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Abstract 

The Mediterranean Basin is expected to face warmer and drier conditions in the coming decades, 

following projected increases in temperature and declines in precipitation. The aim of this study is to 

explore how forests dominated by Abies borisii-regis, Abies cephalonica, Fagus sylvatica, Pinus nigra 

and Quercus frainetto will respond under such conditions. We combined an individual-based model 

(GREFOS), with a novel tree-ring dataset in order to constrain tree-diameter growth and to account 

for inter- and intra- specific growth variability. We used wood density data to infer tree longevity, 

taking again into account inter- and intra- specific variability. The model was applied at three 500m 

wide elevation gradients at Taygetos in Peloponnese, at Agrafa on Southern Pindos and at Valia Kalda 

on Northern Pindos in Greece. Simulations adequately represented species distribution and 

abundance across the elevation gradients under current climate. We subsequently used the model to 

estimate species and functional trait shifts under warmer and drier future conditions based on the 

IPCC A1B scenario. In all three sites, a retreat of less drought-tolerant species and an upward shift of 

more drought-tolerant species were simulated. These shifts were also associated with changes in two 

key functional traits, in particular maximum radial growth and wood density. Drought-tolerant species 

presented an increase of their average maximal growth and decrease of their average wood density, 

in contrast to less drought-tolerant species. 
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Introduction 

In areas surrounding the Mediterranean basin, forests are an important element of the 

established vegetation, covering around 20-30% of the total land areas in the northern part and 

reaching up to 50% in Greece (Archibold 1995; Scarascia-Mugnozza et al. 2000). These forests are 

expected to experience warmer and drier conditions in the near future due to global warming (Giorgi 

and Lionello 2008; Gualdi et al. 2013), as well as potential shifts in fire frequency driven by both 

climatic and anthropogenic forcing (Barbero et al. 1990; Pausas 2004; Moriondo et al. 2006). 

Observational evidence of shifts in forest structure and function over the last century has started to 

accumulate and are usually attributed to climatic changes. Tree-growth changes related to 

temperature increase (Jump et al. 2006; Linares and Tiscar 2010), decline in precipitation (Sarris et al. 

2011), and/or CO2 fertilisation (Martinez Vilalta et al. 2008) have been documented at both low and 

high elevations around the Mediterranean region. Forest dieback has been attributed to drought (Van 

Mantgem et al. 2009; Allen et al. 2010,) and/or to pathogens outbreaks (Desprez-Loustau et al. 2006; 

Chrysopolitou et al. 2013), while drought-induced changes in species composition have also been 

reported (Allen and Breshears 1998; Penuelas and Boada 2003). Furthermore, some studies report an 

increase in fire frequency associated with the recent warming, both in the north-western (Pausas and 

Fernandez-Munoz 2012) and the north-eastern (Koutsias et al. 2013) part of the Mediterranean Basin. 

The way these shifts will progress under future global change conditions is important in terms of 

nature conservation and climate change adaptation (Bonan 2008). 

Mediterranean plants have evolved under low water availability and thus have developed a 

number of morphological and physiological adaptations that enable them to withstand prolonged 

drought periods (Sardans and Penuelas 2013). Recent studies suggest in Mediterranean climate there 
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is a continuum of plant drought performance, ranging from fast-growing deciduous species with a 

high resource-use and high drought vulnerability to conservative slow-growing evergreen species with 

low water-use and high drought tolerance (Lopez-Iglesias et al. 2014). The two ends of the spectrum 

reflect a drought-tolerance versus a drought-avoidance strategy, and functional traits such as rooting 

depth per leaf area, relative growth rate and net assimilation rate were found to be good predictors 

of seedling drought survival time (Lopez-Iglesias et al. 2014). Seedlings of fast growing species were 

less drought-tolerant in contrast to slow-growing species that exhibited a higher drought tolerance. A 

similar (weak) trade-off between growth and survival has been reported for mature trees with wood 

density being a good (negative) predictor of relative growth rate (Martinez-Vilalta et al. 2010). The 

above suggest that based on their functional configuration Mediterranean species are responding 

individualistically to drought and thus their distribution could be controlled by water availability 

(Piedallu et al. 2013).   

Simulations from both local and global scale vegetation models suggest that forests established 

under Mediterranean climate are particularly vulnerable to climate change (Morales et al. 2007; Fyllas 

and Troumbis 2009; Hickler et al. 2012), although the large climatic stochasticity of Mediterranean 

ecosystems (Blondel and Aronson 1999) could increase the uncertainty in such modelling exercises. 

Under climate change conditions, some typical Mediterranean forests dominated by species like Pinus 

halepensis are projected to be more resilient than others that are mainly found in the temperate zone 

(Keenan et al. 2011). One of the key drivers of vegetation and/or productivity shifts in these 

predictions is the increased soil moisture deficits, following an increase in temperature and a 

decrease in precipitation under climate change (Morales et al. 2007). However, other factors, such as 

fire frequency and CO2 fertilisation could also interact with water limitation leading to complex 

ecosystem responses (Fyllas and Troumbis 2009; Keenan et al. 2011). Disentangling the role of water 
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limitation, fire and CO2 in forest ecosystem processes is important in order for their current dynamics 

and future risks to be better understood. Field studies, specifically designed to constrain the way such 

processes are simulated in vegetation dynamics models, could increase our understanding of forest 

function under current conditions and enhance our confidence in the projections of their future state. 

In addition to the above, the role of inter- and intra- specific functional trait variation has been 

recently highlighted as an important component that needs to be incorporated into vegetation 

dynamics model (Scheiter et al. 2013; Fyllas et al. 2014; van Bodegom et al. 2014; Sakschewski et al. 

2015). Traditionally, parameterisation of species and/or plant functional types (PFTs) is based on the 

use of some "average" or "appropriate" mean trait value, for characteristics that have a direct effect 

on the regeneration, the growth and the mortality of the simulated individuals. For example specific 

leaf area has been used as a parameter to differentiate the turnover rate of leaf biomass between 

PFTs (Sitch et al. 2008), or as a parameter to describe the architecture (in terms of foliage 

area/biomass) of different tree species (Bugmann et al. 2001; Fyllas et al. 2007). The selection of one 

"average" trait value could lead to "static" model behaviour as the population variability in the 

response of species/PFTs is a priori restricted, just because of the constant value given to some key 

functional characters (Fyllas et al. 2012; 2014). Ignoring the intra-specific variability is not in 

agreement with what is observed in real plant communities and comprises a key element of natural 

selection and evolution. In addition, depending on the way vegetation dynamics models are built, 

variability in some functional characters could affect more than one simulated process, through either 

direct or indirect routes. For example, given that most vegetation dynamics models include a "carbon-

ƐƚĂƌǀĂƚŝŽŶ͟ ŵŽƌƚĂůŝƚǇ ƚĞƌŵ͕ ƚŚĞ ŝŶĨůƵĞŶĐĞ ŽĨ Ă ƐƉĞĐŝĨŝĐ ŐƌŽǁƚŚ-parameter on model behaviour could be 

manifested directly through growth and indirectly through mortality. Ignoring functional variation in 

simulated plant communities could be an important bias, especially when projecting vegetation 
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dynamics under climate change conditions, where alternative "functional configurations" could lead 

to viable life strategies.        

Individual-based modelling is a tool widely used to simulate vegetation dynamics (Grimm et al. 

2006). Forest gap-dynamics models are a special group of individual-based models that follow the life 

of each tree in a stand and simulate key processes of interest like regeneration, competition and 

mortality (Bugmann 2001). Gap-dynamics models have a long history in modelling forest ecosystems 

structure and function with applications all over the world (Shugart 1984; Bugmann 2001; Fyllas et al. 

2007; Ngugi et al. 2013). Because these models are based on empirical equations of growth and 

mortality, they provide reasonable approximations of stand growth, succession and disturbance 

patterns. Furthermore, as these models focus on individual-tree performance, they provide an 

excellent framework to consider intraspecific trait variability and explore the potential shifts in 

species or community level trait-variation under changing environmental conditions. However, to our 

knowledge there is no study that incorporates trait variability in the widely used forest-gap dynamics 

modelling framework.  

In this study we combine the GREFOS forest-gap dynamics model (Fyllas et al. 2007, Fyllas and 

Troumbis 2009) with a novel tree-ring width and wood density dataset to account for growth and 

mortality intra-specific variability in simulations of forest dynamics, and to explore for potential shifts 

in species composition and functional traits under warmer and drier conditions. In particular using the 

tree-ring width dataset we initially derive species-specific diameter growth curves. We also use the 

observed inter- and intra- variability in wood density to infer individual tree longevity. In addition, by 

combining the tree-ring width and wood density datasets, we identify a growth versus longevity 

trade-off that is subsequently incorporated in the model by hardwiring a relationship between two 
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key functional traits, i.e. the maximum diameter growth (Gm) and the wood density (DW). We then 

apply the model across three 500m long elevation gradients in mountainous areas in Greece to:  

1) EǀĂůƵĂƚĞ ƚŚĞ ƉƌĞĚŝĐƚŝǀĞ ĂďŝůŝƚǇ ŽĨ ƚŚĞ ŵŽĚĞů ĂŶĚ ĐŽŵƉĂƌĞ ƚŚĞ ͞ƐƚĂƚŝĐ͟ ;ƐŝŶŐůĞ ƚƌĂŝƚ ǀĂůƵĞƐͿ 

ǀĞƌƐƵƐ ƚŚĞ ͞ƉůĂƐƚŝĐ͟ ;ǀĂƌǇŝŶŐ ƚƌĂŝƚ ǀĂůƵĞƐͿ ŵŽĚĞů ƐĞƚƵƉ ƵŶder current climatic conditions. 

2) Explore how the species composition and functional variation of these forests will respond to 

a gradually warmer and drier climate.     

 

Materials & Methods 

Study Sites and Dominant Tree Species 

Three study areas (Fig. 1) were selected to parameterise the model and validate its predictive 

ability. In each study area three 30x30 m2 plots have been established as part of the Mediterranean 

Forests in Transition (MEDIT) project, where a suite of plant functional traits and tree-ring width data 

have systematically been measured. Soil texture and depth are also available for each plot. In each 

plot all trees above 1 m have been identified and the diameter at breast height has been measured 

for all trees above 1.3 m. In all areas the plots are found across an altitudinal range of ca 500 m (Table 

1). The first study area is located in the southern part of Mount Taygetos, Peloponnese. Pinus nigra 

and Abies cephalonica are the dominant tree species in this area, with the pine dominating the lower 

elevations and the more disturbed sites of the region. Soils are rather shallow with a high sand 

content (sandy loam). Mean annual temperatures range between 9.2 and 13.1 oC and annual 

precipitation between 850 and 950 mm. The second study area, the driest of the three, is located in 

the Agrafa region, Southern Pindos and it is dominated by Quercus frainetto at lower elevations and 
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Abies borisii-regis at higher altitudes. At lower altitudes soil is sandy clay loam shifting to clay loam at 

higher elevation. Across this elevation gradient mean annual temperature ranges from 10.3 to 14.2 oC 

and annual precipitation from 775 to 864 mm. The last study area, the wettest of the three, is found 

in the Northern part of the Pindos range and the dominant species are Pinus nigra and Fagus 

sylvativa, with the beech restricted at higher altitudes. Soils are deeper here with higher silt content 

(sandy loam). Temperature ranges from 7.6 to 9.7 oC and precipitation from 926 to 962 mm per year. 

At Mt Taygetos in P. nigra dominated stands 11 surface fires have been recorded over the last 165 

years (Christopoulou et al. 2013), while in P. nigra dominated stands at Pindos North (Valia Kaldas) 

fire frequency is likely lower with 8 fires recorded over a period of 815 years (Touchan et al. 2012). 

Model Description 

A detailed description of GREFOS model is provided elsewhere (Fyllas et al. 2007). The model has 

been developed, parameterised and used for forest species found in the north-eastern part of the 

Mediterranean area (Fyllas et al. 2007; Fyllas and Troumbis 2009; Fyllas et al. 2010; Kint et al. 2014). 

GREFOS takes into account the discrete life history strategies (LHS) of Mediterranean tree and shrub 

species (Pausas 1999), by assigning a distinct recruitment density and resprouting capacity to each 

LHS. Regeneration in the model is based on empirical relationships between stand-level LAI and 

recruitment density (Fyllas et al. 2008; Fyllas et al. 2010), where a maximum threshold of LAI "ceases" 

the establishment of saplings through light limitation. Individuals are competing for light through a 

height-based hierarchy with taller trees shading all smaller ones. A daily soil water balance model is 

used to calculate relative water content (ɽ) and subsequently the annual drought duration in order to 

adjust growth (Granier et al. 1999; Fyllas and Troumbis 2009). Evaporation is estimated following the 

Priestley-Taylor (1972) method, while the pedotransfer functions of Wosten et al. (1999), along with 
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site-specific soil texture and depth measurements, are used to calculate soil water retention and 

release parameters.  

As in most forest-gap dynamics models, annual tree growth is estimated through the concept of 

optimum diameter increment, i.e. the growth that an individual of a certain species and size can reach 

under no-resource limitation or competition (Moore 1989; Bragg 2001; Risch et al. 2005). The "actual" 

diameter increment is subsequently estimated by adjusting the optimum diameter growth, as a 

function of the abiotic (temperature & water availability) and biotic (shading) conditions that 

prevailed for a given time for each tree in the stand. Here we use a novel ring-width data to estimate 

the parameters (and their variation) of a commonly used optimum growth equation (Zeide 1993), as 

ĚĞƐĐƌŝďĞĚ ŝŶ ƚŚĞ ͞OƉƚŝŵƵŵ ŐƌŽǁƚŚ ĐƵƌǀĞ ĂŶĚ ŝŶƚƌĂƐƉĞĐŝĨŝĐ ƉůĂƐƚŝĐŝƚǇ͟ ƐĞĐƚŝŽŶ͘    

Mortality has three components. The growth related component ("carbon starvation") estimated 

ĂƐ Ă ĨƵŶĐƚŝŽŶ ŽĨ Ă ƚƌĞĞΖƐ ƉĂƐƚ ŐƌŽǁƚŚ͕ ƚŚĞ ďĂĐŬŐƌŽƵŶĚ ;͞ŝŶƚƌŝŶƐŝĐ͟Ϳ ŵŽƌƚĂůŝƚǇ ƌĞƉƌĞƐĞŶƚŝŶŐ ƐƉĞĐŝĞƐ 

longevity, and the fire related mortality, which is linked to species LHS. Background mortality is 

usually estimated in forest-gap models through species longevity or maximum size. Here we use wood 

density as a proxy for background mortality (Martinez-Vilalta et al. 2010). Intra- and inter- specific 

variation in wood density is incorporated in the model based on a novel wood density dataset, as 

ĚĞƐĐƌŝďĞĚ ŝŶ ƚŚĞ ͞BĂĐŬŐƌŽƵŶĚ MŽƌƚĂůŝƚǇ͟ ƐĞĐƚŝŽŶ͘ “ƉĞĐŝĞƐ ǁŝƚŚ Ă ŚŝŐŚĞƌ ǁŽŽĚ ĚĞŶƐŝƚǇ ŐĞŶĞƌĂůůǇ ŚĂǀĞ 

lower growth and mortality rates (Reich 2014). This growth versus survival trade-off has been 

incorporated in the model by hardwiring a relationship between maximum diameter growth rate and 

wood density based on the combined analysis of the tree-ring width and wood density datasets 

;͞GƌŽǁƚŚ ʹ Longevity Trade-ŽĨĨ͟ ƐĞĐƚŝŽŶͿ͘  
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Optimum growth curve and intraspecific plasticity  

In order to parameterise the diameter growth curve a minimum of twenty tree cores were taken 

from each dominant species at each study area. All cores were collected at breast height with a 5 mm 

increment borer. In the lab, the cores were glued on channelled wood, dried at room temperature, 

and sanded with progressively finer grade abrasive paper until cells were clearly visible under 

magnification. All samples were visually cross-dated using visual recognition of tree-ring patterns and 

lists of marker years (those with narrow rings) (Yamaguchi 1991). Tree-ring widths were measured to 

0.01 mm using Time Series Analysis and Presentation (TSAP) software package and LINTAB measuring 

table. Raw ring-width series were synchronized according to their Gleichläufigkeit score, which 

represents the overall accordance of two series t-values, which are sensitive to extreme values such 

as marker years and the cross-date index (CDI), which is a combination of both (Rinn2003). Finally, the 

COFECHA software was used to perform a data quality control and to evaluate the cross-dating 

(Grissino-Mayer 2001).  

These data were subsequently used to estimate the parameters of an optimum growth curve 

(Zeide 1993). We considered optimum growth to be species specific, and thus we estimated the 

parameters of the curve for each species using data from all available sites. As in Bragg (2001), we 

assume that individuals growing at the highest rate for a given diameter class provide an adequate 

estimate of size-specific optimal growth. In this version of the model the optimum growth of an 

individual is described by the equation (Zeide 1993): 

2

log

0.5 o

b

D

D

D

mg G e

 
 
 
 
 
  (1) 
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where Gm is the maximum radial growth rate (mm a-1) at the peak of the log-normal growth curve, Do 

is the diameter at breast height (D) associated with the maximum growth rate, and Db determines the 

width of the curve.  

We fitted non-linear least square regression models using the R programming language and the 

nls library (R Development Core Team 2015) to estimate the species-specific Gm, Do and Db along with 

their confidence intervals (Table 2). In order to account for intra-specific growth variability in the 

ŵŽĚĞů ;͞ƉůĂƐƚŝĐ ƐĞƚƵƉ͟Ϳ͕ Ă ŶŽƌŵĂů ĚŝƐƚƌŝďƵƚŝŽŶ ŝƐ ƵƐĞĚ ƚŽ ƌĂŶĚŽŵůǇ ĂƐƐŝŐŶ ƚŚĞ ŐƌŽǁƚŚ ƉĂƌĂŵĞƚĞƌƐ ĨŽƌ 

each tree of a certain species using the parameter estimates in Table 2. The first generation of 

simulated trees are randomly initialized based a normal distribution that follows our observations. 

Subsequent generations inherit growth characteristics from a normal distribution that is updated each 

year based on the parameters of the surviving trees. 

Background mortality  

The background mortality component (ɅR) was parameterised based on the equation reported in 

Martinez Vilalta et al. (2010), for tree species found in Spain under a similar range of climatic 

conditions:
  

( 3.56 )0.51 WxD
R e   (2) 

where wood density (DW [g cm-3]) is considered the main predictor of annual background mortality 

rate.  

We collected stem wood samples from individuals within our study sites to estimate species-

specific wood density values along with their confidence intervals. DW was calculated for each sample 

using the water-displacement method. A container was filled with water and placed on a digital 
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balance. A dried wood sample (48h at 60oC) that was weighted beforehand was then sunk into the 

container until completely immersed. The volume of the wood sample was estimated from the water 

displacement. Similar to growth the inclusion of intraspecific variability for mortality in the model was 

applied through a species-specific normal distribution with mean equal to DW and standard deviation 

equal to DWsd (Table 3).  

Growth Ȃ Longevity Trade-off 

Species with higher wood density generally have lower growth and mortality rates (Reich 2014).  

This growth versus survival trade-off has been incorporated in the model by hardwiring a relationship 

between maximum radial growth rate and wood density, based on the analysis of the entire MEDIT 

dataset (Fyllas et al. unpublished data). To derive the Gm=f(DW) relationship we analysed tree-ring 

width and wood density data for 9 species in 35 plots across Greece. In this analysis the optimum 

growth curve (equation 1) was fit with non-linear least square regression models for all individual of a 

tree species at site. Then the species and sites specific Gm, Do and Db estimates were regressed against 

the average DW of each species at each site. A statistically significant relationship was identified only 

for Gm and DW (Figure 2), with Gm decreasing with DW and supporting the hypothesis of a growth ʹ 

longevity trade-off. It should be noted that this relationship holds only across species, as the number 

of samples available was not adequate to validate it within species.    

Simulation Setup  

At each study area the model was set up to simulate stand dynamics along an altitudinal (500 m 

wide) gradient, with an elevation step of 50 m. Soil depth was set to 2.0 m in all study sites. All 

simulations started from bare ground and lasted for a 1000-year-long simulation period. In this study 

the fire component of the model has been disabled in order to explore for merely the effects of 
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drought. At each study site only the two species known to occur abundantly are allowed to establish. 

It should be noted that these two species are the dominant elements of vegetation accounting for 

more than 80% of the total basal area in our study plots. Two climate scenarios were used, namely: 1) 

the baseline (BL) climate representing the current climatic conditions with the climate of the 20th 

century at each study area randomly repeated for the simulation period, and 2) the IPCC A1B climate 

change (CC) scenario with an approximately 3oC increase in temperature and 20% reduction in 

precipitation taken as one of the intermediate projections cases from an ensemble regional climate 

model projections for the Mediterranean area (Gualdi et al. 2013). The baseline climate was extracted 

from the E-OBS gridded climatology (Haylock et al. 2008) for the time period between 1950 to 2013. 

Across the elevation gradients, temperature was corrected with a lapse rate of 6.5 oC/km. 

Precipitation was assumed not to change with elevation. In both cases a spin-up period of 500 years, 

during which the observed 1950-2013 climate was randomly replicated, was used until vegetation 

reached an equilibrium with climate. For the CC scenario during the spin-up period, climate was 

assumed to be similar to BL conditions, followed by a transient period of 100 years during which 

temperature and precipitation anomalies were linearly applied until climate stabilized after year 600. 

TŚĞ ŵŽĚĞů ǁĂƐ ĂƉƉůŝĞĚ ĨŽůůŽǁŝŶŐ Ă ͞ƐƚĂƚŝĐ͟ ;ŶŽ ŝŶƚƌĂƐƉĞĐŝĨŝĐ ǀĂƌŝĂďŝůŝƚǇͿ ĂŶĚ ͞ƉůĂƐƚŝĐ͟ ;ǁŝƚŚ 

intraspecific variability) setup, and 30 iterations were performed for each elevation and climate 

scenario. The steady state (year: 600-1000) average basal area of each species under baseline 

conditions was estimated and compared with local observations. Changes in the species average 

values of the two key traits, Gm and DW, with time and climate scenario were also explored. Potential 

shifts in these traits indicate the way species could adapt to warmer and drier conditions, by adjusting 

the two traits that are directly linked to their growth and mortality.       
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Results 

Simulations under baseline conditions adequately captured the ranges of species distribution 

across the elevational gradient of the three study sites. At Mt. Taygetos, P. nigra is more abundant at 

lower elevations, while A. cephalonica increases its contribution with altitude (Fig. 3 ʹ left panel). 

Simulated basal area was reasonably well estimated for P. nigra but underestimated for A. 

cephalonica ŝŶ ďŽƚŚ ƚŚĞ ͞ƐƚĂƚŝĐ͟ ĂŶĚ ƚŚĞ ͞ƉůĂƐƚŝĐ͟ ŵŽĚĞů ƐĞƚƵƉ ;FŝŐ͘ “MϭͿ͘ TŚĞ ͞ƐƚĂƚŝĐ͟ ŵŽĚĞů ƐĞƚƵƉ 

yielded a higher P. nigra ĂďƵŶĚĂŶĐĞ ĐŽŵƉĂƌĞĚ ƚŽ ƚŚĞ ͞ƉůĂƐƚŝĐ͟ ƐĞƚƵƉ ĂĐƌŽƐƐ Ăůů ĂůƚŝƚƵĚĞƐ͕ ǁŚŝůĞ A. 

cephalonica achieved a higher basal arĞĂ ƵŶĚĞƌ ƚŚĞ ͞ƉůĂƐƚŝĐ͟ ƐĞƚƵƉ (Fig. SM1). Following the climate 

change scenario, the model simulated an uphill shift of P. nigra across the whole altitudinal gradient 

and a significant decrease of A. cephalonica using the plastic model setup (Fig. 3 ʹ right panel). The 

decrease of A. cephalonica was stronger under the static model parameterisation (Fig. SM2)   

At Agrafa in the southern part of Pindos, under BL conditions Q. frainetto is more abundant at 

lower elevations, but with increasing altitude A. borisii-regis becomes the dominant element of 

vegetation (Fig. 4 ʹ left panel). Simulated basal area was reasonably estimated for both species 

especially under ƚŚĞ ͞ƉůĂƐƚŝĐ͟ ŵŽĚĞů ƐĞƚƵƉ ;FŝŐ͘ “MϯͿ͘ The applied climate change scenario leads to a 

total replacement of the A. borisii-regis by Q. frainetto across the elevation gradient of this area using 

the plastic (Fig. 4 - right panel) traits parameterisation. The inclusion of trait plasticity did not yield 

simulation of better A. borisii-regis performance under CC condition and a complete replacement by 

Q. frainetto was also simulated (Fig. SM4). 

At Valia Kalda in the northern part of Pindos, the observed vegetation transition with elevation 

was realistically replicated under BL conditions. P. nigra dominates the stands at lower elevations 

while F. sylvatica is more abundant at elevations above 1350m (Fig. 5). The steady state standing 
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basal area was accurately simulated for both species, with small differences between the static and 

the plastic parameterisation (Fig. SM5).  At this region, CC simulations suggest a complete 

replacement of F. sylvatica by P. nigra across the simulated elevation gradient using both the plastic 

(Fig. 5) and the static model setup (Fig. SM6). 

We additionally explored for potential shifts in the key traits that were used to predict growth 

and mortality of the four tree species, i.e. maximum growth rate (Gm) and wood density (DW). The 

long-term trends of the average Gm and DW for each study area across elevation is presented in the 

Supplementary Material (Fig. SM7 to SM12). In general under current conditions, average species DW 

decreased and Gm increased with time, suggesting that individuals with greater growth are 

performing better, and thus drive the average trait values of the stand. The same trend was also 

observed in CC simulations with some shifts in the average species trait values. The steady state 

average values of Gm and DW under BL and CC conditions are summarised in Figs 6, 7 and 8.  

At Mt. Taygetos, P. nigra͛Ɛ Ăverage wood density and maximum growth showed no clear trend 

with elevation (Fig. 6). Under climate change conditions, an overall small decrease in DW, associated 

with an increase in Gm for P. nigra, was simulated. For A. cephalonica a small decrease of DW with 

elevation was simulated, especially under BL conditions. At Agrafa, DW increased and Gm decreased 

with altitude for the more drought-tolerant Q. frainetto under BL conditions. This trend was not as 

strong under CC conditions (Fig. 7). No clear trend in DW or Gm was simulated for A. borisii-regis 

although at higher altitudes the average DW value was smaller compared to lower altitudes. At Valia 

Kalda (Fig. 8), the elevational shifts of simulated DW and Gm with altitude were more pronounced.  A 

lower Gm and a higher DW were achieved at higher altitudes for the more drought tolerant P. nigra, 

with the opposite trend found for F. sylvatica. Overall Gm increased and DW decreased under CC 
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conditions for the more drought-tolerant species, while the opposite was true (decreasing Gm and 

increasing DW) for the less drought-tolerant species across all sites.     

Discussion 

This study presents the parameterisation of a forest-gap model, with novel tree-ring width and 

wood density measurements, aiming to better understand and to project the dynamics of typical 

mountainous forests in Greece. The inclusion of species-specific parameters leads to an realistic 

prediction of the distribution patterns and the basal area of the dominant tree species, observed in 

three study sites under current climate. In general the predicted steady state average basal area is 

accurately simulated for lower altitudes and early successional species, but was slightly 

underestimated at higher altitudes and late successional species. By accounting for intraspecific 

variability in growth and mortality through two functional traits (maximum growth rate and wood 

density) the model simulates a higher contribution of slow-growing species across all altitudes. We 

suggest that vegetation dynamics models, and particularly those that are implemented at local scales, 

should be constrained with site-specific information that takes into account the variability of key 

functional traits.  

The inclusion of growth and mortality plasticity is an important aspect of this work. Currently 

there is great effort to include functional trait variation into vegetation dynamics models, in order to 

account for the potential plasticity in the ĞĐŽƐǇƐƚĞŵƐ͛ response to climate change (Scheiter et al. 

2013; Fyllas et al. 2014; van Bodegom et al. 2014). In this study we present a simple method to 

implement trait variation within existing forest gap-dynamics models, based on the measured intra-

specific variability in functional traits associated to tree growth and longevity. Our approach is based 

on the inclusion of a fundamental trade-off between growth and survival. Wood density is selected as 



17 

 

the core trait to represent this trade-off. Lower wood density is related to higher growth and 

mortality rates both within and between the species of interest. On the other hand, higher wood 

density is associated with smaller maximum growth and mortality rates. By parameterising this 

theoretical trade-off with species-specific measurements of tree growth and wood density the model 

adequately captures the vegetation dynamics in our three study sites. Additional axes of functional 

trait variation that represent ecophysiological trade-offs could be potentially integrated in this 

modelling framework in future studies. These could relate to species hydraulic properties and/or 

response to disturbance (Pausas 1999, Sánchez-Gómez et al 2006).       

In all study sites CC simulations suggest an upward shift in the dominance patterns, with more 

drought-tolerant species (Pinus nigra and Quercus frainetto) increasing its contribution at higher 

altitudes. The inclusion of trait plasticity does not significantly alter the CC simulations outcomes, with 

the only exception at Mt Taygetos, where the A. cephalonica was more persistent at higher altitudes 

when the trait plasticity was included. The overall trend of shifting dominance patterns with CC is 

related to the drought tolerance of the studied species. Compared to A. borisii-regis and F. sylvatica, 

the higher elevation dominant species at South and North Pindos, A. cephalonica is considered more 

drought-tolerant and thus it maintains its contribution to the stand͛Ɛ basal area under CC conditions. 

It should be noted that species response to drought is simulated in this version of the model by 

counting the number of days with water stress that feeds into a species-specific drought response 

function (Granier et al. 1999; Fyllas and Troumbis 2009). Hence there is no direct effect of trait 

plasƚŝĐŝƚǇ ƚŽ Ă ƐƉĞĐŝĞƐ ĂŶĚͬ Žƌ ŝŶĚŝǀŝĚƵĂů͛Ɛ ĚƌŽƵŐŚƚ ƚŽůĞƌĂŶĐĞ͘ Various studies suggest a relationship 

between cavitation resistance (Hacke et al. 2001) and drought tolerance (Poorter and Markesteijn 

2008; Preston et al. 2006; but see Hoffmann et al. 2011) with DW, and thus such a relationship could 

be implemented in future versions of this modelling framework.   
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In this study simulated shifts in species dominance were also associated with changes in the two 

functional traits used to describe variation in growth and mortality. In all three study sites the CC 

scenario resulted in higher Gm of the drought-tolerant species (P. nigra and Q. frainetto) and lower  

Dw. Shifts in Gm and Dw were not as clear for the less drought-tolerant species, with the exception of F. 

sylvatica at North Pindos, where a systematic decrease in Gm and increase in Dw was simulated. These 

outputs suggest that across the studied elevation gradients, species that are able to tolerate longer 

dry periods could increase their growth rate in contrast to less drought tolerant species. It should be 

noted that our modeling framework is not only taking into account the uncertainty of vegetation 

processes (Reyer et al. 2016) by including variation in growth and mortality, but also enables tree 

populations to shift their functional characteristics. This is particularly important in terms of 

adaptation to changing biotic and abiotic conditions.  

Empirical evidence of species upward shifts (Penuelas and Boada 2003; Moser et al. 2010; Pauli et 

al. 2012) have been documented and modelling exercises identify the vulnerability of Mediterranean 

ecosystems to climate change (Morales et al. 2007; Fyllas and Troumbis 2009; Hickler et al. 2012).  

Simulations in this study suggest that climate change could lead to significant shifts of species 

distribution in mountainous Mediterranean forests. The importance of considering intraspecific 

variability for modelling purposes is highlighted here.  Although in two of the study sites incorporating 

trait variability did not ͞ĞŶŚĂŶĐĞ͟ ƚŚĞ ĂďŝůŝƚǇ ŽĨ ƚŚĞ ůĞĂƐƚ ĚƌŽƵŐŚƚ-tolerant species to adapt to a 

changing climate, in Mt Taygetos the response of A. cephalonica to drier conditions was more gradual 

under the plastic model setup. Such responses will be dependent on local environmental conditions 

as well as the ecophysiological ranges of species performance. Field studies that quantify these ranges 

as well as the way functional traits coordinate and interact to form fundamental ecological strategies 

could help us better parameterize models of vegetation dynamics.     
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Conclusions 

This study presents the application of a forest gap dynamics model to explore the potential 

effects of drought on the dynamics of mountainous Mediterranean forests in Greece. Emphasis was 

given on incorporating intra-specific variability in growth and mortality. Simulations under climate 

change conditions suggest an upward shift of the more drought-tolerant species. These changes are 

also accompanied by intraspecific shifts in two key functional traits that express the growth and 

mortality patterns of the tree species. In general, populations of more drought-tolerant species 

increase their maximum radial growth and decreased their wood density in contrast to less drought-

tolerant species. Incorporating trait variability and accounting for fundamental ecological trade-offs in 

vegetation dynamics models could increase the realism in projecting the fate of forest ecosystems 

under global change conditions.     

 

Acknowledgments 

We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-

eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). This work was 

ĨŝŶĂŶĐĞĚ ďǇ ƚŚĞ ͞MĞĚŝƚĞƌƌĂŶĞĂŶ FŽƌĞƐƚƐ ŝŶ TƌĂŶƐŝƚŝŽŶ ͬMEDIT͟ ŐƌĂŶƚ ƚŽ NF͘ TŚĞ ƌĞƐĞĂƌĐŚ ƉƌŽũĞĐƚ ŝƐ 

implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the 

OƉĞƌĂƚŝŽŶĂů PƌŽŐƌĂŵ ΗEĚƵĐĂƚŝŽŶ ĂŶĚ LŝĨĞůŽŶŐ LĞĂƌŶŝŶŐΗ ;AĐƚŝŽŶ͛Ɛ BĞŶĞĨŝĐŝĂƌǇ͗ GĞŶĞƌĂů “ĞĐƌĞƚĂƌŝĂƚ ĨŽƌ 

Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State.  

  



20 

 

References 

Allen CD, Macalady AK, Chenchouni H,Bachelet D,McDowell N, Vennetier M, Kitzberger T, 

RiglingA,Breshears D, Hogg EH (2010). A global overview of drought and heat-induced tree 

mortality reveals emerging climate change risks for forests. Forest Ecology and Management 

259:660ʹ684. 

Archibold OW (1995). Ecology of world vegetation. Chapman & Hall Ltd 

Barbero M, Bonin G, Loisel R, Quézel P (1990). Changes and disturbances of forest ecosystems caused 

by human activities in the western part of the Mediterranean basin. Vegetatio 87:151ʹ173. 

Blondel J, Aronson J (1999). Biology and wildlife of the Mediterranean region. Oxford University Press 

Bonan GB (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. 

Science 320:1444ʹ1449. 

Bragg DC (2001). Potential relative increment (PRI): a new method to empirically derive optimal tree 

diameter growth. Ecological Modelling 137:77ʹ92. 

Bugmann H (2001). A review of forest gap models. Climatic Change 51:259ʹ305. 

Christopoulou A, Fulé PZ, Andriopoulos P, et al (2013) Dendrochronology-based fire history of Pinus 

nigra forests in Mount Taygetos, Southern Greece. Forest Ecology and Management 293:132ʹ
139. 

Chrysopolitou V, Apostolakis A, Avtzis D, et al. (2013). Studies on forest health and vegetation changes 

in Greece under the effects of climate changes. Biodiversity and Conservation 22:1133ʹ1150. 

Desprez-Loustau M-L, Marçais B, Nageleisen L-M, Piou D, Vannini A (2006). Interactive effects of 

drought and pathogens in forest trees. Annals of Forest Science 63:597ʹ612. 

Fyllas NM, Phillips OL, Kunin WE, Matsinos YG, Troumbis AY (2007). Development and 

parameterization of a general forest gap dynamics simulator for the North-eastern 

Mediterranean Basin (GREekFOrest Species). Ecological Modelling 204:439ʹ456. 

Fyllas NM, Politi PI, Galanidis A, Dimitrakopoulos PG, Arianoutsoy M (2010). Simulating regeneration 

and vegetation dynamics in Mediterranean coniferous forests. Ecological Modelling 221:1494ʹ
1504. 

Fyllas NM, Quesada CA, Lloyd J (2012). Deriving plant functional types for Amazonian forests for use in 

vegetation dynamics models. Perspectives in Plant Ecology, Evolution and Systematics 14:97ʹ110. 

Fyllas NM, Troumbis AY (2009). Simulating vegetation shifts in north-eastern Mediterranean 

mountain forests under climatic change scenarios. Global Ecology and Biogeography 18:64ʹ77 

Fyllas NM, Gloor E, Mercado LM, Sitch S, Quesada CA, Domingues TF, Galbraith DR, Torre-Lezama A, 

Villanova E, Ramirez-Angulo H, Higuchi N, Neil DA, Silveira M, Ferreira L, Aymard GA, Malhi Y, 

Phillips OL, Lloyd J (2014). Analysing Amazonian forest productivity using a new individual and 

trait-based model (TFS v.1). Geoscientific Model Development 7:1251ʹ1269.  

Giorgi F, Lionello P (2008). Climate change projections for the Mediterranean region. Global and 

Planetary Change 63:90ʹ104. 



21 

 

Granier A, Bréda N, Biron P, Villette S (1999). A lumped water balance model to evaluate duration and 

intensity of drought constraints in forest stands. Ecological Modelling 116:269ʹ283. 

Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, Huse 

G  (2006). A standard protocol for describing individual-based and agent-based models. Ecological 

Modelling 198:115ʹ126. 

Grissino-Mayer HD (2001). Evaluating crossdating accuracy: a manual and tutorial for the computer 

program COFECHA. Tree-ring Research 57 (2): 205-221. 

Gualdi S, Somot S, Li L, Li L, Artale V, Adani M, Belluci A, Braun A, Calmanti S, Carillo A, Dell'Aquila A 

(2013). The CIRCE simulations: regional climate change projections with realistic representation 

of the Mediterranean Sea. Bulletin of the American Meteorological Society 94:65ʹ81. 

Hacke UG, Sperry JS, Pockman WT, et al (2001) Trends in wood density and structure are linked to 

prevention of xylem implosion by negative pressure. Oecologia 126:457ʹ461. 

Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008). A European daily high-

resolution gridded data set of surface temperature and precipitation for 1950ʹ2006. Journal of 

Geophysical Research  113:D20119.  

Hickler T, Vohland K, Feehan J, Miller PA, Smith B, Costa L, Giesecke T, Fronzek S, Carter TR, Cramer W 

(2012). Projecting the future distribution of European potential natural vegetation zones with a 

generalized, tree species-based dynamic vegetation model. Global Ecology and Biogeography 

21:50ʹ63. 

Hoffmann WA, Marchin RM, Abit P, Lau OL (2011) Hydraulic failure and tree dieback are associated 

with high wood density in a temperate forest under extreme drought. Global Change Biology 

17:2731ʹ2742. doi: 10.1111/j.1365-2486.2011.02401.x 

Jump AS, Hunt JM, Penuelas J (2006). Rapid climate change-related growth decline at the southern 

range edge of Fagussylvatica. Global Change Biology 12:2163ʹ2174. 

Keenan T, Maria Serra J, Lloret F, Ninyerola M, Sabate S (2011). Predicting the future of forests in the 

Mediterranean under climate change, with niche-and process-based models: CO2 matters! Global 

Change Biology 17:565ʹ579. 

Kint V, Aertsen W, Fyllas NM, Trabucco A, Janssen E, Ozkan K, Muys B (2014). Ecological traits of 

Mediterranean tree species as a basis for modelling forest dynamics in the Taurus mountains, 

Turkey. Ecological Modelling 286:53ʹ65. 

Koutsias N, Xanthopoulos G, Founda D, et al (2013) On the relationships between forest fires and 

weather conditions in Greece from long-term national observations (1894ʹ2010). International 

Journal of Wildland Fire 22:493ʹ507. 

Linares JC, Tíscar PA (2010). Climate change impacts and vulnerability of the southern populations of 

Pinusnigra subsp. salzmannii. Tree physiology 30:795ʹ806. 

Lopez-Iglesias B, Villar R, Poorter L (2014) Functional traits predict drought performance and 

distribution of Mediterranean woody species. Acta Oecologica 56:10ʹ18. 

Martínez-Vilalta J, Adell N, López BC, BadiellaBusquetsL, Ninyerola i Casals  M (2008). Twentieth 

century increase of Scots pine radial growth in NE Spain shows strong climate interactions. Global 

Change Biology 12:2868ʹ2881 



22 

 

Martínez-Vilalta J, Mencuccini M, Vayreda J, Retana J (2010). Interspecific variation in functional 

traits, not climatic differences among species ranges, determines demographic rates across 44 

temperate and Mediterranean tree species. Journal of Ecology 6: 1462-1495. 

Moore AD (1989). On the maximum growth equation used in forest gap simulation models. Ecological 

Modelling 45:63ʹ67. 

Morales P, Hickler T, Rowell DP, Smith B, Sykes MT (2007). Changes in European ecosystem 

productivity and carbon balance driven by regional climate model output. Global Change Biology 

13:108ʹ122. 

Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte Real J (2006). Potential impact of 

climate change on fire risk in the Mediterranean area. Climate Research 31:85ʹ95.  

Moser B, Temperli C, Schneiter G, Wohlgemuth T (2010). Potential shift in tree species composition 

after interaction of fire and drought in the Central Alps. European Journal of Forest Research 

129:625ʹ633. 

Ngugi MR, Botkin DB, Doley D, Cant M, Kelley J (2013). Restoration and management of Callitris forest 

ecosystems in eastern Australia: simulation of attributes of growth dynamics, growth increment 

and biomass accumulation. Ecological Modelling 263:152ʹ161. 

PĂƵůŝ H͕ GŽƚƚĨƌŝĞĚ M͕ DƵůůŝŶŐĞƌ “͕ Ğƚ Ăů ;ϮϬϭϮͿ RĞĐĞŶƚ ƉůĂŶƚ ĚŝǀĞƌƐŝƚǇ ĐŚĂŶŐĞƐ ŽŶ EƵƌŽƉĞ͛Ɛ ŵŽƵŶƚĂŝŶ 
summits. Science 336:353ʹ355. 

Pausas JG (2004) Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). 

Climatic change 63:337ʹ350. 

Pausas JG, Fernández-Muñoz S (2012). Fire regime changes in the Western Mediterranean Basin: from 

fuel-limited to drought-driven fire regime. Climatic Change 110:215ʹ226. 

Pausas JG (1999). Mediterranean vegetation dynamics: modelling problems and functional types. 

Plant Ecology 140:27ʹ39. 

Peñuelas J, Boada M (2003). A global change-induced biome shift in the Montseny mountains (NE 

Spain). Global Change Biology 9:131ʹ140. 

Piedallu C, Gégout J-C, Perez V, Lebourgeois F (2013) Soil water balance performs better than climatic 

water variables in tree species distribution modelling. Global Ecology and Biogeography 22:470ʹ
482. 

Poorter L, Markesteijn L (2008) Seedling traits determine drought tolerance of tropical tree species. 

Biotropica 40:321ʹ331. 

Preston KA, Cornwell WK, DeNoyer JL (2006) Wood density and vessel traits as distinct correlates of 

ecological strategy in 51 California coast range angiosperms. New Phytologist 170:807ʹ818. 

Priestley CHB, Taylor RJ (1972). On the assessment of surface heat flux and evaporation using large-

scale parameters. Monthly Weather Review 100:81ʹ92. 

Reich PR (2014) The world-wide 'fast-slow' plant economic spectrum: a traits manifesto. Journal of 

Ecology 102: 275-301.  



23 

 

Reyer CP, Flechsig M, Lasch-Born P, van Oijen M (2016) Integrating parameter uncertainty of a 

process-based model in assessments of climate change effects on forest productivity. Climatic 

Change 1ʹ15. 

Rinn F (2003). TSAPWin: time series analysis and presentation for dendrochronology and related 

applications. Frank Rinn, Heidelberg, Germany. 

Risch AC, Heiri C, Bugmann H (2005). Simulating structural forest patterns with a forest gap model: a 

model evaluation. Ecological Modelling 181:161ʹ172. 

Sakschewski B, Bloh W, Boit A, Rammig A, Kattge J, Poorter L, Penuelas J, Thonicke K (2015). Leaf and 

stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation 

model. Global Change Biology, doi:10.11/gcb.12870. 

Sánchez-Gómez D, Valladares F, Zavala MA (2006) Performance of seedlings of Mediterranean woody 

species under experimental gradients of irradiance and water availability: trade-offs and evidence 

for niche differentiation. New Phytologist 170:795ʹ806. doi: 10.1111/j.1469-8137.2006.01711.x 

Sardans J, Peñuelas J (2013) Plant-soil interactions in Mediterranean forest and shrublands: impacts of 

climatic change. Plant and Soil 365:1ʹ33. 

Sarris D, Christodoulakis D, Körner C (2011). Impact of recent climatic change on growth of low 

elevation eastern Mediterranean forest trees. Climatic Change 106:203ʹ223.  

Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000). Forests of the Mediterranean region: 

gaps in knowledge and research needs. Forest Ecology and Management 132:97ʹ109. 

Scheiter S, Langan L, Higgins SI (2013). Next-generation dynamic global vegetation models: learning 

from community ecology. New Phytologist 198:957ʹ969. 

Shugart HH (1984). A Theory of Forest Dynamics: The Ecological Implications of Forest Succession 

Models. The Blackburn Press, Caldwell, NJ, USA. 

Sitch S, Huntingford C, Gedney N, Levy PE, Lomas M, Piao SL, Betts R, Ciais P, Cox P, Friedlingstein P 

(2008). Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon 

cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology 

14:2015ʹ2039. 

Touchan R, Baisan C, Mitsopoulos ID, Dimitrakopoulos AP (2012) Fire history in European black pine 

(Pinus nigra Arn.) forests of the Valia Kalda, Pindus mountains, Greece. Tree-Ring Research 

68:45ʹ50. 

Van Bodegom PM, Douma JC, Verheijen LM (2014). A fully traits-based approach to modeling global 

vegetation distribution. Proceedings of the National Academy of Sciences 111:13733ʹ13738. 

Van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fule PZ, Harmon ME, Larson AJ, 

Smith JM, Taylor AH (2009). Widespread increase of tree mortality rates in the western United 

States. Science 323:521ʹ524. 

Wösten JHM, Lilly A, Nemes A, Le Bas C (1999) Development and use of a database of hydraulic 

properties of European soils. Geoderma 90:169ʹ185. doi: 10.1016/S0016-7061(98)00132-3 

Yamaguchi DK (1991). A simple method for cross-dating increment cores from living trees. Canadian 

Journal of Forest Research 21:414ʹ416. 



24 

 

Zeide B (1993). Analysis of growth equations. Forest Science 39:594ʹ616. 


