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Large-scale-vortex dynamos in planar rotating convection

Céline Guervilly∗, David W. Hughes & Chris A. Jones

Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK

February 1, 2017

Abstract

Several recent studies have demonstrated how large-scale vortices may arise sponta-
neously in rotating planar convection. Here we examine the dynamo properties of such
flows in rotating Boussinesq convection. For moderate values of the magnetic Reynolds
number (100 . Rm . 550, with Rm based on the box depth and the convective velocity),
a large-scale (i.e. system-size) magnetic field is generated. The amplitude of the magnetic
energy oscillates in time, nearly out of phase with the oscillating amplitude of the large-
scale vortex. The large-scale vortex is disrupted once the magnetic field reaches a critical
strength, showing that these oscillations are of magnetic origin. The dynamo mechanism
relies on those components of the flow that have length scales lying between that of the
large-scale vortex and the typical convective cell size; smaller-scale flows are not required.
The large-scale vortex plays a crucial role in the magnetic induction despite being essentially
two-dimensional; we thus refer to this dynamo as a large-scale-vortex dynamo. For larger
magnetic Reynolds numbers, the dynamo is small scale, with a magnetic energy spectrum
that peaks at the scale of the convective cells. In this case, the small-scale magnetic field
continuously suppresses the large-scale vortex by disrupting the correlations between the
convective velocities that allow it to form. The suppression of the large-scale vortex at high
Rm therefore probably limits the relevance of the large-scale-vortex dynamo to astrophysi-
cal objects with moderate values of Rm, such as planets. In this context, the ability of the
large-scale-vortex dynamo to operate at low magnetic Prandtl numbers is of great interest.

1 Introduction

Understanding the generation of system-size magnetic fields in natural objects, i.e. fields with a
significant component on the scale of the objects themselves, remains an outstanding problem
in geophysical and astrophysical fluid dynamics. Such fields are maintained by dynamo action,
whereby the magnetic induction produced by the motions of an electrically conducting fluid
compensates the losses due to Ohmic dissipation. Typically, in planetary and stellar interiors,
the inductive motions are driven by thermal or compositional convection.

Numerical simulations have demonstrated that rotating convection can indeed generate mag-
netic fields on a scale large compared with that of the convective cells — see, for example, the
spherical shell simulations of Olson et al. (1999), Christensen & Aubert (2006), Soderlund et al.

(2012), and the plane layer computations of Stellmach & Hansen (2004). However, relating the
findings of numerical models to dynamos in the convective cores of rapidly rotating bodies, such
as planets, is not entirely straightforward. In computational models, it is not currently feasible
to achieve values of the Ekman number (Ek , a measure of the viscous to the Coriolis force)
smaller than Ek = O(10−6), whereas in the Earth, for example, Ek = O(10−15). The horizontal
extent of convective cells, which depends on the Ekman number as Ek1/3, is therefore expected
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to be much smaller in nature than in the numerical models; this has important consequences for
magnetic field generation (e.g. Jones, 2000). For rapidly rotating planets, the magnetic Reynolds
numbers (Rm, the ratio of Ohmic diffusion time to induction timescale) are expected to be of
the order of 103 − 105 at the system size; calculated on the small convective scale though, Rm
is much less than unity, i.e. Ohmic diffusion acts much faster than magnetic induction. In this
case, a large-scale magnetic field can still be generated by the small-scale convective vortices if
they act collectively to produce a mean-field α-effect (Childress & Soward, 1972; Soward, 1974).
However, the large-scale magnetic field sustained by this process tends to be spatially uniform
(e.g. Favier & Proctor, 2013), unlike the observed geomagnetic field. In computational models,
which necessarily have to consider much higher values of Ek than the true planetary values, the
fundamental problem of very small Rm on the convective scale is therefore implicitly avoided.
An important challenge of planetary dynamo theory is thus to explain the generation of system-
size magnetic fields of strong amplitude and complex spatio-temporal variations, while Rm at
the convective scale is smaller than unity.

One plausible solution to this problem is that the generated magnetic field strongly modifies
the convective flows such that the convective scale increases, as predicted by the linear theory of
magnetoconvection (Chandrasekhar, 1961). The influence of the magnetic field on the convec-
tive flow, and in particular on its lengthscale, has indeed been observed in a number of dynamo
simulations in which strong magnetic fields are sustained (e.g. Stellmach & Hansen, 2004;
Takahashi et al., 2008; Hori et al., 2010; Hughes & Cattaneo, 2016). In this paper we explore
an alternative solution based on a hydrodynamical argument: in rapidly rotating non-magnetic
convection, the small-scale convective vortices may transfer part of their energy to larger-scale
flows; if Rm is sufficiently high, based on this increased scale, then the dynamo could operate
at these larger scales. The possible formation of large-scale flows is therefore of great interest
for the dynamics of planetary interiors. Computationally, this represents a challenging prob-
lem, with large domains required that can accommodate many convective cells, together with
any large-scale structure that may emerge; as such, studies to date have concentrated on the
computationally economical planar geometry. Over the last few years, a number of independent
numerical studies of plane layer, non-magnetic, rapidly rotating convection — both Boussinesq
and compressible — have demonstrated how large-scale vortices (LSVs) can form through the
long-term concerted action of the Reynolds stresses resulting from the small-scale convective
cells (Chan, 2007; Käpylä et al., 2011; Rubio et al., 2014; Favier et al., 2014; Guervilly et al.,
2014). The LSVs are long-lived, box-size, depth-invariant vortices, which form by the clustering
of small-scale convective vortices; their horizontal flows are of much larger amplitude than the
underlying convective flows.

Figure 1, based on the results of Guervilly et al. (2014), shows the domain of existence of
LSVs for rotating, plane layer, Boussinesq convection, in the parameter space (Ek ,Ra/Rac);
the Rayleigh number, Ra, measures the ratio of buoyancy driving to dissipative effects, with
Rac the critical value at the onset of convection. The area of the circles provides a measure of
the relative amplitude of the LSVs, quantified by the ratio Γ = |u|2/3|uz|

2, where |u| is the
root mean square (rms) value of the total flow and |uz| is the rms value of the vertical flow.
Since the flows in LSVs are essentially horizontal, they are characterised by values of Γ larger
than unity. The colour of the circles denotes the value of the local Rossby number, defined
as Rol = |uz|/(2Ωl), where Ω is the rotation rate and l is the typical horizontal lengthscale of
the convection (e.g. Christensen & Aubert, 2006). Rol is an inverse measure of the rotational
constraint on the convective flow; it thus increases with Ra. There are two essential conditions
for the formation of an LSV, highlighted by figure 1. One is that the convective flows must be
sufficiently energetic to cluster; for the parameter values considered in Guervilly et al. (2014),
this may be expressed by the condition Ra/Rac & 3. The other is that the convective flows
are rotationally constrained and anisotropic, i.e. narrow in the horizontal directions and tall in
the vertical direction; this may be expressed by the condition Rol . 0.1. LSVs thus appear
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Figure 1: Location of the hydrodynamical simulations of Guervilly et al. (2014) in the parameter
space (Ek ,Ra/Rac), for Pr = 1 and an aspect ratio of 1. The colour scale gives the value of the
local Rossby number, Rol, and the area of the circle is proportional to Γ, which is a measure
of the relative strength of the horizontal flows. The grey area indicates the region where LSVs
form.

for low Ekman numbers and large Reynolds numbers (Re, the ratio of the viscous timescale to
the convective turnover time), precisely the conditions under which convection takes place in
planetary cores. LSVs could therefore be good candidates to drive planetary dynamos if they
can efficiently generate magnetic fields on scales comparable with or larger than that of the
LSVs themselves.

The question of whether LSVs can indeed drive a dynamo was addressed in the short paper by
Guervilly et al. (2015). By extending the hydrodynamic study of Guervilly et al. (2014), it was
found that rotating convection in the presence of LSVs can indeed generate a magnetic field with
a significant large-scale component. The field is concentrated in the shear layers surrounding
the LSVs and is mainly horizontal. A coherent mean (i.e. horizontally averaged) magnetic field
is also maintained by the flow. This large-scale dynamo process operates only for a range of
magnetic Reynolds numbers; Rm must be large enough for dynamo action to ensue, but small
enough that a small-scale magnetic field cannot be permanently sustained by the convective
flows. The latter is an essential condition for this particular type of dynamo, since small-scale
magnetic fields appear to suppress systematically the formation of the LSV. Indeed, the ability
of a small-scale field to disrupt large-scale coherent flows would seem to be a fairly robust
characteristic of magnetohydrodynamic turbulence; for example, in a two-dimensional β-plane
model, Tobias et al. (2007) found that small-scale fields — resulting from the distortion of a very
weak large-scale field — suppress the generation of the zonal flows that would otherwise form
spontaneously. In the large-scale dynamos considered by Guervilly et al. (2015), the influence
of the small-scale magnetic field varies in time, resulting in sizeable temporal oscillations of the
kinetic and magnetic energies. A large-scale magnetic field is first generated by the joint action
of the LSV and the smaller-scale convective flow; this large-scale field is then distorted by the
convective flows into a small-scale field, which, subsequently, quenches the LSV and triggers the
decay of the entire field; once the field is small enough, however, the LSV is able to regenerate
and the cycle starts again. Since LSVs consist essentially of horizontal flows, they cannot of
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themselves act as dynamos (Zeldovich, 1957); nonetheless, for convenience, we shall refer to this
type of dynamo as an ‘LSV dynamo’, even though it does not rely solely on the LSV.

The present paper builds extensively on Guervilly et al. (2015) by exploring the LSV dynamo
in depth. We concentrate on the lowest value of Ek considered in Guervilly et al. (2014), thus
allowing a wide-ranging exploration in Ra and Rm. The goals of our study are: (i) to investigate
in detail how the LSV dynamo mechanism operates; (ii) to determine the parameter region in
which this dynamo operates, in order to determine its relevance for planetary dynamos; and
(iii) to explain the mechanism by which the small-scale magnetic field suppresses the LSV.

The layout of the paper is as follows. The mathematical formulation of the problem is given
in § 2. In § 3, we consider the three very different types of dynamo that can exist in rapidly
rotating, plane layer convection, and describe where in parameter space each may be found.
Through the application of spectral filters to the convective flows, the key ingredients of the
LSV dynamo mechanism are presented in § 4. The means by which the LSV can be suppressed
and the resulting temporal evolution of the dynamo are described in § 5. A concluding discussion
is contained in § 6.

2 Mathematical formulation

2.1 Governing equations and boundary conditions

We consider a three-dimensional Cartesian model of rotating convection for an electrically con-
ducting Boussinesq fluid. Motions are driven by an initially uniform temperature gradient,
imposed by fixing the temperature difference ∆T between the top and bottom boundaries. The
box depth is d. The horizontal dimensions of the computational domain are equal in the x and
y directions, with the ratio of horizontal to vertical dimensions denoted by λ. The acceleration
due to gravity is constant, g = −gez. The rotation vector is Ωez. The fluid has kinematic vis-
cosity ν, thermal diffusivity κ, magnetic diffusivity η, density ρ, thermal expansion coefficient α,
and magnetic permeability µ0, all of which are constant. We solve the momentum, temperature
and magnetic induction equations in dimensionless form, obtained by scaling lengths with d,
times with 1/(2Ω), temperature with ∆T , and magnetic field with 2Ωd(ρµ0)

1/2. The resulting
system of dimensionless governing equations is

∂u

∂t
+ u · ∇u+ ez × u = −∇p+

RaEk2

Pr
θez + Ek∇2u+ (∇×B)×B, (1)

∇ · u = 0, (2)

∂θ

∂t
+ u · ∇θ − uz =

Ek

Pr
∇2θ, (3)

∂B

∂t
= ∇× (u×B) +

Ek

Pm
∇2B, (4)

∇ ·B = 0, (5)

where u = (ux, uy, uz) is the velocity, p the pressure, θ the temperature perturbation relative
to a linear background profile, and B = (Bx, By, Bz) the magnetic field. The dimensionless
parameters are the Rayleigh number,

Ra =
αg∆Td3

κν
, (6)

the Ekman number,

Ek =
ν

2Ωd2
, (7)
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and the thermal and magnetic Prandtl numbers,

Pr =
ν

κ
, Pm =

ν

η
. (8)

We assume that all variables are periodic in the horizontal directions. In the vertical direc-
tion, the upper and lower boundaries are taken to be perfect thermal and electrical conductors,
impermeable and stress-free, i.e.

θ = 0 at z = 0, 1; (9)

∂Bx

∂z
=

∂By

∂z
= Bz = 0 at z = 0, 1; (10)

∂ux
∂z

=
∂uy
∂z

= uz = 0 at z = 0, 1. (11)

It is worth noting that the implementation of stress-free boundary conditions provides the
best opportunity for the development of horizontal flows of large amplitude. For the Ekman
numbers considered here, no-slip boundary conditions inhibit the formation of LSVs (Stellmach
et al., 2014).

On occasion, we shall refer to results obtained for the kinematic dynamo problem. This is
governed by equations (1)–(5), but with the Lorentz force (the final term on the right hand
side of (1)) omitted; there is then no feedback from the magnetic field onto the flow, and the
problem becomes linear in the magnetic field B.

2.2 Numerical method

Equations (1)–(5) are solved numerically using a parallel pseudospectral code developed by
Cattaneo et al. (2003). The temperature perturbation and each component of the velocity are
transformed from configuration space (containing Nx ×Ny ×Nz collocation points) to phase
space by a discrete Fourier transform of the form

f(x, y, z) =
∑

kx

∑

ky

∑

kz

f̂(kx, ky, kz) exp(2πikxx) exp(2πikyy)φ(πkzz) + c.c., (12)

where f and f̂ are the functions in configuration and phase spaces respectively and c.c. denotes
complex conjugate. The function φ(s) is governed by the boundary conditions: φ(s) = cos(s)
for ux, uy, Bx and By, whereas φ(s) = sin(s) for uz, Bz and θ. Further details concerning the
numerical methods can be found in Cattaneo et al. (2003). Table 1 gives the parameter values
and numerical resolution of the simulations discussed in this paper.

2.3 Output parameters for the flow and field

The convective dynamo problem is formulated unambiguously by the input parameters described
in § 2.1, together with the initial conditions. It is helpful also to introduce additional output
parameters that characterise the resulting velocity and magnetic field.

We define the Reynolds number in terms of the vertical velocity, which is a representative
velocity of the convective flow, and the box depth, i.e.

Re =
d
√

〈u2z〉xyz
ν

, (13)

where 〈 · 〉a denotes an average over the direction a. The magnetic Reynolds number is defined
by Rm = RePm.
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Ra Pm Nx ×Ny ×Nz

1.2× 108 0.2, 0.5, 1, 2.5 256× 256× 128
1.5× 108 2.5 256× 256× 128
1.8× 108 0.2, 0.5, 1, 2.5 256× 256× 128
2× 108 2.5 256× 256× 128
2.5× 108 0.2, 0.5, 1, 2, 2.5 256× 256× 128
3× 108 0.2, 0.5, 1, 2, 2.5 256× 256× 128
4× 108 0.1, 0.2, 0.5, 1, 2.5 256× 256× 256
5× 108 0.1, 0.2, 0.3, 0.5, 1, 2.5 256× 256× 256
1× 109 0.1, 0.2, 0.5 512× 512× 256

Table 1: Summary of the parameter values and numerical resolution for the simulations per-
formed at Ek = 5× 10−6 and λ = 1.

We define the energy spectrum of the horizontal velocity, uh = (ux, uy, 0), by

Eh
u(kh) =

1

2

∑

kz

C|ûh(kx, ky, kz)|
2, (14)

where kh =
√

k2x + k2y is the horizontal wavenumber and C = (1+ δkx0δky0)(1+ δkz0). Similarly,

the energy spectrum of the vertical velocity, (0, 0, uz), is defined by

Ev
u(kh) =

1

2

∑

kz

C|ûz(kx, ky, kz)|
2. (15)

The energy spectra are obtained by binning the energy into rings of radius kh with ∆kh = 1/λ.
In the same way, we denote the energy spectra of the horizontal magnetic field, Bh = (Bx, By, 0),
and the vertical magnetic field, (0, 0, Bz), by Eh

b and Ev
b respectively.

Finally, the integral horizontal wavenumber of the convective flow is defined as

kvu =

∑

kx, ky , kz

√

k2x + k2yC|ûz(kx, ky, kz)|
2

∑

kx, ky , kz

C|ûz(kx, ky, kz)|2
, (16)

where kvu is also averaged in time. We use a similar formula to calculate the integral wavenumbers
of Bh (denoted by khb ) and Bz (kvb ).

3 Three types of dynamo

In this paper we consider rapidly rotating convection at fixed values of the Ekman number,
Prandtl number and aspect ratio (Ek = 5 × 10−6, Pr = 1 and λ = 1), for a range of Rayleigh
numbers and magnetic Prandtl numbers. The location in (Ra,Pm) parameter space of the
simulations discussed is shown in figure 2. Also marked on the figure are the critical Rayleigh
number for the onset of convection in the asymptotic limit of small Ek , Rac ≈ 1.02 × 108

(Chandrasekhar, 1961), and the threshold Rayleigh number above which LSVs form in non-
magnetic convection, given by Ra ≈ 3 × 108. It is also worth noting that for this value of Ek ,
LSV formation ceases for Ra & 1.8 × 109, as shown by Guervilly et al. (2014) (see figure 1);
although hydrodynamical simulations are feasible at such high Ra, dynamo simulations become
impracticable for Ra & 109.

In the parameter regime covered by figure 2, we have identified three very distinct types
of dynamo. This feature is illustrated clearly in figure 3, which shows the axial vorticity and
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Figure 2: Location in (Ra,Pm) space of the simulations that either successfully generate
dynamos (coloured triangles, squares and circles), or that fail to produce a dynamo (black
crosses): Ek = 5 × 10−6 and λ = 1. The transition from the LSV dynamo to the small-scale
dynamo, determined by the location at which khb = kvu, is represented by diamonds. Rm is the
magnetic Reynolds number defined with the vertical velocity and the box depth; Rm l is defined
with the vertical velocity and the convective scale. The red and green dashed lines represent,
respectively, the thresholds for the LSV dynamo and for the large-scale dynamo near the onset
of convection.

the x-component of the magnetic field for representative cases of each type of dynamo. In the
following subsections we explore in some detail the characteristics of the flow and magnetic field
for these three dynamo mechanisms.

3.1 Large-scale dynamo near the onset of convection

For Rayleigh numbers just above Rac, the convection takes the form of elongated columns,
which have a small horizontal cross-section and are aligned with the rotation axis. In the non-
magnetic case, the integral convective wavenumber (defined by (16)) is kvu = 12.6 for Ra =
1.2 × 108. For this Rayleigh number, the convective flows maintain a dynamo for Pm & 0.5,
which corresponds to Rm & 24. The magnetic field is dominated by a mean (i.e. horizontally-
averaged) component; this is clearly seen in the horizontal cross-section of Bx in figure 3(d).
Note that, owing to the magnetic boundary conditions (10), the mean field can have only
a horizontal component. This type of large-scale dynamo, which operates near the onset of
convection, was first described analytically by Childress & Soward (1972) and Soward (1974),
and was later studied through detailed numerical simulations of rotating convection by Stellmach
& Hansen (2004) and by consideration of specific flow planforms by Favier & Proctor (2013)
and Calkins et al. (2016). Details of this dynamo are recalled here for comparison with the
dynamos found at larger values of Ra. The dynamo process works as a two-scale mechanism,
whereby the mean field is generated by the electromotive force (emf) produced by the collective
action of small-scale convective columns. Figure 4(a) shows the vertical structure of the mean
magnetic field (〈Bx〉xy, 〈By〉xy, 0), revealing a spiral staircase structure that is anti-symmetric
with respect to the mid-plane. Figure 4(b) shows the space-time diagram of 〈Bx〉xy and 〈By〉xy.
The components of the mean field have a well-defined periodicity corresponding to a clockwise
rotation of the entire staircase structure, with the maxima moving in time from the boundaries
towards the mid-plane (Stellmach & Hansen, 2004; Favier & Proctor, 2013).
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(a) (b) (c)

(d) (e) (f)

Figure 3: Snapshots of the horizontal and vertical cross-sections of (a)-(c) the axial vorticity and
(d)-(f) Bx, for three of the dynamo simulations marked in figure 2: (a) and (d) Ra = 1.2× 108

and Pm = 0.5 (large-scale dynamo close to the onset of convection); (b) and (e) Ra = 5× 108

and Pm = 0.2 (LSV dynamo); (c) and (f) Ra = 5× 108 and Pm = 2.5 (small-scale dynamo).
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Figure 4: Mean magnetic field produced by the dynamo near the onset of convection (Ra =
1.2 × 108 and Pm = 0.5). (a) Snapshot of the vertical structure of the mean magnetic field
(〈Bx〉xy, 〈By〉xy, 0); (b) space-time diagram of 〈Bx〉xy and 〈By〉xy.

In figure 2, the green dashed line represents the transition between the regime of this mean-
field, large-scale dynamo found close to the onset of convection and a regime in which there
is no dynamo action; this boundary was deduced from consideration of the kinematic dynamo
growth rates of neighbouring points in parameter space. The most significant, and somewhat
counter-intuitive, feature of this dynamo is that increasing the Rayleigh number, and hence
the strength of the convection and the magnetic Reynolds number, eventually kills off the
dynamo process. Mean-field dynamo action relies crucially on a high degree of spatial and
temporal coherence of the small-scale velocity in order to provide an effective emf (see, for
example, Courvoisier et al., 2009). As the convection becomes more vigorous, although there
is more kinetic energy available to drive a dynamo, the coherence of the convective columns
is lost, leading to the failure of the large-scale dynamo (Cattaneo & Hughes, 2006; Hughes
& Cattaneo, 2008; Tilgner, 2012). Critically, this occurs even though the convective vortices
remain rotationally constrained. Hence this large-scale dynamo is confined very close to the
onset of convection, i.e. Ra . 1.5Rac for Ek = 5 × 10−6. Provided the magnetic Reynolds
number is sufficiently high, the convective flows that are unable to generate a mean (large-
scale) magnetic field are then able to generate only small-scale fields (i.e. fields with a size
comparable with or smaller than the convective scale) (Cattaneo & Hughes, 2006).

3.2 Dynamos from LSVs

For sufficiently large thermal driving, an LSV forms in non-magnetic, rapidly rotating convec-
tion; an example is shown in figure 3(b). The LSV consists of a concentrated cyclone and a
more dilute anticyclone; details of the formation and stability of the LSV are discussed in detail
in Favier et al. (2014), Guervilly et al. (2014), Rubio et al. (2014) and Stellmach et al. (2014).
Starting from such convective flows, two very different types of dynamo can then be generated,
depending on the values of Rm, or, equivalently, on Pm for fixed Re; in one the LSV is preserved
by the magnetic field, whereas in the other it is destroyed.

Figure 5 shows the time-averaged horizontal power spectra of the magnetic energies for
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Figure 5: Time-averaged horizontal power spectra of (a) the horizontal magnetic energy Eh
b ,

and (b) the vertical magnetic energy Ev
b , for different Pm and Ra = 5× 108.
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Figure 6: Integral horizontal wavenumbers as a function of Pm with Ra = 5× 108.

Ra = 5 × 108 and for different values of Pm. For Pm = 0.2, the energy of the horizontal
field is dominated by small wavenumbers, kh . 10; the vertical magnetic field is significantly
weaker than the horizontal field for kh < 12. As Pm is increased beyond unity, the magnetic
energy moves towards larger wavenumbers, peaking around the integral convective wavenumber
kvu ≈ 12.1. For Pm = 0.2, the mean magnetic field (corresponding to the wavenumber kh = 0)
contains on average 5% of the total magnetic energy, while for Pm = 2.5, it represents only
0.3%.

Figure 6 shows the integral wavenumbers of the horizontal magnetic field, khb , and the
vertical magnetic field, kvb , as a function of Pm with Ra = 5×108. For comparison, the integral
convective wavenumber, kvu, is also plotted. As expected from inspection of the magnetic energy
spectrum, both khb and kvb increase with Pm. For Pm . 1, the integral magnetic wavenumbers
are smaller than the convective wavenumber, so most of the magnetic energy is contained in the
large scales. Also in these cases, khb is systematically smaller than kvb , so the horizontal magnetic
field is dominated by scales larger than those of the vertical field. For Pm & 1, the integral
magnetic wavenumbers are larger than the convective wavenumber, so most of the magnetic
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Figure 7: Mean magnetic field produced by the LSV dynamo (Ra = 5 × 108 and Pm = 0.2).
(a) Snapshot of the vertical structure of (〈Bx〉xy, 〈By〉xy, 0); (b) space-time diagram of 〈Bx〉xy
and 〈By〉xy.

energy is contained in scales smaller than the convective scale; we refer to these dynamos as
small-scale dynamos. In these cases, the integral wavenumbers of the horizontal and vertical
magnetic fields are comparable. Hence there is a transition from a dynamo that generates a
large-scale magnetic field (i.e. an LSV dynamo) to a small-scale dynamo; for this particular
Rayleigh number (Ra = 5 × 108), the transition occurs for Pm in the range 0.5 < Pm < 1.
Figure 2 shows the magnetic Prandtl number for this transition (i.e. when khb = kvu) for different
values of Ra. Note that the transition between the two dynamo regions is continuous.

The difference in the spatial structure of the magnetic field generated by the LSV dynamo
at small Pm and that of the small-scale dynamo at large Pm is clearly demonstrated in the
horizontal slices of Bx shown in figures 3(e) and 3(f). The magnetic field for Pm = 0.2 is
organised into large-scale structures, concentrated in horizontal bands localised in the shear
layers surrounding the LSV. In each band of concentrated field, the horizontal magnetic field
has one main direction. In the core of the cyclone, the field intensity is weak. By contrast, for
Pm = 2.5, the magnetic field is dominated by small scales; no large-scale organisation of the
field is apparent.

Figure 7(a) shows the vertical structure of the mean magnetic field (〈Bx〉xy, 〈By〉xy, 0) for
the LSV dynamo at Pm = 0.2. It has a large-scale variation along z with a structure similar to
a spiralling staircase, but which is more complex than that of the mean field for the large-scale
dynamo near the onset of convection (cf. figure 4(a)). Figure 7(b) shows the space-time diagram
of 〈Bx〉xy and 〈By〉xy. The direction and amplitude of the mean magnetic field evolves in time
in an approximately periodic manner, with a tendency to drift from the boundaries towards the
mid-plane. The averaged fields 〈Bx〉xy and 〈By〉xy are preferentially antisymmetric with respect
to the mid-plane. The entire staircase structure tends to rotate clockwise, in a similar manner
to that of the large-scale dynamo operating close to the onset of convection (figure 4(b)), but
here with a slower rotation rate.

Figure 8 shows the time-averaged horizontal power spectra of the kinetic energies for Ra =
5 × 108 and for different values of Pm, including the comparison with the spectrum in the
hydrodynamical case (denoted by Pm = 0). The spectrum for the horizontal flow at Pm = 0.2
shows that the velocity is dominated by the LSV (i.e. kh = 1), in a similar fashion to the
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Figure 8: Time-averaged horizontal power spectra of (a) the horizontal kinetic energy Eh
u ,

and (b) the vertical kinetic energy Ev
u, for the same cases as in figure 5, together with the

hydrodynamical case (Pm = 0).

hydrodynamical case. As Pm is increased, the energy at large scales is progressively diminished,
for both the horizontal and vertical flows. For example, the energy of the LSV is decreased by
a factor 50 for Pm = 2.5 compared with its value for Pm = 0.2. Figure 3(c) shows the axial
vorticity for Pm = 2.5; the flow is dominated by a multitude of convective vortices, with no
LSV visible. For sufficiently large Pm (Pm & 1 for Ra = 5 × 108), the LSV is thus destroyed
by the magnetic field. Guervilly et al. (2015) argued that it is the generation of the small-scale
magnetic field that yields the suppression of the LSVs. We study this question in detail in § 5.
For small values of Pm, a weaker small-scale magnetic field is generated, and consequently the
LSV is at least partially preserved. Indeed, the presence of the LSV is vital to the generation
of the large-scale magnetic field, as we shall see in § 4.

To conclude this section, we determine the boundaries in parameter space of small-scale
and LSV dynamo action. First we calculate the small-scale dynamo threshold. To do this, we
perform simulations in a box of aspect ratio λ = 0.25, chosen to be sufficiently small that no
LSV forms, as can be seen from the horizontal cross-sections of the axial vorticity shown in
figure 9(a). Figure 9(b) shows the time evolution of the magnetic energy for Ra = 5 × 108

and three different values of Pm with this small aspect ratio. For Pm . 0.5, the magnetic
energy decays, whereas for Pm = 1, the magnetic energy increases and eventually saturates.
The sustained magnetic field is dominated by small scales. The small-scale dynamo threshold is
thus located between Pm = 0.5 and Pm = 1. To complete the diagram of figure 2, we computed
dynamo simulations with λ = 0.25 for a range of Ra. From these we find that the small-scale
dynamo threshold is always in agreement with the dynamo transition identified earlier for λ = 1,
which was calculated by comparing the integral convective and magnetic wavenumbers (marked
as diamonds in figure 2). The boundary between the two types of dynamo corresponds to the
line where Rm ≈ 550; this is plotted in figure 2. It should though be noted that this line is
indicative; the actual transition between the two types of dynamo is continuous. We can also
define a local magnetic Reynolds number, Rm l = Rm/kvu. The curve Rm l = 45 lies close to
that of Rm = 550 for all Ra, since the integral convective wavenumber remains close to kvu = 12
for Ra increasing up to Ra = 109. The small-scale dynamo threshold can therefore be defined
equivalently by the local magnetic Reynolds number taking the value Rm l ≈ 45. This threshold
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Figure 9: (a) Horizontal and vertical cross-sections of axial vorticity for purely hydrodynamic
convection with a small aspect ratio (λ = 0.25) and Ra = 5 × 108. (b) Time evolution of the
magnetic energy for λ = 0.25, Ra = 5× 108 and three values of Pm.

is independent of the formation of the LSV and, indeed, exists for Ra < 3×108, where no LSVs
are present.

The lower threshold of the LSV dynamo is determined from consideration of kinematic
dynamo action as Pm is decreased; this is shown as the red dashed line in figure 2. For
Ra > 5 × 108, the threshold remains fixed at Pm ≈ 0.15, at least up to the highest Rayleigh
number calculated, Ra = 109. For larger Ra, there are two reasons why the LSV dynamo
might fail: the LSVs themselves might cease to exist at large Rossby number (cf. figure 1), or
the small-scale dynamo threshold intersects that of the LSV dynamo. From hydrodynamical
simulations, the strength of the LSV declines when the local Rossby number, Rol, exceeds a
value of about 0.1. For the Ekman number considered here, this occurs for Ra > 1.8 × 109

(i.e. Ra/Rac > 18). Since it was not possible to pursue dynamo simulations for Ra > 109, we
were unable to locate directly the intersection of the small-scale and LSV dynamo thresholds.
However, we could perform hydrodynamical simulations for larger Ra, up to Ra = 2.2 × 109

(Ra/Rac ≈ 22), thereby allowing us to make a prediction about the demise of the LSV dynamo
under the assumption that the small-scale dynamo threshold continues to obey Rm l ≈ 45 for
Pm < 0.5. We find that this boundary intersects the line Pm = 0.15 for some value of Ra in
the range 2× 109 < Ra < 2.2× 109. For this value of Ek , the two critical Rayleigh numbers —
one marking the demise of the LSV, the other the preference for small-scale dynamo action –
are, coincidentally, of the same order of magnitude.

4 The LSV dynamo mechanism

LSVs, which consist predominantly of horizontal flows, do not of themselves act as a dynamo.
There are therefore two possible mechanisms for the generation of large-scale magnetic field by
an LSV dynamo. One is that the small-scale three-dimensional flows are modified crucially by
the LSV in such a way that they are able to support dynamo action — recall, from the results
of figure 9(b), that in this parameter regime, small-scale dynamo action without the influence
of the LSV is not supported. The alternative is that LSV dynamo action arises through an
essential combination of the LSV and the three-dimensional flows. In this section, we examine
the elementary components of the LSV dynamo mechanism by considering filtered versions of
the velocity field, as described in Hughes & Proctor (2013). The idea is to study the kinematic
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(d) (e) (f)

Figure 10: Snapshots of the axial vorticity of the flow used in the filtered simulations (Ra =
5 × 108, Pm = 0.3): (a) unfiltered flow; short-wavelength cutoff: (b) kf = 10 and (c) kf = 6;
(d) LSV-filtered flow; long-wavelength cutoff: (e) kf = 4 and (f) kf = 8.

dynamo problem for velocity fields obtained from the full convective velocity by the removal
of selected spectral modes, with the aim of identifying which modes are the key players in the
dynamo process. Note that only the velocity is filtered. In order to understand the dynamo
process, it is necessary to retain all modes in the description of the magnetic field; however, as
such, this restricts attention to the kinematic dynamo problem. The induction equation is then
solved using the filtered velocity, but retaining all modes in the description of the magnetic field.
The filtration of spectral modes is easily implemented in our code, but this type of filtration does
not preserve the spatial coherence of the velocity structures. Nonetheless, it is a convenient and
potentially instructive method of separating lengthscales in the flow. In order to examine the
importance of various modes in the velocity, we perform three different types of filtration: the
removal of the LSV mode (LSV filtering), the removal of modes at high wavenumbers (short-
wavelength filtering) and the removal of modes at low wavenumbers (long-wavelength filtering).
We consider these separately in §§ 4.1, 4.2, 4.3 below, where we focus on the dynamo simulation
with Ra = 5 × 108 and Pm = 0.3; for this Rayleigh number, the Reynolds number is given by
Re = 765, and hence Rm = RePm = 230.
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4.1 LSV filtering

We first examine the role played by the LSV in the dynamo process: in particular, does the
LSV velocity field contribute directly to the magnetic induction, or does it play a more subtle
role through modifying the smaller-scale flows in such a way that they become favourable to
dynamo action? To address this question, we consider the velocity field obtained by removing
only the modes (kx, ky) ≤ (1, 1) from the velocity (LSV filtering). A snapshot of this filtered
flow is shown in figure 10(d), illustrating that the effect of the LSV on the rest of the flow is kept
intact; for comparison, the unfiltered flow is shown in figure 10(a). The result of the kinematic
dynamo simulation is shown in figure 11(b) (labelled LSV-filter), leading to the interesting result
that the filtered flow fails to act as a dynamo. Consequently, despite its inability to sustain a
dynamo by itself, the LSV must play a critical role in the magnetic induction; in particular,
its importance for dynamo action is not confined to its hydrodynamical influence on the other
parts of the flow.

4.2 Short-wavelength filtering

We now consider the nature of the dynamo action that arises from short-wavelength filtration
of the velocity field. The cutoff horizontal wavenumber is denoted by kf : all the spectral modes
for which either kx > kf or ky > kf are set to zero. Examples of short-wavelength filtered flows
are shown in figures 10(b)-10(c). Figure 11(a) shows time series of the magnetic energy from
simulations in which the cutoff wavenumber is varied from kf = 30 to kf = 2; the magnetic
energy of the kinematic dynamo of the unfiltered flow is also plotted for comparison. As kf
is decreased from the unfiltered flow to kf = 10, the dynamo is successfully maintained by
the filtered flows; indeed, the growth rate of the magnetic energy increases, indicating that
the small scales are simply providing enhanced dissipation. For kf = 8, the flow still acts as
a dynamo, but with a smaller growth rate than that of kf = 10, thereby indicating that the
filtration has started to impede the dynamo mechanism. For kf = 6, the magnetic energy is
essentially neither decreasing nor increasing, i.e. this case is close to the dynamo threshold. For
kf ≤ 5, the dynamo fails. The intermediate modes of scale between that of the box size and
that given by kh = O(8 − 10) are therefore absolutely vital for dynamo action at Pm = 0.3.
Visual comparison of a flow that is capable of dynamo action (figure 10(b) for kf = 10) with
one that is not (figure 10(c) for kf = 6), suggests that the elongated flow structures that are
produced by the horizontal shear from the LSV might be crucial for the dynamo process.

Figure 12(b) shows the structure of the horizontal magnetic field for the filtered simulation
with kf = 10; for comparison, the field produced by the unfiltered flow in the kinematic case
is shown in figure 12(a). The plotted quantity is a snapshot of 〈B2

x +B2
y〉z, twice the depth-

averaged horizontal magnetic energy. As in the unfiltered case, the horizontal magnetic field
appears on a large scale and is organised into bands around the cyclone. However, unlike the
unfiltered case, the horizontal field is also strong in the core of the cyclone. This observation
indicates that magnetic induction does occur in the core of the cyclone, but that the small-scale
components of the unfiltered flow (i.e. kh > kf ) must subsequently expel the magnetic field from
the core into the shear layer.

The destruction of the field inside the core of the cyclone is portrayed in figure 13, which
shows the time-averaged values of B2

x +B2
y and B2

z in a given horizontal slice, for different
filtered simulations as well as for the unfiltered case. Since here we are considering kinematic
dynamos, the values of B2

x +B2
y and B2

z have been normalised by their maximum value at each
timestep before averaging. The time averages are taken over 400 snapshots, during which the
LSV drifts slightly in the horizontal plane; this explains why the averaged values are not as sharp
as in the snapshot of figure 12(b). For kf ≤ 30, both the horizontal and vertical magnetic fields
are concentrated mainly in the cyclone. As the filtration is relaxed (kf ≥ 40), the horizontal
and vertical magnetic fields are expelled from the core of the cyclone. It is therefore the flow
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Figure 11: Time series of the magnetic energy of the filtered simulations (Ra = 5× 108, Pm =
0.3): (a) short-wavelength cutoff; (b) long-wavelength cutoff and LSV filtration.

(a) (b) (c)

Figure 12: Snapshots of 〈B2
x +B2

y〉z for (a) the unfiltered flow (kinematic dynamo), and flows
with (b) short-wavelength cutoff (kf = 10), and (c) long-wavelength cutoff (kf = 4).

16



 

 

0 0.1 0.2

(a)

 

 

0 0.1 0.2

(b)

 

 

0 0.1 0.2

(c)

 

 

0 0.1 0.2

(d)

Figure 13: Time-average of (B2
x +B2

y)/max(B2
x +B2

y) (top row) and B2
z/max(B2

z ) (bottom) in
a horizontal slice (z = 0.25) for short-wavelength filtered dynamo simulations: (a) kf = 10; (b)
kf = 30, (c) kf = 40; (d) unfiltered flow (kinematic dynamo).

corresponding to large wavenumbers (kh > 30) that leads to the magnetic flux expulsion. The
dilute large-scale anticyclone always corresponds to a region of weak magnetic field; here, the
horizontal shear is weaker than in the concentrated large-scale cyclone and seems unable to
promote field amplification.

4.3 Long-wavelength filtering

In performing long-wavelength filtration, the amplitudes of the modes for which either kx < kf
or ky < kf are set to zero, except, crucially, for the modes corresponding to the large-scale flow,
i.e. (kx, ky) ≤ (1, 1). We have seen from § 4.1 that the LSV plays a critical role in the magnetic
induction. The aim here therefore is to determine whether a large-scale dynamo of ‘αω’ type
is at work, i.e. a two-scale dynamo driven by a combination of the shearing at large scale (the
ω-effect) and the production of a coherent emf by interactions of the small scales (the α-effect).
Examples of flows obtained from a long wavelength filtration are shown in figures 10(e)-10(f).
Figure 11(b) shows the temporal evolution of the magnetic energy from a series of filtered
simulations in which the cutoff wavenumber is varied from kf = 10 to kf = 4. For kf & 6 the
dynamo fails, but with kf = 4 the flow is able to sustain a magnetic field. These experiments
thus demonstrate that the dynamo requires the presence of intermediate scales up to kh = 4,
i.e. a scale somewhat larger than a characteristic convective scale (see figure 6), but that larger
scales (with the exception of kh = 1) are not necessary for dynamo action at Pm = 0.3. There
is therefore no rigorous scale separation between that of the shear exerted by the LSV and that
of the modes that are significant for dynamo action (kf ≈ 4− 10); as such, this dynamo cannot
strictly be categorised as an αω-dynamo. Figure 12(c) shows the structure of the horizontal
magnetic field for the case kf = 4. The field is similar to that produced in the unfiltered case,
with bands of strong magnetic intensity concentrated in the shear layers surrounding the LSV,
and with no magnetic field in the core of the cyclone.

In summary, the filtering exercise helps us to identify that the LSV dynamo mechanism (at
least in the kinematic regime) relies on the presence of the LSV together with velocity modes
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of scale intermediate between the box size and the dominant convective scale. The LSV itself
plays a crucial role in the magnetic induction, and not simply via its action on the smaller-scale
flows. The filtered simulations also show that the magnetic field is generated in the core of the
LSV and in the surrounding shear layers. The magnetic field is subsequently expelled from the
core by small-scale vortices.

5 Suppression and Oscillations of the LSV

In § 3 we demonstrated the existence of a transition between an LSV dynamo and a small-
scale dynamo as Pm is increased for a given convective flow. In this section we look in detail
at the physical processes underlying this marked change in the nature of the dynamo, and in
particular at how the LSV can be suppressed by the small-scale magnetic field. In §§ 3, 4 we
focused attention chiefly on the spatial characteristics of the generated magnetic fields. Here, in
order to gain an understanding of the transition between LSV and small-scale dynamos, we first
consider the detailed temporal evolution of dynamos at different Pm. In § 5.1 we consider the
case of Pm = 2.5, for which the LSV is destroyed, and for which dynamo action is unambiguously
small-scale. In § 5.2 we consider the same convective flow but with Pm = 0.2, which gives rise
to an LSV dynamo. However, even in this case, the LSV feels the influence of the small-scale
magnetic field, leading to temporal variations in the strength of the LSV. Then, in § 5.3, we
explore the underlying physical processes by which the magnetic field can influence, or even
destroy, the LSV.

5.1 Suppression of the LSV

In this subsection we consider the dynamo resulting from the convective flow with Ra = 5 ×
108 and Pm = 2.5; as can be seen from figure 2, it lies well within the small-scale dynamo
regime. Figure 14(a) shows the time series of the kinetic and magnetic energies of the horizontal
wavenumbers kh = 0 (for the magnetic field only), kh = 1 and kh > 1. The initial condition is
one of purely hydrodynamic convection, to which a seed magnetic field is added at t = 0. When
the magnetic energy grows to a sufficiently large value, the kinetic energy of the LSV (kh = 1)
decays rapidly, before reaching a new saturated level, more than two orders of magnitude smaller
than in the hydrodynamical case. In the meantime, the kinetic energy of the modes with kh > 1
decreases by about 25%, which is mainly attributable to the decrease in the energy of modes
kh = 2 − 3. In the saturated phase, the kinetic energy of the mode kh = 1 is smaller than
the total energy of the other modes by a factor of 30 (see also the kinetic energy spectra of
figure 8). Although the magnetic field does not completely eliminate the kinetic energy at the
largest scale, no coherent LSV is apparent. The magnetic field therefore has an unfavourable
effect on the LSV, while leaving the amplitude of the convective flows relatively unchanged.
Since no large-scale magnetic field is generated by this dynamo, the unavoidable conclusion is
that the small-scale field is responsible for the suppression of the LSV. It is of interest to note
that this suppression does not require a strong magnetic field; at the point when the amplitude
of the LSV starts to decrease, the magnetic energy is only about a tenth of the kinetic energy
of the convective flow.

5.2 Oscillations of the LSV dynamo

Here we consider the same convective flow as in § 5.1 (i.e. Ra = 5× 108), but at the much lower
magnetic Prandtl number of Pm = 0.2. Time series of the kinetic and magnetic energies are
shown in figure 14(b); in contrast to figure 14(a), only the saturated (dynamic) phase is shown,
because the kinematic dynamo growth rate is slow. Large oscillations in the kinetic energy of
the LSV are observed. Such oscillations are absent in the purely hydrodynamic case, and so are
indisputably of magnetic origin. The kinetic energy of the modes with kh > 1 remains mostly
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Figure 14: Time series of the kinetic and magnetic energies of the modes kh = 0, kh = 1 and
kh > 1 for the dynamos at Ra = 5× 108, (a) Pm = 2.5 and (b) Pm = 0.2. The dotted vertical
lines indicate the approximate times at which the kinetic energy of the LSV starts to decrease.
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unchanged except for small variations that follow the oscillations of the LSV. Oscillations of the
magnetic energy are associated with the oscillations of the LSV. These oscillations are nearly
anticorrelated, but a systematic time lag exists between maxima of the LSV amplitude and
minima of the magnetic energy. The oscillations are not quite periodic as their duration and
amplitude varies, those with the largest variation having the longest duration. All scales of
the magnetic field are affected by the oscillations, with a seemingly similar evolution. Once
the magnetic field is amplified to a critical strength by the dynamo, the LSV decays. For each
oscillation, a dotted vertical line indicates the approximate time at which the LSV starts to
decay. The vertical lines highlight that this critical value of the magnetic energy is similar for
each oscillation (O(10−6) for the modes kh > 1) and is also of the same order as the critical
value observed for Pm = 2.5. The decay of the LSV is shortly followed by the decrease of
the magnetic energy at all scales. Subsequently, once the field becomes sufficiently weak, the
LSV regenerates, eventually leading to a new phase of growth of the magnetic field. While
the oscillations of the magnetic energy have sharp minima and maxima, the oscillations of the
LSV have rounded maxima and sharp minima. The rounded maxima are a consequence of the
slow growth of the magnetic field, which allows enough time during the recovery phase of the
LSV for it to saturate hydrodynamically before the magnetic energy reaches the critical value
of about 10−6. The periodicity of the oscillations is controlled by the growth and decay rates of
the magnetic field and also by the growth rate of the LSV because the dynamo needs the LSV
to have sufficient velocity to start to operate. In the LSV dynamo — for which Rm is below
the threshold for small-scale dynamo action — the small-scale magnetic field is produced by the
interactions of the large-scale field with the convective flows. The evolution of the small-scale
field therefore closely follows that of the large-scale field. For Pm = 2.5, the suppression of the
LSV can be attributed solely to the small-scale field; it is plausible that this is also the case
for the dynamo at Pm = 0.2, although the direct influence of the large-scale field cannot be
entirely ruled out.

Figure 15 shows the amplitude of the oscillations of the energies for both the LSV dynamos
and small-scale dynamos. The transition between the two types of dynamo is identified by the
dashed blue line, which corresponds to Rm = 550 (cf. figure 2). For comparison, the oscillations
of the kinetic energy in the absence of the magnetic field are also represented at Pm = 0. In
the absence of the magnetic field, LSVs are present for Ra & 3× 108 and the fluctuations in the
kinetic energy are small in this case. By contrast, the variations of the kinetic energy are much
larger in the dynamo cases. In particular, the oscillations of both energies are largest for small
Pm. Indeed, for small Pm, the maximum value of the kinetic energy can even attain the level
of the purely hydrodynamic case, implying that the LSV is temporarily fully restored. As Pm
increases, however, the maximum of the kinetic energy remains well below the hydrodynamic
level. For the LSV dynamos, the maximum of the magnetic energy is comparable at all values
of Pm for a given value of Ra. This is consistent with the existence of a critical value of the
magnetic field at which the LSV is systematically disrupted. As Pm increases, this critical value
is reached more quickly; as such, the suppression of the LSV occurs before it can reach its full
amplitude. Consequently the oscillations tend to have shorter duration as Pm increases.

5.3 Disruption of the Reynolds stresses

In the absence of magnetic field, LSVs are maintained by the persistent action of the Reynolds
stresses, and in particular, the interaction of z-dependent convective vortices (Rubio et al.,
2014). In this subsection, we examine the means by which the magnetic field can lead to
the suppression of the LSV by the magnetic field. There are two possible mechanisms: (i) the
magnetic field destroys the Reynolds stresses that are the source terms of the LSV by decreasing
either their amplitude or their spatio-temporal coherence, or (ii) the Maxwell stresses cancel out
the Reynolds stresses. To investigate how the Reynolds stresses are modified in the presence of
the magnetic field, we focus on two velocity components of the LSV, 〈ux〉xz and 〈uy〉yz. The
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Figure 15: Range of the oscillations of (a) kinetic and (b) magnetic energy for several values
of Ra. The dashed red lines correspond to the threshold of the LSV dynamo and the dashed
blue lines to Rm = 550, the threshold of the small-scale dynamo (cf. figure 2). For comparison,
the relative amplitude of the oscillations of the kinetic energy in the hydrodynamical case is
represented at Pm = 0.
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Figure 16: Time series of the rms values of the components of the Reynolds and Maxwell stresses
as defined in equations (20) and (21) for the same time series as in figure 14(a).

equations for the temporal evolution of these components are

∂〈ux〉xz
∂t

= −
∂

∂y
(〈R−M〉x) + Ek〈∇2ux〉xz, (17)

∂〈uy〉yz
∂t

= −
∂

∂x
(〈R−M〉y) + Ek〈∇2uy〉yz, (18)

where the components of the Reynolds and Maxwell stresses are respectively

R = 〈uxuy〉z and M = 〈BxBy〉z, (19)

and where we have assumed that 〈ux〉yz ≈ 0 and 〈uy〉xz ≈ 0. The velocity and magnetic
fields are decomposed into z-average and z-dependent parts, where v′ = v − 〈v〉z. The stress
components R and M can then be decomposed into

R = Rm +Rf , with Rm = 〈ux〉z〈uy〉z, Rf = 〈u′xu
′

y〉z, (20)

M = Mm +Mf , with Mm = 〈Bx〉z〈By〉z, Mf = 〈B′

xB
′

y〉z. (21)

The term of particular interest is Rf , which represents the interaction of z-dependent vor-
tices, and thus, the driving term of the LSV. Figure 16 shows the time evolution of the rms
values of Rm, Rf and Mf for the small-scale dynamo at Ra = 5× 108 and Pm = 2.5. This time
series can be compared with the evolution of the energies in figure 14(a). Since the magnetic
field does not have a large-scale component, the rms value of Mm is small, and hence is not
plotted in figure 16. As the small-scale field grows, the most notable change to the Reynolds
stresses is the decrease of the rms value of Rm by about two orders of magnitude. This is an
expected consequence of the decrease of the velocity of the LSV by an order of magnitude since
the major contribution to Rm comes from the self-interaction of the LSV. Of greater interest are
the more subtle changes to the rms value of Rf : the amplitude of Rf remains at a similar level
in the presence of the magnetic field but its temporal variations change, marked in particular
by the disappearance of the high frequencies. The suppression of the LSV cannot therefore be
ascribed to a decrease of the amplitude of its driving term Rf . As the magnetic field increases
in strength, Mf increases, eventually reaching a level about half the averaged rms value of Rf .
The amplitude of Mf is therefore too small to cancel completely Rf , but partial cancellation
might occur. To determine this, the rms value of the residual of the components of the Reynolds
and Maxwell stresses, R −M , is also plotted in figure 16. R −M has the same amplitude as
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Figure 17: Space-time diagram of 〈Rf 〉x and 〈Rf 〉y for the same series as figure 16: (a) the
kinematic phase, and (b) the saturated phase of the dynamo. The plot on the right of each
diagram represents the time average.

Rf in the saturated phase of the dynamo, thereby indicating that the suppression of the LSV
is not due to a straightforward cancellation of the Reynolds stresses by the Maxwell stresses.
Instead, it follows that the LSV is suppressed by a modification of the driving term Rf by the
magnetic field, although its amplitude remains relatively unchanged.

Figure 17 shows the spatio-temporal evolution of 〈Rf 〉x and 〈Rf 〉y during the kinematic and
saturated phases of the dynamo. To remove the variations of high temporal frequency in the
data, we have performed a moving average over 30 time units. During the kinematic phase,
〈Rf 〉x and 〈Rf 〉y maintain good temporal coherence of the modes ky = 1 and kx = 1 respectively.
The time series is short enough that the LSV does not drift appreciably in the horizontal plane.
The time averages therefore have a well-defined signal at ky = 1 or kx = 1. Thus, in the
kinematic regime, the LSV is forced consistently by the convective vortices. By contrast, during
the saturated phase, this temporal coherence is lost, so the LSV cannot be forced consistently.
Thus, significantly, the demise of the LSV is due not to a reduction in the amplitude of the
Reynolds stresses that feed the LSV, nor by their cancellation by the Maxwell stresses, but
instead to the more subtle influence of the small-scale field in hindering the coherence of the
Reynolds stresses. We note that the study of Rubio et al. (2014) in non-magnetic convection
shows that the feedback of the LSV itself plays a positive role on the energy transfer from
small to large scales. The loss of the positive feedback of the LSV might therefore be partly
responsible for the loss of the coherence in the Reynolds stresses, although its primary cause is
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the disruption by the magnetic field.

6 Discussion

In Guervilly et al. (2014), we showed how large-scale vortices (LSVs) can be spontaneously gen-
erated from a hydrodynamical process that consists of the clustering of small-scale, rotationally
constrained convective vortices. In this paper, we have explored the dynamo action that may
result from turbulent rotating convection in the presence of LSVs. For a range of magnetic
Reynolds numbers above the critical value for the onset of dynamo action (100 . Rm . 550
for Ek = 5 × 10−6 and Pr = 1), the flow acts to generate a magnetic field with a significant
component on scales large compared with the small-scale convective vortices — we denote this
as an LSV dynamo. The dynamo generates magnetic fields that are concentrated in the shear
layers surrounding the LSV, together with a coherent mean (i.e. horizontally-averaged) mag-
netic field. From considering the kinematic dynamo problem with spectrally filtered versions of
the velocity, we find that the dynamo mechanism requires only the presence of the LSV together
with velocity modes of scale intermediate between the box size and the dominant convective
scale. When the LSV is artificially filtered out from the induction equation but the effect of
the LSV on the flow is retained in the momentum equation, the dynamo fails. Consequently,
the LSV plays a crucial role in the magnetic induction; importantly, this is not simply via its
action on the smaller-scale flows. The filtered simulations indicate that the magnetic field is
generated in the core of the LSV and in the surrounding shear layers, having been expelled from
the core by small-scale vortices. These results are deduced from the filtering exercise performed
in the kinematic phase of the dynamo, so they could be specific to this phase. However, the
qualitative similarities of the magnetic field in the filtered kinematic dynamo simulations and
in the full dynamic regime suggest that the dynamo mechanism operates in a similar manner
in both cases.

For Rm & 550, the convective flows generate a small-scale dynamo. In this case, the contin-
uous production of the small-scale magnetic field acts to suppress the LSV completely. LSVs are
produced by the Reynolds stresses resulting from the interactions of depth-dependent vortices;
the small-scale magnetic field hinders these interactions, leading to a loss of coherence of the
Reynolds stresses, and hence an inability to create an LSV. The LSV dynamo can therefore
operate only below the threshold for small-scale dynamo action. The transition from the LSV
dynamo to the small-scale dynamo is continuous. In the LSV dynamo, oscillations of the kinetic
and magnetic energies are associated with cycles of suppression and regeneration of the LSV.
These oscillations are of magnetic origin, and are due to the amplification of the small-scale
magnetic field from the interactions between the large-scale field and the convective flows. The
suppression of the LSV by small-scale magnetic fields at high Rm therefore probably limits the
relevance of the LSV dynamo mechanism to astrophysical objects with moderate Rm. Such is
the case of planetary dynamos, and in this context, the ability of the LSV dynamo to operate at
low magnetic Prandtl numbers is of great interest. Although the values of Pm in our simulations
are a long way from realistic values of the order of 10−6, it is entirely possible that, at smaller
Ek , LSV dynamos might be found at lower Pm.

In the Cartesian geometry employed here, the LSV dynamo produces a mean horizontal
magnetic field with a coherent ‘staircase’ structure that overall rotates clockwise. The spatial
and temporal variations of this mean field are more complex than those of the mean field
generated by the large-scale dynamo that operates near the onset of convection (compare, for
instance, figure 4(b) and figure 7(b)). This latter dynamo relies on the coordinated action of the
convective vortices, and so can operate only for slightly supercritical convection (up to 50% above
the critical Rayleigh number for the parameters considered here). Its mean field always has a
simple spatial structure with a regular time dependence, quite unlike the spatial and temporal
variations of planetary magnetic fields. From this point of view, the greater complexity of the
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mean magnetic field of the LSV dynamo is thus an interesting feature, although the Cartesian
geometry is inadequate for a comparison with planetary magnetic fields.

The choice of boundary conditions may have an influence on the formation of LSVs and
any subsequent dynamo action. The role of the velocity boundary conditions in LSV formation
has been addressed in the recent paper by Stellmach et al. (2014). The magnetic boundary
conditions used here enforce a purely horizontal magnetic field at the top and bottom boundaries
and these boundary conditions might have an effect on the LSV dynamo. To examine the
role of the magnetic boundary conditions, we have also performed a simulation with boundary
conditions that enforce a purely vertical magnetic field at the top and bottom boundaries (Bx =
By = ∂zBz = 0 at z = 0, 1) for the same parameters as the dynamo of figure 7 (Ra = 5 × 108

and Pm = 0.2). We find that the generated magnetic field retains its main characteristics: a
similar saturation level of the magnetic energy, concentration of the magnetic field in the shear
layers around the LSV and a coherent mean horizontal magnetic field. The main differences are
that the mean horizontal field tends to be symmetric with respect to the mid-plane and that
a stronger vertical magnetic field is produced, with an average energy about half that of the
horizontal field. Thus, overall, the magnetic boundary conditions (at least the two types tested
here) have only a minor influence on the LSV dynamo mechanism.

The choice of the aspect ratio of the numerical domain might also influence the LSV dynamo,
since the width and strength of the LSV both increase with aspect ratio (Guervilly et al., 2014).
To explore this question, however, requires a series of lengthy calculations, going beyond the
scope of the present study; it is though an issue that we propose to examine in future work.

One of the most interesting aspects of the recent work on LSV formation in rotating con-
vection, together with the resulting dynamos considered in this paper, is the discovery of new
physical phenomena at the small values of the Ekman number that can now be tackled nu-
merically. It is therefore instructive to consider how the formation of LSVs and the ensuing
dynamos might be affected at yet lower values of Ek — though clearly one cannot rule out
the appearance of yet further novel behaviour in the considerable gap that exists between what
is currently computationally feasible (Ek = O(10−6)) and what is appropriate for the Earth
(Ek = O(10−15)), for example. In terms of the LSVs, it is clear that they require vigorous,
yet rotationally constrained turbulence; as such we can be confident that the range of Rayleigh
numbers at which LSVs will be found will increase as Ek is decreased, as portrayed in figure 1.
The issue of the LSV dynamo is, however, less clear-cut. Although we may expect the LSV
dynamo to operate for Ra just above the value at which LSV can be formed, it is less straight-
forward to predict the onset of small-scale dynamo action, and hence the demise of the LSV
dynamo.

The set-up considered here — i.e., a Boussinesq fluid in Cartesian geometry — forms the
simplest system in which to study dynamos driven by rotating convection; it thus allows for
a relatively wide exploration of parameter space. However, spherical geometry is clearly more
appropriate for the study of planetary cores. To date, LSVs have not been reported in numerical
simulations of rotating convection in spherical geometry; large-scale coherent flows are observed
for low Ek and large Re, but these are zonal flows — i.e. axisymmetric and azimuthal jets (e.g.
Heimpel et al., 2005; Gastine & Wicht, 2012). Interestingly, these zonal flows are also known
to be disrupted by magnetic fields in spherical convective dynamos (e.g. Aubert, 2005; Yadav
et al., 2016). In terms of rotating convection, one of the major differences between Cartesian
and spherical geometries is the anisotropy caused by spherical geometry in the plane normal
to the rotation axis. This anisotropy constrains the geostrophic flows to be azimuthal, unlike
in Cartesian geometry, where there is no preferred horizontal direction. Consequently, zonal
flows tend to be dominant in rotating spherical convection, provided that the viscous damping
from the boundary layers is not too large, i.e. for stress-free boundary conditions. Interestingly,
however, models of barotropic flows on a β-plane with forced stirring have shown that non-
zonal coherent structures of low azimuthal wavenumber can co-exist with dominant zonal jets

25



(Galperin et al., 2010; Bakas & Ioannou, 2014; Constantinou et al., 2016). These large-scale
coherent structures take the form of propagating waves, which are believed to be sustained by
nonlinear interactions between Rossby waves. One may thus speculate that at sufficiently small
values of Ek , large-scale vortices, and the resultant dynamos, may indeed play a role in spherical
geometry; if so, we might expect them to have a propagating nature, a feature that cannot be
recovered in plane parallel geometry.
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