

This is a repository copy of Factor XIII A-Subunit V34L Variant Affects Thrombus Cross-Linking in a Murine Model of Thrombosis.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/111562/

Version: Supplemental Material

Article:

Duval, C., Ali, M., Chaudhry, W.W. et al. (3 more authors) (2016) Factor XIII A-Subunit V34L Variant Affects Thrombus Cross-Linking in a Murine Model of Thrombosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 36 (2). pp. 308-316. ISSN 1079-5642

https://doi.org/10.1161/ATVBAHA.115.306695

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

SUPPLEMENTAL MATERIAL

Factor XIII A-subunit V34L variant affects thrombus cross-linking rather than size in a murine model of thrombosis

Cédric Duval, Majid Ali, Waleed W. Chaudhry, Victoria C. Ridger, Robert A.S. Ariëns, Helen Philippou

Figure I: Effects of rhFXIII-A₂ variants on formation of fibrin α- and γ-chain cross-links. Fibrin (2mg/ml) α- and γ-chain cross-linking by 15µg/ml rhFXIII-A₂ V34L (V), WT (W) and G33A (G) was observed over time by SDS-PAGE (A), in the presence of 0.5U/ml thrombin and 10mM CaCl₂. Band densitometry was performed in order to quantify the percentage of α- and γ-chain cross-linking, both expressed relative to the uncross-linked β-chain band intensities to correct for any loading differences (B). At 2 and 5 minutes, γ-chain cross-linking was increased for V34L and decreased for G33A, compared to WT. From 10 minutes, all the γ-chains were cross-linked, and the α-chain cross-linking increased over time. Cross-linking of the α-chain was also increased for V34L and decreased for G33A, compared to WT. Panel A shows a composite of 2 SDS-PAGE gels (lanes 1-10 and 11-19). n=1.

Primer	Forward primer	Reverse primer
T28A	GGAAGATGACCTGCCC G CAGTGGAGCTTCAGGG	CCCTGAAGCTCCACTG C GGGCAGGTCATCTTCC
V29A	GCAGCGGAAGATGACCTGCCCACAGCGGAGCTTCAG	GGCACCACGCCCTGAAGCTCC G CTGTGGGCAGGTC
E30A	CCTGCCCACAGTGG C GCTTCAGGGCGTGG	CCACGCCCTGAAGC G CCACTGTGGGCAGG
L31A	CCTGCCCACAGTGGAG GC TCAGGGCGTGGTGC	GCACCACGCCCTGA GC CTCCACTGTGGGCAGG
Q32A	CCCACAGTGGAGCTT GC GGGCGTGGTGC	GCACCACGCCC GC AAGCTCCACTGTGGG
G33A	GTGGAGCTTCAGG C CGTGGTGCCCCGGGGCGTCAAC	GTTGACGCCCCGGGGCACCACG G CCTGAAGCTCCAC
V34A	GGAGCTTCAGGGCG C GGTGCCCCGG	CCGGGGCACCGCGCCCTGAACCTCC
V34L	GGAGCTTCAGGGC C TGGTGCCCCGG	CCGGGGCACCA G GCCCTGAAGCTCC
V34M	GGAGCTTCAGGGC A TGGTGCCCCGG	CCGGGGCACCATGCCCTGAAGCTCC
V35A	GAGCTTCAGGGCGTGG C GCCCCGGGGC	GCCCCGGGGC G CCACGCCCTGAAGCTC
P36A*	CTTCAGGGCGTGGTG G CCCGGGGCGTCAACC	ggttgacgccccggg <mark>c</mark> caccacgccctgaag
R37A	CGTGGTGCCC GC GGGCGTCAACCTGC	GCAGGTTGACGCCC GC GGGCACCACG
G38A	CGTGGTGCCCCGGG C CGTCAACCTGC	GCAGGTTGACGCCCCGGGGCACCACG
V39A	CGTGGTGCCCCGGGGCGCCAACCTGC	GCAGGTTG G CGCCCCGGGGCACCACG
N40A	CGGGGCGTC GC CCTGCAAGAGTTTCTTAATGTC	GACATTAAGAAACTCTTGCAGG GC GACGCCCCG
L41A	GGGCGTCAAC GC GCAAGAGTTTCTTAATGTC	GACATTAAGAAACTCTTGC GC GTTGACGCCC

<u>Table I:</u> Site-directed mutagenesis primers for rhFXIII-A₂ variants. Mutated bases are highlighted.

* P36A variant was successfully mutated but transformation step failed.