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Abstract: Owing to the excellent integrated mechanical properties, 3D braided composites have a broad range of 

engineering applications in aeronautics and astronautics industry. The interface is a critical constituent of 3D 

braided composites, which plays an important role in the control of mechanical properties of the composites. In 

this paper, a meso-scale finite element model considering the interface is established to numerically predict the 

stiffness and strength properties of 3D braided composites. A novel damage-friction combination interface 

constitutive model is utilized to capture the interface debonding behavior, while 3D Hashin criteria with 

Maximum stress criteria and a gradual degradation scheme are applied to predict the damage evolution of yarns 

and matrix. A user-material subroutine VUMAT based on finite element package ABAQUS/Explicit is developed 

for these constitutive models. The stiffness and strength properties of 3D braided composites are derived from the 

calculated stress-strain curves under typical loading cases. The damage mechanism of constituents especially the 

interface is revealed in these simulation processes. The effects of the interface parameters on the mechanical 

properties of composites are investigated, which provides a reference for optimizing design and control of the 

interface properties of 3D braided composites. 

Keywords: 3D braided composites; stiffness properties; strength properties; frictional cohesive interface; finite 

element analysis 

 

 

 

 

 

 

 

 

 

 



  

1 Introduction 

3D braided composites are a kind of textile composites that are manufactured by braided preforms 

impregnated and consolidated with resin materials. The yarns of 3D braided composites are intertwined to form 

the spatial near-net-shape structure, which can fundamentally overcome the fatal shortcomings of low 

inter-laminar strength and low delamination resistance of conventional laminated composites. Moreover, the 

excellent integrated mechanical properties of 3D braided composites highly meet the requirements of aerospace 

structural materials for weight reduction and high load-bearing capacity. Consequently, 3D braided composites are 

believed to have broad potential applications as the primary loading-bearing structures in aeronautics and 

astronautics industry. Before 3D braided composites are used in primary loading-bearing structures, a rational 

characterization of their stiffness and strength properties is essential. 

In general, 3D braided composites are composed of three phases including braiding yarn, resin matrix and 

interface. Fiber yarn bears the main loads and provides the structural stiffness and strength of the composites. 

Resin matrix plays a supporting role that fixes the fibers and disperses the loads between the fibers. The interface 

is the bridge between the braiding yarn and matrix, which determines how the stress is transferred and the 

distribution between the fiber and matrix and it influences significantly on the damage initiation and propagation 

in the materials. 

Numerous studies on the mechanical properties of 3D braided composites have been made, including the 

establishment of structural models [1-4], the prediction of stiffness and strength properties [5-9], and the 

investigation of damage and failure mechanisms under various loadings [10-15]. In these micromechanical 

analysis works, only two constituents: the braiding yarn and matrix have been considered while the interface has 

been ignored. However, the interface is a critical constituent of 3D braided composites, and it has a major 

influence on the control of mechanical properties of the composites. The properties of the interface can be 

adjusted to obtain better match between the yarn and matrix and achieve the best composite effect. In recent years, 

with the rapid development of finite element simulation technology and the in-depth study of the micromechanical 

properties, research on interface behavior of braided composites has attracted much attention. 

Fang et al. [16] firstly proposed a unit-cell model involving the interface damage model to predict the 

progressive damage process of 3D braided composites under uniaxial tensile loading. Xu et al. [17] developed a 

multi-layers micromechanical model, in which the interfacial mechanical properties could be defined, to predict 

the elastic modulus of 3D multi-phase braided composites. Lei et al. [18] established a representative unit-cell 

with interface zones to study the effect of cut-edge on the tensile properties of 3D braided composites by using 

nonlinear numerical analysis. Lu et al. [19] presented a nonlinear finite element model to investigate the effect of 

interfacial properties on the uniaxial tensile behavior of 3D braided composites. A cohesive zone model was used 

to evaluate the debonding behavior of interface between yarn and matrix and the interfacial properties were 

determined by numerical parametrical study. Xu et al. [20] formulated a cohesive zone model to analyze the fiber 

push-out problems in metal matrix composites at elevated temperature. In the cohesive zone model, the interfacial 

debonding and frictional sliding behavior as well as the effect of the residual stress have been considered. Sharma 

et al. [21] developed an image-based finite element model to determine the homogenized effective elastic 

properties of 3D carbon/carbon composites. In this model, the imperfections of microstructure such as cracks and 



  

voids, the cross-section distortion and mis-alignment of the yarns were introduced by using X-ray tomography, 

and the yarn/matrix interfaces were modeled as frictional cohesive surfaces. Similar studies dealing with the 

interface response of 2D braided composites based on the unit-cell model can be found in references [22-24]. 

Overall, thus far, the study on the interface behavior of 3D braided composites is relatively limited. Besides, 

the related research work had not considered the influence of the friction on the interfacial mechanical response 

and the understanding of interface stress transfer and interface damage mechanisms is insufficient, which needs to 

be studied further. In this paper, a meso-scale finite element model, in which the yarn/matrix and yarn/yarn 

interfaces are modeled by cohesive elements, is established to predict the stiffness and strength properties of 3D 

braided composites. Considering the possible friction appearing on debonding interface under compression loads, 

a damage-friction combination interface constitutive model is proposed. Then a continuum damage model applied 

to predict damage evolution of yarns and matrix and this interface constitutive model is coded in the framework of 

a user-material subroutine VUMAT in ABAQUS/Explicit. The damage initiation and propagation of each 

constituent in 3D braided composites under typical loading cases are simulated and the stiffness and strength 

properties are predicted from the calculated stress-strain curves. In addition, the effects of interface stiffness, 

strength and friction coefficient on the mechanical properties of composites are discussed by a parametric study. 

2 Damage constitutive models  

2.1 Interface constitutive model 

The architecture of 3D braided composites is very complicated thus it is difficult to directly test the interface 

properties of the composites. On the other hand, the meso-scale finite element modeling can overcome this 

limitation and it is appropriate for simulating the damage initiation and propagation at the interface. Establishing a 

reasonable interface constitutive model is the premise for analyzing the interface mechanical behavior of 3D 

braided composites. 

2.1.1 Interface constitutive model without friction 

A cohesive element is used to represent the interface debonding in the yarn/matrix and yarn/yarn interfaces of 

3D braided composites. The traction stress and separation displacement of the nodes on the interface are governed 

by traction-separation law. The traction stress on the interface consists of three components: a normal traction and 

two shear tractions. The constitutive relationship can be described as 

1 1 1
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t k
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δ

δ
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where t is the traction stress, δ is the separation displacement, and k represents the initial stiffness of the 

interface. 

The bi-linear models of cohesive element under typical pure modes are depicted in Fig. 1. The softening 

initiation displacements, 
0

1δ , 
0

2δ , 
0

3δ , are obtained as 

0 0 0

1 2 3

1 2 3

, ,
N S T

k k k
δ δ δ= = =  (2) 

where N, S and T are the interface tensile and shear strengths, respectively. 



  

The final displacements for the state of complete debonding, 
f

1δ , 
f

2δ , 
f

3δ , are determined by 

f f fIC IIC IIIC
1 2 3

2 2 2
, ,

G G G

N S T
δ δ δ= = =  (3) 

where CGΙ , 
IIC

G and
IIICG

 
are respective critical fracture energies of mode I, II and III. 

In general, debonding growth is likely to occur under mixed-mode loading. The mix-mode bilinear 

constitutive model of interface element is shown in Fig. 2. Herein, it is assumed that S T= ,
IIC IIIC

G G= and

1 2 3
k k k K= = = . 

For the mixed-mode, the effective relative displacement,
mδ ,

 
is defined as 

2 22 2 2

m 1 2 3 1 shear
δ δ δ δ δ δ= + + = +  (4) 

where 
shear

δ  represents the norm of the vector defining the tangential relative displacements of the element, and 

the x  operator is defined by 
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0

x
x

x x
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= 

>
 (5) 

Defining the mode mixing ratio
shear 1/β δ δ= , and using a quadratic nominal stress criterion, the softening 

initiation displacement under mixed-mode conditions is then obtained following as [25] 
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In the above equation, when 0β = , the mixed-mode is reduced to pure mode I and
0 0

m 1δ δ= ; when β → ∞ , the 

mixed-mode is reduced to shear model and
0 0 0

m shear 2δ δ δ= = .
 

Adopting the power interaction law of the energy, the final displacement of mixed-mode is obtained as [25] 
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In the above equation, when 0β = , the mixed-mode is reduced to pure mode I and
f f

m 1δ δ= ; when β → ∞ , the 

mixed-mode is reduced to the shear model and ( ) ( )
2 2

f f f f

m shear 2 3δ δ δ δ= = + . 

In the finite element analysis, the relative displacement on the interface element is always changing. 

Considering the irreversibility of damage, the maximum relative displacement,
max

mδ , is defined as 

{ }max max

m m m
max ,δ δ δ=  (8) 

The irreversible bi-linear constitutive equation for mixed-mode is obtained and can be expressed as 
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where 
ij

δ  is the Kronecker operator. The damage evolution function d is expressed by 

[ ]
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( )
0,1

( )
d d

δ δ δ

δ δ δ

−
= ∈

−
 (10) 

2.1.2 Damage-friction combination interface constitutive model 

In this section, a novel damage-friction interface constitutive model is presented. For a representative interface, 

it is considered that the area A of this representative interface is equal to the sum of the undamaged area Au and the 

damaged area Ad, namely 

u d
(1 )A A A d A dA= + = − +  (11) 

The stress on the representative interface is [26] 

u d
(1 )d dτ τ τ= − +  (12) 

where 
u

τ  and 
d

τ  are the interface stress on the undamaged area and damaged area, respectively. 

In Eq. (9), it is considered that no interface damage is generated when the interface element is under pure 

compressive load. Additionally, if the interface is damaged, only normal compressive stresses exist on the 

damaged area of the interface. However, when the interface element is damaged, the interface becomes rough. If 

the interface is subjected to normal compressive load at this moment, the relative micro-slip of the interface can 

cause a high friction force on the damaged area. 

In this paper, the influence of the friction force on the interface response is considered, and the stress on the 

representative interface in the Eq. (12) can be rewritten as 

s f
τ τ τ= +  (13) 

Here, s
τ

is determined by Eq. (9), 
f

τ  is the friction force generated on the damaged interface, and expressed as 

follows: 
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where µ  is the interface friction coefficient. 

Finally, the damage-friction combination interface constitutive model is established as described in Eq. (13). 

This interface constitutive model is evaluated by the interface initial stiffness K, the damage evolution function d, 



  

the interface friction coefficient µ , and the mixed-mode relative displacements corresponding to softening 

initiation and complete debonding,
0

m
δ and

f

m
δ , respectively. 

2.2 Constitutive model of yarns and matrix 

2.2.1 Damage initiation criteria 

In this paper, the 3D Hashin failure criteria [27] and Maximum stress criteria are applied to define the damage 

initiation of braiding yarns and matrix in the unit-cell model. The Hashin criteria are established in terms of 

mathematical expressions using material strengths with the consideration of distinct failure modes. For ease of 

reference, these equations of Hashin criteria are repeated as follows: 

Yarn tensile failure in L direction ( 0Lσ ≥ ) 

2 2 2

1L LT LZ
Lt t

L LT LZF S S

σ σ σ
ϕ α α
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= + + ≥     
     

 (15) 

Yarn compressive failure in L direction ( 0
L

σ < ) 
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σ
ϕ
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Yarn tensile and shear failure in T and Z direction ( 0
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Yarn compressive and shear failure in T and Z direction ( 0
T Z

σ σ+ < ) 
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In the above equations, 
t

LF  and 
c

LF  are the longitudinal tensile and compressive strengths of braiding yarn; 

t

TF  and 
c

TF  are the transverse tensile and compressive strengths; 
LT

S , 
LZ

S  and 
TZ

S  are the LT, LZ and TZ 

shear strengths, respectively. L-T-Z rectangular coordinate is the local coordinate definition of braiding yarn, and 

L axis, T axis and Z axis indicate the axial and two transverse directions. 

2.2.2 Damage evolution model 

Once the damage initiation criteria are satisfied, further loading will cause degradation of material stiffness 

constants. The reduction of the stiffness constants is controlled by damage variables ranged from 0 (initial 

undamaged) to 1 (completely damaged) according to the damage situation. Herein, a gradual degradation scheme 

coupling with Murakami damage model proposed by Lapczyk et al. [28] and Fang et al. [11] is used to 

characterize the damage evolution of the yarns and matrix. 

The evolution of damage variable for each failure mode is determined by 

0

, , ,

0

, , ,
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( , , , , , , , )
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eq eq eq
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−
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where 
0

,eq
δΙ  is the initial equivalent displacement at which the failure criterion is satisfied. 

,

f

eq
δ Ι  is the full 



  

equivalent displacement at which the material is completely failure. They are defined as 

0

, , /eq eqδ δ ϕΙ Ι Ι=  (20) 

, ,
2 / ( / )f

eq eq
Gδ σ ϕΙ Ι Ι Ι=  (21) 

Here, ϕΙ
 is the value of damage initiation criterion, GΙ

 is the fracture energy density. 
,eqδ Ι

 and 
,eqσ Ι

 are the 

equivalent displacement and stress for a failure mode, respectively. 

3 Meso-scale finite element model 

3.1 Unit-cell structural model 

In this paper, the unit-cell structural model of 3D braided composites proposed by Xu and Xu [3] is employed, 

which is schematically shown in Fig. 3. The cross-section shape of the braiding yarns is considered as octagon 

containing an inscribed ellipse. Therefore, the interface zones of yarn/matrix and yarn/yarn are both planes, which 

is convenient for the introduction of interface and the generation of zero-thickness cohesive elements. 

The relationship between the major radius a and minor radius b of the ellipse and interior braiding angle γ of 

3D braided composites, is expressed as 

3 cosa b γ=  (22) 

Wx, Wy and h represent the width, thickness and height of the unit-cell model respectively, and they can be 

computed by: 

4 2
x

W b=  (23) 

4 2yW b=  (24) 

8 / tanh b γ=  (25) 

In the following numerical calculation, the structural parameters of the unit-cell model are given as follows: 

γ =46.4°, Wx=Wy=1.662mm, h=2.238mm, Vf=52%. Obviously, the unit-cell model here is with a typical large 

braiding angle. 

3.2 Boundary conditions 

Since the finite element analysis is based on the unit-cell modeling, periodic boundary conditions should be 

applied to replicate the repeating nature. As proposed by Xia et al [29], the displacements on a pair of parallel 

opposite boundary surfaces (denoted as “j+” and “j−”) of a unit-cell model can be expressed as 

*j j

i ik k iu x uε+ += +  (26) 

*j j

i ik k iu x uε− −= +  (27) 

In the above equations, 
ikε are the average strains of the unit-cell, 

kx  is the Cartesian coordinate of a unit-cell 

point and 
*

iu  is the periodic part of the displacement components on the boundary surfaces.  

For a unit-cell, 
*

iu  is same at the two parallel boundaries. The difference between the above two equations 

can be written as 



  

( )
j j j j j

i i ik k k ik ku u x x xε ε+ − + −− = − = ∆  (28) 

where
j

kx∆ are constants for each pair of boundary surfaces. And once 
ik

ε is specified, the right side of Eq. (28) 

becomes constant. 

As a special form of displacement boundary conditions, Eq. (28) can be carried out easily in the finite element 

analysis by setting the nodal displacement constraint equations. The detailed application process can be found in 

the reference [30-31]. 

3.3 Mesh discretization 

In this paper, the interface in the yarn/matrix and yarn/yarn zones is introduced in the unit-cell model to study 

the interfacial behavior of 3D braided composites. However, due to the complicated microstructure of 3D braided 

composites, mesh generation becomes a very difficult and challenging task. Herein, 3D solid tetrahedral element 

(C3D4) available in ABAQUS is adopted for the discretization of yarns and matrix because of its excellent 

geometry adaptability. Since the thickness of interface is extremely thin, it is not trivial to generate cohesive 

elements in a so complex microstructure directly by general finite element software or mesh generation tools. 

Therefore, a FORTRAN pre-compiler code involving the cohesive elements generation is developed and 

implemented to modify the INP model file of ABAQUS. Through this way, the zero-thickness cohesive elements 

are introduced in the unit-cell model of 3D braided composites. Since C3D4 elements are used for meshing yarns 

and matrix, the element type of interfacial element must be 6-node 3D cohesive element (COH3D6) for nodes 

consistent. The finite element mesh of unit-cell of 3D braided composites is shown in Fig. 4. Different parameters 

can be assigned to the yarn/matrix and yarn/yarn interface to express different interfacial mechanical properties. In 

this paper, the interface parameters in these two zones are same. The unit-cell model consists of 11, 143 nodes, 40, 

811 C3D4 elements and 5, 926 COH3D6 elements. 

3.4 Material properties of constituents 

3D braided composites are composed of braiding yarns, resin matrix and interface. The material response of 

the constituents directly influences the macro-mechanical behavior of the composites. The braiding yarn 

containing thousands of fibers and matrix is considered as transversely isotropic material in the local material 

coordinate system after resin impregnation, and the resin matrix is assumed to be isotropic material. For the local 

coordinate definition of braiding yarn in a specify orientation, local 1-axis follows the yarn centerline and local 

3-axis is in the upright plane perpendicular to the x-y plane of the global coordinate, as shown in Fig. 3(b). The 

micromechanics formulae proposed by Chamis [32] are selected to compute the stiffness and strength properties 

of the impregnated yarn in the unit-cell model. The material properties of fiber and matrix cited from Ref. [11] are 

listed in Table 1, and the appropriate interface properties are summarized in Table 2. 

3.5 Prediction of stiffness and strength properties 

To obtain the macroscopic mechanical properties of the composites, the homogenization approach is 

employed. The heterogeneous composites in the micro-scale are regarded as a homogeneous material in the 

macro-scale. The average stresses and strains in a unit-cell are defined by 



  

1
ij ij

V

dV
V

σ σ= ∫
, 

1
ij ij

V

dV
V

ε ε= ∫  (29) 

where V is the volume of the unit-cell. 

The unit-cell is considered as anisotropic materials, and the stress-strain relationship can be determined by 

i ij jEσ ε=  (30) 

where Ei j is the effective stiffness matrix. 

In the cuboid unit-cell, global average strain
 ijε  is applied by periodic boundary conditions in the finite 

element analysis. For global average stress
ijσ , it is related to the ratios of resultant traction force on the boundary 

surface to corresponding area of the boundary surface, namely 

( ) /ij i j jP Sσ =  (31) 

In the above equation, (Pi)j is the ith resultant forces on the jth boundary surface and Sj is the area of the jth 

boundary surface. 

The elastic properties of 3D braided composites are predicted from the initial linear segments of the computed 

stress-strain curves, namely 

i
i

i

E
σ

ε
= , i

ij

j

ε
µ

ε
= − , 

ij

ij

ij

G
σ

ε
= (i, j=1, 2, 3) (32) 

Lastly, the strength properties are determined as maximum stresses of the computed stress-strain curves. 

3.6 Numerical analysis process 

The constitutive model of each constituent and the progressive damage simulation approach are implemented 

into a user-defined material subroutine VUMAT, available in finite element software ABAQUS. During each time 

increment, ABAQUS transmits the information of strain increment to VUMAT. With the constitutive models, the 

stress level and damage state in each constituent of the unit-cell can be obtained. Once the failure criterion is 

satisfied, the material properties reduction is carried out by updating the damage variables. The stresses at the 

integration points of elements are updated by the reduced stiffness matrix. Finally, the updated state variables are 

returned to ABAQUS for next step analysis. The flow chart of whole numerical analysis process is briefly 

represented in Fig. 5. 

4 Numerical results and discussions  

Due to the spatial rotation characteristics of braiding yarns in 3D braided composites, the stiffness properties, 

strength properties and damage characteristics of the unit-cell model under x and y tension, as well as under xz and 

yz shear, are similar. Accordingly, in this work, only the numerical results of the unit-cell model under z tension, x 

tension, xy shear and xz shear are given. 

4.1 ABAQUS/Explicit quasi-static analysis 

In this paper, we first try to use ABAQUS/Standard to perform the static mechanical analysis of the unit-cell 



  

model. However, we have found that when the interface elements are seriously damaged, the convergence of 

computation will be deteriorated and sometimes the numerical calculation will be terminated before the 

stress-strain curve reach the maximum stress. By introducing the viscosity coefficient and reducing the increment 

of each step, the convergence gets better, but it is difficult to avoid the termination of computation. This situation 

also appears in the related research work involving cohesive elements by using implicit solver, e.g., see [16, 

18-19]. A switching explicit-implicit solver [33-34] could prove convenient although this has not been attempted 

in this work. Thus, in order to improve the convergence of numerical computation, the quasi-static analysis of the 

unit-cell model is carried out by using ABAQUS/Explicit. Under all the typical loading cases, the strains are 

1.5%-2% and the load time is 0.001s. By evaluating various energies generated in the computation process, the 

kinetic energy of the composites accounted for less than 1% of the internal energy, much less than the experience 

value of 5%-10%, which can ensure the "real" quasi-static of the solution. 

4.2 Preliminary validation of the interface constitutive model 

Herein, to validate the damage-friction combination interface constitutive model, only the damage of interface 

elements is introduced by VUMAT subroutine in ABAQUS/Explicit first. Due to the absence of experimental and 

numerical results considering friction effect, the friction coefficient is set as 0 here. Then Eq. (13) is exactly 

reduced to Eq. (9) as the interface constitutive model without considering the friction. Under this condition, for 

the same unit-cell model of 3D braided composites, the numerical results obtained from cohesive constitutive 

model available in ABAQUS and VUMAT subroutine developed in this paper are compared, as shown in Fig. 6. 

With the same strain loading under z tension 0.92%
z

ε = , the stress state and damage distribution of interface 

elements are very close to each other. Furthermore, the x tension, xy shear and xz shear loads are applied to the 

unit-cell model and the numerical results are compared. It is observed that the comparison results are always 

consistent when subjected to the same loading conditions, which preliminarily verifies the interface damage 

constitutive model coded in the VUMAT subroutine. 

4.3 Stress-strain curves 

The stress-strain curves illustrate the macroscopic mechanical behavior of 3D braided composites under 

corresponding loadings. In experiments, the carbon-fiber reinforced composites specimens tend to exhibit brittle 

breaking characteristics and the experimental stress-strain curves always stop after reaching the maximum stresses. 

However, the computed stress-strain curves provide the whole simulation process from damage initiation, 

propagation to catastrophic failure. As shown in Fig. 7, the stress-strain curves of 3D braided composites 

specimen under different loading cases keep linear before the initiation of damage. With the occurrence, 

accumulation and coupling of different damage modes, the stress-strain curves become to be nonlinear. After 

reaching the maximum stresses, the computed curves decrease rapidly or gradually according to the loading cases 

and then the materials loss the carrying capacity. The extended unloading observed in the computed stress-strain 

curves is considered as a numerical artifact because the experimental specimens most likely have more brittle 

failure, whereas the computed curves have more gradual unloading to promote numerical stability [23]. In 

addition, it can be found that there is a “rebound area” on the z tension stress-strain curve at strain 1.12% and it 

also exists on the x tension stress-strain curve at strain 1. 21%. This may be due to the interface debonding which 



  

causes a tendency of the angle between fiber direction and loading direction to be smaller. Then, because of the 

interaction of other damage modes of braiding yarn and matrix, the curve decreases gradually after a slightly 

increase. Under z tension, xy shear and xz shear, the interface damage occurs first and the yarn damage occurs 

afterwards while it is opposite under x tension. However, the matrix damage always appears lastly under these 

four loading cases. 

All the predicted stiffness and strength properties are given in Table 3. From Table 3, it is seen that the 

unit-cell model is almost perfect transversely isotropic. That is the reason why the stress-strain curves under y 

tension and yz shear are not given here. 

4.4 Damage mechanism analysis 

The advantage of the proposed meso-scale modeling strategy is that the detailed information on the stress 

distribution and damage mechanism in the 3D braided composites under different loadings can be obtained. The 

damage evolution process of interface elements in the unit-cell model, which is especially concerned in this paper, 

is illustrated in Fig. 8. The failure mode and damage mechanism are different under different loading cases. Under 

z tension load, the main failure modes are yarn T compressive shear failure, yarn Z tensile shear failure, matrix 

cracking and interface debonding. As shown in Fig. 8(a), at 0.35%
z

ε = , the interface damage occurs first in the 

yarn/yarn contact zones near the top and bottom surfaces of the unit-cell. Due to the spatial rotation symmetry of 

braiding yarns in the unit-cell model, it can provide relatively balanced load-bearing of the braiding yarns and 

interface elements under tension load. With the increase of z tensile load, the interface damage in the yarn/yarn 

contact zones is progressively expanded along the fiber axial and transverse directions and the expansion rate is 

gradually accelerated. After 0.71%zε = , the interface damage occurs in the yarn/matrix contact zones and the 

damage area is increasingly extended along the fiber axial direction. In conclusion, under z tension, the yarn/yarn 

contact zones are the most serious damage regions, and both the normal stress component and shear stress 

component contribute to the damage evolution of interface. 

Under x tension load, the main failure modes of the braided composites are yarn T tensile shear failure and 

matrix cracking. Z tensile shear failure occurs in some elements in the braiding yarn, but the quantity is relatively 

small. As shown in Fig. 8(b), the interface damage occurs first in the yarn/yarn contact zones near the boundary 

surfaces of the unit-cell. However, the number of damaged interface elements is small and the expansion rate of 

interface damage is relatively slow. This is because the interface strength in numerical calculation is relatively 

large and the generation of transverse damage of braiding is more easily than that of the interface debonding. 

Under xy shear load, the main failure modes are yarn T tensile shear failure, matrix cracking and interface 

debonding. From Fig.8(c), it can be seen that the interface damage occurs first in the yarn/yarn contact zones near 

the right and left surfaces of the unit-cell at 0.38%zε = . The interface damage in the unit-cell shows certain 

cut-edge effect. After 1.00%
z

ε = , the interface damage begins to occur in the yarn/yarn and yarn/matrix contact 

zones but the expansion rate is relatively slow. This is because of the load-bearing directional effect of the 

braiding yarns. That is, the stresses in different directional yarns are not balanced, which leads to the unbalanced 

stress distribution in the interface elements. Surely, this is obviously different from that under the tensile loads. 

For the debonded interface under compressive load, the frictional stress generates along the yarn axial direction 

and resists the micro-slip tendency of the fiber yarns. At this point, the shear stress on the debonded interface will 



  

not immediately come to zero. Overall, under xy shear load, the shear stress components always play more 

important contribution to the damage evolution of interface. Under xz shear load, the main failure modes are yarn 

Z tensile shear failure, matrix cracking and interface debonding. The interface damage evolution process is 

presented in Fig. 8(d). It can be found that the whole process of interface damage initiation and evolution is 

similar to that under xy shear load, but the interface damage regions are changed due to the change of loading 

direction. 

4.5 Parameter study 

In meso-scale finite element modeling, the selection of suitable material parameters to accurately represent the 

mechanical response of the composites is very important and also very difficult. Interface stiffness, strength and 

friction coefficient are important interfacial parameters as they directly control and influence the mechanical 

behavior of interface and the mechanical properties of 3D braided composites. In this section, to understand how 

these interfacial parameters contribute to the effective stiffness and strength properties, numerical parameter 

studies are conducted by using the proposed modeling strategy. 

4.5.1 Effect of interface stiffness on elastic properties of the composites 

Fig. 9 represents the variation of the predicted elastic constants with interface stiffness. It is clearly seen from 

Fig. 9(a) that the elastic moduli of the material increase monotonically with the increase of interface stiffness. 

When K is small, the increase is significant. When K is greater than 1×10
5
, the increase is not obvious. As shown 

in Fig. 9(b), the Poisson’s ratio �xy increases gradually with increasing the interface stiffness. In contrast, the 

Poisson’s ratio �zx decreases gradually as the interface stiffness increases. Note that the changing tendencies are 

both significant when K is small. However, the effect of interface stiffness on the Poisson’s ratios is relatively 

weak. It can be concluded that if the interface stiffness is small, the interface would be soft and easy to deform, 

which results in low prediction values of elastic modulus. Therefore, it is better to select a high value of interface 

stiffness in the appropriate range. For the zero-thickness interface cohesive element in 3D braided composite, 

K≥1×10
5
 is recommended.  

4.5.2 Effect of interface strength on strength properties of the composites 

In this section, the strength parameters of interface in Table 2 are termed as base strength S0. In order to study 

the effect of the interface strength on the strength properties of the 3D braided composites, six different interface 

strength conditions are employed. Fig. 10 depicts the variation of the predicted strengths with interface strength 

under four typical loading cases. It can be seen that, as compared to the shear strengths, the tensile strengths are 

prominently influenced by the interface strength. When the interface strength is less than 0.75S0, the tensile 

strengths, Sz and Sx , increase sharply as the interface strength increase. But when the interface strength is larger 

than 0.75S0, the increase of tensile strengths is very small and the curves become nearly horizontal lines. The 

shear strengths, Sxy and Sxz, increase gradually as the interface strength increase. However, the increments are not 

obvious even when the interface strength is very small. Since the braiding angle here is typical large, both the 

braiding yarn and interface elements bear the loads under tensile load while only the braiding yarn bears the main 

loads under shear load. Therefore, the interface damage has great influence on the load-bearing performance of 

the composites with large braiding angle under tensile load. But under shear load, the influence is not very 



  

significant. Moreover, it should be pointed out that when the interface strength is relatively larger, the damage of 

interface elements becomes less under all the loading cases thus the variation of the predicted strength properties 

also becomes less. 

4.5.3 Effect of interface friction coefficient on mechanical properties of the composites 

The friction force will act when the interface element is damaged and the element is under compressive load, 

thus the interface friction coefficient has no effect to the predicted stiffness properties. By numerical discussion, it 

is found that the variation of the predicted strength properties with interface friction coefficient is very small, as 

given in Table 4. Under the external load, the stress state in the unit-cell model is complex. When the interface is 

damaged, parts of the interface elements are in compressive state. At this time, friction is introduced to enhance 

the shear toughness of fiber yarn thus improves the shear strength of the interface. However, even the friction has 

great influence on the mechanical properties of the interface, but in the unit-cell model, the number of damaged 

interface elements in compressive load only accounts for a small part of the overall interface elements. 

Furthermore, the interface friction effect is a meso-scale local performance while the strength is a macro-scale 

property, thus the effect of interface friction coefficient on the predicted strength properties of the composites is 

not significant. 

In addition, it is also found that the critical fracture energy only has significant influence on the damage 

evolution of damaged interface elements but has little effect on the predicted stiffness and strength properties of 

the composites. 

5 Conclusions 

The mechanical properties of 3D braided composites under typical loading cases are numerically investigated 

from a new perspective. A meso-scale finite element model, in which the yarn/matrix and yarn/yarn interfaces are 

modeled by cohesive elements, is originally developed for that purpose. And then, the friction appearing on 

debonding interface is considered to propose a novel damage-friction combination constitutive model for the 

interface. Based on these, i.e. the continuum damage models of each constituent in conjunction with the 

meso-scale finite element modeling, the stiffness, strength and damage properties of 3D braided composites are 

analyzed. It is found that the load transfer, failure mode and damage mechanism are different under different 

loading cases as summarized below. 

For interface, under tension loads, the load bearing of braiding yarn and interface elements is relatively 

balanced, and both the normal stress component and shear stress components contribute to the damage evolution 

of interface. Under shear loading, the load bearing of braiding yarn is related to the loading direction. The stresses 

distribution on the interface is not balanced and the shear stress components rule the damage evolution of 

interface. Since the reasonable interface constitutive model is introduced and the stress distribution and damage 

evolution of each constituent in the unit-cell can be obtained, the proposed model is useful for a good 

understanding of the mechanical response of all the constituent materials under typical loading cases. Furthermore, 

the effects of interface stiffness, interface strength and friction coefficient on the mechanical properties of 

composites are discussed in detail which provides a novel insight to the problem.  

In addition, the results reported here in this paper may be helpful for designers to optimize and control the 



  

interface performance of 3D braided composite structures. 
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Table 1 Material properties of fiber and matrix 

 E11 (GPa) E22 (GPa) G12 (GPa) G23 (GPa) �12 XT (MPa) XC (MPa) S (MPa) Gf (N/mm) Gm (N/mm) 

T300 230 40 24 14.3 0.26 3528 2470  8.0  

Matrix 3.5    0.35 80 241 80  1.5 

 

 

 

 

Table 2 Properties of interface elements 

K (N/mm
3
) N (MPa) S=T (MPa) ICG (N/mm) 

IIC IIICG G= (N/mm) 

1×10
6
 80 60 0.306 0.632 

 

 

 

 

Table 3 Predicted stiffness and strength properties 

Elastic modulus 

(Gpa) 
Prediction Poisson's ratio Prediction 

Strength 

(MPa) 
Prediction 

Ex 10.53 �xy 0.30 Sx 70.55 

Ey 10.53 �zx 0.42 Sy 70.15 

Ez 17.46 �zy 0.42 Sz 134.37 

Gxz 17.86   Sxz 212.67 

Gyz 17.86   Syz 209.96 

Gxy 11.55   Sxy 161.48 

 

 

Table 4 Predicted strength properties with different friction coefficients 

Friction coefficient Sx Sz Sxy Sxz 

�=0.0 70.55 134.37 161.48 212.67 

�=0.5 70.83 134.47 162.93 214.03 

�=1.0 70.87 134.58 163.62 214.13 

 

 


