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Abstract

Signals with irregular sampling structures arise naturally in many fields. In applications
such as spectral decomposition and nonparametric regression, classical methods often assume
a regular sampling pattern, thus cannot be applied without prior data processing. This work
proposes new complex-valued analysis techniques based on the wavelet lifting scheme that
removes ‘one coefficient at a time’. Our proposed lifting transform can be applied directly to
irregularly sampled data and is able to adapt to the signal(s)’ characteristics. As our new lifting
scheme produces complex-valued wavelet coefficients, it provides an alternative to the Fourier
transform for irregular designs, allowing phase or directional information to be represented.
We discuss applications in bivariate time series analysis, where the complex-valued lifting
construction allows for coherence and phase quantification. We also demonstrate the potential
of this flexible methodology over real-valued analysis in the nonparametric regression context.
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1 Introduction

Since the early nineties, wavelets have become a popular tool for nonparametric regression, sta-

tistical image processing and time series analysis. In particular, due to their natural localisation,

wavelets can provide sparse representations for certain functions that cannot be represented effi-

ciently using Fourier sinusoids. Reviews of the use of wavelets in statistics include Nason (2008)

and Abramovich et al. (2000).

Until recently, the majority of work in the statistical literature has been based on the discrete

wavelet transform (DWT). However, classical wavelet methods suffer from some limitations; in

particular, usage is restricted to data sampled at regular time or spatial locations, and a dyadic data

dimension is often imposed. Wavelet lifting (Sweldens, 1996) can be used to overcome many of the

shortcomings of the standard DWT. Specifically, wavelet functions obtained through the wavelet

lifting scheme provide an extension of classical wavelet methods to more general settings, such as

irregularly sampled data.

On the other hand, it is now well-established thatcomplex-valueddata analysis tools can ex-

tract useful information that is potentially missed when using traditional real-valued wavelet tech-

niques, even for real-valued data, see for example Lina and Mayrand (1995); Fernandes et al.

(2003); Selesnick et al. (2005). In particular, using complex-valued multiscale methods has been

advantageous in a range of statistical applications such as nonparametric regression (Barber and

Nason, 2004), image processing (Kingsbury, 1999; Portilla and Simoncelli, 2000) and time series

analysis (Magarey and Kingsbury, 1998; Kingsbury, 2001).

Complex-valued multiscale techniques building upon the lifting scheme as introduced by Sweldens

(1996) have been introduced in the literature by Abbas and Tran (2006), who briefly investigated

their proposed technique in the image denoising context, and by Shui et al. (2003), who focused

on the design of complex filters with desired band-pass properties.

This article introduces a newadaptive complex-valued wavelet lifting schemebuilt upon the

lifting ‘one coefficient at a time’ (LOCAAT) framework of Jansen et al. (2001, 2009). Anondeci-

matedvariant of the proposed transform, which allows for an overcomplete representation of such

data is also introduced. The added benefits of our methodology are: (i) flexibility – it can be ap-

plied to irregularly sampled grids of (possibly) non-dyadic length; (ii) information augmentation –
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through thecomplex-valuedwavelet coefficients, the scheme exploits additional signal information

not used by real-valued transforms; and (iii) applicability – it allows for the analysis of bivariate

nonstationary signals with possibly different (irregular) sampling structures, previously not directly

possible using methods currently in the literature.

We demonstrate the benefits of our new technique for spectral estimation of irregularly sampled

time series, with a particular focus on coherence and phase quantification for irregularly sampled

bivariate time series. In this context, the methodology can be viewed as a wavelet lifting analogue

to the Fourier transform and can be used for the same purposes. The good performance of our

method is also displayed in the nonparametric regression setting.

The paper is organised as follows. Section 2 introduces the new complex-valued lifting algo-

rithm, including its overcomplete variant. Section 3 details the application of the complex-valued

lifting algorithm to discover local frequency content of irregularly sampled uni- and bivariate time

series. Section 4 tackles nonparametric regression for (real-valued) signals.

2 The complex-valued lifting scheme

The lifting scheme (Sweldens, 1996) was introduced as a flexible way of providing wavelet-like

transforms forirregular data. Lifting bases are naturally compactly supported, and via the recursive

nature of the transform, one can build wavelets with desired properties, such as vanishing moments.

In addition, lifting algorithms are known to be computationally faster than traditional wavelet

transforms since they require fewer computations compared with classical transforms. For an

overview of the lifting scheme, see Schröder and Sweldens (1996) or Jansen and Oonincx (2005).

In this section we introduce acomplex-valuedlifting scheme for analysing irregularly sampled

signals. The proposed lifting scheme can be thought of as a wavelet lifting analogue to the Fourier

transform. An irregularly sampled signal is decomposed into a set of complex-valued wavelet (or

detail) coefficients, representing the variation in the data as a function of location and wavelet scale

(comparable to Fourier frequency).

In a nutshell, the scheme can be conceptualised in two branches: one branch of the trans-

form provides the real-valued part of the detail coefficient and the second branch represents the
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imaginary component. Hence by using two different (real-valued) lifting schemes, one obtains

a complex-valued decomposition, akin to the dual-tree complex wavelet transform of Kingsbury

(2001). However, our approach differs from that of Kingsbury (2001) in that it employs two lifting

schemes linked through orthogonal prediction filters, rather than two separate DWTs. The new

scheme is therefore able to extract information from signals via the two filters whilst also natu-

rally coping with the irregularity of the observations. Our approach also differs fundamentally

from the complex-valued lifting techniques currently in the literature (Abbas and Tran, 2006; Shui

et al., 2003) through the particular filter construction we propose (Section 2.2) in conjunction with

the lifting construction that removes ‘one coefficient at a time’ (Section 2.1). This allows us to

embed adaptivity in our complex-valued multiscale setup, i.e. construct wavelet functions whose

smoothness adjusts to the local properties of the signal.

In what follows we introduce the proposed scheme using an abstract choice of real and imag-

inary filters, and the subject of filter choice is deferred until Section 2.2, while an overcomplete

version of the complex-valued lifting transform is introduced in Section 2.3.

2.1 The algorithm

Suppose a functionf (∙ ) is observed at a set ofn irregularly spaced locations,x = (x1, . . . , xn).

The proposed lifting scheme aims to decompose the data collected over the irregularly sampled

grid, {(xi , fi = f (xi))}ni=1, into a set ofR smooth coefficients and (n − R) complex-valued detail

coefficients, withR the desired resolution level. The quantityR is akin to the primary resolution

level in classical wavelet transforms, see Hall and Patil (1996) for more details.

We propose to construct a new complex-valued transform that builds upon the LOCAAT paradigm

of Jansen et al. (2001, 2009), shown to efficiently represent local signal features in the fields of non-

parametric regression (Nunes et al., 2006; Knight and Nason, 2009) and spectral estimation (Knight

et al., 2012). We shall therefore refer to our proposed algorithm under the acronymC-LOCAAT.

Similar to the real-valued LOCAAT algorithm,C-LOCAAT can be described by recursively

applying three steps:split, predictandupdate, which we detail below. At the first stage (n) of the

algorithm, the smooth coefficients are set ascn,k = fk, the set of indices of smooth coefficients is

Sn = {1, . . . , n} and the set of indices of detail coefficients isDn = ∅. The (irregular) sampling is
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described using the distance between neighbouring observations, and at stagen we define thespan

of xk as sn,k =
xk+1−xk−1

2 . The sampling irregularity is intrinsically linked to the notion of wavelet

scale, which in this context becomes continuous, as opposed to dyadic in the classical wavelet

settings; this results in each coefficient having an associated scale across a continuum. This aspect

will be discussed in detail following the introduction of theC-LOCAAT algorithm.

In thesplit step, a pointjn to be lifted is chosen. Typically, points from the densest sampled

regions are removed first, but other predefined removal choices are also possible (see Section 2.3).

We shall often refer to the removal order as atrajectory.

In thepredictstep the set of neighbours (Jn) of the point jn are identified and used to estimate

the value of the function at the selected pointjn. In contrast to real-valued LOCAAT algorithms,

this is achieved usingtwo prediction schemes, each defined by its respective filters,L andM. The

filter L corresponds to estimation via regression over the neighbourhood, as is usual in LOCAAT.

In order to extract further information from the signal, our proposal is to construct the second

filter (M) orthogonal onL, to ensure that it exploits further local signal information to the filterL.

Section 2.2 discusses this in detail.

The prediction residuals from using the two filters are given by

λ jn = lnjncn, jn −
∑

i∈Jn

lni cn,i , (1)

μ jn = mn
jncn, jn −

∑

i∈Jn

mn
i cn,i , (2)

where{lni }i∈Jn∪{ jn} and{mn
i }i∈Jn∪{ jn} are the prediction weights associated withL andM.

The complex-valued detail (wavelet) coefficient we propose is obtained by combining the two

prediction residuals

djn = λ jn + i μ jn. (3)

In theupdatestep, the smooth coefficients{cn,i}i∈Jn and spans of the neighbours{sn,i}i∈Jn are updated

according to filterL:

cn−1,i = cn,i + bn
i λ jn,

sn−1,i = sn,i + lni sn, jn ∀i ∈ Jn, (4)
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wherebn
i are update weights. In practice, the update weights are chosen such that the mean of

the series is preserved throughout the transform, thus preserving the characteristics of the original

series (Jansen et al., 2009). One such choice is to setbn
i = (sn, jn sn−1,i)/(

∑

i∈Jn
s2

n−1,i). The neighbours’

spans update accounts for the modification to the sampling grid induced by removing one of the

observations. Updating according to theL filter only ensures that there is a unique coarsening of

the signal for both the real and imaginary parts of the transform.

The observationjn is then removed from the set of smooth coefficients, hence after the first

algorithm iteration, the index set of smooth and detail coefficients areSn−1 = Sn\{ jn} andDn−1 =

{ jn} respectively. The algorithm is then iterated until the desired primary resolution levelR has

been achieved. In practice, the choice of the primary levelR in LOCAAT lifting schemes is not

crucial provided it is sufficiently low (Jansen et al., 2009), withR = 2 recommended by Nunes

et al. (2006).

After observationsjn, jn−1, . . . , jR+1 have been removed, the function can be represented as a

set ofRsmooth coefficients,{cr−1,i}i∈SR, and (n−R) detail coefficients,{dk}k∈DR (DR = { jn, ..., jR+1}).

As in classical wavelet decompositions, the detail coefficients represent the high frequency com-

ponents off (∙ ), whilst the smooth coefficients capture the low frequency content in the data.

The lifting scheme can be easily inverted by recursively ‘undoing’ the update, predict and

split steps described above for the first filter. Specifically, the update step is first inverted:cn,i =

cn−1,i − bn
i λ jn, ∀i ∈ Jn, then the predict step is inverted by

cn, jn =
λ jn −

∑

i∈Jn
lni cn,i

lnjn
or (5)

cn, jn =
μ jn −

∑

i∈Jn
mn

i cn,i

mn
jn

. (6)

Undoing either predict (5) or (6) step is sufficient for inversion. As for real-valued lifting,

inversion can also be performed via matrix calculations due to the transform linearity. However,

using (5) for inversion is generally computationally faster, especially for largen.

Wavelet lifting scales. The notion of wavelet scale in this context becomes continuous and is

intrinsically linked to the data sampling structure and trajectory (removal order) choice. Denote

the lifting analogue of the classical wavelet scale for a detail coefficientdjk byα jk = log2(sk, jk), with
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low α-values corresponding to fine scales. In order to give lifting scales a similar interpretation to

the classical notion of dyadic wavelet scale, we group wavelet functions of similarα-scales into

discrete artificial levels{ℓi}J
∗

i=1, as proposed by Jansen et al. (2009), for a chosenJ∗. The further

use of artificial scales is discussed in Sections 2.3 and 3 (under the spectral estimation context)

and in Appendix B (under the nonparametric regression context). Note that the usage of the same

lifting trajectory for the two lifting branches (coupled with the one filter update) ensures that our

proposed lifting transform generates a common scale for both real and imaginary parts. In other

words, at each stage of the algorithm there is just one set of smooth coefficients associated to a

unique set of scales.

2.2 Filter construction

The proposed complex-valued lifting transform is illustrated schematically in Figure 1 in terms of

two general prediction filtersL andM. As already explained, we construct the second filter (M)

orthogonal onL, thus ensure different signal content extraction.

For clarity of exposition, let us consider a LOCAAT scheme with a prediction step based upon

two neighbours in a symmetrical configuration. The regression over the neighbourhood generates

prediction weights for the two neighbours, let us denote them byl1 andl3 (see equation (1)); this

prediction step can also be viewed as using a three-tap prediction filter (L) of the form (l1,1, l3),

which depends on the sampling of the observationsx = (x1, . . . , xn) (Nunes et al., 2006). We

determine the unique (up to proportionality) three-tap filterM that is orthogonal onL and ensures

at least one vanishing moment. Hence we can express the set of filter pairs as having the form

L = (l1,1, l3), l1, l3 > 0

M = (m1,m2,m3),

andl1m1 +m2 + l3m3 = 0 (i.e. L ∙M = 0) andl1 + l3 = 1, m1 +m3 = m2 (i.e. ensure one vanishing

moment). The solution to these constraints can be parameterised asM = (−1+l3
1+l1

m, l1−l3
1+l1

m,m). The

proportionality constant can be determined by bringing both filtersL and M to the same scale

through‖L‖ = ‖M‖, which yieldsm = l1+1√
3

. Hence the solution can be succinctly written as

M = (Am, (1 + A)m,m) with A = l1−2
l1+1 andm = l1+1√

3
. This particular example of the lead filter
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L represents a prediction scheme using linear regression with two neighbours in a symmetrical

configuration. This is a choice that has proved to be successful both for (real-valued) nonparametric

regression (Nunes et al., 2006; Knight and Nason, 2009) and for (real-valued) spectral estimation

(Knight et al., 2012).

SinceL can be viewed as a prediction filter for a real-valued LOCAAT scheme, we can also

employ theadaptiveprediction filter choice of Nunes et al. (2006) in our proposed construction.

The ‘best’ local regression (order and neighbourhood) is chosen at each predict step, subject to

yielding minimising the detail coefficients. Consequently, we obtain anadaptive complex-valued

lifting transform, with the highly desirable flexibility of being able to adapt to the local charac-

teristics of the data – see Appendix B in the supplementary material for an illustration of this

adaptiveness in the nonparametric regression setting.

The orthogonality of the two filtersM andL also mirrors the attractive properties of Fourier

sinusoids, hence this choice results in an interpretable quantification of phase, which shall further

be exploited according to the context—by phase alteration when denoising real-valued signals, or

by ensuring phase preservation in the context of spectral estimation.

A further insight and justification of the proposed filter choice is provided in Appendix C in

the context of coherence and phase estimation.

2.3 The nondecimated complex-valued lifting transform

In the classical wavelet literature, the nondecimated wavelet transform (NDWT) (Nason and Silver-

man, 1995) has properties that make it a better choice than the discrete wavelet transform (DWT)

for certain classes of problems, see e.g. Percival and Walden (2006). The concept is akin to basis

averaging, and has delivered successful results in both nonparametric regression and spectral esti-

mation problems, not only in the classical wavelet setting (NDWT) but also for irregularly spaced

data through the nondecimated lifting transform (NLT) (Knight and Nason, 2009; Knight et al.,

2012).

In this section, we also exploit the benefits of this nondecimation paradigm for irregularly

sampled data and to this end, we shall introduce thecomplex-valued nondecimated lifting trans-

form (CNLT). However, note that our use of the term ’nondecimation’ differs from the classical
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NDWT. Specifically, due to the irregular sampling structure, nondecimation cannot be performed

via decomposing shifts of input data without data interpolation.

Although similar in spirit to the NLT, our transform hinges on the proposed complex-valued

lifting scheme (Section 2.1) and therefore yields an overcomplete complex-valued data represen-

tation, extracting additional signal information. In particular, theCNLT algorithm results in a

wavelet transform that yields (complex-valued) wavelet coefficients at each grid point (x) and at

multiple scales (α).

Next we shall describe our proposed univariate and bivariateCNLT techniques. We shall show

that in the nonparametric regression setting, our univariate proposal significantly outperforms cur-

rent wavelet and non-wavelet denoising techniques (see Section 4 and Appendix B), while its

bivariate extension allows for estimation of the dependence between pairs of series (see Section 3).

2.3.1 Univariate CNLT

So far, the proposed complex-valued lifting scheme decomposes the original signal{(xi , fi =

f (xi))}ni=1 into a set ofR smooth coefficients and (n − R) complex detail (wavelet) coefficients,

with each detail coefficientdjk corresponding to exactlyonescaleα jk.

We now aim to construct a new scheme that transforms the original signal into a collection of

smooth and detail coefficients, with eachx-location associated to a collection of several wavelet

coefficients spread over all scales, rather than just one. The key to our proposal is to note that if an

observation is removed early in the LOCAAT algorithm, its associated detail coefficient has a fine

scale; conversely, if a point is removed later in the algorithm, it is associated with a larger scale.

We therefore propose to repeatedly applyC-LOCAAT using randomly drawn trajectories,Tp

for p = 1, ...,P, where each removal orderTp is generated by sampling (n− R) locations without

replacement from (x1, . . . , xn); we refer to this algorithm asCNLT.

Following this procedure, a set ofP detail coefficients{dp
xk}Pp=1 is generated at each locationxk,

wheredp
xk denotes the wavelet coefficient at locationxk obtained usingC-LOCAAT with trajectory

Tp. At any given locationxk, the set ofP detail coefficients will be associated with different

scales,{αp
xk}Pp=1; note that this differs from the classical NDWT which produces exactly one detail

coefficient at each location and dyadic scale.

9
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Similar to the NLT, the number of trajectoriesP should be ‘large enough’ to ensure that an

ample number of coefficients is produced at as many scales and locations as possible, subject to

computational constraints (Knight and Nason, 2009; Knight et al., 2012).

2.3.2 Bivariate CNLT

We now consider the extension ofCNLT to the analysis of bivariate series.

Same irregular grid. Let us first assume we have observations{(xi , f 1
i , f

2
i )}ni=1 on two functions

f 1 and f 2, measured on thesame x-grid. Apply the univariateCNLT (Section 2.3.1) to each signal,

using the same set of trajectories{Tp}Pp=1 for both series.

The identical sampling grids results in an exact correspondence between the coefficients of

each series, i.e. for each coefficient of the first series there is a coefficient of the second series at

exactly the same location and scale (see Figure 2a). In other words, after application of theCNLT

to both series, for each time point,xk, we obtain two sets of complex-valued detail coefficients

{d1,p
xk }Pp=1 and{d2,p

xk }Pp=1.

Different irregular grids. Let us now assume we have the data{(x1
i , x

2
i , f

1
i , f

2
i )}ni=1 on two func-

tions f 1 and f 2, measured on thedifferent x-grids.

As the scale associated with each detail coefficient is determined by the trajectory choice, we

partition thex-grid into a set ofartificial x-intervals{x( j)}T∗j=1, whereT∗ is chosen to provide the

desired resolution level on thex-axis. As illustrated in Figure 3, the result can be visualised in

terms of forming a grid over the area of the resulting detail coefficients.

Formally, for each artificialx-interval{x( j)}T∗j=1 and artificial scale{ℓi}J∗i=1, the set of detail coeffi-

cients for each grid square (using trajectories{Tp}Pp=1) is given by

D1
x( j)(ℓ

i) = Gm
(

d1,p

x1
k

|α1,p

x1
k

∈ ℓi , x1
k ∈ x( j)) (7)

D2
x( j)(ℓ

i) = Gm
(

d2,p

x2
k

|α2,p

x2
k

∈ ℓi , x2
k ∈ x( j)), (8)

whered1,p

x1
k

= λ
1,p

x1
k

+ i μ1,p

x1
k

andd2,p

x2
k

= λ
2,p

x2
k

+ i μ2,p

x2
k

are the complex-valued wavelet coefficients from

f 1 and f 2, andGm is a random sampling procedure selectingmi, j = min(#(d1),#(d2)) coefficients.
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Recall thatα1,p

x1
k

andα2,p

x2
k

represent the scales (log2 of span) associated to the coefficientsd1,p

x1
k

and

d2,p

x2
k

. Thus for each artificialx-interval and scale, we obtain the same number of detail coefficients

(although the exact coordinates of the coefficients may differ).

We term these constructions as thebivariate complex nondecimated lifting transform(bivariate

CNLT) on the same/different grid(s), as appropriate. Section 3 will discuss applications where

the proposed bivariateCNLT construction provides a framework for estimation of the dependence

between pairs of series.

3 Complex lifting analysis of irregularly sampled time series

Spectral analysis is an important tool in describing content in time series data, complementary

to time domain analysis. In particular, the Fourier spectrum allows a decomposition in terms of

sinusoidal components at different frequencies, giving a description of the strength of periodic

behaviour within the series. Such traditional methods are based on the assumption of second-order

stationarity, although extensions to deal with non-stationarity exist, such as the short-time Fourier

transform (STFT, Allen (1977); Jacobsen and Lyons (2003)) or more sophisticated time-frequency

analysis methods (e.g. locally stationary time series, Nason et al. (2000); SLEX, Ombao et al.

(2002)). Similarly,cross-spectralanalysis of multivariate time series can be used to describe and

study the interrelationships between many variables of interest observed simultaneously over time,

see Reinsel (2003) or Lütkepohl (2005) for comprehensive introductions to the area, or Park et al.

(2014) for a multivariate locally stationary wavelet approach.

This work aims to deal with a further additional challenge, that of irregular sampling. Irregu-

larly sampled time series arise in many scientific applications, e.g. finance (Engle, 2000; Gençay

et al., 2001), astronomy (Bos et al., 2002; Broerson, 2008) and environmental science (Witt and

Schumann, 2005; Wolff, 2005) to name just a few. Many applications deal with the sampling ir-

regularity either by means of a time-frequency Lomb-Scargle approach under the assumption of

time series stationarity (Vanı́ček, 1971; Lomb, 1976; Scargle, 1982), or process the data prior to

analysis, restoring it to a regular grid then suitable for analysis by standard methods, see for exam-

ple Erdogan et al. (2004) or Broerson (2008). Although it is convenient to work within a regularly
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spaced time series setting, a typical result will amount to signal smoothing, leading to information

loss at high frequencies and estimation bias (Frick et al., 1998; Rehfeld et al., 2011).

Many time series observed in practice will exhibit (second-order) nonstationary behaviour as

well as being irregularly sampled. Although the literature does currently offer (albeit few) options

for the analysis of irregularly sampled nonstationary series (see e.g. Foster (1996); Frick et al.

(1998); Knight et al. (2012)), there is no well established method for estimating the dependence

between pairs of such signals. In the next section, we propose to describe the local frequency

content of irregularly sampled time series by making use of the proposed complex-valued lifting

scheme and introducing a complex-valued cross-periodogram and associated measures.

3.1 The complex lifting periodogram

Recall that theCNLT provides a set of detail coefficients and associated scales{dp
xk, α

p
xk}Pp=1, where

the scale associated with each detail coefficient αp
xk is a continuous quantity. In a spirit similar

to that of Knight et al. (2012), this information will allow a time-scale decomposition (typically

termed the (wavelet) periodogram) of the variability in the data, with the crucial difference that

the wavelets coefficients are now complex-valued and therefore contain more information. In con-

structing the periodogram, we use a set of discrete artificial scales,{ℓi}J∗i=1, which partitions the

range of the continuous lifting scales{αp
xk} for all p andk, with J∗ chosen to provide a desired peri-

odogram ‘granularity’. Each scaleαp
xk will fall into one unique levelℓi for eachp and observation

xk; let Pi,k = {p : αp
xk ∈ ℓi} denote the set of trajectories such thatxk is associated with a scale in the

setℓi, andni,k = |Pi,k| denote the size of the set. For each time pointxk, k = 1, . . . , n and artificial

scaleℓi, i = 1, . . . , J∗, we introduce thecomplex lifting periodogram(also referred to in text as

CNLT periodogram)

Ixk(ℓ
i) =

1
ni,k

∑

p∈Pi,k

|dp
xk
|2 = 1

ni,k

∑

p∈Pi,k

(λp
xk

)2 +
1

ni,k

∑

p∈Pi,k

(μp
xk

)2,

where| ∙ | denotes the complex modulus.
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3.2 The complex lifting cross-periodogram

Similar to other complex wavelet transforms (Portilla and Simoncelli, 2000; Selesnick et al., 2005),

the complex-valued nature of the bivariateCNLT coefficients (see Section 2.3.2) provides both

local phase and spectral information. In order to estimate the dependence between pairs of time

series, we first define thecomplex lifting cross-periodogram, the cross-spectral analogue of the

periodogram. As in Section 2.3.2, our discussion will be split based on whether the data has been

sampled over the same or different grids.

Bivariate time series observed on the same grid. For each time pointxk, k = 1, . . . , n and

artificial scaleℓi, i = 1, . . . , J∗, define the complex lifting cross-periodogram (also referred to as

CNLT cross-periodogram) for series observed on the same grid as

I (1,2)
xk

(ℓi) =
1

ni,k

∑

p∈Pi,k

d1,p
xk

d2,p
xk , (9)

whered1,p
xk = λ

1,p
xk + i μ1,p

xk andd2,p
xk = λ

2,p
xk + i μ2,p

xk are the detail coefficients from f 1 and f 2. The

CNLT cross-periodogram consists of combinations of coefficients from each series and provides

information about the relationship between the signals. Note that unlike theCNLT periodogram,

the cross-periodogram is complex-valued.

Similar to classical Fourier cross-spectrum methodology (see e.g. Priestley (1983)), theCNLT

cross-periodogram can be separated into its real and imaginary parts to define theCNLT co-

periodogramand theCNLT quadrature periodogram, respectively resulting in

cxk(ℓ
i) =

1
ni,k

∑

p∈Pi,k

λ1,p
xk
λ2,p

xk
+

1
ni,k

∑

p∈Pi,k

μ1,p
xk
μ2,p

xk
,

qxk(ℓ
i) =

1
ni,k

∑

p∈Pi,k

μ1,p
xk
λ2,p

xk
− 1

ni,k

∑

p∈Pi,k

λ1,p
xk
μ2,p

xk
.

These quantities, together with the individual lifting spectra of each process, can be used to calcu-
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late the measures ofphaseandcoherencebetween the two seriesf 1 and f 2:

φxk(ℓ
i) = tan−1

(−qxk(ℓ
i)

cxk(ℓi)

)

, (10)

ρxk(ℓ
i) =

√

cxk(ℓi)2 + qxk(ℓi)2

√

I (1)
xk (ℓi)I (2)

xk (ℓi)
. (11)

TheCNLT cross-periodogram provides a measure of the dependence between series, but its mag-

nitude is affected by the individualCNLT periodograms of the signals. Hence as in the regularly

sampled setting, it is preferable to normalise this quantity, providing a coherence measure that sat-

isfies 0≤ ρxk(ℓ
i) ≤ 1 (as in (11)). This is similar to the coherence measure for regularly sampled

signals introduced in Sanderson et al. (2010). TheCNLT phase as defined in (10) provides an indi-

cation of any time lag between the signals. Several examples examining the coherence and phase

between signal pairs are given in Section 3.3.

Bivariate time series observed on different grids. Closer to real data scenarios, we now con-

sider time series that were sampled over different irregular grids, with one such real data example

being discussed in Section 3.3.3. In order to obtain the cross-spectral quantities, we combine the

appropriate sets of detail coefficients for each grid, corresponding tof 1 and f 2, i.e. D1
x( j)(ℓ

i) and

D2
x( j)(ℓ

i) introduced in equations (7) and (8). For each artificial time period,x( j), j = 1, . . . ,T∗ and

artificial scaleℓi, i = 1, . . . , J∗, we define the complex lifting cross-periodogram for series observed

on different irregular grids as

I (1,2)
x( j) (ℓi) =

1
ni, j

ni, j
∑

s=1

order{D1
x( j)(ℓ

i)}s order{D2
x( j)(ℓi)}s, (12)

whereni, j is the number of pairs in the grid square defined at timex( j) and scaleℓi, and order{D}s
indicates thesth time-ordered detail.

If the sampling schemes coincide for the two series ({x1
k}k ≡ {x2

k}k) and the same trajectories

are used to generate the details{d1,p
xk }p,k, respectively{d2,p

xk }p,k, then equations (9) and (12) coincide,

except for the quantities being also averaged over the defined artificial time period. The co- and

quadrature periodograms may be obtained in the same fashion as above, and subsequently used to

yield the lifting phase and coherence in this setting.
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Figures 2 and 3 provide a visual representation for the complex lifting cross-periodogram con-

struction under the assumption of the same, respectively different sampling grids.

We now make some remarks about the proposed periodogram constructions.

Scale interpretation. The relationship between artificial scale (ℓi) and classical Fourier fre-

quency can be described in terms of the scale which maximises the coherence for a Fourier wave

of periodT. Definingρ(ℓi) = 1
n

∑n
k=1 ρxk(ℓ

i), the design of the filters outlined in Section 2.2 is such

thatℓi = argmaxj∈{1,...,J∗} ρ(ℓ
j) = T/3.

We emphasise that this relationship is dictated by the choice of filter pairs: theCNLT peri-

odogram and co-periodogram (as defined above) are composed of the sum of the wavelet coeffi-

cients from the two schemes, while the quadrature periodogram contains products of the coeffi-

cients. Hence to ensure that the resulting estimates are interpretable, the two filters are specified

so that combinations of coefficients (either through multiplication or summation) provide the same

scale-frequency relationship (see Sanderson (2010), Sections 5.3 and 6.2.1). The provided map-

ping between wavelet lifting scale and Fourier frequency can be used to compare our results to

those of classical Fourier-based methods (see Section 3.3 next).

Periodogram smoothing over time. As is customary, theCNLT periodogram will be smoothed

over time using simple moving average smoothing, i.e. we computeĨxk(ℓ
i) =

1

#(Mi
k)

∑

j∈Mi
k
Ix j (ℓ

i),

whereMi
k = { j : xk − Mi < x j ≤ xk + Mi} and Mi denotes the width of the averaging window,

permitted to take different values for each scale,l i.

3.3 Examples

We now illustrate the proposed methodology by application to both simulated and real irregular

time series. The results were produced in theR statistical computing environment (R Core Team,

2013), using modifications to the code from theadlift package (Nunes and Knight, 2012) and the

nlt package (Knight and Nunes, 2012).
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3.3.1 Simulated data

Signals sampled on the same irregular sampling grid. In this example, the methods of Section

3.2 are applied to bivariate series observed on the same sampling grid:{(xk, f 1
k , f

2
k )}200

k=1, where

f 1
k = sin

(

2πxk

10

)

+ sin

(

2πxk

30

)

+ sin

(

2πxk

70

)

+ ζ1k ,

f 2
k = sin

(

2π(xk − τ)
30

)

+ ζ2
k ,

whereτ = 0 for xk < 200 andτ = 6 for xk ≥ 200, and the quantitiesζ1
k andζ2k are independent,

identically distributed Gaussian variables with mean zero and variance 0.22. The observations are

irregularly sampled such that (xk+1− xk) ∈ {n/10 : n = 10,11, . . . , 30} and 1
(n−1)

∑n−1
k=1(xk+1− xk) = 2.

Estimates for coherence and phase are computed using the complex-valued lifting scheme using

a sample ofP = 1500 randomly sampled trajectories, discretising usingJ∗ = 20 artificial scales

and smoothing over time using a window of widthMi = 60, ∀ i. The coherence estimate (Figure

4, right) provides a clear visualisation of the dependence between the two series, with a peak

occurring at scale log2(30/3) = 3.3 (equivalent to a Fourier period of 30). The time lag that

is introduced halfway through the second signal is also clearly captured by the phase estimate

(Figure 5, left), which is approximately zero for the first half of the series, then shows a marked

increase for the second half.

For comparison, the estimated coherence using a real-valued bivariate scheme (Sanderson,

2010) is also reported (Figure 4, left). It is interesting to note that although this method also

clearly estimates a dependence for the first half of the series, it does not continue to detect it

following the time delay. This again emphasises the advantage of using a second filter, present in

the complex-valued lifting transform.

Signals sampled on different irregular sampling grids. The methods described in Section 3.2

are now demonstrated by revisiting the same simulated data example, but with the two series ob-

served on different irregularly spaced sampling grids:{(x1
k, x

2
k, f

1
k , f

2
k )}200

k=1. Aside from the sampling,

the series satisfy the same properties as previously described.

The estimates were obtained using a discretisation ofJ∗ = 15 artificial scales andT∗ = 60

artificial time points, while a smoothing window of widthMi = 60 was applied at all scales as
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in the previous example. The resulting estimated coherence and phase are shown in Figure??,

respectively Figure 5, right. It is interesting to note that while estimates broadly agree with those

corresponding to sampling using the same (irregular) grid (Figure 4 and Figure 5, left), the price

to pay for the different sampling schemes is the reduced clarity of the estimator. This is point is

further reinforced by the phase estimate corresponding to a regular sampling situation, see Figure

5, bottom.

Coherence and phase analysis comparison with Fourier-based methods. For comparison

with established Fourier-based techniques, we also performed coherence analysis of stationary,

regularly sampled vector autoregressive (VAR) processes, as well as phase analysis of the signals

described above. For regularly sampled stationary processes, we compared our estimates to the

well-behaved Fourier estimates, while in the presence of sampling irregularity/nonstationarity, we

compared our method to the short-time Fourier transform (STFT) and the Lomb-Scargle method.

For brevity, we do not include the coherence and phase comparison plots here, but they can be

found in Appendix A of the supplementary material.

Specifically, in the supplementary material we illustrate the coherence estimates obtained through

both a classical Fourier-based approach and our lifting-based method on two bivariate VAR pro-

cesses. The resulting estimates agree very well, with the lifting-based estimate displaying a slight

depreciation when compared to the well-behaved Fourier estimates, suited for regular sampling

and stationary process behaviour. However, in general if the data is believed to be amenable to

be analysed with standard methodology, Fourier-based estimation should be preferred to the pro-

posed method which was specifically designed to offer a solution for the challenging situations that

include irregular sampling.

As already highlighted, traditional methods do not readily handle data that feature both po-

tential nonstationarities and irregular sampling, thus STFT required further intervention while the

Lomb-Scargle method failed to account for nonstationarity. Thus in order to obtain the desired

phase analysis, we mapped the irregular data to a regular grid (by e.g. interpolation) and then used

STFT in order to capture the nonstationary time-frequency content of the data. The Lomb-Scargle

analysis naturally dealt with the sampling irregularity, but assumed stationarity and therefore it did

not provide time-localisation information. The phase estimation plots of the STFT method exhibit
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little resolution in time or frequency, possibly due to the spectral blurring induced by the over-

lapping windows in the STFT as noted in Shumway and Stoffer (2013). Furthermore, for signals

sampled over different irregular grids, the method creates additional blurring in the phase plot. By

contrast, the Lomb-Scargle method is able to deal naturally with the irregular sampling structure

of the signals, but it does not contain any time-phase information. In addition, there is no marked

distinction in frequency where the phase is large, unlike for that of our complex lifting method (see

Figure 5). These features yet again highlight the appeal of our technique.

3.3.2 Simulated data with varying time delay

The next example explores the effect of increasing the time delay between two signals. For each

value ofτ = 1, . . . , 15, the series{(xk, f 1
k , f

2
k )}200

k=1 are simulated following

f 1
k = sin

(

2πxk

30

)

+ ζ1
k ,

f 2
k = sin

(

2π(xk − τ)
30

)

+ ζ2
k ,

where (xk+1 − xk) ∈ {n/10 : n = 10,11, . . . , 30} and 1
(n−1)

∑n−1
k=1(xk+1 − xk) = 2, ζ1

k and ζ2k are

independent, identically distributed Gaussian variables with mean zero, variance 0.22.

Just as in the classical (Fourier) analysis, it is interesting to inspect the coherence and phase

across frequencies (here, scales) in order to relate the common behaviour of the two series and pos-

sible time delays, respectively. The estimated coherence and phase corresponding to the increasing

τ = 1, . . . , 15 are shown in Figure 7. To give an overall sense of the coherence and phase magni-

tude over time, the estimates are averaged over the full time range to giveρ(ℓi) = 1
200

∑200
k=1 ρxk(ℓ

i).

We usedP = 750 randomly sampled trajectories and discretised usingJ∗ = 20 artificial scales.

Whenτ = 0, the coherence is 1 and the phase is 0. Forτ , 0 the coherence is greatest at a

scale of log2(30/3), corresponding to the period of variation (T = 30) in the data. The coherence

intensity and response over scale are affected by the magnitude of the time delay. The coherence

is lowest at time delays around 7.5 (T/4), and at these shifts the peak at scale log2(30/3) is also

more pronounced. Atτ = 15 (T/2) the signals are sign reversed versions of each other and, again,

the observed coherence is 1 at all scales. The phase is also greatest at scale log2(30/3). The phase
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response varies as a function of time delay and alternates between positive and negative values,

with |φ(ℓi)| maximised atℓi = T/4. This is displayed in Figure 8 which shows the estimated phase

at scale log2(30/3) as a function of time delay.

For completeness, we also provide a direct comparison with classical Fourier coherence and

phase estimation when the signals are regularly sampled (see Figure 9). Whilst the overall be-

haviour is similar for both the classical andCNLT methods, the Fourier method displays less vari-

ability across coherence estimates with the changing time delay (Figure 9, left), as well as more

localised phase-frequency information (Figure 9, right). However, in general, note that if the data

is believed to be amenable to be analysed with standard methodology, this should be preferred to

the proposedCNLT method which was specifically designed to offer a solution for the challenging

situations that include irregular sampling.

3.3.3 Financial time series

In this section we demonstrate the use of the proposed complex-valued lifting transform through an

application to financial data consisting of prices of all trades on 1 March 2011 (in normal trading

hours) for two IT companies, Baidu and Google, both traded on the NASDAQ stock exchange.

Comparison of the two companies is of interest as the main product of both is a search engine, but

they are based in different geographical regions.

Often several trades per second occur and in this case the last quoted value for each second is

selected. Thus the finest sampling interval is one second, but as there are seconds with no trades,

the time series are not equally spaced. For the analysis we consider the returns of each series– for

Google, the series contains 7984 observations with an average sampling distance of 2.93 seconds

and range 1 to 48; for Baidu, the series contains 6535 observations with an average sampling gap

of 3.58 seconds and range 1 to 52.

The data was analysed using the methodology described in Section 3.2 usingJ∗ = 15 artificial

scales andT∗ = 390 artificial time intervals (each time interval has a width of 60 seconds). The

estimates were smoothed over time using a window width ofM1 = 60 minutes at the finest scale

and increasing by a factor of 1.05, to provide a larger smoothing window for each subsequent

scale. The coherence estimate is shown in Figure 10a) for scales up to 10. The main feature of the
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resulting coherence estimate is an increased coherence around scale 6, corresponding to a Fourier

frequency ofT ≈ 3 minutes. The magnitude of the coherence at this scale is seen to be more

pronounced towards the end of the day. There is also a period of higher coherence observed in the

middle of the day, at low wavelet scales (corresponding to high frequency information).

One usual treatment of such irregular data would be to consider it in terms of the one minute

average returns. The estimated coherence using the aggregated data is shown in Figure 10b),

whereJ∗ = 10 artificial scales andT∗ = 78 artificial time intervals (each representing a range of 5

minutes) were used. Notice that finer behaviour details are erased, reflecting the coarser sampling

rate of the averaged data, and that spurious coherence is unsurprisingly induced by aggregation.

4 Real nonparametric regression using complex lifting

As with the traditional wavelet and lifting transforms, our proposed complex nondecimated lifting

transform can be used for nonparametric regression problems, including those with nonequispaced

sampling design. In a nutshell, the proposed smoothing procedure can be described as (i) perform

the complex lifting transform of the original data, (ii) combine the real and imaginary coefficients

into a statistic to undergo thresholding/shrinkage and (iii) take the inverse lifting transform to

obtain the estimated unknown signal. A detailed description and estimator properties are provided

in Appendix B (supplementary material).

We briefly illustrate the application of this technique to the ethanol data example from Brinkman

(1981) that has been analyzed extensively, see for instance Kovac and Silverman (2000) and Cleve-

land et al. (1992). The data consist of 88 measurements ofNOxexhaust emissions from an automo-

bile test engine, together with corresponding engine equivalence ratios, a measure of the richness

of the air/ethanol mix (Kovac and Silverman, 2000; Loader, 1999). Because of the nature of the

experiment, the observations are not available at equally-spaced design points, and the variability

is larger for low equivalence ratios.

We estimate the ratio-dependent (heteroscedastic) variance using a wavelet domain local esti-

mation procedure similar to that of Kovac and Silverman (2000) and Nunes et al. (2006).

Note that our complex adaptive lifting estimate is very similar to the smoothing spline, and
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both identify changes in slope around 0.7 and 0.9. However, the magnitude and duration of these

effects appear to be different between the two estimates. The real-valued adaptive lifting estimate

has an overall similar appearance albeit being less smooth and featuring more abrupt changes that

are unlikely to be true features of the process. In this example, the true shape of the ethanol curve

is of course unknown, however we believe that it is more likely to be smooth. Hence it is pleasing

to see that even visually our estimator does a good job in this case.
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Figure 1: The complex-valued lifting scheme (C-LOCAAT). Solid lines correspond to the steps
of the standard LOCAAT lifting scheme whereas dotted lines indicate the extra prediction step
required for the complex-valued scheme. After (n−R) applications, the function can be represented
as a set ofR smooth coefficients{cr−1,i}i∈Sn−R and (n − R) detail coefficients{λ jk + iμ jk}k∈Dn−R, each
associated with a particular scale{α jk}k∈Dn−R.
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Figure 2: Construction of bivariateCNLT transform for time series observed on the same sampling
grid (x refers to time here): a) univariateCNLT is applied using the same set of trajectories for both
series and yields two sets of detail coefficients{d1,p

xk }p,k and{d2,p
xk }p,k; b) theCNLT transform consists

of combinations of coefficients from each series; c) the detail coefficients are averaged within each
scale.

28
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

time

sc
al

e

a)

d1

time

sc
al

e

d2

time

sc
al

e

b)

D1

time

sc
al

e

D2

time

sc
al

e

c)

I1, 2

l 1
l 2

t1 t2

Figure 3: Construction of bivariateCNLT transform for time series observed on different sampling
grids (x refers to time here): a) each series is lifted individually as described in Section 2.3; b)
the sets of coefficients in each grid square. The coefficients are sampled so that there is the same
number in the grid square of each series; c) the coefficients of each series are combined to form
the appropriate bivariate quantities, producing one coefficient to represent each grid square.
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Figure 4: Coherence estimation for data observed on the same irregular sampling grid: using the
real-valued bivariate lifting scheme (left); using the complex-valued lifting scheme (right). Scale
gets coarser from bottom upwards.
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Figure 5: Phase estimation using the complex-valued lifting scheme: data observed on the same
irregular sampling grid (left); data observed on different irregular sampling grids (right); data
observed on the same regular grid (bottom). Scale gets coarser from bottom upwards.
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Figure 6: Coherence estimation for data observed on different irregular sampling grids. Scale gets
coarser from bottom upwards.
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Figure 7: a) Coherence and b) Phase betweenf 1 and f 2 (Section 3.3.2) as a function of scale and
τ ∈ 0,15. Forτ , 0 the coherence and (absolute) phase are greatest at scale log2(30/3).

33
ACCEPTED MANUSCRIPT



ACCEPTED MANUSCRIPT

0 5 10 15 20 25 30

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

τ

φ(
3.

32
)

Figure 8: Estimated phase betweenf 1 and f 2 (Section 3.3.2) at scale log2(30/3) (equivalent to a
Fourier period of 30), as a function ofτ.
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Figure 9: a) Coherence and b) Phase betweenf 1 and f 2 (Section 3.3.2) as a function of frequency
andτ ∈ 0,15 using classical Fourier methods.
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Figure 10: Coherence between Google and Baidu using methods from Section 3.2: a) computed
on different irregular sampling grids; b) computed using one minute averages. Scale gets coarser
from bottom upwards.
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Figure 11: Ethanol data and estimates. Small circles=data; solid line=estimate. Top-left: smooth-
ing spline with cross-validated smoothing parameter; top-right: multiple observation adaptive lift-
ing usingR-lift with heteroscedastic variance computation andEbayesThreshposterior median
thresholding; bottom:C-AP1S with heteroscedastic variance computation and level-dependent
soft thresholding.
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