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A RANDOMIZED VERSION OF THE

LITTLEWOOD CONJECTURE

ALAN HAYNES, HENNA KOIVUSALO

Abstract. The Littlewood Conjecture in Diophantine approximation can be thought
of as a problem about coveringR2 by a union of hyperbolas centered at rational points.
In this paper we consider the problem of translating the center of each hyperbola by
a random amount which depends on the denominator of the corresponding rational.
Using a randomized covering argument we prove that, not only is this randomized
version of the Littlewood Conjecture true for almost all choices of centers, an even
stronger statement with an extra factor of a logarithm also holds.

1. Introduction

The Littlewood Conjecture in Diophantine approximation asserts that, for every
α, β ∈ R,

lim inf
n→∞

n‖nα‖‖nβ‖ = 0,

where ‖ · ‖ denotes distance to the nearest integer. It is easy to prove that the corre-
sponding one variable statement, without the ‖nβ‖ factor, is false. In particular, while
it is true that for all α,

lim inf
n→∞

n‖nα‖ ≤ 1/2,

a well known result of Jarnik [8] states that the set of α ∈ R for which

lim inf
n→∞

n‖nα‖ > 0

has Hausdorff dimension equal to 1. On the other hand, Khintchine’s Theorem [9] tells
us that for almost every α ∈ R we have that

lim inf
n→∞

n(log n)‖nα‖ = 0.

This shows that there is a ‘logarithmic gap’ between what is true almost everywhere
and what is true for all real numbers.

There is currently some discussion in the Diophantine approximation community
about whether or not, in relation to the Littlewood Conjecture, such a logarithmic gap
may also exist. This is precisely the content of Conjecture [L1] in [1], where arguments
are presented in favor of this possibility. The metric analogue of Khintchine’s Theorem

Key words and phrases. Littlewood Conjecture, covering problems.
Research supported by EPSRC grants EP/L001462, EP/J00149X, EP/M023540.
HK also gratefully acknowledges the support of Osk. Huttunen foundation.
MSC 2010: 11J13, 60D05.

1

http://arxiv.org/abs/1610.08007v2


2 ALAN HAYNES, HENNA KOIVUSALO

in this setting is a result due to Gallagher [12], which implies that for almost all
(α, β) ∈ R

2,

(1.1) lim inf
n→∞

n(log n)2‖nα‖‖nβ‖ = 0.

In fact a stronger statement has recently been established in [2], which tells us that for
all α ∈ R, and for almost all β ∈ R (with the set of β depending on α), equation (1.1)
holds. The question then, is whether or not it could actually be true that for every
α, β ∈ R,

(1.2) lim inf
n→∞

n(log n)‖nα‖‖nβ‖ <∞.

Although skepticism has occasionally been raised even of the original Littlewood Con-
jecture, there are no α and β which are known to not satisfy (1.2). The stronger
statement is in fact consistent with what is known to be true for cubic irrationals
from the same cubic number field [5, 11]. It is also consistent with known results for
quadratic irrationals (and real numbers with quasi-periodic continued fraction expan-
sions) in the p-adic versions of the Littlewood Conjecture [3, 7, 10] (see [4] for the
corresponding metric statements in this case).

The purpose of this note is to explain how a covering argument used by Dvoretzky
in [6] can be used to prove the following randomized version of assertion (1.2).

Theorem 1.1. Let (γn)n∈N and (δn)n∈N be sequences of independent random variables
taking values which are uniformly distributed (with respect to Lebesgue measure) in
[0, 1). Then almost surely we have that, for all α, β ∈ R,

lim inf
n→∞

n(log n)‖nα− γn‖‖nβ − δn‖ ≤ 1.

Of course it follows immediately from this theorem that for almost all values of
(γn)n∈N and (δn)n∈N,

lim inf
n→∞

n‖nα− γn‖‖nβ − δn‖ = 0,

for all α, β,∈ R. As mentioned in the abstract, there is a natural geometric interpre-
tation of this result. For each n, the set of α, β ∈ R which satisfy

n‖nα‖‖nβ‖ ≤ ǫ

is a union of hyperbolas centered at rational points with denominators equal to n. In
order for the Littlewood Conjecture to be true, it must be the case that, for all ǫ > 0,
the union of all such hyperbolas covers all of R2. Our randomized result in Theorem
1.1 allows a translate, depending on n, of the centers of each of the hyperbolas.

2. Proof of Theorem 1.1

Theorem 1.1 will follow from the following more general result.
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Theorem 2.1. Let (γn)n∈N and (δn)n∈N be sequences of independent random variables
taking values which are uniformly distributed in [0, 1). Let ψ : N → [0,∞) be a de-
creasing function and suppose that, for some ǫ > 0,

(2.1) lim sup
n→∞

1

n4+ǫ
· exp

(

(4− ǫ)

n
∑

m=1

ψ(m) log
1

ψ(m)

)

= ∞.

Then for almost all values of (γn)n∈N and (δn)n∈N, we have that, for all α, β ∈ R there
are infinitely many solutions to the inequality

(2.2)
∣

∣

∣
α +

γn
n

−
a

n

∣

∣

∣
·

∣

∣

∣

∣

β +
δn
n

−
b

n

∣

∣

∣

∣

≤
ψ(n)

n2
,

with n ∈ N and a, b ∈ Z.

Proof. For each n ∈ N let

un = n−4−ǫ · exp

(

(4− ǫ)

n
∑

m=1

ψ(m) logψ(m)−1

)

,

and define

Λ =

{

n ∈ N : un ≥ max
m≤n

um

}

.

The set Λ is infinite by hypothesis. Furthermore if n ∈ Λ then, since un ≥ un−1, we
obtain

ψ(n) log
1

ψ(n)
≥

4 + ǫ

4− ǫ
· log

n

n− 1
=

4 + ǫ

4− ǫ
·
1

n
+O

(

1

n2

)

.

Since the function x 7→ x log x−1 is increasing on the interval (0, e−1), it follows from
the above equation that

(2.3) ψ(n) ≥
1 + ǫ/4

n log n
,

for all sufficiently large n ∈ Λ.

The problem we are considering is periodic modulo 1 in both α and β. Therefore if
we set

An = {(α, β) ∈ [0, 1)2 : (2.2) holds for some a, b ∈ Z},

what we are trying to prove is that

lim sup
n→∞

An = [0, 1)2.

If it happens that An = [0, 1)2 for infinitely many n (equivalently, that ψ(n) ≥ 1/4 for
infinitely many n) then there is nothing to show. It follows that we can, without loss
of generality, ignore all values of n for which this happens. For the remaining n, the
Lebesgue measure of An is given by

λ(An) = n2

(

4ψ(n)

n2
+ 8

∫ 1/2n

√
ψ(n)

n

ψ(n)

n2α
dα

)

= 4ψ(n) logψ(n)−1 − 4(log 4− 1)ψ(n).(2.4)
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Again, a basic computation shows that the function x 7→ 4x(log x−1 − log 4 + 1) is
increasing on the interval (0, 1/4). Therefore it follows from (2.3) that there exists an
n0 ∈ N such that

λ(An) ≥
4

n
,

for all n ∈ Λ satisfying n ≥ n0. We suppose without loss of generality that n0 is also
chosen so that (2.3) holds for all n ∈ Λ with n ≥ n0.

Now suppose that n ∈ Λ, with n ≥ n0, and for each m ≤ n define B
(n)
m ⊆ Am by

B(n)
m =

m
⋃

a,b=1

{

(α, β) ∈ [0, 1)2 :
∣

∣

∣
α +

γm
m

−
a

m

∣

∣

∣
·

∣

∣

∣

∣

β +
δm
m

−
b

m

∣

∣

∣

∣

≤
ψ(m)− 1/(n log2 n)

m2

}

.

From (2.4) we have that

λ(B(n)
m ) = λ(Am) +O

(

1

n logn

)

.

Furthermore, if there is a point x ∈ [0, 1)2 which does not lie in
⋃n

m=1Am, then we
have that

B
(

x, 1/(n2 log2 n)
)

∩
n
⋃

m=1

B(n)
m = ∅.

Although this is not immediately obvious, it follows easily from computing the global

minimum of the distance from a point on the boundary of Am, to the boundary of B
(n)
m .

The global minimum occurs along the ‘tails’ of the hyperbolic regions which form the
boundaries of these sets.

What we have shown so far implies that, if there is a point x /∈
⋃n

m=1Am, then, as
long as n is large enough (depending on ǫ), there exist integers 1 ≤ a, b < ⌊n2+ǫ/2⌋
satisfying

(

a

⌊n2+ǫ/2⌋
,

b

⌊n2+ǫ/2⌋

)

/∈
n
⋃

m=1

B(n)
m .

Using our independence assumption, the measure of the set of (γm, δm) pairs for which
such integers a and b exist is bounded above by

n4+ǫ · λ

(

n
⋂

m=1

([0, 1)2 \B(n)
m )

)

= n4+ǫ
n
∏

m=1

(1− λ(B(n)
m ))

= n4+ǫ

n
∏

m=1

(

1− λ(Am) +O

(

1

n log n

))

.(2.5)

We assume at this point that λ(Am) → 0 as m → ∞ (if this is not the case, the
remainder of the argument is very easy). Under this assumption we have, for n ∈ Λ
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sufficiently large, that the expression on the right hand side of (2.5) is bounded above
by a constant times

n4+ǫ · exp

(

−
n
∑

m=1

λ(Am)

)

.

This in turn is bounded above, again for n sufficiently large, by a constant times

n4+ǫ · exp

(

−(4− ǫ)

n
∑

m=1

ψ(m) logψ(m)−1

)

,

and, by hypothesis, this expression tends to 0 as n → ∞. This shows that, for almost
every choice of (γn)n∈N and (δn)n∈N, we have that

∞
⋃

m=1

Am = [0, 1)2.

The same argument also shows that, for any M ∈ N, we have almost surely that
∞
⋃

m=M

Am = [0, 1)2,

and this completes the proof. �

To verify the statement of Theorem 1.1, let δ > 0 and take

ψ(n) =
1 + δ

n log(n+ 1)
.

It is not difficult to check that we can then choose ǫ > 0 so that (2.1) is satisfied, and
we conclude from Theorem 2.1 that, for almost every choice of (γn)n∈N and (δn)n∈N,

lim inf
n→∞

n(logn)‖nα− γn‖‖nβ − δn‖ ≤ 1 + δ.

Since δ > 0 is arbitrary, the claim of Theorem 1.1 follows.
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