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Abstract: The integrated near-net-shape structure of 3D braided composites provides excellent impact resistant 

properties over laminated composites. At the same time, the load distribution and damage mechanisms throughout 

the structures become more complicated. In this paper, a finite element model based on three unit-cells is 

established to simulate the penetration process of 3D braided composites under high velocity impact. A 3D 

rate-dependent constitutive model is developed to determine the constituent behavior in the three unit-cells. 

Tsai-Wu criterion with Mises criterion and an instantaneous degradation scheme are coded by a user material 

subroutine VUMAT developed in Abaqus/Explicit. The whole process of ballistic damage evolution of 3D braided 

composites is simulated, and the impact resistance and damage mechanisms are revealed in detail in the simulation 

process. The effects of striking velocity on the ballistic properties and energy absorption characteristics of the 

composite structures are also discussed. 
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1 Introduction 

With the development of military science and technology, the damage capability of missiles and antiaircraft 

weapons is improving continuously, which results in growing threats to military aircrafts. Therefore, it is important 

to involve survivability of personnel and equipment against penetration by high velocity projectiles before the 

application of new aeronautical materials.  

In order to reduce the structural weight and increase the flexibility of the aircraft, laminated composites have 

been widely used in the aerospace industry because of their high performance-weight ratio. However, poor 

out-of-plane properties, low damage tolerance and low delamination resistance have restricted their applications in 

primary-loading components. Delamination is the main damage mechanism of laminated composites under ballistic 

impact, which can cause obvious degradation of the material mechanical properties. In recent years, 3D braided 

composites have received much attention due to their excellent advantages over the laminated composites. The 

distinct feature of 3D braided composites is integrated near-net-shape structure to provide outstanding 

through-thickness properties and prevent delamination under ballistic impact loading. Owing to these prominent 

merits, 3D braided composites are believed to have broad potential applications in military aircrafts, armor vehicles 



and protective structures. 

The quasi-static mechanical properties of 3D braided composites have been studied extensively, including the 

establishment of microstructure models [1-4], the prediction of stiffness and strength properties [5-8], and the 

investigation of damage and failure mechanisms under various static loadings [9-12]. However, thus far, the reports 

regarding the high velocity impact performance of 3D braided composites are relatively limited. 

Some researchers conducted ballistic impact experiments to study the penetration resistance and damage 

mechanism of 3D braided composites. Gong and Sankar [13] experimentally analyzed the impact damage pattern 

of 3D braided composites and compared the impact tolerance between 3D braided composites and quasi-isotropic 

laminates. It is found that 3D braided composites show better damage tolerance than quasi-isotropic laminates with 

approximate bending stiffness in the primary direction. Flanagan et al. [14] carried out a high velocity impact 

experiment to investigate the damage mechanism in woven, 3D braided and needle punched composites under 

impact velocities ranging from 200 to 1100 m/s. The penetration resistance and failure modes of these different 

textile composites were analyzed and compared. Xu and Gu [15] explored the macro- and micro-fracture 

morphology of 3D braided composites after ballistic perforation by using scanning electron microscope (SEM). 

They concluded that the dominant failure mechanisms are shear and compression failures on the front side and fiber 

tensile failure on the back side of the target plate. 

Physical impact experiments are expensive, time-consuming, and confined to certain structural parameters and 

certain impact conditions. Hence, the development of robust analytical and numerical modeling methods is 

essential to the structural design, optimization and application of 3D braided composites. Analytical studies are 

based on some simplified assumptions and mainly focused on the impact events of laminated composites [16], plain 

weave [17] and 3D orthogonal weave composites [18] with relatively simple microstructures. It is difficult to solve 

the impact problems of 3D braided composites with complex microstructure by theoretical analysis methods. 

However, less limitation exists in the impact simulation by using finite element method. Therefore, finite element 

modeling method is preferred by the researchers to study the impact damage of 3D braided composites. 

Jenq et al. [19, 20] implemented an experimental and numerical study on the ballistic impact response of 3D 

two-step and four-step braided glass/epoxy composites. They first performed a quasi-static punch test to obtain the 

load-displacement curves and penetration damage modes of the target, and then incorporated them into the finite 

element penetration analysis of the composites. In the numerical model, 3D braided composites were considered as 

continuous anisotropic materials and meshed with various densities in different regions. The properties degradation 

of material after failure occurrence was determined by the quasi-static load-displacement curves and the 

corresponding regions in the specimen. Gu and Ding [21] adopted the ‘fiber inclination model’ proposed by Yang 

et al. [1] to replace the real microstructure of 3D braided composites and employed this model to calculate the 

residual velocity of projectile that perforated a 3D braided composite target. Comparisons between numerical 

results and experimental results validate the applicability of this quasi-microstructure model. 

In the references [19-21], braided composites are modeled by the macroscopic method and treated as 

homogenized anisotropic materials thus the real microstructure can not be well reflected. To cover these intrinsic 

limitations, Ji and Kim [22] and Gu [23] established the actual microstructure of the 3D woven and braided 

composites in the scale of constituents. Thence, combined with different constitutive models for each constituent, 



the whole impact processes were simulated and the specific mechanical responses of yarns and matrix were 

presented. Such a microscopic method is known as the direct numerical simulation (DNS). By this approach, the 

impact damage mechanism initiated in the microscopic scale and propagated to the macroscopic scale can be 

revealed in detail. However, applying DNS model needs tremendous computer memory and high-performance 

computing resource, which brings a huge obstacle for practical engineering applications. 

The establishment of impact simulation model in the macroscopic scale while considering the microstructure of 

composites is an effective strategy. Through macroscopic modeling method, Bahei-El-Din and Zikry [24] analyzed 

the deformation fields and stress wave propagations in woven composites induced by different impact velocities. In 

their model, the orthotropic elastic constants of the composite target elements were derived from a microscopic 

unit-cell model. In the transverse impact simulation work conducted by Zhang et al. [25], an interior unit-cell 

model in which the yarns and matrix were explicitly modeled was developed to characterize the stiffness matrix 

and damage evolution of 3D braided composites. Similar studies dealing with the impact damage problems of other 

textile composites based on the unit-cell models can be found in references [26-28]. 

It is known that 3D braided composites have a skin-core structure and are composed of three regions: interior, 

surface and corner [3, 4]. Each region is built up of identical unit-cell with unique yarn configuration and 

distinctive properties which must be treated separately. However, previous work mostly neglected the surface and 

corner unit-cells but only adopted the interior unit-cell to establish the impact damage model. Meanwhile, the 

obvious rate-dependent characteristics of 3D braided composites under ballistic impact have not been studied well. 

In this paper, a three unit-cells model is proposed to simulate the penetration process of 3D braided composites 

under high velocity impact. A 3D rate-dependent constitutive model, developed from the rheological model, is used 

to determine the constituent behaviors in the three unit-cells. Tsai-Wu failure criterion with various damage modes 

and Mises criterion are applied to predict damage initiation of yarns and matrix with an instantaneous degradation 

scheme. A user material subroutine VUMAT involving the constitutive equation and failure model is written and 

implemented in commercial finite element software ABAQUS/Explicit. The ballistic resistance and damage 

mechanisms of 3D braided composites are studied in detail. In addition, discussions are carried out to uncover the 

influences of striking velocity on the ballistic performance and energy absorption characteristics of the braided 

composite structures. 

2 Microstructure analysis and three unit-cells model 

The topological structure of 3D braided composites is determined by the movements of carriers on the machine 

bed and the connected motion mechanisms of braiding yarns. In the four-step braiding process, the surface and 

corner carriers move in distinctly different manner than the interior carriers. This is because the carriers in the top 

and bottom rows do not participate in any row movement and the carriers in the leftmost and the rightmost columns 

do not participate in any column movement [2]. Since the yarn configurations in the interior, surface and corner 

regions of the preform are unique, they should be treated separately. 

The ‘jamming’ action will straighten and reposition the braiding yarns in space after a machine cycle. 

Considering that the braiding yarns expand h/4 at each step along braiding direction, the schematic of all the yarn 

paths projected into the x-y plane is presented in Fig. 1. Afterwards, in order to investigate the topological structure, 



the control volume method is employed individually in different regions of 3D braided preform. A control volume 

is defined as a stationary volume in space into which yarns entering and leaving can be observed during the 

carrier’s four-step movements. By adopting this method, the relationship between the braiding process and the 

resulting yarn topology can be demonstrated and three distinct types of unit-cells located in the interior, surface and 

corner regions of the preform can be determined. More detailed analysis can be found in our previous work [8]. 

Figure 1 also illustrates the selection of three unit-cells. These unit-cells are oriented in the same reference 

frame as the perform cross-section to facilitate the mechanical analysis. Figure 2 shows the topology geometrical 

models and the corresponding solid structure models of the three unit-cells.  

In Fig. 2, γ, θ and β are the interior braiding angle, surface braiding angle and corner braiding angle, 

respectively. W and T indicate the width and thickness of the unit-cell models, under which sub-index i, s and c 

refer to the interior, surface and corner regions respectively. Obviously, the heights h of the three unit-cells are 

identical. 

In practice, γ, θ and β are difficult to measure directly; however, they can be calculated by knowing the braiding 

angle α on the surface of the composites, as given by  

 tan /iW hα =  (1) 

 tan 2 / 2 taniW hγ α= =  (2) 

 tan ( / 4 2) / ((3 / 8) ) tan / 3iW hθ γ= =  (3) 

 tan tanβ θ=  (4) 

Consequently, once the braiding angle α and the pitch length h are determined, the topology geometrical models 

of the three unit-cells can be fully characterized. 

3 Dynamic damage constitutive model 

High velocity impact or ballistic impact is a transient dynamic process. The target response is governed by the 

local behavior of the material in a small region around the impact point, and is generally independent of its 

boundary conditions. That is, the impact-contact interaction is over before the stress waves reach to the target 

boundaries and return to affect the impact region. In this case, the target material always presents obvious 

rate-dependent behavior. Especially for composite materials, the influence of strain rate effect on the mechanical 

properties become very complicated due to the anisotropic characteristics. 

3D braided composites are composed of braiding yarns and the resin matrix. The macroscopic mechanical 

behavior of the 3D braided composites under high velocity impact is determined by the microscopic constitutive 

relationships of the constituents. Generally, the resin matrix is assumed to be isotropic material; the braiding yarns 

are regarded as unidirectional composites and transversely isotropic materials in local coordinate. Consequently, 

establishing the rate-dependent constitutive equations of matrix and unidirectional composites is the premise for 

simulating the structural behavior of 3D braided composites under high velocity impact loading by three unit-cells 

model. 



3.1 Constitutive model of carbon fiber and epoxy matrix 

Based on the small deformation assumption, the carbon fiber is considered as rate-independent linear-elastic 

material and the epoxy matrix is considered as time-dependent linear-viscoelastic material. As shown in Fig. 3, a 

spring element is used to model the constitutive relationship of the fiber, and a rheological model of a spring in 

parallel with two Maxwell elements is used to express the constitutive relationship of the matrix. Their constitutive 

equations can be presented as follows: 

 f fEσ ε=  (5) 
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t E tσ τ ε τ= −∫ ɺ  (6) 

where Ef is the elastic modulus of the fiber, and Er is the relaxation modulus of the matrix. 

Under constant strain, Er(t) can be given as [29]: 
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where Em is the elastic modulus of the matrix under quasi-static condition; E1 and E2 are time-dependent modulus 

controlled by the dashpots with viscous coefficients η1 and η2. 

3.2 Rate dependent constitutive model for unidirectional composite 

In the local coordinate system of unidirectional composite, the 1-axis indicates the fiber direction and the 2- and 

3-axes are referred as the transverse directions. As shown in Fig. 4, the unidirectional composite loaded in the 

longitudinal direction can be modeled with elastic springs and Maxell elements. A linear elastic spring, which 

represents the reinforced fiber, is parallel with the rheological model for the epoxy matrix. With the assumption of 

iso-strain, the stress-strain relationship for the unidirectional composite in the longitudinal direction can be 

expressed as 
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where Ef1 is the Young’s modulus of the fiber in longitudinal direction, and Vf is the fiber volume fraction of the 

composite.  

Under constant strain rate, substituting the expression of Er(t) in Eq. (7) into Eq. (8) and setting 11 0/t ε ε= ɺ , 

yields[29]:  
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where 0εɺ  is a constant strain rate, 1 1 1/e Eθ η= and 2 2 2/e Eθ η= are characteristic relaxation times in Maxwell 

elements. The first term on the right hand of Eq. (9) represents the elastic characteristic of the composite, and the 

remaining two terms reflect the strain rate effect on the constitutive relationship. If setting Vf=0, Eq. (9) just reduces 

to the rate-dependent constitutive relationship for the viscoelastic matrix. 

Similarly, with iso-strain or iso-stress assumption, the constitutive relationships of unidirectional composite 

under other simple loads can be given by rule of mixtures as [29]: 
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In the above equations, Ef2 is the Young’s modulus of the fiber in transverse direction; f fV V′ = is the modified 

fiber volume fraction of the composite; Gf12, Gf23 are the shear moduli of the fiber in the 1-2 and 2-3 plane 

respectively; M, N, Q, R with sub-index 12 or 23 and without sub-index are parameters governed by the rheological 

model under various loading cases, and their expressions are given in reference [29] in detail. 

According to the generalized Hook's law, the stress-strain relationship of orthotropic material is 

 Sε σ=  (11) 

where S is the compliance matrix.  

Define U and 
1E−
 as: 
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One has  

 
1S E U−=  (12) 

Then Eq. (11) can be rewritten as 

 
1U Eσ ε−=  (13) 

Therefore, the 3D rate-dependent constitutive relationship of unidirectional composite can be given by: 
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3.3 Unit-cell homogenization 

For the local coordinate definition of yarn in a specific orientation, local 1-axis follows the yarn centerline and 

local 3-axis is in the upright plane perpendicular to the X-Y plane of the global coordinate, as shown in Fig. 5. 

Based on the iso-strain assumption, the strain matrix can be transformed from the global to the local coordinate 

system by: 

 
TTσε ε=  (15) 

where ε  and ε  are the strain matrix in the local and global coordinates respectively; Tσ  is the 

transformation matrix of stress and expressed as follows: 
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where (li, mi, ni) are directional cosines. They are the cosines between direction of fiber yarns and axis of global 

coordinate system. li=cos(i, X), mi=cos(i, Y), ni=cos(i, Z), (i=1,2,3). 

Then, the stress matrix of a braiding yarn in the local coordinate can be calculated by Eq. (14). In the global 

coordinate, stress matrix can be computed by 

 Tσσ σ=  (17) 

where σ  and σ  are the stress matrix in the local and global coordinates respectively.  

The orientation of the yarns in the interior, surface and corner unit-cells can be characterized by different 

braiding angles ψ and horizontal orientation angles φ, given as follow 
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For each unit-cell, its homogenized stress station can be calculated by volume averaging method, namely, 

 

direction4

direction1
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v vσ σ σ
=
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in which, aσ  is averaging stress matrix corresponding to each unit-cell; nσ , mσ  are stress matrices of each 

inclined yarn and matrix ; nv , mv  are the volume proportion of yarns in each orientation and the volume 

proportion of matrix in each unit-cell.  

3.4 Failure initiation criteria  



Damage initiation and damage evolution can be simulated by damage mechanism, which consist of failure 

criteria and material degradation. Actually, 3D braided composites comprise three phases: fiber yarns, epoxy matrix 

and interface. Therefore, the failure mechanism contains three types: yarn failure, matrix cracking and interface 

debonding. However, in this study, the damage mechanism of interface debonding is not considered. 

Tsai-Wu criterion, implemented to predict the failure initiation of braiding yarn, is given by 
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In the above equation, 
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where Xt and Xc are the axial tensile and compressive strengths of yarn; Yt and Yc are the transverse tensile and 

compressive strengths; S12 and S23 are the in-plane and out of plane shear strengths, respectively.  

The static strength properties of braiding yarn can be calculated using the micromechanics formulae given by 

Chamis [30]. Herein, considering the strain rate effect on the mechanical properties of composite materials, the 

strength parameters appeared in Eq. (20) are modified by the rate dependent strength properties described as: 

 0

0

(1 ln )F F c
ε
ε

= +
ɺ

ɺ
 (21) 

where F is the current strength (tension, compression or shear) of composite in different loading direction, εɺ  is 

the corresponding strain rate, F0 is the reference strength under reference strain rate 0εɺ , and c is the modification 

factor which can be determined by fitting the test data. 

It is known that Tsai-Wu failure criterion is mode-independent. It identifies the failure initiation but cannot 

identify the failure modes of each braiding yarn. Thus, six indices, Hi (i = 1-6), are defined to identify the failure 

modes of the failed material, namely 

2

1 1 11 11 11H F Fσ σ= + ˈ 2

2 2 22 22 22H F Fσ σ= +  

 
2

3 3 33 33 33H F Fσ σ= + , 2

4 44 23H F σ=  (22) 

2

5 55 13H F σ= ˈ 2

6 66 12H F σ=  

At failure, the maximum one of the six indices Hi (i = 1-6) is assumed to identify the dominant failure mode. 

Failure index H1 indicates yarn longitudinal breaking, H2 and H3 indicate yarn transverse cracking, and H4, H5 and 

H6 indicate shear failure modes of yarn in 23, 13 and 12 planes. 



The Mises criterion is adopted as matrix failure criterion, namely, 

 
2 2 2 2 2 2 2

1 2 1 3 3 2 12 23 31( ) ( ) ( ) 6( ) 2 pmσ σ σ σ σ σ τ τ τ σ− + − + − + + + =  (23) 

where pmσ  is cracking strength of pure matrix. 

4 Numerical simulation of high velocity impact 

The Explicit module in ABAQUS software is used to establish the finite element model for analyzing the 

damage characteristics of 3D braided composites under high velocity impact. The finite element model is based on 

three different unit-cells: interior, surface and corner. The 3D rate dependent constitutive equation, failure initiation 

criteria and instantaneous degradation scheme described in the previous section are coded into a user-defined 

material subroutine (VUMAT) to compute the stress station and analyze the damage behavior in the three unit-cells. 

The region division of the 3D braided composite plate according to the three unit-cells model is displayed in Fig. 6. 

Here, z axis and y axis refer to the axial and thickness directions of the material. 

4.1 Finite element model 

In the numerical simulation, two different shapes of projectiles are used: spherical and flat cylindrical 

projectiles. The diameter of the spherical projectile is 8 mm; the diameter and height of the flat cylindrical 

projectile are 8 mm and 16 mm, respectively. The projectile is considered to be rigid body (analytical rigid) with 

center (reference point) of mass (6.27g) located such to coincide with the y-axis, and doesn’t produce substantial 

distortion during the penetration process. The rotational inertia of the projectile is not necessary since the friction 

between the projectile and the target plate is ignored. The hourglass controlled eight-node C3D8R elements are 

used to discretize the 3D braided composite plate. The stress calculation at the integration points and the damage 

analysis in the interior, surface and corner regions of composite plate are based on three different unit-cell models. 

In the high velocity impact penetration process, the deformation and damage of the target plate mainly occur in 

the contact zone. Accordingly, a gradual mesh generation method is adopted, and the mesh density decreases 

gradually from the impact point to the edges of the target plate. This mesh not only ensures the accuracy of the 

numerical results, but also improves the computation efficiency of the model. 

Fig. 7 shows the finite element model of 3D braided composites under high velocity impact. In Fig. 7, z axis, x 

axis and y axis indicate the axial and two transverse directions of the material. The composite plate model consists 

of 82,320 nodes and 74,880 C3D8R elements. 

4.2 Boundary condition and contact definition 

Ballistic impact loading is performed by setting an initial velocity to the projectile along the y axis. Fixed 

boundary conditions are fully defined for the composite plate along its periphery, with all freedoms constrained to 

zero to replace the practical conditions. “Surface to Surface Contact” is used to define the contact response between 

the projectile and the composite plate. The penalty contact method with a finite sliding formulation is selected to 

calculate the contact force during the ballistic penetration process.  

4.3 Structural parameters and material parameters  



In this paper, the braiding pattern of the braided composite target plate is [36×6], thus, the interior, surface and 

corner unit-cells account for 57.32 %, 40.04 % and 2.64 % of the whole target. The length, width and thickness of 

the target are 80mm, 32mm and 4mm, respectively. The braiding angle α is 25
0
, braiding pitch h is 3.20mm, fiber 

volume fraction Vf is 50.62%. The stiffness and strength properties of fiber and matrix are listed in Table 1. The 

viscoelastic properties and relaxation time of matrix cited from reference [29] are summarized in Table 2. 

4.4 Material degradation and element deletion 

The failure criteria describe typical failure modes of 3D braided composites during ballistic penetration process. 

When failure occurs, materials lose their load carrying capacity in certain modes thus the corresponding mechanical 

properties need to be degraded. The break of braiding yarn is known to be a sudden event, therefore, in the present 

study, an instantaneous elastic constants reduction scheme (shown in Table 3), is introduced as the degradation 

model. Compared to gradual degradation scheme, the superiority of this instantaneous degradation scheme is easy 

for implementation and efficient for computation. 

Furthermore, if a certain braiding yarn in an element loses its load carrying capacity in axial direction, the 

element would be removed from the finite element model. 

4.5 Numerical analysis process  

During each time increment, ABAQUS transmits the information of strain increment and strain rate to VUMAT. 

With the iso-strain assumption, the global strain increment and strain rate of the unit-cell is transformed into the 

local coordinates of yarns and matrix. With the rate-dependent constitutive model, the local stresses in each yarn 

and matrix of the unit-cell can be obtained. Once the failure criterion is satisfied, the material properties 

degradation is carried out by using instantaneous stiffness degradation scheme. Afterwards, the global stresses at 

the integration points of the elements are computed by the homogenization method mentioned above. Finally, the 

updated stresses and other state variables are returned to ABAQUS for next step analysis. Fig. 8 presents the flow 

chart of the whole numerical analysis process. 

5 Results and discussion 

5.1 Velocity and contact force curves 

For the high velocity impact simulation of 3D braided composite target penetrated by spherical projectile and 

flat projectile, the initial impact velocity is set as 400 m/s. The velocity-time curve and contact force-time curve of 

the projectile in ballistic penetration process are shown in Fig. 9. It can be seen that the spherical projectile’s 

velocity changes smoothly while the velocity-time curve of flat projectile has uneven steps. The impact contact 

force of the spherical projectile has a large peak value at t=8.5µs, but the impact force is relatively small. On the 

contrast, the impact contact force of the flat projectile has multiple peak values and the impact forces are relatively 

large. The variations of projectile’s velocity and impact contact force in the ballistic impact process are determined 

by many factors: the contact condition between the projectile and target, material failure time, material damage 

modes and elements deletion. 

5.2 Simulation of high velocity impact penetration process 



High velocity impact is known as a transient dynamic behavior. The ballistic penetration mechanisms in 3D 

textile composite structure are very complicated; however, they can be illustrated in detail by finite element 

simulation. Fig. 10 demonstrates the ballistic penetration process of the spherical projectile in the braided 

composite target. It can be seen that within 30µs, the spherical projectile has completely passed through the 

composite plate. With the duration of impact, various failure modes occur, promote and couple with each other. The 

whole penetration process can be divided into three periods. (a) Opening punching period which happens in the 

front side of composite target at the initiation of the penetration development, as shown in Fig. 10(a), Fig. 10(b) and 

Fig. 10(c). When the projectile touch the front surface of the target, the compression stress wave is generated and 

spread quickly along the axial and transverse directions of the material. In the impact contact zone, the fiber 

crushing fracture and shear failure occur, thus the element in the contact zone are removed. The spherical concave 

shape is formed on the front surface of the target plate, and no obvious deformation happens on the back side of the 

target plate in this period. (b) Back fiber breaking period. In this period, the perforation ability of the projectile has 

been reduced due to the energy absorption during punching failure. However, as shown in Fig. 10(d) and Fig. 10(e), 

with the penetration depth increasing, the elements under the impact zone of the target are removed gradually, and 

the bending deformation on the back of the target increases. Fiber tension breaking occurs and expands outward 

gradually. (c) Projectile penetration and damage propagation period. As shown in Fig. 10(f), the projectile and the 

target plate are no longer in contact, that is, the target has penetrated completely and the velocity of the projectile is 

no longer changes. In this period, the compression wave in the target arrives at the free surface of the material and 

reflects back as the tension wave. With the interaction of tension and compression wave, new damage (mainly 

matrix damage) emerges continuously for a while. 

Figure 11 presents the ballistic penetration process of the flat projectile into the braided composite target. The 

whole process costs about 55µs. Similarly, the penetration process can be summarized as three periods: opening 

punching, back fiber breaking and projectile penetration (damage propagation) period. As shown in Fig. 11(a), Fig. 

11(b) and Fig. 11(c), when the flat projectile contacts the target plate, fiber tension and shear fracture damage are 

generated in a circle shape in the contact zone between the projectile’s head and the target plate. The fiber 

compression fracture is formed in the contact zone between the flat surface of the projectile and the target plate. 

These failed elements are deleted to form a cylindrical concave on the front surface of the target plate. At this time, 

the back of the target plate is less deformed. As shown in Fig. 11(d), with the penetration process continues, the 

deformation of the back of the target plate is gradually increased. Convex phenomenon appears and the fiber 

tension fracture occurs in the convex zone and expands outward gradually. As shown in Fig. 11(e) and Fig. 11(f), 

the materials on the back side of the target collapse and the target plate penetrated. Material pieces generated in the 

ballistic impact process splash out of the projectile holes. After t>11.5µs, the projectile and target plate are 

separated. The projectile continues to move at a constant velocity until it is completely moves away from the target. 

In this period, the deformation of target plate recovered gradually. However, with the interaction of tension and 

compression stress waves, the target plate continues to produce certain modes of damage, mainly the matrix 

damage. 

5.3 Damage modes analysis 

The main failure modes of 3D braided composite target under high velocity impact include yarn axial breaking, 



yarn tension and compression in transverse direction, yarn shear failure and matrix cracking. Among them, yarn 

axial breaking control the final penetration of the composite target. Although other damage modes will not lead to 

the perforation of the target plate directly, they have important effects on the ballistic impact damage process and 

the residual strength of the target plate. Enough attention should also be paid to these damage modes. 

Figure 12 describes the yarn compression failure and matrix damage of the braided composite target under the 

penetration of the spherical projectile. The black area represents the corresponding damage mode. The evolution of 

yarn compression failure in the key influence area on the front surface of the target plate is given in Fig. 12(a). 

When the projectile reaches the target plate, the yarn compression failure occurs in the contact area. With the 

impact process continues, the contact area increases. That is, the damage area and the number of damaged elements 

increase. After t>10µs, half of the spherical projectile has penetrated into the target plate. The damage area on the 

surface of the target plate is no longer increased anymore. Fig. 12(b) displays the evolution of matrix damage on 

the target front surface. The matrix damage is appeared in the contact area of the projectile and the target plate first. 

As the penetration depth increases, the matrix damage increases on the outer surface of the target plate and extends 

outward along the in-plane directions of the target plate. After the target plate penetration, the area which is far 

away from the contact area of the target plate continues to produce new matrix damage under the action of stress 

wave. 

Figure 13 illustrates the yarn tension, compression and shear failure and matrix damage of the braided 

composite target under the penetration of the flat projectile. Fig. 13(a) and Fig. 13(b) present the yarn tension and 

compression failure in the key influence area at t=0.5µs. Due to the shear punching effect of the projectile’s edge 

on the target plate, a circle of yarn tension damage elements appear in the contact zone. At the same time, because 

of the compression punching effect of the projectile flat head on the target plate, yarn compression damage 

elements occur with approximately equivalent area of the head surface of the projectile. Fig. 13(c) demonstrates the 

shear damage distribution in the vertical contact surface direction of the projectile penetrating the target. The yarn 

compression and shear failure elements in the horizontal contact surface direction are deleted thus not shown here. 

In the ballistic penetration process, under the action of stress wave, the number of shear damage elements increase 

slightly, but the quantity is relatively small. Fig. 13(d) presents the evolution of matrix damage on the target front 

surface. At t=0.5µs, the area of matrix damage is approximately equivalent to the head surface area of the projectile. 

As the penetration depth increases, the matrix damage appears on the target plane near the contact zone and extends 

outward along the in-plane directions of the target plate. 

5.4 Effect of striking velocity on the residual velocity and target energy absorption  

According to the energy conservation law, the kinetic energy loss of projectile after penetrating the target plate 

is: 
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where V0 is the initial striking velocity, Vr is the residual velocity. 

Ignoring the energy dissipation in the ballistic impact process, the loss of the projectile's kinetic energy is 

approximately equal to the energy absorption value of the target plate. Fig. 14 shows the variation of residual 

velocity and energy absorption with striking velocity. It is clearly seen from Fig. 14(a) that the residual velocity 



increases linearly with the increase in the impact velocity. Fig. 14(b) exhibits that the target energy absorption 

increases monotonically with the increasing of the impact velocity, but it is not a linear relationship. It is also seen 

that the residual velocity of the flat projectile is smaller than spherical projectile, and the energy absorption of the 

target plate is significantly larger than that of the spherical projectile with the same initial striking velocity. 

6 Conclusions 

Ballistic impact numerical simulation can save expensive costs of material specimen and impact test, obtain the 

data which is difficult to be measured in the experiment, and provide more information on the damage 

characteristics in the penetration process. In this paper, 3D braided composite target plate under ballistic impact is 

selected as the research object. Based on the 3D rate-dependent damage constitutive model of constituents and the 

three unit-cells model of the composite structure, a finite element model of impact damage analysis is established. 

Tsai-Wu and Mises criteria are adopted as damage initiation criteria of yarns and matrix, respectively. By using an 

instantaneous degradation scheme to implement the stiffness reduction, the whole process of damage evolution is 

simulated and the damage mechanisms are revealed in detail. Element deletion is introduced in the simulation 

process to ensure residual stiffness to prevent excessive element distortion. 

The study shows that the penetration process can be summarized as three periods: opening punching, back fiber 

breaking and projectile penetration (damage propagation) period. The main failure modes of 3D braided composite 

target include yarn axial breaking, yarn tension and compression in transverse direction, yarn shear failure and 

matrix cracking. It is also exhibited that there is a nearly linear relationship between the residual velocity and the 

striking velocity of the projectile, and the energy absorption of the target plate increases with the increase of the 

striking velocity while it is not a linear relationship. The finite element model developed in this paper can be used 

to impact damage resistant design of 3D braided composites and the survivability design of the aircraft composite 

structures. 
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Table 1 Stiffness and strength properties of fiber and matrix 

 Ef1 (GPa) Ef2 (GPa) Gf12 (GPa) Gf23 (GPa) µf12 Em (GPa) µm XT (MPa) XC (MPa) S (MPa) 

T300 230 40 24 14.3 0.26   3528 2470  

Matrix      3.5 0.35 80 241 60 

 

 

Table 2 Viscoelastic properties and relaxation time of matrix 

1E (GPa) 1eθ (ms) 2E (GPa) 2eθ (s) 1G (GPa) 
1gθ (ms) 2G (GPa) 

2gθ (s) 

0.971 0.041 0.104 121 0.401 0.077 0.041 120 

 

 

Table 3 Stiffness reduction scheme 

 Damage mode 
1fE  

2fE  
3fE  

12fG  
13fG  

23fG  mE  

Yarn 

L 0.01 1 1 0.01 0.01 1 0.2 

T/LT 1 0.01 1 0.01 1 0.01 0.2 

Z/LZ 1 1 0.01 1 0.01 0.01 0.2 

TZ 1 0.01 0.01 0.01 0.01 0.01 0.2 

Matrix —       0.01 
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Fig. 6 Region division of the 3D braided composite target plate 
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