1g

h

eq

p

Using the whiskering rules above, we can change the target
and source of the top 2-holonomy eq to t(e′

q) = gv0 vk
ggvk+1 vn−1

and s(e′
q) = gv0 vk

hgvk vn−1 , respectively, by changing eq to e′
q ≡

gv0 vk
� e−1

q , so the holonomy of the big disk r = p ∪ q with
s(r) = gv0 vk

hgvk vn−1 and t(r) = gv0vn−1 is

er = ep

(
gv0 vk

� e−1
q

)
. (9)

Note, that gvw for a nonadjacent vertex pair (v,w) stands for
the 1-holonomy along the boundary of the face according to
its circular orientation.

We could use the whiskering rule to the direction opposite
to the orientation of p, which results in(

gv0 vk
o � e−1

q

)
ep, (10)

where gvwo denotes the 1-holonomy from v to w along
the boundary of p in the direction opposite to its circular
orientation (gv0 vk

o = gv0 vn−1gvn−1 vn−2 . . . gvk+1vk
). Due to the

fake-flatness condition the expressions (9) and (10) agree:(
gv0 vk

o � e−1
q

)
ep = (

∂ep gv0 vk
� e−1

q

)
ep

= ep

(
gv0 vk

� e−1
q

)
e−1
p ep = ep

(
gv0 vk

� e−1
q

)
.

(11)

In the first equality we used fake flatness ∂ep = gv0 vk
ogvk vo

o ,
in the second we used (2).

Finally we give the formula for the 2-holonomy operator
H2(P ) : GL → E in the case of a reference tetrahedron P ∈
L2:

P ≡ {[abcd],s(P ) = t(P ) = ad,a < b < c < d}

b

a d

c

eabd

gad

gbc

gac

gab

gcd

gbd

eacd

ebcd

gad

eabc = a d
gabgbcgcd

gabgbd

gad

gacgcd

gad

gab�ebcd

eabc

eacd

eabd

(12)
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Using the multiplication convention we read the formula off
from the figure

H2(P ) = eacdeabc

(
gab � e−1

bcd

)
e−1
abd . (13)

For the explicit calculation see Appendix A. Note that
choosing the base point to be the lowest ordered of the
constituting vertices (a), and the direction of the 2-holonomy
associated with the triangle acd to be that of the 2-holonomy
associated with the tetrahedron, makes the latter unambigously
defined. This fact follows from the work [40] (as discussed
there, it can be considered as a consequence of the coherence
theorem for 2-categories).

III. THE HAMILTONIAN MODEL

Recall that given a crossed module G = (G,E,∂,�) and a
dressed lattice L we have a set GL of gauge field configurations
or ‘colorings of L.’ We write HL for the ‘large’ Hilbert space
which has basis GL as a C-vector space and has the natural
delta-function scalar product. We write |⊗i∈L1 gi

⊗
p∈L2 ep〉

for a coloring regarded as an element of HL.
We also have the subset GL

ff of GL of fake-flat colorings.
The Hilbert space H is defined using GL

ff as the basis. These
are the colorings satisfying the constraint at every face p ∈ L2

that the fake curvature (5) vanishes:

H1(p) = ∂ep gsp
g−1

tp

= ∂epgv0v1gv1v2gv2v3 . . . gvn−2vn−1g
−1
v0vn−1

= 1G.

For example for a fake-flat coloring of L a ‘triangle’ we may
choose ep ∈ E, gv0v1 ,gv1v2 ∈ G arbitrarily, but then gv0v2 =
∂ep gv0v1gv1v2 is fixed. Thus dim(H) = |G|2|E| here. The
scalar product for H is the one induced by that of HL.

In the following we will often use a simplified notation |Lc〉
for a basis element of the Hilbert space, with L denoting the
dressed lattice and c its coloring. If clear from the context, we
will also use this simplified notation for various dimensions
and Hilbert spaces, for example for the QD models [5], which
corresponds to the finite ‘group’ crossed module with E = {1}
and the restriction toC(G|L1|) forgetting about the trivial factor
corresponding to face coloring. There the lattice L (or rather
the underlying manifold) is two dimensional.

A. Gauge transformations

We are now going to define operators in End(HL). We will
show in Sec. III B that they restrict to End(H). We will show
how the 1- and 2-holonomy transform under their action, and
hence show that they are gauge transformations. We adopt the
latter terminology now.

An intuitive way to think about these operators is as follows.
A vertex or 1-gauge transformation at vertex v is the analog
of ordinary G gauge transformation: Edge labels change as
they do in ordinary gauge theory. There, the 1-holonomies
corresponding to boundaries of faces, also called Wilson loops,
transform by conjugation; their traces are observables. In
higher gauge theory however, the ‘1-holonomy’ is already
different: Compare gabgbcgca with ∂(eabc)gabgbcgca .

Since the 2-holonomy does not physically change under
1-gauge transformations, the face labels are invariant except

when the vertex v is the basepoint of the face. An edge
transformation is a “pure” E 2-gauge transformation: It
changes the 2-holonomy associated with each face p adjacent
to the edge. For a geometric picture of 2-gauge transformation
we refer the reader to section 4.3 of Ref. [40].

The transformation properties of 1-holonomies associated
to faces, H1(p), and 2-holonomies associated to blobs,
H2(P ), will be discussed in the next subsection. There the
reader can also find figures illustrating the effect of the
gauge transformations on a reference triangle. The explicit
transformation formulas for the 1-holonomy of a triangle face
and the 2-holonomy of a tetrahedron are given in Appendix B.

Let us recall first the definition of left and right multiplica-
tion operators for a group G

Lg : G → G, h �→ gh

Rg : G → G, h �→ hg−1

linearly extended to the group algebra CG. In the following
we will use the notation L

g

i (Rg

i ), i ∈ L1,g ∈ G for the linear
operator in End(HL), which acts as left (right) multiplication
by g on the tensor factor CG of HL corresponding to the
edge i and identity on all other factors—i.e., ‘locally’ at i.
Similarly Le

p (Re
p) stands for the same type of local operators

in End(HL) acting on the tensor factor CE corresponding
to the face p and identity on all other factors. We will also
use g�p (·) for the operator acting on the tensor factor E of
HL corresponding to the face p as ep �→ g � ep. The gauge
transformation associated with vertex v is defined by

Ag
v =

∏
i∈�(v)

Lg
v (i)

∏
p∈�′(v)

Lg
v (p),

where �(v) [�′(v)] is the set of reference edges (faces) adjacent
to the vertex v, respectively; the terms in the product are
defined as follows:

Lg
v (i) =

{
L

g

i , if v = s(i);

R
g

i , if v = t(i).

Lg
v (p) = g�p(·), if v = v0(p)

and both families of operators act as identity in all other cases.
Note that all factors in the product of the expression of A

g
v act

on different tensor factors and their action depends only on the
parameter g ∈ G, so they commute: A

g
v is well defined. The

gauge transformation associated with edge i is defined by

Ae
i = L∂e

i

∏
p∈�(i)

Le
i (p),

where �(i) is the set of reference faces adjacent to the edge i

and, for face p an n-gon and k,k + 1 ∈ {0, · · · ,n},

Le
i (p) =

{
R

gv0vk
� e

p , if i = vkvk+1;

L
gv0vk+1

o � e

p , if i = vk+1vk .
,

where gv0vl
o was defined at (11). Here gv0v0 ≡ 1G,

gv0vk
≡ gv0v1gv1v2 . . . gvk−1vk

, for k = 1, · · · ,n − 1, gv0vn
≡

gv0v1gv1v2 . . . gvn−1v0 , and we use the convention i = vnvn−1 =
v0vn−1. Furthermore, all vertex labels are relative to the face
p, but the notation vk(p) instead of vk above would be too
complicated. Recall that each face p (n-gon) of the lattice has

155118-5



ALEX BULLIVANT et al. PHYSICAL REVIEW B 95, 155118 (2017)

a smallest vertex and a cyclic orientation v0,v1,v2, . . . ,vn−1,
where v1 is the smaller of the two neighbors of v0 in p. An
earlier remark is also recalled here: If, in the labeling of the
face p for 0 < l < n − 2 we have vl > vl+1 in the previous
sequence of group elements, then gvlvl+1 = g−1

vl+1vl
, with gvl+1vl

being the reference 1-holonomy (often called color in the
following) of the corresponding edge.

As noted earlier, the crossed module with E = {1} corre-
sponds to the QD model [5] with group G, (but in dimension
d = 3 here). The set of gauge transformation is the vertex
transformations defined above forgetting the trivial factor
corresponding to the edge labels.

The operators defined above satisfy the following relations
for any vertices v,v′, any edges i,i ′, any elements g,h ∈ G,
and e,f ∈ E:

Ag
vA

h
v = Agh

v , (14)

Ag
vA

h
v′ = Ah

v′A
g
v, if v 
= v′ (15)

Ae
i A

f

i = A
ef

i , (16)

Ae
i A

f

i ′ = A
f

i ′ A
e
i , if i 
= i ′ (17)

Ag
vA

e
i = Ae

i A
g
v, if v 
= s(i) (18)

Ag
vA

e
i = A

g � e

i Ag
v, if v = s(i). (19)

The proof of these identities are given in Appendix C.

B. Covariance and 2-flatness constraints

We will now define the operators enforcing ‘2-flatness’
of boundaries of blobs x ∈ L3. At this point we restrict the
lattice to be a triangulation. The reason is of technical nature:
For triangulations all blobs are tetrahedra and we have an
essentially unique expression for their 2-holonomy given by
Ref. (13). Even for a cubic lattice, we would need to write a
formula with several distinct cases depending on the order of
the vertices on the boundary of cubes. From a physical point
of view, however, restricting ourselves to triangulations is not
severe. (Nevertheless this restriction will be eliminated in our
companion paper [40] where we will prove that any lattice can
be used.)

The linear operators enforcing 2-flatness (trivial 2-
holonomy) of a tetrahedron P [= bd(x) with x ∈ L3] and
fake-flatness, regarded as elements of End(HL), act on basis
elements in GL by

BP = δH2(P ),1; Bp = δH1(p),1. (20)

Let us now check how the holonomies H1(p) =
(∂eabc) gab gbc g−1

ac and H2(P ) = eacd eabc (g � e−1
bcd ) e−1

abd

transform under gauge transformations. The six gauge
transformations ‘touching’ a triangle with vertices a < b < c

are depicted below. Caveat: Here and hereafter, we omit to
record the changes to the configuration on the rest of the
lattice.

Ag
v=a

∣∣∣∣∣
b

a c

gab gbc

gac

eabc

〉
=

∣∣∣∣∣
b

a c

ggab gbc

ggac

g�eabc

〉
(21)

Ag
v=b

∣∣∣∣∣
b

a c

gab gbc

gac

eabc

〉
=

∣∣∣∣∣
b

a c

gabg−1 ggbc

gac

eabc

〉
(22)

Ag
v=c

∣∣∣∣∣
b

a c

gab gbc

gac

eabc

〉
=

∣∣∣∣∣
b

a c

gab gbcg−1

gacg−1

eabc

〉
(23)

Ae
i=ab

∣∣∣∣∣
b

a c

gab gbc

gac

eabc

〉
=

∣∣∣∣∣
b

a c

∂(e)gab gbc

gac

eabce−1

〉
(24)
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Ae
i=bc

∣∣∣∣∣
b

a c

gab gbc

gac

eabc

〉
=

∣∣∣∣∣
b

a c

gab ∂(e)gbc

gac

eabc(gab�e−1)

〉
(25)

Ae
i=ac

∣∣∣∣∣
b

a c

gab gbc

gac

eabc

〉
=

∣∣∣∣∣
b

a c

gab gbc

∂(e)gac

eeabc

〉
(26)

Now we can compute the transformations of the 1- and
2-holonomy under all possible gauge transformations of
the triangle (three vertex gauge transformations and three
edge gauge transformations) and the tetrahedron (four vertex
gauge transformation and six edge gauge transformations).
The formulas are given in Appendix B. An immediate corollary
of them is that denoting the transformed quantities by tilde we
have

H1(p) = 1 ⇐⇒ H̃1(p) = 1,p ∈ L2. (27)

Another consequence is[
Bp,Ag

v

] = [
Bp,Ae

i

] = 0. (28)

By (27), operators A
g
v,A

e
i restrict to elements of End(H)

[preserve H1(p) = 1 with p ∈ L2]. When restricted we also
have

H2(P ) = 1 ⇐⇒ H̃2(P ) = 1, P = ∂x,x ∈ L3. (29)

Thus, when restricted to H, they are gauge transformations
(transform covariantly).

Hereafter we understand the operators as restricted to H.
Consequently the commutation relations[

BP ,Ag
v

] = [
BP ,Ae

i

] = 0 (30)

hold for all possible values of the parameters.

C. The Hamiltonian

Now we define the vertex operators Av and edge operators
Ai as

Av = 1

|G|
∑
g∈G

Ag
v, Ai = 1

|E|
∑
e∈E

Ae
i .

Using relation (14) we can verify that Av is a projector operator,
that is A2

v = Av:

A2
v = 1

|G|2
∑

g,h∈G

Ag
vA

h
v = 1

|G|2
∑

g,h∈G

Agh
v

= 1

|G|2
∑

g′,h∈G

Ag′
v = 1

|G|
∑
g′∈G

Ag′
v = Av.

Similarly, using (16) one obtains A2
i = Ai . Also, they

satisfy the following commutation relations

[Av,Ai] = 0 (31)

[Av,Av′ ] = 0 (32)

[Ai,Ai ′ ] = 0 (33)

for any vertices v,v′ and edges i,i ′. In fact, the relations
(32) and (33) follow immediately from relations (15) and
(17), respectively. In the same way, (31) follows from (18) if
v 
= s(i). If v = s(i), using (19) we obtain∑

e∈E,g∈G

Ag
vA

e
i =

∑
e∈E,g∈G

A
g � e

i Ag
v =

∑
e′∈E,g∈G

Ae′
i Ag

v,

where in the last equality we used the fact that the map g � (·) is
a bijection. Then it is clear that (31) holds. Let us now consider
the multiplicative operators BP = δH 2(P ),1 defined above. It is
clear that they mutually commute and they are projections. It
is also clear that they commute with the projections Av and Ai

due to (30). Now we can write down a Hamiltonian of higher
lattice gauge theory in terms of mutually commuting operators
in End(H)

H = −
∑

v

Av −
∑

i

Ai −
∑
P

BP , (34)

where the summations run over vertices v ∈ L0, edges i ∈ L1,
and blob boundaries P = ∂x,x ∈ L3.

Note that one can define a Hamiltonian on HL with the
same ground-state sector by including the 1-flatness constraint
operators:

H ′ =−
∑

v

Av−
∑

i

Ai −
∑
P

BP

(∏
p

Bp

)
−

∑
p

Bp, (35)

where summation and product over p mean over elements
p ∈ L2. The reason for the modified form of the BP operators
is that without the multiplier that enforces fake flatness, they
would not commute with the gauge transformations (as can
be seen from the transformation of H2(P ) under Ae

cd of the
tetrahedron P = a < b < c < d), see Appendix B. This way
H ′ is also a sum of mutually commuting projections and the
ground states of H and H ′ agree.

155118-7



ALEX BULLIVANT et al. PHYSICAL REVIEW B 95, 155118 (2017)

In the restriction to a two-manifold and crossed module
G = (G,1G,∂,�) we note the model H ′ reproduces the Kitaev
quantum double [5] Hamiltonian for group G. The second
term is zero due to the triviality of E and the third term does
not enter the equation as there are no blobs in d = 2, so we
have

H = −
∑

v

Av −
∑

p

Bp. (36)

From this connection, the first term in (34) can be seen
naively as the Gauss constraint and the last term as the
magnetic constraint. Caveat: Unless fake-flatness constraints
are imposed, the 2-holonomy of a blob is ambiguous: The
formula (13) depends on the choice of the composition of the
2-holonomies of the boundary faces of the blob [41].

IV. RELATION TO THE 4D YETTER TQFT

A. Ground-state projection as a 4D state sum

In this chapter we will relate our Hamiltonian model in
three space dimensions to the Yetter TQFT in four dimensions.
In general one can always define a d-dimensional lattice
Hamiltonian of mutually commuting projection operators from
a d + 1 dimensional TQFT, see for example Williamson-Wang
[45]. For d = 2 Kádár et al. showed [46] (see also [47])
that the Levin-Wen model [10] is the Hamiltonian version of
the Turaev-Viro (TV) TQFT [48,49] in that the ground-state
projection of the former defined on the two-dimensional lattice
L for M2 is given by the TV state sum for the M2 × [0,1]. The
rigorous proof was given by Kirillov [50].

A subset of the Levin-Wen Hamiltonian models was shown
[51,52] to be the dual lattice description of those corresponding
to BF gauge theories: the quantum double models of Kitaev
[5]. Here duality means Fourier transformation on the gauge
group, as a result of which states are labeled by irreducible
representations instead of group elements. Hence, the above
statement has to hold in the dual description as well. We will
state and prove it in this section and generalizse to the case
of our 3D model: Its ground state projection is given by the
appropriate 4D Yetter TQFT amplitude.

The general correspondence we will investigate has been
known qualitatively. The 2+1 BF-theory action with gauge
group SU (2) is equivalent to the Einstein-Hilbert one for
Euclidean signature and zero cosmological constant as shown
by, e.g., Ooguri and Sasakura [53]. On the other hand, in
1969, Ponzano and Regge derived the gravity action from
the asymptotic form of the Wigner-Racah coefficients [54].
These results were the motivation for several works in the
2+1 quantum gravity literature, where the details of the
correspondence were well understood for the case of SU (2)
[55]: The Hilbert space is the state space of canonical quantum
gravity; the TQFT is the corresponding state sum or spin foam
model.

We will sketch the derivation of the TQFT state sum from
a general BF gauge theory. Then we replace the continuous
gauge group with a finite one and work out the correspondence
for d = 2,3 for lattice and higher lattice gauge theory (LGT,
HLGT) and show the pattern, which arises for arbitrary
dimension.

B. Ordinary pure lattice gauge theory based on a finite group

Let us first consider the theory defined on an oriented
manifold MD of dimension D by the action with a compact
Lie group G and its Lie algebra g

S[B,A] =
∫

MD

tr(B ∧ F (A))

with F (A) = dA + [A,A] being the (g-valued) curvature of
the connection A, B a locally g-valued (D-2) form, and tr the
Cartan-Killing form of g. The partition function (a map that
associates a scalar to each manifold MD) is defined formally
in terms of the path integral

ZBF (MD) =
∫

DBDAeiS[B,A]

with DA and DB standing for some measure over the space
of connections and the B field. To make sense of this formal
expression there is a standard discretization procedure, see
e.g., Oeckl [56] or Baez [57]. Here we will only sketch
the procedure and write down the discrete version of the
partition function. Let � be a dressed lattice of MD and �̃

the dual complex (whose k � D dimensional simplices are in
one-to-one correspondence with the D − k simplices of �).
We dress �̃ similarly to before: we orient edges (which are dual
to (D − 1) simplices of �) and give circular orientation to faces
and distinguish basepoints in each face. A gauge configuration
is an assignment of a group element to each edge. For a face p

we define the exponentiated curvature by gp = ∏
i∈∂p gi : The

multiplication is done in the order along the chosen cyclic
orientation starting at v0(p). The B field, locally being a
D − 2 form, is naturally associated with dual faces. Fp is the
curvature variable associated with the dual face p. Now, the
integral

∫
dBpeiBpFp vanishes, unless the curvature vanishes,

thus it can be replaced by δgp,1 = δgp,1 in terms of the chosen
variables: The vanishing of the curvature in the dual face p is
equivalent to the trivial holonomy along the boundary of the
face. The expression for the discretized path integral reads

ZLGT (MD,�) =
∫ ∏

i∈�1

dgi

∏
p∈�2

δgp,1, (37)

where �1 (�2) is the set of edges (faces) of �̃ (see
Refs. [55–58] for details of the discretization procedure). For
compact Lie groups the measure dgi is the Haar measure on
G. The partition function is the sum of all coloring subject
to the constraint that the holonomy gp around each face is
trivial: The underlying connection is flat. At this point there
is no difference between using � or �̃ for edge and face
coloring. We will use the former.

Note that we still do not know whether ZLGT < ∞ in
general, but we are interested here in replacing G with a finite
group.4 For a finite group G, we will choose the measure∫

dg = ∑
g∈G. The partition function needs to be normalized

so that it is independent of the lattice used:

ZLGT (MD,�)=|G|−|�0||{admissible colorings of �}|, (38)

4The most studied case of a compact Lie group is SU (2), and
finiteness requires gauge fixing [55].
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where admissibility means that all faces are flat:
∏

p∈�2 δgp,1 =
1 and the multiplicative factor ensures independence on the
lattice. This formula holds in arbitrary dimension (it is proved
in more general settings by Porter [30], Yetter [29], and Faria
Martins/Porter [59]).

Generalizing to manifolds with boundary, we can seek to
satisfy the (weak) cobordism property of a TQFT (partition
functions become partition vectors with composition by dot
product—see, e.g., Martin [60, §2.1, §10.2]). For this the above
definition has to be generalized. Let the boundary be a closed
d = D − 1-dimensional manifold with a lattice �(b) ⊂ �. A
boundary coloring is denoted by �(b)

c (so c stands for a set
{gi ∈ G,i ∈ �(b)1}). Let us call a coloring of � c-admissible
if it restricts to �(b)

c and if the flatness constraints for all faces
are satisfied:

∏
p∈�2 δgp,1 = 1. The partition vector is a vector

with components indexed by the possible boundary colorings
�(b)

c , and a component then reads

ZLGT

(
MD,�,�(b)

c

)
= |G|−|�0|+ |�(b)0 |

2 |{c-admissible colorings of �}|. (39)

This way the gluing property of a TQFT holds as follows.
Let Nd be a closed submanifold of a manifold MD , such that
Nd separates MD into two unconnected components. Then
write MD

1 and MD
2 for the closures of the two components of

MD \ Nd . The manifolds MD
1 and MD

2 (with lattices �1,�2,
say) have homeomorphic and oppositely oriented boundaries
Nd (with lattice L ⊂ �1,�2). Then the partition functions
satisfy the gluing property of TQFTs. That is, changing the
notation as

∫ ∏
i∈L1 dgi → ∑

c we can write

ZLGT

((
MD

1 �Nd MD
2

)
,�1 ∪ �2

)
=

′∑
c

ZLGT

(
MD

1 ,�1,Lc

)
ZLGT

(
MD

2 ,�2,Lc

)
, (40)

where M1 �Nd M2 denotes MD and the prime in
∑′

c indicates
that flatness constraints have to be inserted for all p ∈ L2. The
gluing property states that the partition function of a manifold
can be evaluated by evaluating on bounded submanifolds M1

and M2 then summing the product of partition functions with
boundary labels identified along the intersection Nd .

1. 2 + 1D lattice gauge theory with a finite group

Recall the 2 + 1D Kitaev QD Hamiltonian from (36). The
ground state projection reads

PK
gs =

∏
v∈L0

Av

∏
p∈L2

Bp.

Theorem IV.1. Let M2 be a 2-manifold with lattice L and
let � be the 3-dimensional lattice of M2 × [0,1] that restricts
to L0 � L1 � L at the boundaries M2 × {0} and M2 × {1}.
Let the internal edge set be {v × [0,1]}v∈L0 . Let Li

j refer to Lj

and Ljc the edge colorings of L1
j . Finally, we consider the QD

Hilbert space based on Lj with states |Ljc〉 and identify the
Hilbert spaces based on Lj ,j ∈ 0,1. Then

ZLGT (M2 × [0,1],�,L0c ∪ L1c) = 〈L1c|PK
gs |L0c〉. (41)

The proof is written in Appendix D. Note, that we made a
choice for using the edge and face set of � for defining the
partition function. An alternative approach, more standard in
the realm of the Turaev-Viro model [46,57,61], makes use of
the edge and face set of the dual lattice �̃. Then, the minimal
lattice, which restricts to Lj at the boundary is three translated
copies of L connected with vertical edges.5 That way, no Dirac
deltas are needed for boundary faces as those in the middle
layer of L. That way, it is not necessary to impose flatness
on the boundary faces when defining the partition function for
a manifold with boundary. The faces in the middle layer of
L enforce flatness for the gauge equivalent boundaries Ljc;
the proposition is stated identically to the “Fourier dual”: the
Turaev-Viro partition function on the 3d triangulation matches
the Levin-Wen ground state projection on the boundary dual.

C. Higher lattice gauge theory based on a finite crossed module

Fix now a crossed module (G,E,∂,�) and a four-manifold
M4. Let us consider the theory given by the BFCG action [44]

S[A,B,C,�] =
∫

M4
(trg(B ∧ FA) + trh(C ∧ G�)),

where B is a G-valued 2-form, FA = dA + [A,A] is
the curvature of the connection A, C is an E-valued
1-form, and G� = d� + A�� the curvature 3-form of the
two-connection � corresponding to the gauge group E. We
will use the following form of the partition function

ZBFCG(M4) =
∫

DADB DC DGeiS[A,B,C,G]

whose discretized form defined on the dressed lattice � of
M4 is given by

ZHGT (M4) =
∫ ∏

i∈L1

dgi

∏
p∈L2

dep δH1(p),1

∏
t∈L3

δH2(t),1.

For a finite group we can rewrite it analogously to (38) in
LGT. Let a coloring be called admissible if all Dirac-delta
constraints are satisfied: All faces are fake flat and all blobs
are 2-flat. We do the substitutions

∫
dgi → ∑

gi∈G and∫
dep → ∑

ep∈E and write

ZHGT (M4) = |E||�0|−|�1|

|G||�0| |{admissible colourings of �}|,

where the multiplicative factor ensures independence on the
lattice. This is proved to be the same in arbitrary dimensions
[29,30,59]. For manifolds with boundary, we need to modify
the above similarly to the LGT case. Let the manifold M4 with
boundary have a lattice decomposition �, and let �(b) ⊂ �

denote the boundary lattice. Let �(b)
c be a coloring of �(b):

{gi ∈ G,i ∈ �(b)1,ep ∈ E,p ∈ �(b)2}. We call a coloring of

5One considers L̃ × [0,1] and constructs the dual complex of this.
It will have a vertex in the middle of each prism connected vertically
to the middle points of L̃j ; middle points of neighbor prisms are
connected and the duals of L̃j are the original graphs Lj at the
boundary.
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� c admissible if it is admissible in � and restricts to �(b)
c on

�(b). The components of the partition vector read:

ZHGT

(
M4,�,�(b)

c

) = |E||�0|−|�1|

|G||�0|
|G| |�(b)0 |

2

|E| |�(b)0 |−|�(b)1 |
2

× |{c-admissible colourings of �}|.
(42)

This does not depend on the lattice decomposition of M4 ex-
tending a given lattice decomposition of the boundary [29,30].

Theorem IV.2. Let �L ≡ � be the lattice of M3 × [0,1]
which restricts to L0 � L1 � L at boundaries M3 × {0} and
M3 × {1} and the internal edge set is {v × [0,1]}v∈L0 . Let Li

j

refer to Lj and Ljc the colorings of those, where fake flatness
is assumed for each face p ∈ L2

j ,j = 1,2. Finally, we consider
the Hilbert space H defined in Sec. III based on L with states
|Lc〉 and identify the Hilbert spaces based on Lj ,j ∈ 0,1 with
it and consider the projectionPB

gs to the ground state defined by

PB
gs =

∏
v∈L0

Av

∏
i∈L1

Ai

∏
P∈L3

BP .

Then

ZHGT (M3 × [0,1],L0c,L1c) = 〈L1c|PB
gs |L0c〉. (43)

In words, the ground-state projection of our 3D Hamiltonian
model associated with M3 is given by the Yetter TQFT
amplitude on M3 × [0,1]. The proof is in Appendix E.

D. Hamiltonians corresponding to lattice gauge theories

We will look at the correspondence in arbitrary dimension
d � 1 for both ordinary and higher lattice gauge theories. We
can observe the following.

(1) The fake-flatness constraints of internal faces and
2-flatness of internal blobs of the d + 1-dimensional manifold
Md × [0,1], which we refer to as the prism lattice, are
equivalent to the bottom and top layer of the prism being
connected by gauge transformations. For ordinary gauge
theory, the latter is equivalent to the flatness of internal faces.

(2) The 2-flatness (flatness) constraints of internal faces
of the boundary lattice are the magnetic operators of the
Hamiltonian (in ordinary gauge theory, respectively).

As a consequence, the Hamiltonian in the Hilbert space as-
sociated with the d-dimensional lattice L, whose ground-state
projections are given by the corresponding d + 1-dimensional
partition function is given by the following table, where the
sign −||− means the same formula as on its left for all terms
to the right starting from the sign.6

d 1 2 3

LGT −
∑
v∈L0

Av −
∑
v∈L0

Av −
∑
p∈L2

Bp −||− . . .

HLGT −
∑
v∈L0

Av −
∑
i∈L1

Ai −
∑
v∈L0

Av −
∑
i∈L1

Ai −
∑
v∈L0

Av −
∑
i∈L1

Ai −
∑
P∈L3

BP −||− . . .

E. The ground-state degeneracy

We compute here the ground-state degeneracy (GSD) for a
few examples. This is given by the trace of the ground-state
projection. Using equation (43) and

ZHGT (Md × S1) =
∑
L0c

ZHGT (Md × [0,1],L0c,L0c) (44)

which follows from equation (40), the GSD can also be
computed from the Yetter invariant

Tr
(
P B

gs

) = ZHGT (Md × S1)

= |G|−|L0||E|−|L1|

× |{admissible colouring of �L}|. (45)

Here L is the lattice of Md , Li refers to its set of i-dimensional
cells as before, and �L is the prism lattice whose top L1

and bottom L0 are identified. This also applies to LGT, with
obvious modifications.

(1) d = 1. Here a minimal lattice of S1 is the lattice with
one edge with its source and target vertex identified. Let us
first consider the case of ordinary lattice gauge theory; i.e.,

6The Hamiltonian for d = 3 HLGT in the table differs from (34) by
an unimportant constant.

E is the trivial group. The GSD is by definition the number
of gauge equivalence classes of admissible colorings of S1.
This clearly coincides with the number of conjugacy classes
of G. We can also obtain this GSD as ZLGT (S1 × S1), which
is |G|−1 times the number of colorings of the lattice of the
torus; explicitly: |G|−1 |{φ : π1(T 2) → G}| = |{(g,h) ∈ G2 :
gh = hg}. So in this case, the equality (45) boils down to
the well established fact from group theory that the number
of conjugacy classes of a finite group equals the order of
the group times its commuting fraction, the probability that
two elements commute; i.e., 1

|G| |{(g,h) ∈ G2 : gh = hg}| =
number of conjugacy classes of G.

In the general HGT case and also for S1, looking at the lhs
of (45), the GSD can be expressed as the number of conjugacy
classes of G/∂(E) [noting the image of ∂(E) is a normal
subgroup of G]. The rhs of (45) explicitly is:

1

|G| |E| |{(g,h,e) ∈ G × G × E : ∂(e)

= [g,h]}|

= 1

|G/∂(E)| {(g
′,h′) ∈ G/∂(E) × G/∂(E) : g′h′ = h′g′}

= number of conjugacy classes of G/∂(E) (46)

which follows from the group theoretic fact stated in the above
paragraph.
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(2) d = 2. Here, the ordinary gauge theory model is well
studied, the dimension of the ground state for the manifold
M2 and gauge group G is |{φ : π1(M2) → G}/ ∼ |, where ∼
means modulo an overall conjugation φ(g) �→ hφ(g)h−1,g ∈
π1(M2),h ∈ G. That is, the GSD is the number of gauge
equivalent classes of flat connections. For M2 = T 2, this is
well known to coincide with the number of irreps of the
quantum double DG [62]. Computing the GSD from the
partition function gives 1

|G| |{(g1,g2,g3), ∈ G3,[gi,gj ] = 1}|.
Recall that irreps of DG are given by pairs (CA,π (Z(CA))).
Here CA is a conjugacy class of G and π (Z(CA)) is an
irreducible representation of the centralizer subgroup Z(CA)
of a representative of CA in G. It is straightforward to show
the expression and the number of such pairs are in one-to-one
correspondence [5,18,19].

For HGT, consider S2, with a cell decomposition with one
single vertex and a unique 2-cells. (This would be a trivial case
to consider for ordinary gauge theory.) In this case the GSD can
be computed, looking at the lhs of (45) as being the cardinality
of the set of orbits of the action of G on ker(∂). Computing
the GSD from the rhs of (45) yields 1

|G|
∑

e∈ker(∂) |{g ∈ G :
g � e = e}|. Elementary tools from group actions tell us that
these two coincide.

(3) d = 3. Let us consider the T 3 case, using the obvious
cell decomposition of the cube, and then identifying sides.
Fake flatness of the three distinct faces and 2-flatness of the
cube read ([g1,g2] ≡ g1g2g

−1
1 g−1

2 ,g1,g2 ∈ G):

[x,y] = ∂f, [x,z] = ∂e, [y,z] = ∂k,

f (yxy−1 � k−1) (y � e) (yzy−1 � f −1) k = e.

Let the subset of G3 × E3 defined by the joint solutions
of the above equations be denoted by S and consider the
equivalence relation ∼= in S generated by

(with a ∈ G and ex,ey,ez ∈ E):

(x,y,z,e,f,k) ∼= (axa−1,aya−1,aza−1,a � e,a � f,a � k),
∼= (

x,∂ey y,z,e,(x � ey) f e−1
y ,ey k

(
z � e−1

y

))
,

∼= (
x,y,∂ez z,(y � ez) e e−1

z ,f,(x � ez) k e−1
z

)
,

∼= (
∂ex x,y,z,ex e

(
z � e−1

x

)
,ex f

(
y � e−1

x

)
k
)
.

The GSD is |S/ ∼= |. For instance consider the crossed module
DG = (G,G,id,ad), (where ad stands for the conjugation
action). Here GSD = 1, and this is easily computable from
the rhs of (45).

Another easily computable example is (Z2,Z2r ,sgn,id),
where sgn is the parity (r ∈ N+), and id denotes the trivial
action. Here GSD = r3. This is easily seen from the rhs of
(45): x,y,z ∈ G are arbitrary, they determine (e,f,k) via the
fake-flatness constraints and the 2-flatness of the cube holds
by construction. We have three more cubes based on 2- and 3-
faces, whose faces are again pairwise identified. The identical
argument applies: The new face labels are determined by the
fake flatness of the sides, so the four edges labels are arbitrary
and all six face labels are determined by the commutators.
So we have |G|4 admissible colorings, |L0| = 1 and |L1| = 3.
Another way to infer that GSD = r3 is the following. Yetter’s
state sum ZHGT (W ), where W is a closed manifold, depends
only on the weak homotopy type of the underlying crossed

FIG. 1. Resolution of 6-valent vertex to a trivalent vertex.

module [59]. The crossed module (Z2,Z2r ,sgn,id) is weak
equivalent to ({0},Zr ), where we consider the constant map
∂ : Zr → {0}. In general, considering a crossed module of the
form E = (1E,E,∂,�), where ∂ and � are trivial maps, we
have that ZHGT (S1 × S1 × S1 × S1) = |E|3. The number of
admissible coloring is |E|4 since we can color the 2-cells of
the 4-cube with faces identified as we please.

It can be shown in general that the GSD for ordinary
gauge theory can be interpreted as the number of group
homomorphisms from the fundamental group of Md × S1 to
G. In a similar vein it can be shown that for higher gauge
theory the GSD can be calculated by counting the number
of crossed modules homomorphisms from the fundamental
crossed module of Md × S1 to the crossed module G [59].

V. RELATION TO WALKER WANG MODELS

In this section we discuss the relation between the Walker-
Wang model [23] and our model. In particular we outline a
duality map between our model with the finite crossed module
E = (1E,E,∂,�), where ∂ : E → 1E and � is the identity
and the Walker-Wang model based on the symmetric fusion
category M(E), where E is any finite Abelian group.

A. Walker-Wang model

To begin, we briefly outline the Walker-Wang model [23].
The Walker-Wang model is a 3 + 1D model of string-net
condensation with ground states proposed to describe time-
reversal invariant topological phases of matter in the bulk
and chiral anyon theories on the boundary [24]. Such models
are believed to be the Hamiltonian realization of the Crane-
Yetter-Kauffman TQFT [22] state sum models analogous to
the relation between our model and the Yetter’s homotopy
2-type TQFT [29].

The Walker-Wang model is specified by two pieces of
input data, a unitary braided fusion category (UBFC) C and
a cubulation C of a 3-manifold M3. In the following we will
define the generic model on a trivalent graph � defined from
the 1-skeleton C1 of C where vertices are canonically resolved
to trivalent vertices, see Fig. 1. We will then restrict the input to
a symmetric braided fusion category E and remove the vertex
resolution condition. We will make the assumption that the
cubulation of the manifold is simple: Namely all faces have
4-edges and each vertex is 6-valent.7 Later on we will make

7Every 3-manifold has a presentation in terms of a cubulation, in
other words in terms of a partition into 3-dimensional cubes, which
only intersect along a common face. However in some cases the
valence of some of the edges of a cubulation may be different than
4, and therefore some vertices may not be six-valent. For some
manifolds these features are not avoidable; see Ref. [43].
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FIG. 2. Trivalent plaquette with oriented edges for Walker-Wang
model.

the additional assumption of working with cubulations such
that the dual cell decomposition also is a cubulation.

The Walker-Wang model is defined on the trivalent cubic
graph � (see Fig. 2) with directed edges. The Hilbert space
has an orthonormal basis given by colorings of the directed
edges of � by labels from L = {1,a,b,c, · · · }. For each
edge label a ∈ L there is a conjugate label a∗ ∈ L which
satisfies the relation a∗∗ = a. We define the states such that
reversing the direction of an edge and conjugating the edge
label gives the same state of the Hilbert space as the original
configuration. The label set L has a unique element 1 ∈ L we
call the vacuum which satisfies the relation 1 = 1∗.

To specify the Hamiltonian we introduce the fusion algebra
of the label set [6,12,13,63]. A fusion rule is an associative,
commutative product of labels such that for a,b,c ∈ L, a ⊗
b = ∑

c Nc
abc. Here Nc

ab ∈ Z+ is a non-negative integer called
the fusion multiplicity. In the following we will restrict to the
case of “multiplicity free” which is the restriction Nc

ab ∈ {0,1}
∀a,b,c ∈ L. The fusion multiplicities satisfy the following
relations

Nc
ab = Nc

ba (47)

N1
ab = δab∗ (48)

Nb
a1 = δab (49)∑

x∈L
Nx

abN
d
xc =

∑
x∈L

Nd
axN

x
cd . (50)

Given the label set and fusion algebra we define d : L →
R+ such that ∀a ∈ L, d : a �→ da and da∗ = da . We will refer
to da as the quantum dimension of the label a. The quantum
dimensions are required to satisfy

dadb =
∑

c

Nc
abdc. (51)

Additionally we define the Frobenius-Shur indicator αi =
sgn(di) ∈ {±1} if i = i∗ and αi = 1 else, which satisfies

αiαjαk = 1 (52)

if Nk∗
ij = 1.

Given the fusion algebra and quantum dimensions we define
the 6j symbols which enforce the associativity of fusion of
processes. The 6j symbols are a map F : L6 → C which
satisfy the following relations

F
ijm

j∗i∗1 = vm

vivj

Nm∗
ij (53)

F
ijm

kln = Fklm∗
jin∗ = F

jim

lkn∗ = F
mij

nk∗l∗
vmvn

vjvl

= F
j∗i∗m∗
l∗k∗n (54)∑

n

F
mlq

kp∗nF
jip
mns∗F

js∗n
lkr∗ = F

jip

q∗krF
riq∗
mls∗ (55)

∑
n

F
mlq

kp∗nF
l∗m∗i∗
pk∗n = δiqδmlqδk∗ip, (56)

where va = √
da .

The final piece of data required to define the Walker-Wang
model is the braiding relations or R matrices. The R matrices
are a map R : L3 → C which are required to satisfy the
Hexagon equations which ensure the compatibility of braiding
and fusion. The Hexagon equations are as follows∑

g

F cad∗
be∗g Re

gcF
abg∗
ce∗f = Rd

acF
acd∗
be∗f R

f

bc

∑
g

F e∗bd
cag Re

adF
e∗ag

bcf = Rd
acF

e∗bd
acf R

f

ab. (57)

The data (L,N,d,F,R) forms a UBFC. Examples of solutions
to the above data are representations of a finite group or a
quantum group.

Using the above data we can write down the Walker-Wang
Hamiltonian. The Hamiltonian is of the following form

H = −
∑
v∈�

Av −
∑
p∈�

Bp, (58)

where � is the directed, trivalent graph on which the model is
defined and the v and p are the vertices and plaquettes of the
graph. The plaquettes are defined with reference to the original
square faces of C before the vertex resolution. The term Av

is the vertex operator and acts on the 3-edges adjacent to a
vertex. We define the action of Av on states as follows

Av

∣∣∣∣∣
c

ba
〉

= δabc

∣∣∣∣∣
c

ba
〉

(59)

where δabc = 1 if Nc∗
ab � 1 and δabc = 0 else.

The plaquette operator Bp has a slightly more complicated
form in terms of the 6j symbols and R matrices. Using Fig. 2
as the basis, Bp has the following form

Bn
p =

∑
a′,b′,c′,d ′,e′,f ′,g′,h′,i ′,j ′

Rd
t∗eR

d ′
t∗e′R

f ′
v∗g′R

f
v∗g

× F
qb∗a
n∗a′b′∗F

rc∗b
n∗b′c′∗F

sd∗c
n∗c′d ′∗F

te∗d
n∗d ′e′∗F

uf ∗e
n∗e′f ′∗

× F
vg∗f
n∗f ′g′∗F

wh∗g
n∗g′h′∗F

xi∗h
n∗h′i ′∗F

y∗j∗i
n∗i ′j ′∗F

z∗a∗j
n∗j ′a′∗

× |a′,b′,c′,d ′,e′,f ′,g′,h′,i ′,j ′〉〈a,b,c,d,e,f,g,h,i,j |
(60)
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Bp =
∑
n∈L

dn

D2
Bn

p. (61)

We define the inner product of such states by

〈a,b,c, · · · |a′,b′,c′, · · · 〉 = δaa′δbb′δcc′ · · · . (62)

B. The symmetric braided fusion category M(E)

Utilizing the work of Bantay [64] one can define a UBFC
for every finite crossed module. Following this construction
we will define the symmetric braided fusion category M(E)
induced from the data of the finite crossed module E =
(1E,E,∂,�), where E is any finite Abelian group and ∂ and �
are trivial.

The label set of M(E) is given by elements of E, with
the vacuum label given by the identity element of E and
a∗ = a−1. The quantum dimension da = 1 for all a ∈ E and
D2 = |E|. The fusion multiplicities are multiplicity free with
Nc

ab = δa+b,c such that the fusion rules are given by the group
composition rules (we use + for the group composition as E

is an Abelian group) and a ⊗ b = a + b for all a,b ∈ E. We
list the data of M(E) below.

L = underlying set of E

a ⊗ b = a + b

da = 1 ∀a ∈ L

D2 = |E|
Nc

ab = δa+b,c

F
ijm

kln = δi+j,m−1δk+l,mδl+i,n−1δj+k,n

Rk
i+j = δi+j,k (63)

C. Walker-Wang models for M(E)

Utilizing M(E) as defined in the previous section as the
input data of the Walker-Wang model we may write the terms
of the Hamiltonian as follows. The vertex operator acts on
basis elements as

Av

∣∣∣∣∣
c

ba
〉

= δa+b+c,0

∣∣∣∣∣
c

ba
〉

(64)

which energetically penalizes configurations of labels around
vertices which do not fuse to the identity object.

To define the plaquette operator we first choose an
orientation of the plaquette (although the action of Bp is
independent of the choice taken). In the following we choose
an anticlockwise convention and define {e+(−)} ∈ p as the set
of edges with direction parallel (antiparallel) to the choice
of orientation. We may then write the plaquette operator for
n ∈ E as follows

Bn
p =

(∏
v∈p

Av

) ∏
e+∈p

�n
e

∏
e−∈p

�−n
e , (65)

where �n
e acts on the label l of edge e such that �n

e : l �→ l + n.
The operators �n

e commute for all edges and �n
e �m

e = �n+m
e .

The operator Bp in the Hamiltonian is then defined as

Bp = 1

|E|
∑
n∈E

Bn
p. (66)

As such an operator symmetrizes over all group elements the
action on basis states is independent of orientation convention
for the plaquette.

As the model based on M(E) does not have any strict
dependency on the trivalent lattice we may equally well resolve
the trivalent vertices and define the model on a cubic lattice
without changing the dynamics of the model. Under such a
transformation the vertex operator becomes

Av

∣∣∣∣∣
a

b

c d

e

f

〉
= δa+b+c+d+e+f,0

∣∣∣∣∣
a

b

c d

e

f

〉
(67)

while the plaquette operator takes the same form with the triva-
lent vertex operators replaced with the 6-valent counterpart.

D. Yetter model for E on cubic lattice

As mentioned previously in the text the Yetter model can be
equally defined on any cellular decomposition of a 3-manifold.
In this section we will outline the model with crossed module
of the form of E on the cubic lattice and show by considering
the dual of the model that such a model is equivalent to the
Walker-Wang model of M(E) on the cubic lattice.

We begin by defining the Yetter model E on the cubic lattice
following the general procedure outlined in Sec. III. The first
step is define an orientation on each square face of the lattice in
analogy to the orientation of edges which is inherited from the
vertex ordering. Following the previous definitions we choose
to orient faces from the lowest ordered vertex on each face
which we call the basepoint. We then assign the orientation
relative to the two adjacent vertices to the basepoint such that
the orientation points to the lowest ordered vertex adjacent to
the basepoint. This is demonstrated in the left hand side of
equation (68) where the face carries the group element e ∈ E

and vertex a is the basepoint and the orientation is given by
the relation a < i < j . Reversing the orientation of the face
replaces the face label with its inverse as shown in the right
hand side of equation (68).

a

ij e =

a

ij e−1

(68)
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Using the above conventions for the sign of face labels we
can now define the 2-flatness condition of a cubic cell. As
E is Abelian and only assigns the identity element to edges,
the computation of the 2-holonomy is much simpler than in
the general setting. In order to calculate the 2-holonomy of
a cubic cell we fix a convention of defining the orientation
of faces from either inside or outside of the cubic cell, in the
following we choose outside the cell (the flatness condition is
independent of such a choice). We then compose the group
elements on faces of the cubic with the convention that
if the orientation is clockwise we compose the element of
the face and if the orientation is anticlockwise we compose
the inverse of the face label. We notate this process by
introducing the variable ε ∈ {±1} where εf = +1(−1) if the
face f has clockwise (anticlockwise) orientation such that the
2-holonomy H2 on the cube can be written as

H2 =
∑

f ∈cube

e
εf

f (69)

and the 2-flatness condition becomes∑
f ∈cube

e
εf

f = 1E. (70)

We now define the 2-gauge transformation on the cubic
lattice. We may neglect the 1-gauge transform as the 1-gauge
group is trivial for the crossed module E . The 2-gauge
transformation acts on the four faces adjacent to an edge.
We notate the 2-gauge transformation as Ah

ij on the edge ij

where h ∈ E is the gauge parameter. The gauge transformation
has the action of multiplying the faces adjacent to the edge by
either h or h−1 depending on whether the direction of the edge
is parallel or antiparallel to the orientation of the adjacent
edges. An example is shown in equation (71).

Ah
ij :

i

j
e1

e2

e3

e4

�→

i

j
e1 − h

e2 + h

e3 − h

e4 − h

(71)

FIG. 3. Examples of the dual of a cubic lattice. The edges of the
original lattice are black and the dual edges blue.

1. Model on the dual lattice

After defining the Yetter model for crossed module E on the
cubic lattice �, we now define the model on the dual cubulation
�̃. We define dualization by a map which takes the n cells of
a cellular decomposition of a d manifold to the (d-n) cells of
the dual cellulation. We will make the assumption that we are
working with a cubulation such that the dual cell decomposi-
tion is also a cubulation; such a restriction is for ease of pre-
sentation and the arguments follow straightforwardly outside
of such a restriction. In this case the cubes (3-cells) are taken to
vertices (0-cells) of the new cellulation, square faces (2-cells)
are taken to edges (1-cells), and edges (1-cells) are taken to
faces (2-cells). In this way we can canonically map the Yetter
model with degrees of freedom on faces to a dual lattice where
the face labels are now on edges. Examples are shown in Fig. 3
where black edges are of the original lattice and blue are dual.

Utilizing the duality map discussed previously the direction
of dual edges are inherited from the orientation of faces. The
direction is defined by the right hand rule, such that if the finger
of your right hand points in the direction of the orientation
arrow the thumb gives the direction of the dual edge.

(72)

Using the above convention to define the directed dual
lattice, the Hamiltonian form of the Yetter model for the
crossed module E is vastly simplified. Using the definition
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of the 2-flatness condition discussed in the previous section,
on the dual lattice this constraint becomes the condition∑

ẽ∈∗(ṽ)

g
εẽ

ẽ = 1E, (73)

where ẽ and ṽ are the dual edges and vertices, respectively,
∗(ṽ) is the set of dual edges adjacent to ṽ, and εẽ ∈ ±1 is +1
when ṽ is the target of ẽ and −1 when ṽ is the source. Thus we
see that the 2-flatness condition on a cubic cell c ∈ � becomes
a vertex condition on ṽ ∈ �̃ the dual lattice. The action of
B(2)

c := Aṽ on states of the dual lattice is shown below.

Aṽ

∣∣∣∣∣
a

b

c d

e

f

〉
= δa+b+c+d+e+f,0

∣∣∣∣∣
a

b

c d

e

f

〉
(74)

We note B(2)
c now has the same action as the vertex operator

in the Walker-Wang model of M(E).
We now consider the edge gauge transformation. On the

dual lattice this operator acts on the four edges bounding a
plaquette on the dual lattice p̃. As with the plaquette operator
Bp in the Walker-Wang model we define the operator Ah

p̃ as
the gauge transformation on the dual plaquette p̃ by taking
an anticlockwise orientation around the plaquette and define

˜e+(−) by whether the dual edge ẽ is parallel (antiparallel) to
the orientation convention for the plaquette. We then define
Ah

e := Bh
p̃ as

Bh
p̃ =

∏
ẽ+∈p̃

�h
ẽ

∏
ẽ−∈p̃

�−h
ẽ , (75)

where �h
e is defined as previously and

Bp̃ = 1

|E|
∑
h∈E

Bh
p̃ (76)

such that on the dual lattice �̃

HYetter(E) = −
∑
ṽ∈�̃

Aṽ −
∑
p̃∈�̃

Bp̃. (77)

E. Comparison of models

Using the discussion outlined in the previous sections
we now compare the Yetter model with input E and the
Walker-Wang model with input M(E). Both models are
defined on a cubic lattice � with a local Hilbert space defined
by H = ⊗e∈�C|E| with edge labels indexed by the group E.
The Hamiltonian for the Yetter and Walker-Wang models can,
respectively, be written as follows.

HYetter(E) = −
∑
v∈�

Av−
∑
p∈�

⎛
⎝ 1

|E|
∑
h∈E

∏
e+∈p

�h
e

∏
e−∈p

�−h
e

⎞
⎠

HWW (M(E)) = −
∑
v∈�

Av−
∑
p∈�

⎛
⎝ 1

|E|
∑
h∈E

∏
e+∈p

�h
e

∏
e−∈p

�−h
e

⎞
⎠

×
(∏

v∈p

Av

)
(78)

Comparing the two equations above the only difference is
in the definition of the second term which acts on plaquettes
of the lattice. This difference is actually immaterial as the only
distinguishing feature of the term (

∏
v∈p Av) is to increase the

energy penalty for color configurations which do not satisfy the
vertex constraint to twice the energy cost of creating plaquette
defects. From such a point of view the two Hamiltonians have
the same ground-state configurations and the excitations will
have the same measurable properties such as braid statistics
but the energy cost will be increased for the creation of vertex
violations in the Walker-Wang model in comparison to the
energy cost in the Yetter model.

The Yetter model may also be connected to Walker-Wang
models in a second manner. Defining the model for the crossed
module G = (G,1G,∂,�) the Hamiltonian is equivalent to
the 3 + 1D Kitaev quantum double model describing a
conventional discrete group lattice gauge theory. In this case
the model is dual to a Walker-Wang model arising from input
given by the symmetric braided fusion category defined by
representations of G [23,24,65].

VI. DISCUSSION AND OUTLOOK

Here we comment on our main results and discuss the open
questions naturally raised by our construction. The main result
of our paper is Sec. III. In this section we outline a large
class of exactly solvable Hamiltonian models for topological
phases in 3 + 1D. Such models utilize the conventions of
higher lattice gauge theory to define a topological lattice model
on a simplicial triangulation of a closed, compact 3-manifold
M . The algebraic data of the model is defined by a crossed
module G = (G,E,∂,�) (equivalently a 2-group). Each edge
of the triangulation is “colored” by a group element g ∈ G

as in topological gauge theory models [5,18,20,36] while
additionally faces of the triangulation are “colored” with an
element e ∈ E. In a companion paper [40] we will further
describe the mathematical consistency of our model.

In an additional paper8 we will present results further
generalizing the model in order to include crossed module
cohomology utilizing the work of Faria Martins and Porter
[59]. To extend the model we introduce a 4-cocycle ω ∈
H 4(BG,U (1)), where BG is the classifying space of the
crossed module G. Such a cocycle adds a U (1) valued phase
to the vertex and gauge transformations while the flatness
conditions remain unchanged. The value of ω is determined
by considering the gauge transformations as 4-simplices con-
necting the original lattice coloring to the gauge transformed
coloring. ω is then defined by the 4-cocycle of such a complex.
Such a phase generalizes the model by allowing for ground
states of the model which are not in an equal superposition of
basis states as in the current paper.

In Sec. IV we established the relation between our model
and the Yetter homotopy 2-type TQFT (Yetter TQFT) [29].
Specifically we showed that the ground-state projector of
our model for M3 is given by the Yetter partition function
ZYetter defined on the 4-manifold M3 × [0,1]. An intriguing
consequence of the proof and the fact that the model can

8Twisted Higher Symmetry Topological Phases, Bullivant et al.
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be defined in arbitrary dimension d > 0 is that this result
also holds for arbitrary dimensions d > 0, but for d < 3,
the Hamiltonian does not contain magnetic operators (there
are no blobs in a d < 2 dimensional boundary). A direct
consequence of this is that the ground-state degeneracy (GSD)
can be obtained by the relation GSD = ZYetter(Md × S1).
We illustrate the formula with several examples in different
dimensions for both ordinary and higher gauge theory.

In Sec. V we described a duality between our model with the
crossed module E = (1E,E,∂,�) and the Walker-Wang model
[23] with symmetric-braided fusion category M(E). The
duality is established using the results of Bántay [64] to relate
the algebraic data of a crossed module and a braided fusion
category. One could expect a further generalization of such
results by noting that the crossed module M = (G,G,1G,Ad)
defines a modular tensor category, the quantum double D(G)
of the group G. This observation is seemingly justified by the
fact that both models give rise to a unique ground state on all
3-manifolds [24] although further work is needed to establish
such a connection.

In two intriguing papers, Kapustin-Thorngren [65,66]
investigated the physical role of higher form gauge the-
ories. In their presentation starting from a finite crossed
module they define a lattice TQFT partition function [65]
using the data defining an equivalence of crossed modules.
This data is specified by the quadruple (�1,�2,α,β) where
�1 := G/im(∂), �2 := ker(∂), α : �1 → Aut(�2) and β ∈
H 3(B�1,�2) where B�1 is the classifying space of �1. It
would be interesting to formally check that the Kapustin-
Thorngren partition function is equivalent to the Yetter 2-type
TQFT and relate the Hamiltonian model to such a description.
This relation would additionally allow for an interpretation
of the model in terms of electric and magnetic gauge groups
given by �1 and �2, respectively, and furthermore suggest that
such models are physically realized in massive gauge theories
where the microscopic gauge group is both partially confined
and partially Higgsed [65–67].

More recently Cui presented a generalization of the con-
struction of Crane-Yetter from premodular categories to G-
crossed braided fusion categories [45,68,69]. Crossed modules
form a subset of G-crossed braided fusion categories and
as such our work can be viewed as an example of this
construction. These models have yet to be fully explored;
it is thought they give rise to manifold invariants which
depend on the homotopy 3-type of a manifold and the second
Stiefel-whitney class and thus give rise to new, possibly
fermionic topological phases in 3 + 1D.

Another avenue for exploration would be to classify the ex-
citation spectrum of the model. There are two complimentary
approaches to such a classification. The first is to consider
local operators of the model [5]. Using this approach we
expect there to be four distinct types of excitations. The four
classes of excitations should be point particles and extended-
line-like excitations carrying 1-gauge and 2-gauge charges,
respectively. Additionally we expect there to be closed-loop-
like excitations and membrane type excitations. The second
approach is by considering the quantum numbers associated
with the ground states of our model. In Sec. IV E we discussed
the ground-state degeneracy which is a topological observable
of the theory which is independent of local mutations of M

which keep the global topology intact, e.g., Pachner moves.
In general one can consider other topological observables
associated with M which come from global transformations
of M which keep the global topology invariant. Such global
transformations are indexed by the mapping class group
(MCG) of M . The associated observables should give a
full classification of quantum numbers in our model. This
approach has already been utilized in Refs. [20,36,37,70] for
3 + 1D topological phases using projective representations of
MCG(T 3) = SL(3,Z) to understand the quantum numbers for
topological gauge theories. SL(3,Z) has two generators given
by the S and T matrices. We call eigenstates of the T matrix,
{|ψj 〉} the quasiparticle basis. The eigenvalues of T in such
a basis then give the topological spin of the quasiexcitations
associated with the ground state. The exchange statistics of
such excitations may be calculated by considering the overlap
of each basis state with the S matrix such that the exchange
statistics are given by matrix elements Sij = 〈ψj |S|ψi〉.

We expect the looplike excitations of our model to form
a representation of the loop-braid group. Note that Yetter’s
TQFT have been shown to give nontrivial invariants of knotted
surfaces in 3 + 1D space time [71,72] and furthermore an
embedded 1 + 1D TQFT for links in S3 and their cobordisms
[73].

Another possible generalization which should be explored
in the future is to consider 3-manifolds with boundary. It
is known that BF like theories such as the Walker-Wang
model with boundaries reproduce chiral anyon theories on
two-dimensional boundaries [24]. Such a relation is suggestive
that the boundaries of our model could support nontrivial
anyon models.
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APPENDIX A: TETRAHEDRON EXAMPLE

In this section we present the calculation of the 2-holonomy
of the boundary of a tetrahedron giving a concrete example
of how the vertical composition and whiskering rules of
Sec. II C can be applied. Given a tetrahedron with vertices
a < b < c < d:

a

b

c

d (A1)
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We can consider splitting the edge ad and folding the
tetrahedron into the plane as in the following.

b

a d

c

eabd

gad

gbc

gac

gab

gcd

gbd

eacd

ebcd

gad

eabc (A2)

In order to calculate the 2-holonomy associated with this
surface it is convenient to whisker [see equation (7)] the face
labels such that each label has a source and target of an edge
from a to d as in equation (A3). Once the face labels are in such
a form the 2-holonomy can be calculated straightforwardly
through vertical composition [see equation (6)]. This choice
is ad-hoc in the sense that if we had chosen to split any edge
to flatten the tetrahedron into the plane we would obtain the
same 2-holonomy.

a d
gabgbcgcd

gabgbd

gad

gacgcd

gad

gab�ebcd

eabc

eacd

eabd

(A3)

Looking at equation (A2) the labels eabd and eacd already
have source and targets given by edges between a and d.
As such we only need to apply whiskering to the labels eabc

and ebcd . Considering these two labels we can perform the
whiskering as follows.

b

a d

c

gab gbd

gcdgac

gbc
eabc

ebcd

= a d

c

gabgbd

gac

gcd

gabgbc
gabebcd

eabc

= a dgabgbcgcd

gabgbd

gacgcd

gabebcd

eabc

(A4)

Here we made use of the left whiskering identity

c

a b dgab

gbc gcd

gbd

ebcd

=

c

a d

gabgbc gcd

gabgbd

gabebcd

(A5)

between the first and second lines and the right whiskering
identity

b

a c d

gab gbc

gac gcd

eabc

=

b

a d

gab gbcgcd

gacgcd

eabc (A6)

between the second and third lines. Additionally we made use
of the identity

j

i k

gij gjk

gik

eijk = i k

gijgjk

gik

eijk (A7)

which holds for any triangle i < j < k.

APPENDIX B: TRANSFORMATION PROPERTIES
OF 1- AND 2-HOLONOMIES

In this section we compute the transformation properties of
the 1-holonomy of a reference triangle with labels given by
the lhs of (21) and a reference tetrahedron with labels given
by (12).

H1
A

g
a−→ ∂(g � eabc)ggab gbc g−1

ac g−1

= g(∂eabc)gab gbc g−1
ac g−1 = gH1g

−1

A
g

b−→ (∂eabc)gabg
−1 ggbc g−1

ac = H1

A
g
c−→ (∂eabc)gab gbcg

−1 gg−1
ac = H1

Ae
ab−→ ∂(eabc e−1)(∂e)gab gbc g−1

ac = H1

Ae
bc−→ ∂(eabc gab � e−1)gab ∂e gbc g−1

ac

= ∂eabc gab ∂e−1g−1
ab gab ∂e gbc g−1

ac = H1

Ae
ac−→ ∂(e eabc)gab gbc g−1

ac ∂e−1 = ∂eH1(∂e)−1

H2
A

g
a−→ (g � eacd )(g � eabd )

(
ggab � e−1

bcd

)
(g � eabd ) = g �H2

A
g

b−→ eacd eabc

(
gabg

−1 �
(
g � e−1

bcd

))
e−1
abd = H2

A
g
c−→ H2
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A
g

d−→ H2

Ae
ab−→ eacd eabce

−1
(
(∂egab) � e−1

bcd )eabde
−1

)−1

= eacd eabce
−1

[
(∂egab) � e−1

bcd

]
e e−1

abd

= eacd eabce
−1(∂e �

(
gab � e−1

bcd

))
ee−1

abd

= eacd eabce
−1e(gab � e−1

bcd ))e−1ee−1
abd = H2

Ae
bc−→ eacd eabc(gab � e−1)

(
gab � e e−1

bcd

)
e−1
abd

= eacd eabc

(
gab �

(
e−1ee−1

bcd

))
e−1
abd = H2

Ae
ac−→ eacde

−1eeabc

(
gab � e−1

bcd

)
e−1
abd = H2

Ae
ad−−→ e eacd eabc

(
gab � e−1

bcd

)
(eeabd )−1 = eH2 e−1

Ae
bd−→ eacd eabc(gab � (eebcd )−1)(eabd (gab � e−1))−1

= eacd eabc(gab �
(
e−1
bcde

−1
)
(gab � e)e−1

abd

= eacd eabc(gab �
(
e−1
bcde

−1e
)
e−1
abd = H2

Ae
cd−→ eacd (gac � e−1)eabc [gab � (ebcd

(
gbc � e−1))−1]e−1

abd

= eacd (gac � e−1)eabc

[
gab � (gbc � e)e−1

bcd

]
e−1
abd

= eacd (gac � e−1)eabc(gab gbc � e)
(
gab � e−1

bcd

)
e−1
abd

= eacd

((
gac(gab gbc)−1

)
� e′−1

)
× eabce

′(gab � e−1
bcd

)
e−1
abd

= eacd

((
Habc

1

)−1
∂eabc

)
� e′−1

× eabce
′(gab � e−1

bcd

)
e−1
abd

≈ eacd eabce
′−1e−1

abceabce
′(gab � e−1

bcd

))
e−1
abd = H2

In the last equation the substitution e′ = gab gbc � e has
been made and ≈ means equality in the case when Habc

1 = 1.
Note that the very last relation shows that the 2-holonomy does
not transform covariantly if fake flatness of the boundary faces
is not imposed.

APPENDIX C: ALGEBRA OF GAUGE
TRANSFORMATIONS

In this Appendix the proof of the relations (14) to (19) of
gauge transformations is presented. First we remember that
the operators R

g

i and L
g

i are representations of the group
G, that is, for all g,h ∈ G we have R

gh

i = R
g

i Rh
i and L

gh

i =
L

g

i L
h
i . Then it is clear that Lgh

v (i) = Lg
v (i)Lh

v(i). Also, since
g � (h � (·)) = gh � (·), one obtains Lgh

v (p) = Lg
v (p)Lh

v(p).
Using these properties we deduce that∏

i∈�(v)

Lgh
v (i)

∏
p∈�′(v)

Lgh
v (p)

=
∏

i∈�(v)

Lg
v (i)Lh

v(i)
∏

p∈�′(v)

Lg
v (p)Lh

v(p)

=
∏

i∈�(v)

Lg
v (i)

∏
p∈�′(v)

Lg
v (p)

∏
i∈�(v)

Lh
v(i)

∏
p∈�′(v)

Lh
v (p),

where in the last equality we used the fact that all the operators
in the middle two products commute pairwise, because each
one of them acts nontrivially on only a distinct edge or face
label. Thus we proved (14).

Now we prove the identity (16). First note that Ae
i A

f

i acts as
gi �→ ∂(e)∂(f )gi on the edge label of edge i, while A

ef

i acts
as gi �→ ∂(ef )gi . Both act trivially on the other edge labels
and, since ∂(ef ) = (∂e)(∂f ), they have the same action on all
edge labels. To prove that they coincide also on face labels, we
must consider two cases, (i) i = vkvk+1, and (ii) i = vk+1vk .
Also we can suppose that the face p is adjacent to the edge i,
otherwise both operators act trivially on the edge label of this
face.

(i) If i = vkvk+1, Ae
i A

f

i acts as ep �→
ep(gv0vk

� f −1)(gv0vk
� e−1) and A

ef

i acts as ep �→
ep(gv0vk

� (ef )−1). As g � (·) is a homomorphism, we
have that the actions coincide.

(ii) If i = vk+1vk , Ae
i A

f

i acts as ep �→
(gv0vk

� e)(gv0vk
� f )ep and A

ef

i acts as ep �→ (gv0vk
� ef )ep.

As before, the two sides agree.
So we proved (16).
In order to verify (15) we deduce first that [Lg

v (i),Lh
v′ (i)] =

0 and [Lg
v (p),Lh

v′ (p)] = 0, if v 
= v′. The first relation holds
because both operators can act nontrivially only on the edge i

and only if one of the vertices is the source and the other is the
target of i. However, the operator associated with the source
of i is a left multiplication operator and the other associated
with the target of i is a right multiplication operator, and
these actions are obviously commutative. The second relation
follows more easily because at most one of the operators can
act nontrivially on a face label. The validity of relation (15)
is now a consequence of the fact that all operators in the
definitions of A

g
v and Ah

v′ commute pairwise.
To prove (17) we note that Ae

i and A
f

i ′ commute on edge
labels because each one of them acts nontrivially on only one
edge label and they are distinct. They also commute on a face
label if the associated face is not adjacent to both edges, since
in this case at least one of them acts trivially on such a face
label. If the face is adjacent to both edges i and i ′ and they
are oppositely oriented, then one is a left action and the other
is a right one, so they commute. Assume that s(i) < t(i) and
s(i ′) < t(i ′). Assume without loss of generality that s(i ′) >

s(i). Then Ae
i A

f

i ′ acts as ep �→ ep(gv0vs(i′ ) � f −1)(gv0vs(i) � e−1).

The action of A
f

i ′ A
e
i reads:

ep �→ ep

(
gv0vs(i) � e−1

)(
gv0vs(i)∂e gvs(i)vs(i′ ) � f −1

)
= ep

(
gv0vs(i) �

(
e−1(∂egvs(i)vs(i′ ) � f −1)

))
= ep(gv0vs(i) �

(
e−1e

(
gvs(i)vs(i′ ) � f −1)e−1

))
= ep(gv0vs(i) �

((
gvs(i)vs(i′ ) � f −1)e−1

))
= ep

(
gv0vs(i′ ) � f −1)(gv0vs(i) � e−1),

where we used the homomorphism property of � in the
first and last equation and the second Peiffer condition in
the second. The other case [s(i) > t(i) and s(i ′) > t(i ′)] is
a similar computation.

Let us consider now the proof of the identities (18) and (19).
First we note that if i and v are not adjacent to a given face, then
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Ae
i and A

g
v commute on all edge labels of edges adjacent to this

face and on the face label of this face, because in such cases at
least one of the operators is the identity operator. Therefore,
for the rest of the proof we consider a face adjacent to both
i and v (if it exists). Note that Ae

i and A
g
v commute on edge

labels (on face labels) if v 
= s(i) and v 
= t(i) (if v 
= v0),
since in this case A

g
v acts trivially on edge labels (on face

labels, respectively). Thus we need to verify the identities for
the cases: (i) v = v0 and i = v0v1, (ii) v = v0 and i = v0vn−1,
(iii) v = v0, i 
= v0v1 and i 
= v0vn−1, (iv) v 
= v0 and v = s(i),
and (v) v 
= v0 and v = t(i). Furthermore, it is enough to verify
(iii) only on face labels and (iv),(v) only on edge labels. Now
we have

(i) A
g � e

i A
g
v acts as gi �→ ∂(g � e)ggi and ep �→

(g � ep)(g � e−1) and A
g
vA

e
i acts as gi �→ g∂(e)gi and ep �→

g � (epe−1). They agree since g∂(e)gi = g∂(e)g−1ggi =
∂(g � e)ggi and g � (epe−1) = (g � ep)(g � e−1).

(ii) A
g � e

i A
g
v acts as gi �→ ∂(g � e)ggi and ep �→

(g � e)(g � ep) and A
g
vA

e
i acts as gi �→ g∂(e)gi and ep �→

g � (eep) Thus by the previous item the maps agree on edge
labels and on face labels by the homomorphisms property of
�.

(iii) For s(i) < t(i) the operator Ae
i A

g
v acts as

ep �→ (g � ep)(ggv0s(i) � e−1) and A
g
vA

e
i acts as ep �→

g � (ep(gv0s(i) � e−1)). For s(i) > t(i) the operator Ae
i A

g
v acts

as ep �→ (ggv0vs(i)
o � e)(g � ep) whereas A

g
vA

e
i acts as ep �→

g � ((gv0vs(i) � e)ep). For both cases equality is clear by the
homomorphism property of �.

(iv) A
g � e

i A
g
v acts as gi �→ ∂(g � e)(ggi) and A

g
vA

e
i acts as

gi �→ g∂(e)gi . As ∂(g � e)(ggi) = g∂eg−1ggi = g∂egi , they
coincide.

(v) Ae
i A

g
v and A

g
vA

e
i both act as gi �→ ∂(e)gig

−1.
This ends the proof of the relations (14) to (19).

APPENDIX D: PROOF OF THEOREM IV.1

A three cell of � is a prism based on a face of Lj .

gt(i)

p0

ig0

gs(i)

ig1

p1

The figure shows a part of the complex. The lattice � consists
of L0c, L1c with the coloring given by {g0

i }i∈L1
0
, {g1

i }i∈L1
1
,

{gv}v∈L0 , oriented edges in L0,L1, and vertical edges assumed
to be oriented towards L0 (downwards in the figure) connecting
corresponding vertices of Lj , respectively.

We have a Dirac delta δgp,1 in the partition function for
each face. In particular, for an internal face p (this is always a
rectangle connecting corresponding edges of Lj ) the term δgp,1

enforces g1
i = gs(i)g

0
i g

−1
t(i). Taking all such faces into account,

identifying the coloring L0c with |L0c〉 we have9∏
p∈�(i)2

δgp,1 = 〈L1c|
∏
v∈L0

Agv

v |L0c〉 (D1)

and consequently we can write

1

|G||L0|
∏
v∈L0

∑
gv∈G

∏
p∈�(i)2

δgp,1 (D2)

= 〈L1c|
∏
v∈L0

1

|G|
∑
gv∈G

Agv

v |L0c〉 = 〈L1c|
∏
v∈L0

Av|L0c〉. (D3)

Now, let us compute the prefactor in the definition (39) for the

lattice: |G|− |L0
0 |+|L0

1 |
2 = |G|−|L0|. Hence the lhs of the formula

above almost coincides with the lhs of (41), only
∏

p∈�(b)2 δgp,1

is missing. This enforces flatness on the faces p ∈ L2
0 ∪ L2

1. It
agrees with the action of the operator

∏
p∈L2 Bp on |L0c〉 times

that on |L1c〉 (note that the lattices L0 and L1 are identified, but
the states |L0c〉 and |L1c〉 are different). However, the operators
Bp,p ∈ L2 and Av,v ∈ L0 commute for any pair of labels
and are also self-adjoint, so we can simply insert the factor∏

p∈L2 Bp anywhere in the scalar product, using the fact that
B2

p = Bp,p ∈ L2, thus inserting Bp only once is sufficient. �

APPENDIX E: PROOF OF THEOREM IV.2

Consider that M3 × [0,1] has the product lattice decompo-
sition �. Let us choose a total order on �0 in the following
way. The Hilbert space is associated with a dressed L, i.e.,
L0 has a total order. Let the total orders in L0

i agree with that
on L0 and let any vertex in L0

1 be smaller than any other in
L0

0. Then denoting the color of the internal edge connecting
the vertices in L0

0 and L0
1 corresponding to v ∈ L0 by gv and

the color of the internal face connecting edges in L1
0 and L1

1
corresponding to i ∈ L1 by ei , the following equality is true.∏

P∈�3(i)

δH2(P ),1

∏
p∈�2(i)

δH1(p),1 = 〈L1c|
∏
v∈L0

Agv

v

∏
i∈L1

A
ei

i |L0c〉

(E1)

This is the analog of (D1). To justify it, let us con-
sider the rectangle p depicted in Fig. 4 with boundary
edges g0

i ,gs(i),gt(i),g
1
i . The constraint δH1(p),1 enforces ∂ei =

g−1
s(i)gigt(i)(g0

i )−1. Equivalently

g1
i = gs(i)∂eig

0
i g

−1
t(i), (E2)

which is precisely the image of g0
i under the product of

gauge transformations with parameters gs(i),gt(i),ei at vertices
s(i),t(i) and edge i, respectively, such that the edge transfor-
mation acts first. Note that no other generators in the product
act on the edge color gi . Let us recall that we identify Ljc

with the vector |Ljc〉 and colors on �(i) are identified with
parameters of gauge transformation on the Hilbert space.

Now consider p0 ∈ L0c colored with e0
p corresponding to

the 2-holonomy based at v0(p0) and denote the boundary

9Note, that |L0c〉 is a basis element, not a generic state in the Hilbert
space.
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p0

gs(i) gt(i)

1
ig

ig0

gt(i)

1
ig

ig0

p1

ei

gs(i) ei

pe 0

FIG. 4. The left figure shows one of the internal faces connecting
corresponding boundary edges of Lj ; the top edge label g1

i is
determined by fake flatness of the rectangle. By our choice of total
order on �0, the basepoint of the rectangle is s(i) and the fake-flatness
constraint reads as the composition (E2). The right figure shows a
blob bounded by the “bucket” consisting of the green pentagon of L0

with label e0
p and the rectangles with labels ei ∈ E,i ∈ bd(p0). The

2-holonomy of the bucket is ẽ0
p; the “lid pentagon” is colored by e1

p .
By 2-flatness of the blob ẽ0

p = e1
p .

edge set by L1
p0 . Assume that p0 is an n-gon. Denote the

disk (depicted as a bucket in Fig. 4) by p̃0, consisting of the
rectangles bounded by the edges {g0

i ,gs(i),gt(i),gi},i ∈ bd(p0)
and p0. We can compute the 2-holonomy of this disk based
at v0(p), which we denote by e0

p̃. We have to show that this
(again via the identification of boundary colorings with basis
vectors in the Hilbert space and internal colors as parameters
of gauge transformations) agrees with the action of the product∏

v∈L0 A
gv
v

∏
i∈L1 A

ei

i on e0
p where gv is the color of the vertical

edge pointing toward the vertex v and ei is the color of the
vertical rectangle based at edge i. Introducing the notation i

for the ith edge starting from v0(p) in the circular order the
action of the product of edge transformations reads

e0
p �→ e′0

p ≡ ep0

(
∂e−1

p0
� en

)(
gv0,s(n−1) � e±1

n−1

)
× (

gv0,s(n−2) � e±1
n−2

)
. . .

(
gv0,s(2) � e±1

2

)
e−1

1 ,

(E3)

where e±1
i means ei (e−1

i ), if i is oriented opposite (according)
to the orientation of bd(p), respectively. Now we apply the
vertex transformations. We will show that (i) the rhs of (E3)
is unchanged under a vertex gauge transformation A

gv
v with

v 
= v0 and (ii) that it changes as (.) �→ gv0�(.) for v = v0. This
is how the face holonomy e′0

p should change under
∏

v∈L0 A
gv
v .

Consequently, the 2-holonomy e0
p̃ of the disk p̃0 is given by

the image of e0
p under gauge transformation.

It is easy to see that gv0,s(k) changes only if v = s(k) since
then gs(k)−1,s(k) �→ gs(k)−1,s(k)g

−1
v , which induces gv0,s(k) �→

gv0,s(k)g
−1
v . The label ek changes also only for s(k) = v as

ek �→ gv � ek . Altogether

gv0,s(k) � ek �→ gv0,s(k)g
−1
v � (gv � ek) = gv0,s(k) � ek

so (i) is proved. The action of A
gv0
v0 is ep0 �→ gv0 � ep0 and

e1 �→ gv0 � e1 on the two faces with basepoint v0 and all
parenthesis in (E3) transform as (.) �→ gv0�(.) since gv0,s(k) �→
gv0gv0,s(k). Hence, since (.) �→ g�(.) is a homomorphism,
we showed (ii), so the claim is proved. Note that the edge
labels change as g0

i �→ ∂eig
0
i �→ gs(i)∂eig

0
i g

−1
t(i) under

∏
j A

ej

j

and
∏

v A
gv
v , respectively, in accordance with (E2). Another

remark is that the order of the terms on the rhs of (E1)
depends on the total order on �0. In particular, if we had
chosen v0

s(i) > v1
s(i) the fake-flatness condition would have

read ∂ei = g1
i gt(i)(g0

i )−1g−1
s(i) equivalent to the order A

ei

i A
gs(i)

s(i) of
action of gauge transformations. Once the integration is done,
this dependence will of course disappear, equivalently the
vertex projections defined as averaged gauge transformations
mutually commute.

Now, consider the 2-sphere Sp0 bounded by the disks p̃0

and p1 colored by e0
p̃ and e1

p, respectively. They have the same
boundary bd(p1), and they are oriented oppositely. Hence,
δH2(Sp0 ),1 = 1 iff e0

p̃ = ep1 . This completes the proof of (E1).
Let us now determine the multiplicative factors from the

definition of the partition vector from (39) for the lattice at
hand. We have only boundary vertices �0 = L0

0 ∪ L0
1 and the

edge set is in one-to-one correspondence with L0 ∪ (L1
0 ∪ L1

1)
such that the first factor is for internal edges and the
second for external ones, respectively. The multiplicative
factor determined from (39) turns out to be |G|−|L0||E|−|L1|.
This means that we can assign a factor of |G|−1 to each
term

∑
gv

A
gv
v ,v ∈ L0 and a factor of |E|−1 to

∑
ei

A
ei

i ,i ∈
L1. So, similarly to the ordinary gauge theory case, we
found

1

|G||L0||E||L1

∏
v∈L0

∏
i∈L1

0

∑
gv∈G

∑
ei∈E

∏
P∈�3(i)

δH2(P ),1

∏
p∈�2(i)

δH1(p),1

= 〈Lc1 |
∏
v∈L0

Av

∏
i∈L1

Ai |Lc0〉.

The last step is the identification of the 2-flatness constraints
of the blobs in L3

0 ∪ L3
1 with the BP operators. This goes

parallel to the ordinary lattice gauge theory case. �
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