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Abstract 

 

Neurovascular coupling in response to stimulation of the rat barrel cortex was 

investigated using concurrent multichannel electrophysiology and laser Doppler 

flowmetry. The data was used to build a linear dynamic model relating neural activity 

to blood flow. Local field potential time series were subject to current source density 

analysis, and the time series of a layer IV sink of the barrel cortex was used as the 

input to the model. The model output was the time series of the changes in regional 

cerebral blood flow (CBF). We show that this model can provide excellent fit of the 

CBF responses for stimulus durations of up to 16s. The structure of the model 

consisted of two coupled components representing vascular dilation and constriction. 

The complex temporal characteristics of the CBF time series was reproduced by the 

relatively simple balance of these two components. We show that the impulse 

response obtained under the 16s duration stimulation condition generalised to provide 

a good prediction to the data from the shorter duration stimulation conditions. 

Furthermore by optimising three out of the total of nine model parameters, the 

variability in the data can be well accounted for over a wide range of stimulus 

conditions. By establishing linearity, classic system analysis methods can be used to 

generate and explore a range of equivalent model structures (e.g. feed-forward or 

feedback) to guide the experimental investigation of the control of vascular dilation 

and constriction following stimulation. 
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Introduction 

 

When neurons are activated, a change in regional blood flow typically occurs. The 

relationship between changes in neural activity and the ensuing changes in the 

regional cerebral blood flow, known as neurovascular coupling, has been an area of 

intensive research. Understanding this relationship is crucial to how we interpret brain 

signals measured via non-invasive neuroimaging techniques such as functional 

magnetic resonance imaging (fMRI), as these techniques measure changes in the 

regional cerebral haemodynamic responses (e.g., blood flow, blood volume and blood 

oxygenation state) to make inferences about the underlying neural activity. 

 

Reviews on neurovascular coupling studies at the cellular level can be found in Hamel 

(2006) and Iadecola and Nedergaard (2007). In vitro and in vivo studies have shown 

that an increase in neural activity releases vaso-active agents. With astrocytes acting 

as mediators, some of these agents induce the adjacent blood vessels to dilate or 

constrict, or both (Filosa and Blanco, 2007; Metea and Newman, 2006; Mulligan and 

MacVicar, 2004; Stefanovic et al., 2007; Zonta et al., 2003). Furthermore the oxygen 

concentration in the brain tissue within the region of increased neural activity has also 

been implicated, in an in vitro study, as a mediating factor in determining whether the 

blood vessels dilate or constrict (Gordon et al., 2008).  

 

Utilising experimental findings at the cellular level, several models of neurovascular 

coupling have been proposed linking changes in neural activity to changes in cerebral 

blood flow or volume via various cellular mechanisms (Aubert and Costalat, 2002; 
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Bennett et al., 2008; Riera et al., 2007; Riera et al., 2006), These models tend to 

include a large number of physiological variables that are involved in the underlying 

process of neurovascular coupling. 

 

At a different level, many studies of neurovascular coupling have used the concurrent 

recording of neural activity while monitoring the haemodynamic responses to 

stimulation. These studies frequently use steady state analysis as well as dynamic 

modelling to relate the changes in neural activity to the evoked changes in the 

haemodynamic responses (Ances et al., 2000; Hewson-Stoate et al., 2005; Jones et al., 

2004; Lauritzen, 2001; Li and Freeman, 2007; Martindale et al., 2005; Mathiesen et 

al., 1998; Nikos, 2002; Rasmussen et al., 2009; Sheth et al., 2004; Thompson et al., 

2004; Ureshi et al., 2004). The general consensus from these investigations seem to be 

that, from the signal processing point of view, neurovascular coupling may be linear 

within a narrow range of stimulus parameters, for example, for brief stimulation 

durations (less than 2s) and at reasonable stimulation intensities, but becomes 

nonlinear if the stimulation parameters are outside this narrow range. 

 

Beside these data-driven modelling studies, some very simple dynamic models of 

neurovascular coupling have been proposed (Buxton et al., 2004; Friston et al., 2000) 

and used in modelling the relationship between changes in neural activity and the 

blood oxygen level dependent (BOLD) signals obtained in fMRI studies (Blockley et 

al., 2009; Riera et al., 2004; Sotero and Trujillo-Barreto, 2007, 2008; Zheng et al., 

2002). It is important to recognise that these simplistic models of neurovascular 

coupling are not directly validated by experimental data.  
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In this paper, we identify a formal model of the relationship between changes in 

neural activity and the cerebral blood flow (CBF) time series using experimental data, 

and demonstrate that this relationship can be modelled by a linear dynamic model 

over stimulus durations of up to 16s. The model, inspired by the varied and complex 

temporal characteristics of the CBF time series, is time-invariant, or autonomous. This 

means that the parameters of the model are not functions of time, and that the 

dynamic relationship between the input (neural activity) and the output (CBF) of the 

model does not change over the entire time course of the response, including both the 

stimulus onset period and the haemodynamic refractory period (Huettel and 

McCarthy, 2001). An important feature of the model is that its structure incorporates a 

dilation component and a constriction component. We demonstrate, using simulation, 

that by changing the relative contributions of these two components, the model is able 

to generate the wide range of complex temporal characteristics (shapes) of the CBF 

responses which have been described in the literature. The model is tested and 

validated against data from experiments measuring the electrophysiological and CBF 

responses to stimulation of the rat whisker pad. The importance of the establishment 

of the linearity of neurovascular coupling for future research is discussed.   

 

Materials and Methods 

For detailed experimental procedures, the reader is directed to Jones et al (2004) and 

Hewson-Stoate (2005) for reference. They are briefly reviewed below. 

 

Animal preparation 

The animals used were Hooded Lister rats weighing between 200 and 300g, 

anesthetised with urethane (1.25g/kg intraperitoneal injection), and atropine (0.4 
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ml/kg subcutaneous injection, 600 µg/ml) was used to reduce mucous secretions. The 

animals were placed in a stereotaxic holder (Kopf Instruments) and the skull 

overlying the whisker barrel cortex was thinned to translucency with a dental drill 

under constant cooling with saline. Rectal temperature was maintained at ~37
o
C with 

a thermostatic heating pad. ECG electrodes were attached to monitor heart rate. A 

tracheotomy was performed to enable artificial ventilation (20% O2, 80% N2, 1-

1.3Hz). The left femoral vein and artery were cannulated to allow drug infusion of 

Phenylephrine (0.13–0.26 mg/h) and measurement of mean arterial blood pressure 

respectively. The rate of Phenylephrine infusion was varied to keep MABP within the 

normal physiological range (100-110mmHg). Physiological parameters were 

continuously monitored and maintained within normal ranges (mean±s.e.: PO2: 

93.1±0.24mmHg, PCO2: 28.7±0.27mmHg, SO2: 96.9±0.03%, pH: 7.34±0.002).  

 

Electrophysiology and laser Doppler flowmetry (LDF) 

The whisker-barrel cortex region was located using optical imaging of intrinsic 

signals (590nm illumination) and electrical stimulation of the contra-lateral whisker 

pad. Subsequent optical imaging maps were aligned to images of the cortical surface 

and used to guide placement of electrode and LDF probes. Electrophysiological 

recordings were made using an electrode probe which consisted of a linear array of 16 

electrode sites (100 µm spacing, area of each site: 177 µm
2
, impedance: 1.5-2.7 MΩ, 

probing width: 33 µm at tip, 123 µm at uppermost electrode; NeuroNexus 

Technologies, University of Michigan) coupled to a data acquisition device (TDT, 

Florida) with a custom-written Matlab interface. A small hole in the skull and dura in 

the centre of the ‘active’ cortical region were made and the electrode was inserted 

normal to cortical surface by hydraulic micromanipulator control (Narishige - 1µm 
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accuracy in the ‘z-axis’, i.e., that corresponding to cortical depth) under 

micromanipulator control such that the lowermost electrode of the array was placed at 

a depth of ~1,500 µm. The evoked field potential recordings were sampled at 6103.5 

Hz with 16-bit resolution. The LDF probe (PeriFlux 5010, Perimed, Stockholm, 

780nm illumination, 0.25mm separation) was placed under visual guidance (Leica 

MZ 7.5 stereomicroscope - X60 magnification) such that it overlays the cortical 

surface (<1mm) and that the maximum distance from the LDF probe to the uppermost 

channel of the multi-channel electrode was approximately 100 µm in the x-y plane. 

The LDF spectrometer included a low-pass filter with a 0.2 s time constant and 12 

kHz bandwidth (Nilsson, 1984) to reduce errors caused by measurement noise. The 

LDF has a sampling rate of 30 Hz and was used to measure changes in CBF 

concurrently with electrophysiological recordings. The CBF changes were normalised 

with respect to the baseline CBF collected for a period of 8s prior to the onset of each 

trial. 

 

Multi-laminar measures of evoked field potentials enabled the use of current source 

density (CSD) analysis which resolves the spatial ambiguities inherent in evoked field 

potential recordings into a laminar distribution of current sinks and sources.  

Electrical whisker pad stimuli result in a large sink-source dipole towards the surface 

of the cortex. As sinks reflect active excitatory postsynaptic potentials (EPSPs) rather 

than passive (e.g. sources) neural mechanisms, we have typically compared the 

evoked sinks rather than sources with the accompanying haemodynamics (e.g., see 

Martindale et al (2003) and Jones et al (2004)). This ‘primary’ current sink has 

previously been found to co-localise extremely well with layer IV (about 450 µm 

below the surface of the cortex) as visualised by cytochrome oxidase histology (Jones 
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et al., 2004). An autoradiography study (Gerrits et al., 2000) has shown that maximal 

CBF (both at rest and during stimulation) is also observed in layer IV. Furthermore, if 

the matrix of the CSD analysis is subject to principal components analysis, this aspect 

of the response accounts for >80% of the variance of the matrix (Martindale et al., 

2003). Thus CSD data and LDF data (which is a spatial average over depths) have 

their major signal sources co-localised in layer IV. For this reason, time series of the 

layer IV CSD sink were used as the basis of the ‘incoming’ neural activity and intra-

cortical processing (Martindale et al., 2003), from which temporal profiles of the CSD 

analysis were extracted. Comparing this aspect of the neural response with the 

accompanying haemodynamics is thus justified from both a signal processing and 

neurophysiological perspective.   

 

As the width of a CSD response to an individual of a stimulus train is around 10 ms, 

the CSD responses were down-sampled to 90 Hz to save ‘computational’ time, and 

each CSD ‘spike’ was represented by a single pulse in the down-sampled sequence 

whose amplitude was modulated by the corresponding temporal profile (sign inverted) 

of the CSD response. Per animal, the CSD profiles were normalised so that the mean 

first pulse over all trials was unity. Hence the neural signals used throughout this 

paper were the modified CSD pulse trains with a pulse width of 1/90 second (or 11 

ms).   

 

Experimental paradigms 

Electrical stimulation of the whisker pad was delivered in 5 Hz trains with each pulse 

having an intensity of 1.2 mA and an individual pulse width of 0.3 ms. The duration 

of the stimulus train was varied. Experimental paradigms were specifically designed 
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to have a conditioning block of stimulation followed closely in time by a probing 

block of stimulation per trial instead of the traditional single block of stimulus. The 

objectives of such design are two-fold: one is to investigate neural adaptation and 

recovery characteristics (work in progress), the other is to ensure that any 

mathematical models of neurovascular coupling we identify are capable of fitting the 

CBF response with respect to not only the conditioning block, but also the probing 

block of stimulation whose onset occurs well within the return-to-baseline period of 

the CBF response to the conditioning block. Hence the two-block design improved on 

previous work (Martindale et al., 2005; Rosengarten et al., 2003) by enforcing the 

requirement that the mathematical model deals with the CBF response both during 

stimulation and during the return-to-baseline period. 

 

Two experimental paradigms were used here. The first one was used to identify a 

dynamic model linking neural activity to change in the regional CBF. The second 

paradigm was used for model validation purpose.  

 

Paradigm 1 (Figure 1(a)). Two blocks of stimuli were used for each trial. The first 

conditioning block has variable duration (2, 8 or 16s) followed by the second probing 

block of 1s fixed duration. The time interval between the two blocks of stimulation 

also varies with seven intervals (0.6, 1, 2, 3, 4, 6 or 8s). We will refer to this interval 

as the inter-block-stimulus interval (IBSI). Thus there are 21 types of stimulus 

presentation trials. Each trial lasted 60s and each experimental run consists of the 21 

trials arranged in a random order. Each run was repeated 10 times per animal, 

resulting in each trial being repeated 10 times over the entire period of the 

experiment. Data were then animal averaged (n=11). 
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Paradigm 2 (Figure 1(b)). Again two blocks of stimuli were used for each trial. The 

conditioning block has variable duration (2, 4, 8 or 16s) followed by the probing 

block of 2s fixed duration. The IBSI was also fixed at 2s. Each stimulus condition 

lasted 60s, arranged in random order and repeated three times per experimental run. 

10 runs were performed per animal, resulting in each trial being repeated 30 times per 

experiment. Data were averaged over 5 animals. 

 

A simulation of haemodynamic responses 

The temporal characteristics of haemodynamic responses (mainly blood flow and 

volume) to long duration stimulation are often characterised by an initial overshoot 

followed by a ‘plateau’ or ‘ramp’ during the onset of stimulation. However, the initial 

overshoot is not always observed (Kida et al., 2007; Mandeville et al., 1999; Vazquez 

et al., 2008). Following cessation of stimulation, the haemodynamic response 

typically decreases rapidly and is then followed by a much slower return-to-baseline 

time course (Berwick et al., 2005; Herman et al., 2008; Jones et al., 2002; Kennerley 

et al., 2005).  

 

An intriguing characteristic of the haemodynamic response often observed but rarely 

discussed in the literature is that during the return-to-baseline phase, the CBF can 

exhibit a marked temporal increase immediately following the rapid decrease phase 

before it returns to baseline slowly. This temporal characteristic can be readily 

observed in our CBF data shown in Figure 2. For trials with 16s conditioning block 

(Figure 2(c)), it can be seen that CBF starts to increase slightly 4s after stimulus 

cessation before it decreases to baseline. Figure 2(d) displays a single CBF time series 
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which demonstrates this temporal increase more clearly. The same characteristic is 

present for the 8s conditions (Figure 2(b)), and even for the 2s conditions (Figure 

2(a)), there is evidence of slight increase in the haemodynamic responses, although 

this is very much masked by the noise present at baseline.  

 

The timing of this increase in CBF during the return to baseline phase seems 

independent of the duration of stimulation and the IBSIs, indicating that it is not 

associated with vaso-motion (Mayhew et al., 1996) or the subjects’ anticipation of the 

probing stimulus. This haemodynamic characteristic can also be observed in other 

published work (Berwick et al., 2005; Herman et al., 2008; Kennerley et al., 2005; 

Kida et al., 2007). In awake animals, this feature seems to be more prominent (Martin 

et al., 2009). 

 

The crucial question is, why doesn’t the haemodynamic response return-to-baseline 

monotonically while the neural response (in terms of CSD) has ceased?  

 

The complex temporal characteristics of the haemodynamic responses suggest that 

there might be two components in the vascular response to the evoked neural activity, 

one has the dilating effect and the other constricting effect, and the two components 

are not exactly in phase with each other, resulting in the observed temporal 

characteristics in the vascular response. To investigate this hypothesis, a simulation 

was conducted in which two time series of typical ‘bump’ functions ( )ty1  and ( )ty2  

were generated using two linear dynamic systems (see Appendix I). They were then 

subtracted from each other in different ratios. Time series representative of the 

temporal characteristics of the resultant signal ( ) ( )tyty 21 − , are  shown in the Results 
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section where it can be seen that the spectrum of the shapes of the haemodynamic 

responses are easily mimicked. 

 

The dynamic model of dilation and constriction 

Based on the results of the simulation and the insights from the neurovascular 

coupling research conducted at the cellular level (Filosa and Blanco, 2007; Metea and 

Newman, 2006), we hypothesise that the dynamic characteristics of the CBF time 

series is the result of blood vessels dilating and constricting simultaneously with 

different time constants and magnitudes. A linear dynamic model was constructed as 

shown in Figure 3, with two parallel branches modelling the two different vascular 

responses, dilation and constriction. A third order linear time-invariant model for each 

branch was sufficient to prevent oscillations in the output. A pure transport delay was 

included in the model to reflect the lag in the hemodynamic response to stimulation. 

We refer to this model as the D-C (dilation-constriction) model throughout the paper. 

The model has nine parameters, four for each component, with the time delay as an 

additional parameter. Laplace transforms were used as a convenient representation of 

linear time-invariant systems. However the relationship between the CSD input and 

the CBF output can also be written as a set of ordinary differential equations as 

follows: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )tytytf

yyytucKctybtyaty

yyytucKctybtyaty

cd

cccccc

dddddd

−=+

====+++

====+++

τ

0000,

0000,

22222

11111

&&&&&&&&&

&&&&&&&&&

    (1) 

where ( )tu  denotes the CSD input, ( )tf  denotes the CBF output, and ( )tyd  and 

( )tyc  are the state variables representing the dilation and the constriction components 

respectively. The parameter τ  is a constant representing the time delay within the 
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system. All the initial conditions used in solving the above differential equations are 

zero. 

 

Importantly from the above linear differential equations, it is possible to formally 

derive the CBF impulse response functions (IRFs) (See Appendix II) under all 

experimental conditions. The major assumption in such model-based approach is that 

the identified model can adequately fit experimental data under these conditions. 

Once the structure of the model is identified, the model-based method for IRF 

estimation has a considerable advantage over the data driven deconvolution method 

for identifying the IRFs (Ances et al., 2000; Li and Freeman, 2007; Martindale et al., 

2005), as the latter is much more vulnerable to the measurement and physiological 

noise present in the data.  

 

Concurrent electrophysiological data (in terms of the modified CSD pulse trains) and 

the LDF data collected under paradigm 1 were used to test the goodness-of-fit of the 

model under three different durations of stimulation (2, 8 and 16s), and for seven  

different IBSIs (0.6, 1, 2, 3, 4, 6 and 8s). Parameter optimisation was carried out using 

a nonlinear least squares algorithm (Levenberg-Marquardt algorithm, Matlab
TM

 

(v7.3.0) function “lsqnonlin”). The differential equations were solved by first writing 

them in the state space form: 
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for the dilation component, and 
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for the constriction component. The variables 654321 ,,,,, xxxxxx  are the state 

variables of the D-C model. The CBF time series can be written in terms of the six 

state variables as 
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 Then the Matlab
TM

 function “ode113” was used to compute the CBF time series. The 

delay parameter τ  was not included in the optimisation procedure. Instead it was 

determined by inspecting the averaged CBF time series (over all animals and all 

trials) within the first second of stimulus onset. Once determined, the time series of 

CBF data were simply shifted back in time by τ  prior to model parameter 

optimisation. The exact value for τ  is not crucial to the results of the parameter 

optimisation. Thus we have eight model parameters to optimise for each data set. 

Potentially, 21 sets of model parameters can be obtained each optimised under the 21 

different stimulus types. We shall show below that the model can adequately capture 

the whole range of the stimulation paradigms with five of the eight parameters being 

clamped and only three parameters to refine the fit. 
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Investigating the possibility of finding a single set of model parameters 

We investigated the possibility of using a single set of model parameters to fit the 

CBF responses for the 21 trial types. If a single model parameter set could provide 

satisfactory fits to our data over all conditions, it would indicate that as far as our data 

is concerned, the relationship between the neural signal (CSD) and the haemodynamic 

signal (CBF) is linear under our experimental conditions. In order to find such 

parameter set, we calculated the IRF for each stimulus type, and as they were similar 

in terms of the height and width of the response pulses (see the Results section), we 

then averaged the IRFs over for the 2s, 8s and 16s conditions respectively. We 

subsequently identified three sets of corresponding model parameters ( 2θ , 8θ  and 

16θ ) using the three mean IRFs as the outputs of the D-C model , with the input being 

a unit impulse at time zero. These three parameter sets were used over all stimulus 

types to compare their performances in fitting the CBF responses. The normalised 

sum of squares of errors (nSSE) was calculated from 

 

( )

pN

ff

nSSE

N

i

ii

−

−

=

∑
=1

2ˆ

 (2) 

where if and if̂  were the measured and fitted CBF data respectively, p was the 

number of parameters fitted, and N was the number of data points, as the data lengths 

used for the 2s, 8s and 16s conditions were different. Comparison of the nSSE values 

enabled us to select the ‘optimal’ model parameter set which could be used to fit the 

CBF responses over all conditions.  

 

Incorporating flexibility in the D-C model  
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Although a single model parameter set could be used to fit the CBF responses, the fits 

were not uniformly good, with the goodness-of-fit values ( )2
R  ranging from 0.78 to 

0.98. This is not surprising given the huge variations in our data between both 

sessions and animals.   

 

To further improve the performance of the model without having to optimise all 

model parameters, we explored the possibility of allowing a subset of the eight model 

parameters to be optimised. This was done by searching for commonalities and 

differences in the model’s dynamic characteristics generated by the three sets of 

model parameters 2θ , 8θ  and 16θ . With the structure of the model pre-defined, the 

overall model dynamics were solely dependent on the component dynamics, which 

was closely related to the poles (i.e., the three roots in the denominator) of the two 

transfer functions representing dilation and constriction. Specifically, if all three poles 

for each of the third order system were real and negative (for stable models), the 

inverse of the values of the poles would be the three time constants associated with 

the system. The larger the magnitude of the poles, the faster would be the dynamics of 

the system. On the other hand, if two of the poles were complex conjugate to each 

other, then the inverse of the real part of the poles would determine the time constant, 

while the imaginary part would be associated with the degree of oscillation present in 

the system. The larger the magnitude of the imaginary part, the more oscillatory 

would be the system (Raven, 1968). Appendix II provides a derivation of the impulse 

response function of a canonical third order linear dynamic system. 

 

Based on the above properties of transfer functions, we superimposed the poles of the 

dilation and constriction components of the three models in the complex plane. From 
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the locations of the poles, we were able to determine commonalities and discrepancies 

across different stimulus conditions and select model parameters that could be 

adjusted in an optimisation process to improve the goodness-of-fit of the model over 

all stimulus conditions. This process enabled us to clamp five of the eight model 

parameters at their optimal values, while allowing three model parameters to be re-

optimised for each data set to refine model fit under each stimulus condition.  

 

Model validation 

The D-C model and the parameter optimisation strategy were tested using data sets 

collected from different animals using a completely different experimental paradigm. 

Experimental paradigm 1 was used to estimate a basic set of optimal model 

parameters, and experimental paradigm 2 was used to evaluate the performance of the 

optimal parameter set and the effectiveness of the optimisation strategy. 

 

Results 

Simulation 

Two time series ( )ty1  and ( )ty2  were generated using eqns. (A1) and (A2) 

respectively (see Appendix I). The variable K in eqn. (A2) was set to four different 

values: 0.25, 0.2, 0.15 and 0.1. The corresponding gains of the system defined by eqn. 

(A2) are therefore 0.53, 0.42, 0.32 and 0.21 respectively. The subtraction of the two 

time series ( ) ( )tyty 21 −  was then calculated for each K, and they are shown as solid 

traces in Figure 4(a)-(d), superimposed with the two time series ( )ty1  (dashed) and 

( )ty2  (dotted).  
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It can be seen that when K is relatively high (Figure 4(a)), the time series ( ) ( )tyty 21 −  

has an initial overshoot followed by an ascending ramp during stimulus onset period; 

during stimulus cessation, it decreases rapidly initially, followed by a slight increase 

before it returns to baseline slowly. The time course is very similar to our data shown 

in Figure 2(c) (without the response to the probing block). As K decreases, the 

overshoot characteristic disappears, so does the transient increase during the phase of 

stimulus cessation.  

 

This simulation demonstrates that the complex characteristics of the haemodynamic 

responses can be generated by two slightly different ‘bump’ functions subtracting 

from each other, rather like two different forces acting in the opposite direction. By 

varying the relative contributions of the two time series and then subtracting them, we 

have generated a range of time series with temporal characteristics very similar to the 

various haemodynamic responses published in the literature. This simulation lands 

support to our hypothesis that neurovascular coupling may be modelled by two 

components representing vaso-dilation and vaso-constriction respectively, with a 

model structure shown in Figure 3. It is important to note that the two ‘bump’ 

functions were generated by two linear time-invariance dynamic models respectively. 

 

Model parameter estimation 

The proposed linear dynamic model of the neurovascular coupling has four model 

parameters for each component, and a transport delay parameter τ . Visual inspection 

of the first second of the mean CBF time series over all conditions and subjects 

suggested that the value of this parameter τ  was around 0.3s. A variation of ±0.1s in 

this delay parameter did not produce significantly different results to the model 
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fittings. The model was optimised for each of the 21 stimulus conditions, with neural 

signal being the modified CSD pulse trains, shown in Figure 5(a). Figure 5(b) shows 

the transient characteristics of the CSD profile for the first 2s of the stimulus onset, in 

particular the neural adaptation to pulse of the stimulus train immediately after 

stimulus onset was much stronger than that of the ‘steady state’ adaption reached at a 

later time point during stimulus presentation. The model fittings of CBF, shown in 

Figure 6 as black dashed traces, compared well with the measured CBF data (solid 

dark grey) across all conditions. The light grey band in each subplot is ±1 s.d. of the 

data over 11 subjects. It can be seen that variations between individual subjects are 

large. However the D-C model was able to fit well all individual subject CBF time 

series over all conditions (see supplemental Figure S1 for the model performance 

under a representative condition for all 11 subjects).  

 

The results demonstrated that a linear dynamic model was capable of capturing not 

only the temporal dynamics of the CBF responses with respect to the conditioning 

block of stimulus with durations up to 16s, but also the CBF responses to the probing 

block of stimulus which were applied within the CBF return-to-baseline period. 

Furthermore the structure of the model was robust over a wide range of individual 

subject data. 

 

Single optimal model parameter set 

Using the above 21 sets of model parameters, we computed the IRFs. Figures 7(a), 

7(b) and 7(c) show the model fitted IRFs under 2s, 8s and 16s conditions respectively. 

Each IRF within a subplot corresponds to a different IBSI. Figure 7(d) shows the 

mean IRFs for 2s, 8s and 16s conditions superimposed with each other. What is 
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evident is that the IRFs across all conditions have very similar peak values, latencies 

(time to peak) and full width at half maximum (FWHM) values. They all have 

undershoot and overshoot characteristics during the return-to-baseline phase. The 

major difference is the degree of magnitude of undershoot and overshoot and their 

timings during the return-to-baseline period. What is particularly noticeable is that 

under the 2s conditions, the estimated IRFs were less robust in that they were more 

variable for the different IBSIs. This we believe is due to the disadvantaged signal-to-

noise ratio from short stimulation and will be discussed in detail in the Discussion 

section. 

 

The three mean IRFs were subsequently used to generate three sets of model 

parameters 2θ , 8θ  and 16θ , whose values are listed in Table 1. The three models 

corresponding to these three parameters are referred to as 2M , 8M  and 16M  

respectively. Each model was used to fit the CBF responses across all 21 stimulus 

types. The results are shown in the Supplemental Figures S2, S3 and S4. For each 

model, nSSE were calculated, and Figure 8 shows the histogram of nSSE for the three 

models under the three conditions (2s, 8s and 16s) over the seven different IBSIs. As 

expected, model 2M  provided the best fits for stimulus with conditioning block of 2s, 

but the nSSE values were significantly bigger for stimulus with conditioning block of 

16s. Similarly, model 8M  provided the best fit for stimulus with conditioning block 

of 8s. It also predicted well for the 2s conditions. But again it was not very good at 

predicting long duration stimulation data. Model 16M  fitted the 16s data best, at the 

expense of slightly inferior predictions under the short stimulation conditions.  
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The above exercise highlighted the problem of using an estimated IRF from a short 

stimulus paradigm to predict the CBF response to a long duration stimulus (Ances et 

al., 2000; Li and Freeman, 2007; Martindale et al., 2005). Figures S2, S3 and S4 

showed that neither of the models 2M  and 8M  could adequately predict the temporal 

characteristics of the 16s data during the onset period and the return-to-baseline phase 

during which a probing stimulus was applied. However the model 16M  performed 

reasonably well across all stimulus conditions, indicating that the neurovascular 

coupling relationship maybe modelled by a linear dynamic system. We suggest that 

the failure of models 2M  and 8M  in predicting CBF responses to long duration 

stimuli did not necessarily imply that the underlying system was nonlinear. It could 

simply be that the IRFs under short stimulation paradigms were poorly estimated. 

This will be discussed further in the Discussion section. 

 

Pair-wise t-tests were carried out on the nSSE values and it was found that overall the 

model 2M  had significantly higher nSSE values compared with the other two models 

(p<0.05), and there was no significant difference in terms of the nSSE values between 

the models 8M  and 16M . As 16M  has a more robust performance across all stimulus 

conditions, it was decided to use the parameters 16θ  as the ‘optimal’ model parameter 

set from which a subset of the parameters could be further optimised.  

 

Model parameters for fine tuning 

The poles of the three models 2M , 8M  and 16M  were calculated and are shown 

superimposed in Figure 9, with subplots (a) and (b) being the locations (in the 

complex plane) of the poles of the dilation and constriction components respectively. 
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For the dilation component, the locations of the poles of the three models are 

remarkably consistent. This suggests that the three dynamic model parameters ( ,1a  1b  

and 1c ) associated with the dilation component are reasonably robust over stimulation 

duration.  

 

However there are some differences in the location of the poles for the constriction 

component over the three models, suggesting that the constriction parameters ( ,2a  2b  

and 2c ) may vary for different stimulus durations. The parameter 2a  can be shown to 

be the sum of the real parts of the three poles of the constriction transfer function, and 

the parameters 2b  and 2c  are related to the imaginary parts of the complex poles 

(Appendix II). Looking closely at the predictions using 16θ  on the short stimulation 

data (Supplemental Figure S4), it was evident that during the return-to-baseline phase, 

the predicted CBF had a slow but strong oscillatory component present whereas the 

measurement CBF was less oscillatory. This suggests that the parameters 2b  and 2c  

should be re-optimised to best fit the oscillatory characteristics in the data. We noticed 

further that certain trials show a mismatch between the measured and the predicted 

CBF during the onset period of stimulus, indicating that the gain of the model may 

need further tuning. As the gain of the overall model was given by the difference 

,21 KK −  we decided to fine tune the gain of the constriction component 2K . Hence 

the three parameters ,2K  2b  and 2c  associated with the constriction model were re-

optimised in order to improve the model fitting for each stimulus condition. The other 

five model parameters were clamped at their original values in 16θ . The refined 

model fittings, after optimising three model parameters, compared well with the 

measured CBF time series over all 21 conditions (see supplemental Figure S5), and 
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the results are very similar to those obtained by optimising all eight model parameters 

(Figure 6). A pair-wise t-test to compare the nSSE (i.e., the error score) obtained 

using this method with the method in which all eight model parameters were 

optimised showed there to be no significant difference between the two methods 

(p<0.05). The values of the three model parameters after re-optimisation are also close 

to their original values, with a mean percentage change less than 5%. 

 

Model validation 

The D-C model was validated on the paradigm 2 data set obtained from five animals. 

The optimisation procedure used was the same as that outlined above: based on the 

parameter set 16θ , the three parameters ,2K  2b  and 2c  associated with the 

constriction component were re-optimised for each stimulus type. The results are 

shown in Figure 10, and the optimised parameter values are shown in Table 2. Despite 

the fact that the data was from different animals and from a different experimental 

protocol it can be seen that there were only slight differences in the values of the three 

model parameters and only slight adjustments were necessary for the linear dynamic 

model to fit the changes in CBF under all four stimulus conditions using the 

corresponding CSD data. 

 

Discussion 

 

The D-C model was at least in part motivated by the research implicating the neural 

control of the dilation and constriction of blood vessels and this will be discussed 

below. However the importance of the demonstration of the linearity of the system 

linking changes in neural activity to changes in CBF over a large dynamic range is 
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that it allows the constrained generation of very different model structures which can 

be used as hypotheses of the physiological mechanisms of neurovascular coupling 

which will be discussed below.   

 

Evidence for blood vessel dilation and constriction due to evoked neural activity 

Mechanisms coupling neural activity to blood flow have been extensively studies at 

the cellular level (see reviews by Hamel (2006) and Iadecola and Nedergaard (2007)). 

Current research suggests that astrocytes may play an important role in cerebro-

vascular regulation, specifically intracellular Ca
+
 increases in astrocytic endfeet 

induce either vaso-dilation, or vaso-constriction, or both (Anderson and Nedergaard, 

2003; Filosa and Blanco, 2007; Metea and Newman, 2006; Zonta et al., 2003). A 

recent in vitro study of the rat hippocampal slices (Gordon et al., 2008) showed that 

the level of O2 concentration in tissue dictates how astrocytes control the vascular 

response to changes in neural activity. It was found that, in response to synaptic 

activation, the same arterioles dilated in conditions of low O2 concentration (20%) but 

constricted in conditions of high O2 concentration (95%). As many of functional 

studies have shown that evoked neural activity induces an initial decrease in local 

tissue oxygen tension before it is increased as the regional CBF increases (Bartlett et 

al., 2008; Thompson et al., 2004), the above in vitro work offers some evidence for an 

initial tendency for blood vessels to dilate due to decreased O2 concentration, 

followed by the tendency for the same vessels to constrict due to the subsequent 

increase in tissue O2 concentration. However it is unclear how the two interact with 

each other, resulting in the overall dilation of blood vessels evident in the 

experimental data. 
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It is also possible that the overall observed CBF response was the result of a larger 

proportion of the local blood vessels dilating simultaneously with a smaller proportion 

of blood vessels constricting. This was observed by an in vivo study using two photon 

laser scanning microscopy (Stefanovic et al., 2007). The study found that electrical 

stimulation of the forepaw of rodents induced dilation in most blood vessels of 

diameter up to 30µm, but a small proportion of blood vessels showed a decrease in 

their diameters. As the study only recorded steady state vascular responses to 

sustained electrical stimulation, the temporal characteristics of the dilating and 

constricting blood vessels were not available.  

 

Although most studies found that changes in neural activity induce changes in the 

regional blood flow, a recent study (Sirotin and Das, 2009) observed a decoupling 

between neural activity and the CBF. More specifically, a change in CBF was 

measured with no measurable change in the local field potentials. Although the work 

raises the question of consistency of neurovascular coupling, more research is needed 

to replicate such findings and to investigate under what experimental conditions such 

decoupling may be likely to occur. More importantly neurovascular coupling as a 

phenomenon is not invalidated by such findings; and the scientific effort in searching 

for the underlying mechanism will continue. 

 

A linear dynamic coupling 

If a system is linear time-invariant, it is completely characterised by its IRF. For this 

reason IRFs have been used to test the linearity or otherwise of the underlying system 

governing changes in neural activity and the ensuing changes in CBF. Previous 

studies (Ances et al., 2000; Martindale et al., 2005) suggested that this relationship 
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was nonlinear with respect to stimulus duration. In these studies, the estimated IRFs, 

from experiments with short stimulus duration, were used to predict the CBF time 

series obtained from experiments with longer stimulus durations. The conclusion of 

nonlinearity was drawn from the fact that the predicted CBF time series failed to 

match the measured data satisfactorily.  

 

Our results highlighted the fact that the estimated IRFs using short duration data were 

less consistent over the different IBSIs compared with those using longer duration 

data (Figure 7). This is mainly due to two reasons. One is that the evoked CBF time 

series for brief stimulus generally have smaller amplitude than those with longer 

duration stimulus. As a result, the signal-to-noise ratio of the data obtained from short 

duration experiments is not as good as that from long duration experiments. Secondly, 

the temporal characteristics of the CBF IRF during the return-to-baseline period is 

complex, involving both undershoot as well as overshoot of the response from its 

baseline condition. For CBF data with short duration stimulus, these characteristics 

are largely buried in the baseline noise of the CBF responses. However for long 

duration stimulation data, these characteristics are reflected in the CBF time series 

during the onset period of stimulation, and the IRFs can be estimated more accurately. 

Hence the poor predictive power using estimated CBF IRFs demonstrated by previous 

studies could be due to poor estimates of these IRFs rather than the underlying system 

being nonlinear.  

 

We have demonstrated that, for our data and applying model-based approach, a single 

CBF IRF (obtained from the 16s stimulation conditions) could be used to fit the CBF 

time series over stimulus durations 2~16s, and over inter-block-stimulus intervals 
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0.6~8s. This finding suggests that the neurovascular coupling linking the CSD pulses 

and the CBF time series is potentially linear over stimulus duration. As neurovascular 

coupling plays an important part in the coupling of neural activity to the fMRI BOLD 

signal, the finding of linearity of neurovascular coupling has important implications 

on the analysis and interpretation of the BOLD signal.  

 

An important implication of linearity is that the structure of the D-C model can be 

formally manipulated into different structural configurations which can be used as 

hypotheses in the search of the coupling of the underlying dilation and the 

constriction processes. 

 

Alternative model structures 

The D-C model presented in this paper assumed that the source of both blood vessel 

dilation and constriction was of neural origin, hence both components were driven by 

the CSD signal. However another source of vessel constriction is auto-regulation 

(Johnson, 1986; Kontos, 1981). This refers to the intrinsic ability of cerebral blood 

vessels to dilate or constrict to maintain adequate blood flow and hence supply of 

oxygen to the brain. Under the framework of linearity, it is possible to explore such 

model structure by assigning the input of the constriction component to be the 

haemodynamic response, thus forming a feedback loop in the model. Alternatively the 

interplay between cerebral auto-regulation and functional hyperaemia could be 

investigated by feeding both neural and haemodynamic signals to the constriction 

element.  
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Another possible model structure for neurovascular coupling is to have vaso-dilation 

and constriction to be driven by different components in the neural responses, with 

dilation driven by the short-latency temporal sink, and constriction driven by the long-

latency temporal source in the CSD signal. This model is based on the fact that the 

short-latency temporal sink represents the excitatory post-synaptic potential (EPSP) 

whereas the long-latency temporal source represents the inhibitory post-synaptic 

potential (IPSP). The hypothesis is that EPSP is the source of vaso-dilation, and IPSP 

is the source for vaso-constriction. The haemodynamic response is the result of the 

interaction between EPSP and IPSP (Barth et al., 1993; Di et al., 1990). This theory 

may potentially explain the negative BOLD phenomena often observed in the regions 

surrounding the area of increased CBF (Devor et al., 2007; Kennerley et al., 2008). 

This is currently an active area of research. 

 

Ultimately the structure of the model must be guided by physiological constraints and 

experimental data; however the robustness of the estimated model parameters should 

provide insight into the likelihood of the model structure of neurovascular coupling. 

 

Other considerations 

Although our results suggest a linear dynamic model of neurovascular coupling with 

respect to stimulus duration of up to 16s, it is important to note that nonlinearity may 

become prominent if the duration of stimulation is much longer (Rasmussen et al., 

2009). It has also been shown that neurovascular coupling with respect to stimulus 

intensity was nonlinear with saturation at higher stimulus intensities and with a dead-

zone effect at lower stimulus intensities (Hewson-Stoate et al., 2005; Jones et al., 

2004; Ureshi et al., 2005). Furthermore, stimulation frequency is also an important 
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parameter in determining the relationship between neural activity and the evoked CBF 

responses, with wide-ranging conclusions about the nature of its influence on 

neurovascular coupling (Hewson-Stoate et al., 2005; Martindale et al., 2003; Nielsen 

and Lauritzen, 2001; Rasmussen et al., 2009). As most of these studies focused on the 

steady state rather than dynamic relationships, their conclusions may or may not 

extend to the dynamic coupling of neural activity and CBF responses. Thus the D-C 

model needs further evaluation using different stimulus frequencies, intensities and 

durations. In the mean time as neurovascular coupling is an integral part of 

understanding the fMRI BOLD signal, it is being incorporated into a multi-

compartment model (Zheng et al., 2005) to provide better interpretations of the BOLD 

signal and of the underlying neural activity.  

 

Conclusion 

 

We have demonstrated that a linear dynamic model can adequately describe the 

relationship between neural activity and changes in CBF across blocks of different 

durations of (2~16s) stimulation with different gaps (IBSIs) between them (0.6~8s). 

The structure of the model can be interpreted in the framework of balance between 

blood vessel dilation and constriction.  

 

An important result of our study is the demonstration that the neurovascular coupling 

is potentially linear dynamic. This result may impact on two fronts: one is that within 

the frame work of linearity we can manipulate the structure of the model to 

investigate the possible sources of vaso-dilation and vaso-constriction; the other is in 

the analysis and modelling of the BOLD signals obtained in fMRI studies. It is to be 
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hoped that our model will help the neurosurgeon/scientist in the interpretation of these 

signals in terms of the underlying neural activity and their interactions. 
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Appendix I. A proof-of-concept simulation 

To demonstrate that the complex temporal characteristics of CBF maybe the result of 

two opposing processes acting upon blood vessels, two time series ( )ty1  and ( )ty2  

were generated using two linear dynamic systems driven by a continuous square pulse 

lasting for 16s. The first linear system has the transfer function  
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and the second linear system has the transfer function  
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The two systems were selected loosely with the following criteria: (i) the first system 

is faster dynamically compare to the second system, and it has a gain of unity; and (ii) 

the second system is more delayed than the first system, and it has a variable gain 

reflected by the variable K. The two time series were then subtracted from each other 

and the temporal characteristics of the resultant signal ( ) ( )tyty 21 −  were compared 

with the observed time series of CBF. 

 

Appendix II. Impulse response functions for linear dynamic systems 

 

Consider the n
th

 order canonical linear dynamic system with the transfer function 
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The impulse response function of the system is given by 

 

tr
n
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If 1r  and 2r  are complex, written as jIRrr ±=21, , then the impulse response 

function can be re-written as 
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( ) ( ) tr
n
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In the case of a canonical third order linear dynamic system with the transfer function 
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if it has a pair of complex conjugate roots jIRpp ±=21, , then its impulse response 

function is 

 

( ) ( ) tpRt
eKIteKtf 3

312 sin ++= α  

 

Furthermore, the parameters a , b  and c  are related to the parameters 1p , 2p  and 

3p  as 

 

321 pppa ++= ,  323121 ppppppb ++= ,  321 pppc =  

 

If 1p  and 2p  are complex conjugate, then 

 

32 pRa += ,  3
22 2RpIRb ++= ,  ( ) 3

22
pIRc +=  

 

Note that the parameter a  is independent of the imaginary part I  of the roots. 

 



 34 

References 

Ances, B.M., Zarahn, E., Greenberg, J.H., Detre, J.A., 2000. Coupling of Neural 

Activation to Blood Flow in the Somatosensory Cortex of Rats Is Time-Intensity 

Separable, but Not Linear. Journal of Cerebral Blood Flow and Metabolism 20, 921-

930. 

Anderson, C.M., Nedergaard, M., 2003. Astrocyte-mediated control of cerebral 

microcirculation. Trends in Neurosciences 26, 340-344. 

Aubert, A., Costalat, R., 2002. A Model of the Coupling between Brain Electrical 

Activity, Metabolism, and Hemodynamics: Application to the Interpretation of 

Functional Neuroimaging. Neuroimage 17, 1162-1181. 

Barth, D.S., Kithas, J., Di, S., 1993. Anatomic organization of evoked potentials in rat 

parietotemporal cortex: somatosensory and auditory responses. Journal of 

Neurophysiology 69, 1837-1849. 

Bartlett, K., Saka, M., Jones, M., 2008. Polarographic Electrode Measures of Cerebral 

Tissue Oxygenation: Implications for Functional Brain Imaging. Sensors 8, 7649-

7670. 

Bennett, M.R., Farnell, L., Gibson, W.G., 2008. Origins of blood volume change due 

to glutamatergic synaptic activity at astrocytes abutting on arteriolar smooth muscle 

cells. Journal of Theoretical Biology 250, 172-185. 

Berwick, J., Johnston, D., Jones, M., Martindale, J., Redgrave, P., McLoughlin, N., 

Schiessl, I., Mayhew, J.E.W., 2005. Neurovascular coupling investigated with two-

dimensional optical imaging spectroscopy in rat whisker barrel cortex. European 

Journal of Neuroscience 22, 1655-1666. 



 35 

Blockley, N.P., Francis, S.T., Gowland, P.A., 2009. Perturbation of the BOLD 

response by a contrast agent and interpretation through a modified balloon model. 

Neuroimage 48, 84-93. 

Buxton, R.B., Uludag, K., Dubowitz, D.J., Liu, T.T., 2004. Modeling the 

hemodynamic response to brain activation. Neuroimage 23, S220-S233. 

Devor, A., Tian, P.F., Nishimura, N., Teng, I.C., Hillman, E.M.C., Narayanan, S.N., 

Ulbert, I., Boas, D.A., Kleinfeld, D., Dale, A.M., 2007. Suppressed neuronal activity 

and concurrent arteriolar vasoconstriction may explain negative blood oxygenation 

level-dependent signal. Journal of Neuroscience 27, 4452-4459. 

Di, S., Baumgartner, C., Barth, D.S., 1990. Laminar analysis of extracellular field 

potentials in rat vibrissa/barrel cortex. Journal of Neurophysiology 63, 832-840. 

Filosa, J.A., Blanco, V.M., 2007. Neurovascular coupling in the mammalian brain. 

Experimental Physiology 92, 641-646. 

Friston, K.J., Mechelli, A., Turner, R., Price, C.J., 2000. Nonlinear responses in 

fMRI: the balloon model, volterra kernels, and other hemodynamics. Neuroimage 12, 

466-477. 

Gerrits, R.J., Raczynski, C., Greene, A.S., Stein, E.A., 2000. Regional cerebral blood 

flow responses to variable frequency whisker stimulation: an autoradiographic 

analysis. Brain Research 864, 205-212. 

Gordon, G.R.J., Choi, H.B., Rungta, R.L., Ellis-Davies, G.C.R., MacVicar, B.A., 

2008. Brain metabolism dictates the polarity of astrocyte control over arterioles. 

Nature 456, 745-749. 

Hamel, E., 2006. Perivascular nerves and the regulation of cerebrovascular tone. 

Journal of Applied Physiology 100, 1059-1064. 



 36 

Herman, P., Sanganahalli, B.G., Hyder, F., 2008. Multimodal measurements of blood 

plasma and red blood cell volumes during functional brain activation. Journal of 

Cerebral Blood Flow and Metabolism 29, 19-24. 

Hewson-Stoate, N., Jones, M., Martindale, J., Berwick, J., Mayhew, J., 2005. Further 

nonlinearities in neurovascular coupling in rodent barrel cortex. Neuroimage 24, 565-

574. 

Huettel, S.A., McCarthy, G., 2001. Regional Differences in the Refractory Period of 

the Hemodynamic Response: An Event-Related fMRI Study. Neuroimage 14, 967-

976. 

Iadecola, C., Nedergaard, M., 2007. Glial regulation of the cerebral microvasculature. 

Nature Neuroscience 10, 1369-1376. 

Johnson, P.C., 1986. Autoregulation of blood flow. Circulation Research 59, 483-495. 

Jones, M., Berwick, J., Mayhew, J., 2002. Changes in blood flow, oxygenation, and 

volume following extended stimulation of rodent barrel cortex. Neuroimage 15, 474-

487. 

Jones, M., Hewson-Stoate, N., Martindale, J., Redgrave, P., Mayhew, J., 2004. 

Nonlinear coupling of neural activity and CBF in rodent barrel cortex. Neuroimage 

22, 956-965. 

Kennerley, A., Boorman, L., Johnston, D., Zheng, Y., Redgrave, P., Mayhew, J., 

Berwick, J., 2008. The Negative BOLD Effect in the Rodent Barrel Cortex Model: 

Investigation Using Multimodal Imaging and Electrophysiology. ISMRM, Abstract 

No. 222, Toronto, Canada. 

Kennerley, A.J., Berwick, J., Martindale, J., Johnston, D., Papadakis, N., Mayhew, J., 

2005. Concurrent fMRI and Optical Measures for the Investigation of the 

Hemodynamic Response Function. MRM 54, 354-365. 



 37 

Kida, I., Rothman, D.L., Hyder, F., 2007. Dynamics of changes in blood flow, 

volume, and oxygenation: implications for dynamic functional magnetic resonance 

imaging calibration. Journal of Cerebral Blood Flow and Metabolism 27, 690-696. 

Kontos, H.A., 1981. Regulation of the Cerebral-Circulation. Annual Review of 

Physiology 43, 397-407. 

Lauritzen, M., 2001. Relationship of spikes, synaptic activity, and local changes of 

cerebral blood flow. Journal of Cerebral Blood Flow and Metabolism 21, 1367-1383. 

Li, B., Freeman, R.D., 2007. High-Resolution Neurometabolic Coupling in the Lateral 

Geniculate Nucleus. Journal of Neuroscience 27, 10223-10229. 

Mandeville, J.B., Marota, J.J.A., Ayata, C., Zaharchuk, G., Moskowitz, M.A., Rosen, 

B.R., Weisskoff, R.M., 1999. Evidence of a cerebrovascular postarteriole windkessel 

with delayed compliance. Journal of Cerebral Blood Flow and Metabolism 19, 679-

689. 

Martin, C., Berwick, J., Kennerley, A., Zheng, Y., Mayhew, J., 2009. Spatiotemporal 

complexity in the haemodynamic response to somatosensory stimulation in the un-

anaesthetised rat. Brain 2009, Abstract 602, Chicago. 

Martindale, J., Berwick, J., Martin, C., Kong, Y.Z., Zheng, Y., Mayhew, J.E.W., 

2005. Long duration stimuli and nonlinearities in the neural-haemodynamic coupling. 

Journal of Cerebral Blood Flow and Metabolism 25, 651-661. 

Martindale, J., Mayhew, J., Berwick, J., Jones, M., Martin, C., Johnston, D., 

Redgrave, P., Zheng, Y., 2003. The hemodynamic impulse response to a single neural 

event. Journal of Cerebral Blood Flow and Metabolism 23, 546-555. 

Mathiesen, C., Caesar, K., Akgoren, N., Lauritzen, M., 1998. Modification of activity-

dependent increases of cerebral blood flow by excitatory synaptic activity and spikes 

in rat cerebellar cortex. Journal of Physiology-London 512, 555-566. 



 38 

Mayhew, J.E.W., Askew, S., Zheng, Y., Porrill, J., Westby, G.W.M., Redgrave, P., 

Rector, D.M., Harper, R.M., 1996. Cerebral Vasomotion: A 0.1-Hz Oscillation in 

Reflected Light Imaging of Neural Activity. Neuroimage 4, 183-193. 

Metea, M.R., Newman, E.A., 2006. Glial Cells Dilate and Constrict Blood Vessels: A 

Mechanism of Neurovascular Coupling. Journal of Neuroscience 26, 2862-2870. 

Mulligan, S.J., MacVicar, B.A., 2004. Calcium transients in astrocyte endfeet cause 

cerebrovascular constrictions. Nature 431, 195-199. 

Nielsen, A.N., Lauritzen, M., 2001. Coupling and uncoupling of activity-dependent 

increases of neuronal activity and blood flow in rat somatosensory cortex. Journal of 

Physiology 533, 773-785. 

Nikos, K.L., 2002. The neural basis of the blood-oxygen-level-dependent functional 

magnetic resonance imaging signal. Phil. Trans. R. Soc. B 357, 1003-1037. 

Nilsson, G.E., 1984. Signal processor for laser Doppler tissue flowmeters. Medical 

and Biological Engineering and Computing 22, 343-348. 

Rasmussen, T., Holstein-Rathlou, N.-H., Lauritzen, M., 2009. Modeling neuro-

vascular coupling in rat cerebellum: Characterization of deviations from linearity. 

Neuroimage 45, 96-108. 

Raven, F.H., 1968. Automatic Control Engineering. McGraw-Hill Book Company, 

Inc. . 

Riera, J.J., Jimenez, J.C., Wan, X., Kawashima, R., Ozaki, T., 2007. Nonlinear local 

electrovascular coupling. II: From data to neuronal masses. Human Brain Mapping 

28, 335-354. 

Riera, J.J., Watanabe, J., Kazuki, I., Naoki, M., Aubert, E., Ozaki, T., Kawashima, R., 

2004. A state-space model of the hemodynamic approach: nonlinear filtering of 

BOLD signals. Neuroimage 21, 547-567. 



 39 

Riera, J.J., Xiaohong, W., Juan Carlos, J., Ryuta, K., 2006. Nonlinear local 

electrovascular coupling. I: A theoretical model. Human Brain Mapping 27, 896-914. 

Rosengarten, B., Lutz, H., Hossmann, K.A., 2003. A control system approach for 

evaluating somatosensory activation by laser-Doppler flowmetry in the rat cortex. 

Journal of Neuroscience Methods 130, 75-81. 

Sheth, S.A., Nemoto, M., Guiou, M., Walker, M., Pouratian, N., Toga, A.W., 2004. 

Linear and nonlinear relationships between neuronal activity, oxygen metabolism, and 

hemodynamic responses. Neuron 42, 347-355. 

Sirotin, Y.B., Das, A., 2009. Anticipatory haemodynamic signals in sensory cortex 

not predicted by local neuronal activity. Nature 457, 475-479. 

Sotero, R.C., Trujillo-Barreto, N.J., 2007. Modelling the role of excitatory and 

inhibitory neuronal activity in the generation of the BOLD signal. Neuroimage 35, 

149-165. 

Sotero, R.C., Trujillo-Barreto, N.J., 2008. Biophysical model for integrating neuronal 

activity, EEG, fMRI and metabolism. Neuroimage 39, 290-309. 

Stefanovic, B., Hutchinson, E., Yakovleva, V., Schram, V., Russell, J.T., Belluscio, 

L., Koretsky, A.P., Silva, A.C., 2007. Functional reactivity of cerebral capillaries. 

Journal of Cerebral Blood Flow and Metabolism 28, 961-972. 

Thompson, J.K., Peterson, M.R., Freeman, R.D., 2004. High-resolution 

neurometabolic coupling revealed by focal activation of visual neurons. Nature 

Neuroscience 7, 919-920. 

Ureshi, M., Kershaw, J., Kanno, I., 2005. Nonlinear correlation between field 

potential and local cerebral blood flow in rat somatosensory cortex evoked by 

changing the stimulus current. Neuroscience Research 51, 139-145. 



 40 

Ureshi, M., Matsuura, T., Kanno, I., 2004. Stimulus frequency dependence of the 

linear relationship between local cerebral blood flow and field potential evoked by 

activation of rat somatosensory cortex. Neuroscience Research 48, 147-153. 

Vazquez, A.L., Masamoto, K., Kim, S.-G., 2008. Dynamics of oxygen delivery and 

consumption during evoked neural stimulation using a compartment model and CBF 

and tissue PO2 measurements. Neuroimage 42, 49-59. 

Zheng, Y., Johnston, D., Berwick, J., Chen, D.M., Billings, S., Mayhew, J., 2005. A 

three-compartment model of the hemodynamic response and oxygen delivery to brain. 

Neuroimage 28, 925-939. 

Zheng, Y., Martindale, J., Johnston, D., Jones, M., Berwick, J., Mayhew, J., 2002. A 

model of the hemodynamic response and oxygen delivery to brain. Neuroimage 16, 

617-637. 

Zonta, M., Angulo, M.C., Gobbo, S., Rosengarten, B., Hossmann, K.A., Pozzan, T., 

Carmignoto, G., 2003. Neuron-to-astrocyte signaling is central to the dynamic control 

of brain microcirculation. Nature Neuroscience 6, 43-50. 

 



 41 

Figure legends 

 

Figure 1. Experimental paradigms. For each paradigm, two blocks of stimuli were 

used each with stimulation frequency of 5Hz. (a) Stimulation sequences for paradigm 

1. The conditioning block has a variable duration of 2s, 8s and 16s respectively. The 

probing block has a fixed duration of 1s. The IBSI varies from 0.6s to 1, 2, 3, 4, 6 and 

8s. (b) Stimulation sequences for paradigm 2. The conditioning block has a variable 

duration of 2s, 4s, 8s and 16s respectively. The probing block has a fixed duration of 

2s. The IBSI is also fixed at 2s.   

 

Figure 2. Time series of cortical normalised CBF changes following presentation of 

electrical  whisker pad stimuli. The black bar on the time axis indicates the stimulus 

duration of the conditioning block. The vertical black lines along the time axis 

indicate the onset time of the probing stimulus corresponding to each IBSI. (a) 2s 

duration conditions; (b) 8s duration conditions; and (c) 16s duration conditions. Each 

plot has seven animal-and-trial-averaged time series superimposed, corresponding to 

the seven different IBSIs 0.6, 1, 2, 3, 4, 6 and 8s. (d) A single time series of the 

normalised CBF with the conditioning block duration of 16s and the IBSI of 8s. 

Approximately 4s after the cessation of the conditioning block stimuli, CBF starts to 

increase well before the onset of the probing block of stimulation. 

 

Figure 3. The block diagram of a linear time-invariant dynamic model relating neural 

activity (the CSD pulse train) to the CBF time series. The two branches of the model 

represent the dilation (top branch) and the constriction component (bottom branch) 

respectively. The ordinary differential equations relating the input and the output of 
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the model are written in Laplace transform, a standard frequency domain 

representation of linear time-invariant systems. The model has nine parameters 

including the transport delay. The transport delay was determined manually by 

inspection of the averaged CBF time series. Hence eight model parameters need to be 

optimised. 

 

Figure 4. Results of the proof-of-concept simulation of the CBF time series (solid 

curve) obtained from subtracting two time series slightly out of phase with each other. 

By keeping one time series (dashed curve) unchanged but decreasing the amplitude of 

the other time series (dotted curve), a range of CBF time series can be obtained with 

temporal characteristics similar to those published in the literature. Four examples are 

provided with the gain of the dotted time series set at (a) 0.53; (b), 0.42; (c) 0.32; and 

(d) 0.21 respectively. The gain of the dashed time series is unity. Black bars on the 

time axis indicate the duration of the stimulation (16s). 

 

Figure 5. (a) The mean CSD time series of all 21 trial types. They are used as inputs 

to the D-C model. (b) A zoomed-in plot of a representative CSD time series for the 

first 2s of stimulation, showing neural adaptation characteristics. 

 

Figure 6. Fitted fractional changes in CBF time series (black dashed curve) 

superimposed with the actual animal-and-trial-averaged CBF data (grey solid curve) 

(n=11). The light grey band is ± 1 standard deviation of the data. Black bars on the 

time axis indicate the duration of stimulation. For each of the 21 trial types, all eight 

model parameters were optimised. 
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Figure 7. Impulse response functions (IRF) for (a) 2s conditions; (b) 8s conditions, 

and (c) 16s conditions. Each plot has seven IRFs corresponding to the seven different 

IBSIs 0.6, 1, 2, 3, 4, 6 and 8s. (d) The mean IRFs for the 2s condition (grey solid), 8s 

condition (black solid) and 16s condition (black dashed) respectively. 

 

Figure 8. Comparison of the normalised sum of squares of errors (nSSE). Each of the 

three model parameter set 2θ , 8θ  and 16θ  was used to fit the CBF time series over all 

stimulation conditions. Each bar represents the mean nSSE over the seven IBSIs for 

the 2s condition (light grey), 8s condition (dark grey) and 16s condition (black). The 

error bar represent ± 1 standard deviation of the data. 

 

Figure 9. The pole locations of the transfer function in the complex plane for (a) the 

dilation component, and (b) the constriction component. The pole locations for 

models M2, M8 and M16 are plotted as light grey dots, dark grey dots and black dots 

respectively. For the dilation component, the locations of the poles do not vary 

significantly. For the constriction component, the locations of the poles for M16 are 

very different from those for M2 and M8. 

 

Figure 10. Results of model validation using paradigm 2 data. The fitted fractional 

changes in CBF time series (black dashed) are superimposed with the animal-and 

trial-averaged data (grey solid) over 5 subjects. Conditioning block stimulus duration 

varies from (a) 2s; (b) 4s; (c) 8s and (d) 16s. The probing block duration is fixed at 2s, 

with the IBSI fixed at 2s. Black bars on the time axis indicate the duration of 

stimulation. 
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Figure S1. A representative set (conditioning block: 16s, IBSI: 8s) showing model 

fittings on 11 individual animal data that vary hugely in their temporal characteristics. 

The fitted fractional changes in CBF time series (black dashed curve) are 

superimposed with the individual animal data (grey solid curve). Black bars indicate 

the duration of stimulation. All 8 model parameters are optimised.  

 

Figure S2. A single parameter set 2θ  was used to fit all 21 CBF time series. The fitted 

fractional changes in the CBF time series (black dashed curve) were superimposed 

with the animal- and trial-averaged data (grey solid curve). The light grey band is ± 1 

standard deviation of the data. Black bars indicate the duration of stimulation. 

 

Figure S3. A single parameter set 8θ  was used to fit all 21 CBF time series. The fitted 

fractional changes in the CBF time series (black dashed curve) were superimposed 

with the animal- and trial-averaged data (grey solid curve). The light grey band is ± 1 

standard deviation of the data. Black bars indicate the duration of stimulation. 

 

Figure S4. A single parameter set 16θ  was used to fit all 21 CBF time series. The 

fitted fractional changes in the CBF time series (black dashed curve) were 

superimposed with the animal- and trial-averaged data (grey solid curve). The light 

grey band is ± 1 standard deviation of the data. Black bars indicate the duration of 

stimulation. 

 

Figure S5. Fitted fractional changes in CBF time series (black dashed curve) 

superimposed on the animal- and trial-averaged data (grey solid curve, n=11). The 

light grey band is ± 1 standard deviation of the data. For all 21 trial types, five of the 
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eight model parameters were clamped at their original values in 16θ , with only three 

model parameters optimised for each trial type. Black bars indicate the duration of 

stimulation. 

 

 



Table 1. Eight optimised model parameters in paradigm 1, under 2s stimulus duration 

conditions ( 2θ ), 8s stimulus duration conditions ( 8θ ), and 16s stimulus duration 

conditions ( 16θ ). 

 

 K1 a1 b1 c1 K2 a2 b2 c2 

2θ  29.0 2.61 4.14 0.93 19.9 1.56 1.13 0.23 

8θ  30.3 2.88 4.70 0.91 20.7 1.54 0.99 0.19 

16θ  30.9 3.10 5.25 0.94 20.6 1.82 0.95 0.19 

 

 

 

Table 2. Three of the eight model parameters were optimised in paradigm 2, under 2s, 

4s, 8s and16s stimulus duration conditions.  

 

 K2 b2 c2 

2s 20.2 1.00 0.16 

4s 19.2 0.93 0.15 

8s 18.1 0.93 0.17 

16s 17.8 0.73 0.16 
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