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ABSTRACT 1 
 2 
Over the last few decades, there have been two parallel streams of driving behaviour research:  3 
models using trajectory data collected from the field (using video recordings, GPS, etc.) and 4 
models using data from the driving simulators (where the behaviours of the drivers are recorded in 5 
controlled laboratory conditions). While the former source of data is more realistic, it lacks 6 
information about the driver and is typically not suitable for testing effects of future vehicle 7 
technologies and traffic scenarios. On the other hand, driving behaviour models developed using 8 
driving simulator data may lack behavioral realism. However, there has not been any previous 9 
study which compares these two different streams of mathematical models and investigates the 10 
transferability of the models developed using driving simulator data to real field conditions in a 11 
rigorous manner. The present paper aims to fill in this research gap by investigating the 12 
transferability of the car-following models between a driving simulator and two comparable 13 
real-life traffic motorway scenarios, one from the UK and the other one from the US. In this 14 
regard, stimulus-response based car-following models have been developed using three different 15 
microscopic data sources:  (i) experimental data collected from the University of Leeds Driving 16 
Simulator (UoLDS), (ii) detailed trajectory data collected from Motorway 1 (M1), UK and (iii)  17 
detailed trajectory data collected from Interstate 80 (I-80), CA, USA. The parameters of these 18 
car-following models are estimated using the Maximum Likelihood Estimation technique and 19 
transferability of the models are investigated using statistical tests of parameter equivalence and 20 
Transferability Test Statistics. Estimation results indicate transferability in the model level but not 21 
fully in the parameter level for both pairs of scenarios.  22 
 23 
Keywords: Car-following, NGSIM, Driving Simulator, Validation, Transferability  24 
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1. BACKGROUND 1 

Road safety continues to be an important issue with road crashes among the leading causes of 2 
death - accounting for more than 1.2 million fatalities and 50 million injuries globally each year 3 
(1). Driver behaviour is a factor in over 90 percent of crashes, with speeding as one of the major 4 
contributors (1).  Driving behaviour models, which provide mathematical representations of how 5 
the drivers make decisions involving acceleration-deceleration, lane-changing, overtaking, etc., 6 
are increasingly being used for evaluation and prediction of road safety parameters and 7 
formulating remedial measures. Reliable driving behaviour models are also critical for accurate 8 
prediction of congestion levels in microscopic traffic simulation tools (2) and analyses of 9 
emissions (3). Moreover, driving behavior models have significantly contributed to the 10 
development and deployment of different Intelligent Transportation Systems (ITS) measures (4), 11 
(5).  12 
Microscopic driving behaviour models are typically developed using two types of data, (a) driving 13 
simulator data (where participant drivers drive an instrumented vehicle in a simulated roadway) 14 
and (b) real traffic data. Data from the driving simulators are collected following standardized 15 
procedures and are more controllable and reproducible. Further, driving simulators allow 16 
researchers to manipulate the surrounding conditions (e.g. geometric layout of the road, number 17 
and type of vehicles, weather and pavement conditions and so on) as well as driver specific 18 
conditions (e.g. level of distraction and fatigue) and run various hypothetical scenarios. However, 19 
there is scepticism regarding the simulator fidelity (physical and behavioural) of how well the 20 
driver’s behaviour in simulator match with his/her behaviour in real roads (6). On the other hand, 21 
the real traffic data best represent the true driving behaviour, but have several limitations: 22 
measurement errors, complex confounding of influencing factors, less control on the external 23 
factors, and absence of driver characteristics to name a few. Given the difference in the nature of 24 
the two data sources, it is of paramount importance to investigate the transferability of the model 25 
parameters between the driving simulator and the real traffic. It may be noted that in addition to 26 
these two sources, naturalistic driving data collected using instrumented vehicles (e.g UDRIVE 27 
(7), SHRP2 (8) etc.) have also been used in research, but given the high costs involved, the 28 
availability of these data are still very limited. Moreover, similar to the driving simulator data, the 29 
naturalistic data are likely to be prone to behavioural incongruence; and similar to the field data, 30 
the external variables are often not fully controllable and it is not possible to test the effects of 31 
hypothetical scenarios.  32 
There have been several previous researches on validation of driving behaviour observed in the 33 
driving simulator using isolated measures (e.g. speed, acceleration, reaction time, etc.). For 34 
instance, Törnros (9) attempted to validate driver’s behaviour in terms of speed and lateral position 35 
in a simulated road tunnel.  The results have shown that (i) behavioural validity in absolute terms is 36 
not satisfactory, especially referring to speed choice, while (ii) relative validity is achieved in both 37 
parameters. Godley et al. (10) conducted two different experiments in an instrumented car and a 38 
driving simulator comparing speed measurements. In both cases, the test roadway contained 39 
transverse rumble stripes at three locations and three additional control points (without rumble 40 
strips). The results again have demonstrated relative validity indicating that drivers decelerate in a 41 
similar pattern in the rumble strips, but have shown that drivers tend to drive faster in the real-life 42 
case than in the simulator and have hence failed to demonstrate absolute validity. Bella et al. (11) 43 
conducted a simulator validation study comparing drivers’ speeds, in a deceleration lane and also 44 
found though relative validity was satisfactory in all scenarios, the differences in the mean speeds 45 
were significantly high in the simulator in non-demanding configurations (e.g.  in presence of 46 
curves with large radius). This was assumed to stem from the different risk perception on the 47 
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simulated road as opposed to the real road. A similar study conducted from Yan et al. (12), 1 
simulated a real signalized intersection, comparing drivers’ speed behaviours in both cases. 2 
Comparisons of the surrogate safety measures from the simulator with the crash analyses for the 3 
field data have demonstrated relative validity.  Further, the results illustrated that both the observed 4 
and simulated speed data followed normal distributions with equal means for each intersection 5 
approach - which validated the driving simulator in absolute terms as well. In addition, McGehee 6 
et al. (13) investigated the validity of the simulator using drivers’ reactions and performances in an 7 
intersection scenario by conducting a series of experiments in Iowa Driving Simulator and a 8 
similar field scenario and showed the statistical equivalence of the driver’s reaction times between 9 
the real-life and simulation cases. A validation study by Engen (14) used three different datasets 10 
from (a) driving simulator, (b) an instrumented vehicle and (c) and road side monitoring and 11 
compared data in terms of reaction times, speeds and lateral positions and time gaps. The findings 12 
have shown that the outputs from the simulator have less variance compared to field traffic.  A 13 
recent study of Risto and Martens (15) compared drivers’ choices in terms of headway while 14 
driving a driving simulator and an instrumented vehicle. Both experiments were conducted on 15 
same participants and the results have demonstrated significant similarity in speeds and headways 16 
in two cases. Another validation study conducted by Lee (6) analysed the behaviour of older 17 
drivers in driving simulator and on-road experiments and found significant positive association 18 
between the two driving performance indices (developed using principal component analyses) and 19 
after adjustment for age and gender of the drivers, was able to explain over two-thirds of the 20 
variability of the on-road driving performance indices. 21 
Majority of the validation studies thus confirm relative validity, though the findings regarding the 22 
absolute validity are mixed. This raises the question whether or not the mathematical models of 23 
driving behaviour are transferable between the two settings. To the best of our knowledge, there 24 
has not been any previous research that examines the transferability of the parameters of a 25 
mathematical model of driving behaviour between a driving simulator and a similar filed traffic 26 
condition. This paper aims to fill in this critical research gap. 27 
The objective of this paper is to investigate the transferability of the car-following models between 28 
a driving simulator and real traffic scenarios. In this regard, a state-of-the-art car-following model 29 
is re-estimated using two sets of microscopic traffic data extracted from video recordings of real 30 
traffic: one from the UK and the other one from the US (referred as Field Model UK and Field 31 
Model US respectively) and trajectory data from a comparable scenario in the driving simulator 32 
(referred as Sim Model). The performances of the models have been examined independently by 33 
using informal tests (i.e. signs and values of the parameter estimates) and formal tests of statistical 34 
differences (e.g. t-tests of parameter equality (16) and Transferability Test Statistic (17)).  35 
The remainder of this paper is organized as follows: Section 2 focuses on the datasets, Section 3 36 
outlines the details of the model structure, Section 4 presents the estimation results of the proposed 37 
models and Section 5 focuses on the transferability analyses. Finally, Section 6 summarizes the 38 
conclusions and suggests future research actions. 39 

 40 
2. DATA 41 

The following three secondary datasets have been used in this research:  42 
 Driving simulator data of a UK Motorway scenario 43 

 Video data from a segment of Motorway 1 (M1), UK 44 

 Video data are from a segment of US101, USA  45 



Papadimitriou and Choudhury   6 
 
The descriptions of the study areas and the datasets are presented below followed by a critical comparison 1 
which highlights their similarities and differences. 2 
 3 
2.1 Study Area 4 

 5 
2.1.1 Driving Simulator Data 6 

The simulator data has been derived from an experimental study in the University of Leeds 7 
Driving Simulator (UoLDS), one of the most advanced driving simulators in Europe. UoLDS has a 8 
Jaguar S-type vehicle cab (see Figure 1a) with all driver controls fully operational. The vehicle’s 9 
internal Control Area Network (CAN) is used to transmit driver control information between the 10 
Jaguar and a network of nine high performance computers that manages the complete simulation. 11 
Control feedback is generated so that the driver seated in the cab feels (steering and pedal loading), 12 
sees (dashboard instrumentation) and hears (engine, transmission and environmental noise) an 13 
appropriate simulation of the driving environment (Figure 1b). The simulator incorporates an eight 14 
degree-of-freedom motion system. A hexapod motion platform, carrying the 2.5t payload of the 15 
dome and vehicle cab combination allows limited motion in all six orthogonal degrees-of-freedom 16 
of the Cartesian inertial frame. Additionally, the platform is mounted on a railed sled that allows a 17 
further 5m of effective travel in sway and surge. These aim to reduce, while not fully eliminate, 18 
differences between real world and simulator driving behaviour (18).  19 
 20 

 21 
a. Simulator Experience                               b. Motorway 22 

  23 
FIGURE 1: Sample of driving Scenarios in UoLDS (18) 24 
 25 
The experiment included forty participants (20 females, 20 males) aged between 19 to 83 years. 26 
Each participant had to drive approximately 30-40 minutes on a road section of 2,000 meters (see 27 
following Fig. 2). The participants were instructed to drive the simulator vehicle cab as if it were in 28 
a real-life vehicle, obeying the specific speed limits and all legal regulations. The full simulator 29 
study, performed as part of the Smart Motorway Project of the UK Highways Agency (19), 30 
included driving decisions in presence of lane closures and roadwork, but in order to preserve 31 
similarity with the field scenario (described in 2.1.2), only part of the data that had no disruption, 32 
similar network topography and traffic flow levels as the field data has been used in this study. 33 
Since, the focus of the study is on car-following behavior, the lanes affected by road closure 34 
(which are likely to have more lane changes) are excluded and only data from the two rightmost 35 
lanes have been retained for the model development. The full road network of the driving 36 
simulator study and the selected segment are presented in Figure 2. 37 
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 1 
FIGURE 2: Schematic of road section, which was used in UoLDS experimental study 2 
(Source: figure adopted from Highways Agency, UK (19)) 3 
 4 
2.1.2 Field Data UK 5 

The disggregate vehicle trajectory data collected between J42-J43 of the M1 motorway network in 6 
the UK has been used as the first source of field data. The data was collected in May 2013 from an 7 
over-bridge located 620m downstream from J42 and the trajectory data was extracted using a 8 
semi-automated vehicle trajectory extractor application by Lee et al. (20). Due to the camera angle 9 
and features of the trajectory extraction software, only data from the first 320m was found to be 10 
usable. The details of the data collection and processing have been reported by Kusuma et al.  (21).  11 
The road section constitutes of five traffic lanes (Figure 3). Since, the focus of this research is on 12 
car-following behaviour, the lanes that have the lowest number of lane changes (lanes 4 and 5) 13 
have been used in this research. 14 

 15 

FIGURE 3: Estimation data collection site at the M1 motorway  16 
(Source: figure adopted from Kusuma et al. (21))  17 
 18 

2.1.3 Field Data US 19 

The diaggregate vehicle trajectory data collected from the eastbound direction of Interstate 80 20 
(I-80) in Emeryville, California, USA as part of the Next Generation Simulation (NGSIM) 21 
program has been used as the field data. The data was collected in April 2005 using seven 22 
synchronized digital video cameras set on top of tall buildings and covering a road length of 23 
approximately 500 meters (1640 feet). Detailed coordinates of individual vehicles have been 24 
extracted using the customized software NG-VIDEO at a 0.1 second time resolution (20).  25 
The original road section constitutes of six traffic lanes including a high-occupancy vehicle (HOV) 26 
lane (Figure 4). Since, the focus of this research is on car-following behaviour, the lanes that have 27 
the lowest number of lane changes (lanes 3 and 4) have been used in this research. Further, since 28 
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maximum similarity with the driving simulator scenario is a critical element of this research, data 1 
between 5:15-5:30 pm, when the average flow rates were similar, have been used in the study. The 2 
explanatory variables used in the model estimation are created by VISUAL BASIC scripts (full 3 
details available in Papadimitriou2015) (23).  4 

 5 

FIGURE 4: Estimation data collection site at the I-80 motorway 6 
(Source: figure adopted from Choudhury et al. (24)) 7 
 8 
2.2 Comparison 9 

Though a conscious effort has been made to maximize the similarity between the simulator and the 10 
field datasets, since they are all secondary datasets, there are some differences. It may be noted that 11 
even in a primary data collection using the driving simulator, even though the traffic flow rates and 12 
the behavior of the ambient traffic are controllable, since the speeds and accelerations are driven 13 
by the decisions taken by the participant, the observed speed and acceleration distributions are not 14 
fully controllable.  15 
The key aggregate characteristics of the three datasets are presented in Table 1. Figure 5 presents 16 
the comparison between the distributions of the key variables in the three datasets.  17 
As seen in Table 1 and Figure 5, the average speeds of the drivers are higher in the UoLDS data 18 
compared to the Field Data US. This is not unusual since in the simulator environment, though the 19 
participants have been instructed to drive as they would do in real roads, there is no actual risk of 20 
potential injury. This may encourage the driver to drive aggressively. It may be noted though that 21 
the difference was found to be much smaller between the UoLDS data and the Field Data UK. 22 
Moreover, though the mean acceleration/deceleration levels in all three datasets had similarity, the 23 
driving simulator data revealed a larger clustering around the mean value. This is not unexpected 24 
given the much smaller number of drivers in the Sim Data. In all three datasets, accelerations close 25 
to 0 was found to have higher proportions (see Table 1 and Figure 5).  26 
Concerning the distribution of the time headway, the UoLDS and the Field Data UK had flatter 27 
distributions compared to the Field Data US, but values from 2 sec to 4 sec appeared to be the most 28 
frequent in all three data sets (see Figure 5). It may be noted that in all three datasets, time headway 29 
values have been restricted to the upper bound (=5 sec) due to adopted definition of the 30 
car-following regime. Overall, though the three datasets had significant similarities in terms of 31 
geometry and flow levels, the speeds, accelerations and headways had significant variations.   32 
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TABLE 1: Summary of aggregate characteristics 1 

 2 

Survey year
Source
Road category
Survey duration (min)
Luminance conditions
Pavement conditions

Number of vehicles 
Number of observations
Time resolution (sec)
Length of road section (m)
Traffic flow (veh/h/lane)

Comments

Variables
Maximum Minimum Mean Median Std. Dev. Maximum Minimum Mean Median Std. Dev. Maximum Minimum Mean Median Std. Dev.

Acceleration (m/s/s) 2.04 -5.52 0.00 -0.01 0.29 6.96 -6.97 -0.70 -0.55 1.40 3.41 -3.41 -0.03 0.00 1.34

Subject speed (m/s) 39.18 18.99 29.72 30.36 3.08 50.36 11.35 26.93 26.08 5.65 29.05 0.13 5.00 4.58 2.08

Front vehicle speed (m/s) 40.57 18.71 29.67 30.10 3.95 50.36 11.35 25.87 68.48 4.36 29.05 0.02 4.84 4.57 2.21

Time headway (sec) 5.00 0.00 2.69 2.64 1.14 5.00 0.02 2.30 2.22 0.03 5.00 0.00 3.07 3.02 0.96

Space headway (m) 190.97 0.00 80.18 77.71 35.18 129.91 3.24 51.25 43.43 29.04 60.00 0.00 14.22 13.10 5.61

2 out of 5 traffic lanes seperated (see Fig. 3)

Dry

527 598
6,836

2 out of 4 traffic lanes seperated roadwork parts seperated 
and removed (see Fig. 2)

1,700 1,600

2 out of 6 traffic lanes seperated (see Fig. 4)

1,750

Dry

502.92

Dry

0.101.00
320

0.17

1,500

15 minutes (17:00-17:15)≈ 30-35 minutes of driving for each participant

40
116,644

15 minutes (17:15-17:30)
Daytime

379,397

DaytimeDaytime

Field Data US 

2005
NGSIM, FHWA

Motorway

Sim Data

2014
University of Leeds

Motorway

Field Data UK

2013
University of Leeds

Motorway
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3. METHODOLOGY 1 

This section covers the details of the model structure, the likelihood function used for estimation 2 
and the transferability tests used in this study. 3 
 4 
3.1 Model Structure  5 
 6 
The longitudinal movement decisions of the driver tend to vary significantly depending on the 7 
headway with the front vehicle. The acceleration models therefore typically have 2 states:  8 
 9 

(a) car-following regime (constrained driving conditions)  10 

(b) free-flow regime (unconstrained driving conditions)  11 

The model structure used in this study is derived from Ahmed’s study (25), which was practically 12 
an extension of the earlier stimulus-response studies such as Subramanian’s (26) and Gazis et al. 13 
(27). In the stimulus-reponse framework, the subject driver accelerates/decelerates in response to 14 
the stimulus (generally the speed difference) of the vehicle in the front (leader). The sensitivity 15 
towards this stimulus can vary among the drivers and for the same driver on different situations. 16 
Due to reaction time (typically between 0.5 to 3 seconds), there is a time lag between the stimulus 17 
and the observed actions (accelerations/ decelerations). Ahmed’s (25) model extended this basic 18 
model by making it more flexible by assuming non-linear functions for the sensitivity function.  19 
The stimulus part is typically a function related to the leader’s relative speed (see Equation 1):  20 
 21 

)()()( tVtVtV n
Leader

nn                     (1) 22 

Where,  23 

)(tVn = Relative speed of driver n with respect to the leader at time t; 24 

)(tV Leader
n = Speed of the lead vehicle of driver n at the time t; 25 

)(tVn = Speed of driver n at the time t. 26 

Further, the stimulus component can have two variations (i) when the speed difference between the 27 
leader and the subject driver is positive, which essentially means that the leader drives faster than 28 
the follower and (ii) when the difference is negative, which means that the follower drives faster 29 
than the leader. The first case refers to acceleration conditions, whereas the second to deceleration.  30 
 31 

The overall car-following acceleration is given by:  32 





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



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),(
,

)(
ntnVift
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otherwiset
deccf

na
tna



                                                                                                   (2) 33 

 34 
However, it should be clarified that the correspondence to positive and negative stimuli may be 35 
different for the simple reason that these two situations are fundamentally different and expected to 36 
trigger different behavioural responses. The acceleration decisions, which are triggered by a 37 
positive leader relative speed, is likely to be caused by speed advantage reasons and by 38 
‘herd-effect’ (i.e. when people tend to adopt their behaviors or actions according to the others). 39 
Deceleration decisions on the other hand are likely to be prompted by safety considerations. In 40 
order to capture the aforementioned situations, the coefficients of explanatory variables of the 41 
model can be positive or negative according to each stimuli.  42 
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The sensitivity part is a function related to the explanatory variables such as subject vehicle speed, 1 
space and time headway, relative speed, etc.  2 
The general formulation can be expressed as follows: 3 

)()()()( tj
nntnVktj

nXjstj
na j  



 



  decaccj ,               (3)  4 

Where, 5 

.js = sensitivity function;   6 

)(tX j
n = explanatory variables affecting the sensitivity of the driver n at observed time t;   7 

.jk = stimulus function; 8 

)(tj
n = random error term of driver n at time t; 9 

),0(~)( 2
j

j
n Nt  , that is, the random error is assumed to be distributed normally.  10 

 11 
The model assumes that the correlations between acceleration decisions from the same driver over 12 
time are captured only by the reaction time. The observations of the same driver are therefore 13 
independent conditional on the reaction time. Under this assumption, the probability density 14 
function of the car-following acceleration and car-following deceleration are given by: 15 
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The distribution of the combined car-following model is given by:  17 

      0)(0)(
|)(|)(|)(


 nnnn tVdec

n
tVacc

n ntafntafntnaf


              (5) 18 

The trajectory data constitutes as series of acceleration decisions of the same driver. The 19 
acceleration profile of the driver can be expressed as follows:  20 

)|)(()|)()....,3(),2(),1((
1


nT

nnnnnnnn tafaaaaf 
              (6) 21 

Where, Tn is the number of observations of driver n. Assuming the observations of different drivers 22 
are independent, the log-likelihood function (conditional on reaction time) is presented by 23 
Equation (5).  24 
 25 

 



n

nnnnn

N

n

aaaafLL


 ))()....,3(),2(),1((ln
1

               (7) 26 

The unconditional likellihoods can be derived by integrating the function over the reaction 27 
time distribution and the model parameters can be derived by maximizing this likelihood function. 28 
 29 
3.2 Evaluating Models Performance and Transferability 30 

Review of literature revealed several formal statistical tests of transferability (28) among which 31 
the t-tests of individual parameter equality and Transferability Test Statistic (TTS) have been 32 
found to be most widely used and selected for this study. 33 
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The t-tests of individual parameter equality compares the individual pairs of coefficients by testing 1 
the t-stat for absolute difference between the parameter estimates of equivalent variables between 2 
the two models (e.g. of Galbraith and Hensher’s study, (16)). The t-stat differences can be 3 
expressed as follows: 4 

2

,

,2

,

,

,,
,

)()(
kappl

kappl

ktrans

ktrans

kapplktrans
kdiff

tt

t

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





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                 (8) 5 

Where, 6 

ktrans,



 and kappl,



 = estimates for the k-th parameter in the transferred and application models;   7 

ktranst , and kapplt , = the respective t-stat. ratios of the parameter estimates;   8 

kdifft , = t-stat. ratio for the difference between parameters. At 95% level of confidence, the model 9 

parameters are classified to be statistically different (i.e. non-equal) if t diff, k > 1.96. 10 
 11 
The Transferability Test Statistic (TTS) (Atherton and Ben-Akiva’s study, (17)) refers when the 12 
transferred model is statistically equivalent to the applicable (estimated) model in the application 13 
context, is rejected or not. The respective formula is presented below: 14 
 15 

))()((2)( applappltransappltransappl LLLLTTS


                (9) 16 

Where, 17 

)( transapplLL


 = log-likelihood on the application context data using transferred context 18 

parameters;  19 

)( applapplLL


 = log-likelihood on the application context data using application context 20 

parameters; 21 

)( transapplTTS


 = transferability test statistic of the transferred model in application context.  22 

 23 
The TTS value follows a chi-squared (Ȥ2) distribution with degrees of freedom (dof) equal to the 24 
number of parameters. At 95% level of confidence, the models are classified to be statistically 25 
different (i.e. non-transferable) if Ȥ2

 > Ȥ2
critical (17). 26 

 27 
4. RESULTS 28 

The development of the models aimed to achieve three key objectives,  29 
(i) A logical structure  30 

(ii)  Rational signs of model parameters according to the stimulus-response concept and  31 

(iii)  Best goodness-of-fit and statistically significant model parameters.  32 
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The OX Metrics econometric package (29) was used for the estimation of the acceleration model 1 
parameters.  The explanatory variables were statistically checked, both individually (e.g. standard 2 
errors and t-stat values) and according to its correlation with the other explanatory variables (e.g. 3 
covariance matrices). The critical time headway (differentiating between car-following and 4 
free-flow) has been selected to be 5 seconds in line with previous studies on motorway scenarios 5 
(25).  6 
According to the literature, reaction time ranges from a minimum value of 0.5 seconds to a 7 
maximum value of 2.5 seconds (25-40). Models have been estimated using different reaction times 8 
within this range and reaction time equal to 0.5 seconds has been selected for both cases based on 9 
goodness of fit values.  10 
Adjusted Rho Square (ߩଶതതത) measures the fraction of an initial log-likelihood value explained by the 11 
final model taking into account the model complexity (i.e. discounting for the additional 12 
parameters). The formula is defined as follows: 13 
 14 

)0(

*)(
12

LL

kLL 


                  (10) 15 

Where, *)(LL is the maximum log-likelihood value )0(LL is the maximum log-likelihood value 16 

and k is the number of estimated parameters.  17 
 18 
The final estimation results are presented in Table 2. 19 
 20 

TABLE 2:  Estimation Results 21 

 22 
It may be noted that a couple of additional variables have also been tested but not included in the 23 
final models. These include the current and lagged speed and acceleration of the driver, the type of 24 
the front vehicle, the type of the subject vehicle type and traffic density. The coefficients of these 25 
variables were found to be non-intuitive and insignificant.   26 

Constant 0.247 10.46 0.039 10.77 0.154 5.80 8.70 2.62

Relative speed (m/s) 0.226 3.86 3.266 20.35 3.989 28.54 17.79 24.83

Time headway (sec) 0.012 0.29 0.028 1.17 1.348 6.18 0.36 6.03

Sigma 0.152 38.56 0.024 24.79 0.233 24.60 31.62 7.84

Constant -0.218 -12.39 -0.145 -11.85 -3.722 -1.65 3.41 1.55

Relative speed (m/s) 0.327 4.50 1.984 48.42 11.098 28.54 19.86 27.23

Time headway (sec) 0.054 2.04 0.089 13.82 1.463 6.41 1.28 6.13

Sigma 0.127 44.36 0.024 25.38 0.227 54.60 34.07 19.95

Variable

Sim Model Field Model UK Field Model US t-stat. diff* (absolute values)

Parameter t-stat. Parametert-stat. Parametert-stat.
Sim Model & 

Field Model UK
Sim Model & 

Field Model US

*t-tests of individual parameter equivalence (Galbraith and Hensher, 1982)

Field Model UK

Parametert-stat. t-stat.

t-stat. diff* (absolute values)
Car-following acceleration 

Car-following deceleration

Sim Model & 
Field Model UK

Sim Model & 
Field Model US

Field Model US

Parameter
Variable

Sim Model 

Parameter t-stat.
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4.1 Estimation Results of the Sim Model (Driving simulator data) 1 

The car-following acceleration model estimated using the driving simulator data is defined as 2 
follows: 3 
 4 

)()(
)(

1
247.0)( ,226.0

012.0
, ttV

tT
ta acccf

nn
n

acccf
n  




   (11) 5 

         6 

))152.0(,0()( 2, Ntacccf
n   7 

 8 
Where, 9 
t =current time period; 10 

n = reaction time for driver n; 11 

)(tna = acceleration for driver n at time t; 12 

)(tnT = time headway at time t (sec); 13 

|)(| ntV   = absolute value of relative speed between subject and leader vehicle at time t  14 

  15 
Whereas, the estimated car-following deceleration model is: 16 
 17 

)()(
)(

1
218.0)( ,327.0

054.0
, ttV

tT
ta deccf

nn
n

deccf
n  


    (12) 18 

))127.0(,0()( 2, Ntdeccf
n   19 

 20 
As can be seen in Table 2 and equations (11) and (12), all estimated coefficients of the Sim model 21 
have the expected signs and magnitudes. Concerning the stimulus term of the car-following 22 
regime, it increases with relative speed hence as expected and the sign is positive in both cases of 23 
acceleration and deceleration models (referring to a positive correlation between the relative speed 24 
and the magnitude of acceleration that the driver applies).  25 
In the sensitivity component, the signs of the constant parameters are positive for acceleration and 26 
negative for deceleration as expected. Apart from this, both constant parameters have similar 27 
magnitudes showing similarity in acceleration and deceleration ranges if all else are equal.  28 
Regarding, the time headway, as expected, the drivers tend to be less sensitive to the same stimulus 29 
as the time headway gets larger. On the other hand, in deceleration model, it can be concluded that 30 
drivers tend to decelerate more to the same stimulus when the time headway reduces. That could 31 
be logically justified for the reason that drivers’ safety concerns grow when the time headway 32 
decreases, by making them to decelerate so as to obtain again a safe headway from leader vehicle.  33 
Most of the parameters are significant at 95% level of confidence, except for time headway. This 34 
t-stat. value of this variable is equal to 0.26 and this may be related to low time headway variability 35 
in driving simulator data (see Figure 5). This has however been retained for comparison purposes 36 
since the time headway was found to be a statistically significant variable in the Field Model US.  37 
 38 
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 1 

 2 
 3 
FIGURE 6: Sensitivity of different variables in car-following acceleration and deceleration 4 
models according to the Sim Model 5 
 6 
Figure 6 presents the sensitivity analysis showing the performance of variables in both 7 
acceleration and deceleration models. The default values set assumed to be: the relative speed 8 
equal to 0.5 or (-0.5) m/s and time headway equal to 2.7 sec. These numbers have been derived 9 
from mean values of driving simulator sample. 10 
According to the sensitivity analysis it is apparent that the mean acceleration (deceleration) is not 11 
substantially affected in magnitude by time headway. On the contrary, relative speeds have larger 12 
impacts on acceleration-deceleration magnitudes.  13 
 14 

4.2 Estimation Results of the Field Model UK (Real Traffic Data from M1, UK) 15 

The car-following acceleration model estimated using field data from the UK is as follows: 16 
 17 
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)(
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028.0
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n  
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  (13) 18 

 19 

))024.0(,0()( 2, Ntacccf
n   20 

 21 
Where, 22 
t =current time period; 23 
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n = reaction time for driver n; 1 

)(tna = acceleration for driver n at time t; 2 

)(tnT = time headway at time t (sec); 3 

|)(| ntV   = absolute value of relative speed between subject and leader vehicle at time t  4 

 5 
Whereas, the estimated car-following deceleration model is as follows: 6 
 7 

)()(
)(

1
145.0)( ,984.1

089.0
, ttV

tT
ta deccf

nn
n

deccf
n  


    (14) 8 

 9 

))024.0(,0()( 2, Ntdeccf
n   10 

 11 
Similar to the Sim Model, signs of all parameters of the Field Model UK have the expected logical 12 
signs. Further, all model parameters are statistically significant at 95% level of confidence apart 13 
from the coefficient of time headway which was insignificant also in the Sim Model. However, the 14 
parameter has been retained as the sign is intuitive and the corresponding parameter has been 15 
found to be statisitically significant in the Field Model US.  16 
Regarding the stimulus part of the model, both car-following acceleration and decelerations 17 
increase with relative speeds. It may be noted that these parameters are much larger in magnitude 18 
compared to the Sim Model parameters. The behavioural incongruence while driving the driving 19 
simulator can be a potential reason for this.  20 
In the sensitivity component, the time headway parameters have expected positive signs. This 21 
referes that the drivers tend to accelerate less as the time headway with the leader increases. On the 22 
other hand, in the deceleration model, it can be concluded that as the time headway decreases, the 23 
drivers tend to decelerate more to the same stimulus, due to safety concerns in order to avoid a 24 
potential collision and finally obtain again a safe headway from the leader vehicle. The time 25 
headway parameter is slightly larger for deceleration compared to acceleration as expected since 26 
acceleration only leads to speed advantage whereas, deceleration is prompted by collision 27 
avoidance (safety). It may be noted that the similar trend has been observed for Sim Model as well. 28 
The following Figure 6 shows the sensitivity analysis, presenting the performance of the models. 29 
The default values set assumed to be: relative speed = 0.7 or (-0.7) m/s and time headway equal to 30 
2.3 sec. These numbers derived from the corresponding mean values in the sample dataset. An 31 
attempt has been made to keep the sensitivity analysis in low values of acceleration-deceleration, 32 
so as to highlight the drivers’ behaviours under these crucial and sensitive constrained traffic 33 
conditions.  34 
According to Figure 7. the drivers are extremely sensitive to the changes in the relative speed, both 35 
for the acceleration and for deceleration compared to the Sim Model. The effect of the time 36 
headway variable however is more similar to that of the driving simulator.  37 

 38 
 39 
 40 
 41 
 42 
 43 
 44 
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 1 
 2 

 3 

 4 
 5 
FIGURE 7: Sensitivity of different variables in car-following acceleration and deceleration 6 
models according to the Field Model UK 7 

 8 
4.2 Estimation Results of the Field Model US (Real Traffic Data from US101, USA) 9 

The estimated car-following acceleration usung field data is as follows: 10 
 11 
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  (15) 13 
 14 

))233.0(,0()( 2, Ntacccf
n   15 

 16 
Where, 17 
t =current time period; 18 

n = reaction time for driver n; 19 

)(tna = acceleration for driver n at time t; 20 

)(tnT = time headway at time t (sec); 21 

|)(| ntV   = absolute value of relative speed between subject and leader vehicle at time t  22 
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 1 
Whereas, the estimated car-following deceleration model is as follows: 2 
 3 

)()(
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1
722.3)( ,098.11

463.1
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tT
ta deccf

nn
n
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   (16) 4 

 5 

))227.0(,0()( 2, Ntdeccf
n   6 

 7 
Similar to the Sim model, signs of all parameters of the Field model have the expected logical 8 
signs. Further, all model parameters are statistically significant at 95% level of confidence apart 9 
from the constant for acceleration (which is statistically significant at 90% level of confidence). 10 
Regarding the stimulus part of the model, both car-following acceleration and decelerations 11 
increase with relative speeds. It may be noted that these parameters are much larger in magnitude 12 
compared to the Sim model parameters (particularly for the decleration model). The behavioural 13 
incongruence while driving the driving simulator can be a potential reason for this.  14 
In the sensitivity component, the time headway parameters have expected positive signs. This 15 
referes that the drivers tend to accelerate less as the time headway with the leader increases. On the 16 
other hand, in the deceleration model, it can be concluded that as the time headway decreases, the 17 
drivers tend to decelerate more to the same stimulus, due to safety concerns in order to avoid a 18 
potential collision and finally obtain again a safe headway from the leader vehicle. The time 19 
headway parameter is slightly larger for deceleration compared to acceleration as expected since 20 
acceleration only leads to speed advantage whereas, deceleration is prompted by collision 21 
avoidance (safety).  22 
The following Figure 8 shows the sensitivity analysis, presenting the performance of the models. 23 
The default values set assumed to be: relative speed = 0.7 or (-0.7) m/s and time headway equal to 24 
3 sec. These numbers derived from the mean values of the sample. An attempt has been made to 25 
keep the sensitivity analysis in low values of acceleration-deceleration, so as to highlight the 26 
drivers’ behaviours under these crucial and sensitive constrained traffic conditions.  27 
According to Figure 7 the mean acceleration values are exteemely sensitive in low time headway 28 
values showing a noticeable aggressive way of driving compared to the Sim Data and the Field 29 
Data UK. As the time headway increases, drivers tend not to accelerate at all and maintain stable 30 
speed. On the other hand, deceleration values show that the drivers decelerate at a slower rate as 31 
the time headway grows. For the relative speed, for acceleration, the drivers are extremely 32 
sensitive to the changes in the relative speed as in the Field Model UK (but not in the Sim Model).  33 

 34 
 35 
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 1 

 2 
 3 
FIGURE 8: Sensitivity of different variables in car-following acceleration and deceleration 4 
models according to the Field Model US 5 
 6 
5. MODEL COMPARISON AND TRANSFERABILITY  7 

As mentioned, two forms of formal transferability tests have been conducted: the t-tests of 8 
individual parameter equality (parameter level transferability) and TTS (model level 9 
transferability).  10 
 11 
Comparison of the model parameters and t-stat differences (as presented in the last two columns of 12 
Table 2) reveal the following:  13 

 There are statistically significant differences in magnitudes of the relative speed (stimulus) 14 

parameters between the Sim Model and both Field Models. This reflects the behavioural 15 

incongruence of drivers in the driving simulator which is in line with the findings of the 16 

driving simulator validation studies (detailed in Section 2).  17 

 The differences in the magnitudes of the time headway (sensitivity) parameters are 18 

however not statistically different only between the Sim Model and Field Model US. It 19 

may be noted though for acceleration componenets, the time headway parameter was not 20 

found to be statistically significant in the Sim Model and Field Model UK in the first place. 21 

However, the results provide some indication that some parameters may be more 22 

transferable between the driving simulator and the field if the driver population is similar 23 

(i.e. both from the same location).  24 

Time Headway (sec) Time Headway (sec) 

Relative Speed [leader-subject], (m/s) Relative Speed [leader-subject], (m/s) 

A
cc

el
er

at
io

n 
(m

/s
2 ) 

A
cc

el
er

at
io

n 
(m

/s
2 ) 

D
ec

el
er

at
io

n 
(m

/s
2 ) 

D
ec

el
er

at
io

n 
(m

/s
2 ) 



Papadimitriou and Choudhury   21 
 

 Most parameters (apart from the deceleration constant) are not directly transferable 1 

between the driving simulator and the Field Data US. 2 

 3 
The Transferability Test Statistic (TTS) results are summarized in Table 3. 4 
 5 
TABLE 3: Transferability Test Statistic (TTS) Results 6 
 7 

 8 
As presented in Table 3, two different scenarios have been tested so as to validate if driving 9 
simulator behaviour can be transferred to real-life world and vice versa. Comparison with the 10 
critical ߯௖௥௜௧௜௖௔௟ଶ  value at 95% level of significance (which is 5.99) indicates that the models are 11 
transferable for both directions (i.e. driving simulator to field and vice versa). The former is of 12 
more practical importance. 13 
 14 
6. CONCLUSIONS 15 

In this paper, we have investigated the transferability of the   parameters of a car-following model 16 
between a driving simulator and two real world scenario using secondary datasets from the UK and 17 
USA.  According to the results of the t-tests of individual parameter equality  between the Sim 18 
Model and the Field Model USA, most of the model parameters have been found to be 19 
significantly different in parameter level at 95%  level of confidence (except the constant 20 
parameter of the car-following deceleration model). The parameter level transferability has been 21 
found to be slightly better between the Sim Model and the Field Model UK where the sensitivity 22 
parameter (coefficient of the time headway variable) has also been found to be transferable.  23 
The transferability statistical test (TTS) results however indicate bi-directional transferability on 24 
the model level in both cases. This means that as a package, the models are transferable from the 25 
driving simulator to the field. This holds even if there are differences in geographical locaitons. 26 
For instance, for the second case study, the Sim Data was collected in the UK while the Field Data 27 
was collected from the USA, but the model level transferability still holds. On a practical term, this 28 
indicates that the predictions of acceleration/deceleration values generated from models (as in 29 
microsimulation packages) using Simulator or Field data will result insignificant differences. This 30 
is an important endorsement for use of driving simulator data for development of driving 31 
behaviour models for application in microsimulation tools.  32 
However, if an analyst is interested about effects of a specific variable in isolation (e.g. effect of 33 
headway on acceleration or effect of relative speed on acceleration, etc.), the results may not be 34 
directly transferable. This finding is expected to have immense practical importance while 35 
applying the driving behaviour models estimated using driving simulator data for quantifying the 36 
relative benefits of alternative safety improvement measures in the field. In this particular 37 
research, the discrepancy appears to be less if the field location is geographically/spatially closer. 38 

Summary statistics Sim to Field 1 Sim to Field 2 Field 1 to Sim Field 2 to Sim

Degrees of freedom (df) 2 2 2 2
LLapplic(ȕtransf) 4578.24 59.6819 12.1245 10.2592
LLapplic(ȕapplic) 4579.63 60.7376 13.2316 13.2316
-2[LLapplic(ȕtransf) -LLapplic(ȕapplic)] 2.78 2.11 2.21 5.94

Case 1 Case 2
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However, it may be noted that the results need to be used with caution since the two field datasets 1 
have been collected and processed by different teams using different hardware and software. 2 
Though, the state-of-the-art technologies have been used in both cases, given the state of image 3 
processing technology, both datasets are likely to have some measurement errors and in the 4 
absence of ground truth data, it is not possible to precisely determine the extent of such errors. This 5 
initial finding therefore needs to be investigated further with additional field datasets from 6 
geographically closer and further locations preferably cross-verified with more accurate 7 
datasources (e.g. high precision GPS data).  8 
The results also have some other limitations - mainly due to the nature of the secondary data used 9 
in the two different environments (real roads and simulation).  For instance, though care has been 10 
taken to maximize the similarity between the Sim and the Field datasets, differences in speeds, 11 
accelerations and headways (partially arising from differences in congestion levels) have been 12 
observed. This is in line with previous studies on driving simulator validation though, where the 13 
drivers have been observed to drive at higher speeds in the driving simulator in similar speed limits 14 
and congestion levels. Primary data collection in the driving simulator, can however help to 15 
minimize these differences.  16 
Further, the models developed as part of the study ignores the heterogeneity among the drivers in 17 
reaction times, desired headways and headway thresholds demarakating car-following and other 18 
acceleration regimes (41). In this regard, an interesting direction can be to incorporate the effect of 19 
driver charcteristics (e.g. age, gender, experience) in the combined models which are also expected 20 
to improve the predictive capabilities of the models (for instance better capture the heterogeneity 21 
in the reaction times and headways) .  22 
Moreover, the scope of this study is limited to car-following models based on stimulus-response 23 
framework. Further research is required to test if the similar findings hold for other acceleration 24 
regimes (e.g. free-flow, emergency, etc.), different model frameworks (e.g. the Intelligent-Driver 25 
Model, Psycho-physical Models, etc.) as well as other choice dimensions (e.g. lane changing).   It 26 
will be also interesting to validate the findings of this study by examining differences in traffic 27 
predictions of Sim Models and Field Models in microscopic traffic simulation tools. 28 
Based on the findings of this study, we are currently investigating methods to make the models 29 
more transferable using updating mechanisms (e.g. Bayesian Updating (42)), Combined Transfer 30 
Estimation Techniques (43) as well as estimating the models jointly with both data sources using 31 
data combination techniques (e.g. (44)). On a parrallel study we are investigating the spatial and 32 
temporal transferability of driving behavior models (which also includes investigating the effects 33 
of different congestion levels) in further detail which may provide further insights to the results of 34 
this research. 35 
 36 
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