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Generation expansion planning optimisation with renewable energy 1 

integration: a review 2 

 3 

Abstract 4 

Generation expansion planning consists of finding the optimal long-term plan for the 5 

construction of new generation capacity subject to various economic and technical constraints. It 6 

usually involves solving a large-scale, non-linear discrete and dynamic optimisation problem in a 7 

highly constrained and uncertain environment. Traditional approaches to capacity planning have 8 

focused on achieving a least-cost plan. During the last two decades however, new paradigms for 9 

expansion planning have emerged that are driven by environmental and political factors. This has 10 

resulted in the formulation of multi-criteria approaches that enable power system planners to 11 

simultaneously consider multiple and conflicting objectives in the decision-making process. 12 

More recently, the increasing integration of intermittent renewable energy sources in the grid to 13 

sustain power system decarbonisation and energy security has introduced new challenges. Such a 14 

transition spawns new dynamics pertaining to the variability and uncertainty of these generation 15 

resources in determining the best mix. In addition to ensuring adequacy of generation capacity, it 16 

is essential to consider the operational characteristics of the generation sources in the planning 17 

process. In this paper, we first review the evolution of generation expansion planning techniques 18 

in the face of more stringent environmental policies and growing uncertainty. More importantly, 19 

we highlight the emerging challenges presented by the intermittent nature of some renewable 20 

energy sources. In particular, we discuss the power supply adequacy and operational flexibility 21 

issues introduced by variable renewable sources as well as the attempts made to address them.  22 

Finally, we identify important future research directions. 23 

Keywords: Multi-criteria decision making; multi-objective optimisation; generation expansion 24 

planning; intermittent renewable energy resources; operational flexibility. 25 

1. INTRODUCTION 26 

Relentless increase in electricity demand calls for new investments in generation capacity on a 27 

regular basis. Efficient planning of new generation units is an optimisation problem that entails 28 

answering the following four basic questions so as to ensure that the installed generation capacity 29 

adequately meets the forecasted demand growth over a medium to long-term planning horizon: 30 

i. WHAT - the types of generation technologies that will be added to the grid 31 

ii. HOW MUCH - the size of each new generation plant 32 

iii. WHERE - the location of these plants 33 

iv. WHEN - the stage of the planning horizon when the new units must be implemented. 34 

Generation Expansion Planning (GEP) has been the focus of active research since the 1950s 35 

when linear programming (LP) models were successfully used to approximate the objective 36 

function and the constraints to linear functions, starting with the work of Masse and Gibrat [1]. 37 

However, the complexity associated with GEP has risen dramatically due to the variety of 38 
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generation technology options available to the planners, the numerous stakeholders involved and 1 

the diversity of constraints derived from limitations imposed by physical processes, generation 2 

capacity, reliability of electrical supply, resource availability and economic considerations, 3 

among others. Initially, the aim of GEP was to search for the most economical scheme that could 4 

provide an adequate supply of electricity to meet the projected demand growth subject to a set of 5 

constraints over a planned period of time. The cost function typically included investment, fuel, 6 

and generation costs over the entire planning period.  LP models cannot deal satisfactorily with 7 

the large number of constraints inherent to a realistic GEP problem. Furthermore, the need for 8 

greater accuracy in the modelling uncovered non-linear relationships among the decision 9 

variables and the objective function. To overcome this problem, a variety of mathematical 10 

optimisation methods was developed and applied to the GEP problem including non-linear 11 

programming (NLP) [2], mixed integer programming [3], dynamic programming [4] and 12 

decomposition techniques [5–7].  Moreover various approximations and assumptions were made 13 

on the model to keep the optimisation problem computationally tractable. For example, aspects 14 

of the real-time operations of the power system were often neglected and parameters like 15 

spinning reserves and variable heat rates were rarely considered.   16 

 17 

As the portfolio of available generation technologies grew and reliability concerns became more 18 

stringent for power system planners, the issue of generation capacity addition developed into a 19 

highly constrained, non-linear discrete dynamic optimisation problem. Finding satisfactory 20 

solutions to such problems requires complete enumeration of combinations of candidate 21 

generation expansion options [8]. Since the number of potential solutions grows explosively with 22 

the problem size, an exhaustive search is infeasible. Moreover, planning over the long term 23 

inevitably gives rise to uncertainties in each step of the modelling process and in the model 24 

parameters. In light of these new dimensions, the traditional least-cost objective function alone 25 

could no longer drive the generation expansion decision-making process. Additional objectives 26 

were taken into consideration to guide decisions beyond the economic perspective. The GEP 27 

literature has been thoroughly surveyed in the past. The reviews have mostly focused on the 28 

methodological aspect by analysing the models developed to integrate the latest changes in GEP 29 

formulation. For example, heuristic and metaheuristic algorithms are known to provide 30 

reasonably good solutions within realistic time to problems that are intractable to conventional 31 

optimisation methods. Thus, Zhu and Chow [15] thoroughly reviewed heuristic techniques that 32 

could potentially be used to solve single-objective GEP problems. Since these methods were 33 

emerging at that time, the authors focused on the various heuristic algorithms as well as their 34 

merits and drawbacks. Subsequently, Nara [16] reviewed the actual application of the heuristic 35 

methods to power system planning. On the other hand, Hobbs [9] performed a literature survey 36 

of optimisation models that incorporated new concepts in GEP: demand side management 37 

(DSM) programmes as an alternative to additional generation capacity, the presence of 38 

uncertainties in several parameters, inclusion of objectives other than the least-cost and the 39 

transformation of the electricity production industry from a centralised monopoly to a more 40 

competitive market. The latter was further addressed in a review by Kagiannas et al. [17] where 41 

the reformulation of GEP optimisation models to accommodate the changes brought by the 42 

evolution from a monopolistic electricity market to a deregulated and competitive one were 43 

highlighted. Besides, works related to energy planning models with multiple conflicting 44 

objectives were reviewed by Voropai et al. [18], Pohekar and Ramachandran [21], Løken [19] 45 

and Wang et al. [20].   46 
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Over the last two decades, concerns about the likelihood of fossil fuel prices soaring in the long-1 

term, geopolitical changes, energy security and the environmental impact of the fossil fuels have 2 

resulted in concerted efforts to reduce greenhouse gas (GHG) emissions worldwide. 3 

Consequently, interest in harnessing renewable energy (RE) resources has intensified. In 4 

particular, the consistent growth of intermittent RE resources, mainly sun and wind, has been key 5 

to the energy transition. In addition to mitigation of pollutant emissions, the integration of 6 

variable renewables in the electricity grid caused the emergence of other crucial aspects in the 7 

energy planning scenario such as the reliability, flexibility and efficiency of the power system. 8 

This paper evaluates different models that have been applied to account for the push towards a 9 

carbon-constrained power system. It reports a wide range of research papers relevant to this topic 10 

chronologically, starting from the early minor improvements made to existing models, to state-11 

of-the-art models that deal with contemporary challenges. This review also attempts to propose a 12 

classification of approaches adopted in this field. In this context, the paper has been divided into 13 

four distinct sections to demarcate different approaches that have been employed to address the 14 

needs of decision-makers in response to additional requirements of GEP following the 15 

integration of RE in the electricity grid. They are as follows:  16 

 17 

 traditional methods of integrating environmental considerations as constraints or external 18 

costs in GEP 19 

 formulation of GEP as a multiple-objective optimisation problem whereby the ecological 20 

footprint is considered as one of the objectives 21 

 techniques used for the inclusion of additional uncertainties in the planning process 22 

brought by variable RE sources 23 

 new dynamics introduced by increased integration of intermittent RE resources in the 24 

power system and associated challenges experienced by power system planners 25 

 26 

The intricacies of the models as well as their strengths and limitations are highlighted. In 27 

addition to methodological contributions, we elaborate on future research with new questions 28 

that are being asked by planners working in GEP and the corresponding paradigms that must  be 29 

captured within the planning models to answer these questions.   30 

2. EARLY ENVIRONMENTAL CONSIDERATIONS 31 

Initially, environmental impacts were handled as constraints imposed on the operation of the 32 

power grid by setting tolerance thresholds for the maximum acceptable emission rates. Another 33 

common approach integrated the external costs associated to environmental impacts of energy 34 

production by the various power plants in the system. 35 

 36 

2.1 ENVIRONMENTAL CONSTRAINTS 37 

Sirikum and Techanitisawad [8] added air pollutant emission and concentration limits to the 38 

usual capacity, power balance, reliability, location and resource availability constraints of their 39 

mixed integer non-linear programming (MINLP) model. The authors appended environmental 40 

and investment costs in demand side management (DSM) programmes and outage costs into the 41 

objective function. The complex MINLP task was decomposed into two parts. Firstly, a 42 

combinatorial problem is solved by GA search to determine a feasible generation mix 43 
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considering only reserve margin, reliability and location constraints. Then, an optimum level of 1 

power generation is found by a continuous LP method under demand, capacity and emission 2 

constraints. The proposed technique was validated on seven different case studies of a scaled-3 

down model of the Thailand power system with different planning periods and problem sizes. 4 

Chen et al. [9] reported a GEP model that integrates a series of low-carbon factors in the 5 

objective function, decision variables and constraints. Additional decision variables are used to 6 

indicate the level of retrofit of conventional coal plants with carbon capture and storage (CCS) 7 

technologies, the implementation of new low-carbon technology plants and the overall CO2 8 

traded allowance. In addition to the usual cost components, the economic objective function 9 

consisted of income from CO2 trading mechanisms, CO2 emission penalty and CCS retrofit 10 

expenses. Limits are imposed on the total CO2 emission levels and on the overall tradable CO2 11 

allowance. The model was tested on the power system of China to reveal the prospects of CO2 12 

mitigation measures until 2030. Both [8] and [9] considered only thermal power plants and 13 

limited scenarios in their analysis. 14 

 15 

Cormio et al. [10] applied a linear programming optimisation procedure based on the energy 16 

flow optimisation model (EFOM) to support regional energy planning in Apulia located in 17 

southern Italy. The total cost of the entire energy system was minimised by a LP procedure over 18 

a time horizon of some decades. A financial estimation of the burdens incurred to the 19 

environment as a result of the setting up and operation of the electrical power plants was 20 

included in the cost objective. Two scenarios that consider different regional economic and 21 

environmental policies were simulated. The results showed that the regional policy, aimed at 22 

meeting heat and energy loads by various end-use sectors through cleaner technologies, can rely 23 

heavily on combined cycle power plants with less contribution from wind power, waste-to-24 

energy, biomass and industrial cogeneration systems. Mejia-Giraldo et al. [11] formulated a 25 

linear optimisation model for the GEP where CO2 emission tax formed part of the cost function 26 

to be minimised and annual CO2 emission reductions were enforced as one of the constraints. 27 

When the model was applied to a simplified 11-region representation of the US power system, 28 

considering ten candidate generation technologies over a planning period of twenty years, it was 29 

found that polluting technologies were largely rejected by the optimisation process. Karaki et al. 30 

[12] used tunnel DP to minimise either the cost or the environmental impact or some weighted 31 

function of these two functions in the GEP problem. The environmental impact is integrated in 32 

the objective function by appending the cost of cleaning the pollutants emitted by the additional 33 

generation units. The algorithm divides the problem into stages, where each sub-period of the 34 

planning horizon represents a stage having several expansion options. At each stage, the 35 

algorithm determines the feasible expansion options of the next stage by adding generation units 36 

to the options of the present stage. The number of options is kept within manageable limits by 37 

applying tunnel-heuristic rules. A probabilistic production costing simulation is run to determine 38 

the expected energy not served (EENS) and the total cost incurred up to that stage for each 39 

remaining option. Generation units were added to the power system only if the EENS exceeded a 40 

pre-determined threshold.  41 

 42 

2.2 INTERNALISATION OF EXTERNAL COSTS 43 

While models considering environmental impacts as constraints in the form of emission taxes 44 

and penalties have the advantage of simplicity as they use existing deterministic models, their 45 

main limitation is that they assume a constant average emission level for each generation 46 
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technology. In doing so, they preclude the impact that operating conditions of thermal power 1 

plants have on pollutant emission levels [13]. Another alternative is to consider environmental 2 

and health impacts of energy generation, whose costs are generally not directly borne by 3 

consumers. For example, every stage in the generation of electricity from coal-fired power plants 4 

releases harmful emissions that contribute to environmental and health degradation in the long 5 

term as illustrated in Figure 1. However, the low price of coal-generated electricity does not 6 

account for the real cost that society ultimately pays. Internalisation of external costs refers to the 7 

integration of the environmental and health adverse effects into the decision-making process. 8 

Several authors have applied existing energy models to study the internalisation of external costs 9 

of power production in GEP. A robust and exhaustive quantification of external costs is required 10 

to evaluate, in monetary terms, the impact of emissions from power plants on the environment 11 

and the human health [14]. Energy models are ideal tools for such analysis as they are based on 12 

strong economic foundations that use rigorous mathematical formulations to process quantitative 13 

data and provide numerical solutions related to economics and the environment [15].  14 

 15 

Nguyen [16] used MARKAL, a dynamic and multi-period LP model that adopts a bottom-up 16 

approach to a generalised energy system, to devise a capacity expansion plan for Vietnam over a 17 

20-year period. The damage costs of CO2, NOx, SO2 and particulate matter (PM) emissions for 18 

every generation technology were estimated on the basis of the outcomes of the European 19 

Commission ExternE Project [14]. This project tracked the ecological and social footprints of 20 

pollution produced during the whole lifecycle of each generation technology. The external costs 21 

were then incorporated in the model as an externality tax for conventional fuels and as part of the 22 

variable costs for RE technologies. When minimising the overall cost of the expansion plan, it 23 

was found that inclusion of external costs caused an increase in the share of RE, natural gas 24 

combined cycle and advanced coal-based technologies in the generation mix. The results further 25 

indicated that the drop in external costs resulting from the reduction in emissions would be 26 

higher than the rise in the generation cost of electricity induced by the adoption of cleaner 27 

generation technologies. Rafaj and Kypreos [17] considered the cost of environmental and health 28 

damages in GEP for five regions of the world with the Global Multiregional MARKAL model 29 

over successive ten-year periods starting in 1990. External costs were derived from the ExternE 30 

project and scaled by factors needed by the model, such as regional population density, fuel 31 

quality, conversion efficiency and compliance of the technologies with emission control 32 

schemes. Modelling results indicated that internalising the external costs of SO2 and NOx 33 

favoured low-emission technologies and emission control systems in the generation mix. When 34 

external costs of CO2 were introduced in the model, fossil fuel-based generation plants were 35 

clearly restrained and RE along with fuel cells were more competitive. Klaasen and Riahi [18] 36 

analysed the impacts of internalising the external costs of electricity generation using a 37 

combination of three models: MESSAGE, a bottom-up LP model to find the best expansion plan 38 

by tracking energy flows through the system; MACRO, a top-down macroeconomic model that 39 

evaluates a series of economic parameters required to assess the impact of the external costs on 40 

the gross domestic product of the regions under consideration; and SG, a scenario generation 41 

model consisting of extensive economic and energy historical datasets for various regions that 42 

help in the formulation of different potential scenarios. Like in the previous two studies, it is 43 

noted that internalising the external costs of energy production fostered the use of technologies 44 

such as clean coal, natural gas combined cycles, fuel cells, wind and biomass in the generation 45 

mix instead of conventional fuels. Yet another energy model, WASP-IV, was employed by 46 
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Becker and al. [19] to assess the impact of environmental externalities on capacity expansion 1 

planning in Israel over the period 2011-2025. Although the objective was to minimise the overall 2 

costs subject to several technological and demand constraints, each of the pollutants considered 3 

in the study was treated as a separate objective because their valuations could not be integrated 4 

into a single function. A wide range of scenarios was simulated by varying the weights assigned 5 

to the tax rate for each pollutant. Seven scenarios were shortlisted as potentially providing the 6 

best results in terms of pollution reduction-cost ratio for consideration by policy-makers. 7 

3. MANAGING CONFLICTING OBJECTIVES 8 

Although accounting for the environmental impact of power plants from a financial perspective 9 

enabled a more holistic approach to GEP by capturing the indirect costs borne by society on 10 

power system expansion, these models had several drawbacks. The methods and the scientific 11 

data commonly used to elicit the monetary valuation of the impact are devised on the basis of a 12 

wide range of assumptions. It is obvious that uncertainties abound when estimating the costs 13 

associated to externalities in the long term. Evaluating the extent of the uncertainties is complex 14 

and requires changes to the traditional planning models. Moreover, these models still employ 15 

much simplified operating constraints to depict the operational characteristics of the power 16 

system. More importantly, as the environmental impacts of power generation became 17 

increasingly critical, it was essential to expand GEP beyond an absolute economic analysis 18 

exercise. Consequently, the classical formulation of the least-cost GEP was no longer suitable as 19 

realistic generation expansion models had to incorporate distinct evaluation attributes as 20 

incommensurable objective functions rather than aggregating them in a single economic 21 

objective function [20]. Multi-Criteria Decision Making (MCDM) methods enable power system 22 

planners to make decisions in the presence of multiple and conflicting objectives that have to be 23 

considered simultaneously. These methods help the decision-maker (DM) in identifying the most 24 

satisfactory alternative from a set of feasible solutions.  25 

3.1 MULTI-ATTRIBUTE DECISION MAKING 26 

One popular approach used to solve MCDM problems is multi-attribute decision making 27 

(MADM), in which a discrete, predefined set of alternatives is compared and evaluated against a 28 

set of decision attributes or criteria. The output will usually consist of ranking the alternatives in 29 

terms of their total preferences when all the decision criteria are considered simultaneously. 30 

Diakoulaki et al. [21] stated that the main strength of MADM models is their ability to structure 31 

problems that are not clearly defined and to provide a good understanding of their components. 32 

Their popularity also stems from their simplicity. They further make the task of the DM more 33 

comfortable by presenting a set of detailed alternatives with an order of precedence as opposed 34 

to models where complex mathematical functions are involved. In addition, these methods have 35 

the ability to consider both quantitative and qualitative criteria simultaneously. In his literature 36 

review of MADM methods applied to energy planning, Løken [22] distinguished between three 37 

types of MADM models. The classification is summarised in Figure 2.  38 

 39 

Value measurement methods assign a numerical score to the alternatives so as to arrange them in 40 

an order of merit. The two most common value measurement models are Multi-Attribute Utility 41 

Theory (MAUT) and Analytical Hierarchy Process (AHP). MAUT aggregates the criteria into a 42 

utility function that scales the importance of each criterion from 0 to 1 based on the preferences 43 

of the DM. It then evaluates the alternatives and assigns weights with the purpose of trade-off 44 
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between attributes [23]. The alternative with the best value of the aggregated function is 1 

considered as the optimal one. MAUT has not been extensively applied to the energy planning 2 

field mainly due to the requirement of the DM to interact dynamically with the model as well as 3 

the complexity of computing some parameters involved in the algorithm [24,25]. AHP has been 4 

widely applied to decompose the GEP problem into a hierarchy with objectives occupying the 5 

top position, criterions and sub-criterions at levels and sub-levels, and decision alternatives at the 6 

bottom of the hierarchy [25–28]. The hierarchical tree is used to weigh the relative importance of 7 

the criteria using an assessment scale. The alternatives are then scored and ranked based on the 8 

subjective criteria.  9 

 10 

Goal programming (GP) uses mathematical algorithms to find alternatives that are closest to 11 

achieving predefined goals for each objective function. In many cases, GP is applied as the first 12 

step in a multi-criteria process involving numerous alternatives to eliminate the most unsuitable 13 

ones in an efficient way [22]. Two GP techniques have been commonly applied to solve energy 14 

planning problems: Technique of Order Preference by Similarity to Ideal Solution (TOPSIS) and 15 

step method. TOPSIS compares alternative solutions with two artificial ideal and worst solutions. 16 

It then selects the alternative that is closest to the ideal solution and furthest to the worst solution 17 

in terms of Euclidean distances [25]. Kaya and Kahraman [29] proposed a modified fuzzy 18 

TOPSIS approach to find the most appropriate energy technology based on various technical, 19 

economic, environmental and social criteria. The weights of the selection criteria were 20 

determined using a fuzzy AHP. The stem method uses an ideal point as a goal and then applies 21 

the Tchebycheff norm as a distance metric to minimise the maximum distance from the goal 22 

[30]. Once the best alternatives for the objective functions are obtained, the DM can formulate 23 

preferences. According to Pokharel and Chandrashekar [31], the step method allows direct 24 

comparison among alternate solutions, thereby helping DMs to experience the impact of their 25 

preference for an objective function on the solution. Nevertheless, they should be able to 26 

articulate their goals precisely at each iteration. 27 

 28 

The final type of MADM model, known as outranking models, compare the alternatives among 29 

each other with respect to each attribute in order to determine the best alternative for each pair 30 

[25]. They do not output a single best alternative but the degree of dominance of one alternative 31 

over another. Two outranking approaches, Preference Ranking Organisation METHod for 32 

Enrichment Evaluation (PROMETHEE) and Elimination Et Choix Traduisant la Realité 33 

(ELECTRE), have been successfully applied to many GEP studies. In both methods, a pairwise 34 

comparison between the alternatives is performed to identify and retain the non-dominated 35 

alternatives on the basis of the selected criteria. PROMETHEE additionally considers the degree 36 

to which the non-dominated alternative is better and uses this piece of information to rank 37 

alternatives. Newer versions of PROMETHEE and ELECTRE with improved features were 38 

subsequently developed. Pohekar and Ramachandran [25] reviewed more than 90 published 39 

papers that dealt with the application of MADM techniques to sustainable energy planning. The 40 

authors observed that AHP is the most popular method followed by outranking techniques, 41 

PROMETHEE and ELECTRE. Wang et al. [32] performed a thorough review of the published 42 

literature on MADM applications in sustainable energy systems focusing on the different criteria 43 

considered in the formulation of the problem. Løken [22] illustrated that a multitude of MADM 44 

techniques have been used to solve energy planning problems. Each method has its own 45 

advantages and drawbacks and the choice of the methodology used depends on the DM. The 46 
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author asserted that ‘black-box’ models should be avoided as they are poorly understood by 1 

DMs. Several studies have also combined two or more methods to exploit the strengths of each 2 

algorithm.  3 

3.2 MULTI-OBJECTIVE DECISION MAKING (MODM) 4 

One of the key assumptions of MADM techniques is that the DM is aware of the alternatives a 5 

priori and can rank them using an explicit model of his preferences. Moreover, MADM methods 6 

focus on problems with discrete decision spaces, characterised by a limited number of 7 

predetermined alternatives. The task of the DM is therefore eased as compared to models 8 

involving complex mathematical functions. Unfortunately, due to the complexity of GEP, most 9 

decisions must be made in an environment where the available alternatives are not known 10 

precisely beforehand and the number of potential decision alternatives is large. In these 11 

circumstances, it becomes difficult for the DM to elicit preferences. MODM is the other basic 12 

approach of MCDM, where the alternatives are not predetermined but instead a set of objectives 13 

functions are optimised subject to a set of constraints [25]. One characteristic of models used to 14 

solve MODM problems is that they output a set of alternatives with different trade-offs which 15 

are equally good mathematically [33]. In other words, these Pareto optimal or non-dominated 16 

solutions, cannot be improved in any objective function without deteriorating their performance 17 

in at least one of the other objective functions [34]. Figure 3 illustrates the concept of Pareto 18 

optimality in a problem with two objective functions. MODM models provide decision support 19 

to DMs by rationalising the comparison among different alternatives in order to allow the DM to 20 

grasp the inherent correlations among the distinct objectives for selecting a satisfactory 21 

compromise solution [20]. 22 

 23 

One of the earliest efforts to consider multiple objectives simultaneously in GEP was performed 24 

by Climaco et al. [35]. The model optimised three objective functions in the form of total 25 

expansion costs, reliability and environmental impacts subject to load requirements, operational 26 

capacity and fund availability constraints. The authors used an interactive tri-criteria LP tool, 27 

TRIMAP, to help the DM in progressively learning the set of non-dominated solutions. TRIMAP 28 

allows the DM to grasp in an interactive way, the boundaries of the non-dominated surface so 29 

that he can guide the model to focus on the regions where the solutions better relate to his 30 

preferences. The results demonstrated that among the three generation technologies investigated, 31 

minimum cost was achieved with a mix of nuclear and coal units, whereas the minimum 32 

environmental impact occurred when additional units were oil-based. Martins et al. [36] 33 

extended the interactive multi-objective LP model based on TRIMAP by integrating DSM as a 34 

separate power generation group defined by the same type of parameters as the other generation 35 

alternatives. Three objective functions were considered: the total expansion cost, the 36 

environmental impact associated with the additional installed capacity during the planning period 37 

and the environmental externalities associated with the energy output. Five sets of constraints 38 

dealing with the reliability of the supply system, the generating capacity of power plants and the 39 

DSM unit, the total new generation capacity, and pollutant emissions were imposed on the 40 

system. When the model was simulated with realistic data, the resulting expansion plans 41 

exhibited a high diversity of generation technologies. 42 

 43 

Chattopadhyay et al. [37] evaluated the benefits of integrating DSM options in capacity 44 

expansion planning considering the annual system cost, the CO2 emissions and the reliability of 45 

the system in terms of loss-of-load expectation (LOLE), as its three objective functions. The 46 
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model adopted a compromise programming approach deriving optimal solutions in which the 1 

distance of each objective from its ideal value was minimised. Depending on the type of savings 2 

achieved, each DSM option was categorised as one of four possible supply-side resources. The 3 

methodology was validated on an Indian utility over the 1990-2000 planning horizon. Linares 4 

and Romero [38] integrated decision-makers’ preferences into a GEP problem featuring an 5 

overarching cost objective along with several environmental objectives subject to various power 6 

flow, generation capacity and resource availability constraints. The economic objective 7 

comprised of investment, decommissioning, operation and maintenance costs while the 8 

environmental objectives aimed at minimising the emissions of CO2, SO2, NOX and radioactive 9 

wastes. The authors formulated a compromise programming model based on preferential weight 10 

elicitation by the decision-makers using AHP. When tested on the Spanish electrical power 11 

network with a planning horizon extending until 2030, the best compromise solutions involved a 12 

higher share of renewable and gas-based technologies with coal and nuclear technologies 13 

accounting for less than 10% of the generating mix. 14 

 15 

Unlike the previous attempts to solve the GEP problem that were LP-based and used continuous 16 

variables, Antunes et al. [20] adopted a multi-objective mixed integer linear programming 17 

(MOMILP) model which integrates the discrete nature of the additional generation capacity 18 

required for each technology during the planning horizon. An interactive approach, whereby the 19 

DM intervenes to direct the computation phase towards his preferences, is applied to cater for the 20 

increased computational complexity resulting from considering the modular capacities of 21 

generation units. The same three objectives used by Martins et al. [36] were considered. DSM 22 

programmes implementing peak demand shaving were modelled as an equivalent DSM 23 

generating unit. As such, investment and operating costs as well as loss of revenues due to 24 

decrease in sales of electricity resulting from DSM programmes are included in the cost 25 

objective function. Mavrotas et al. [39] claimed that applying an interactive procedure as a 26 

strategy to solve MOMILP problems does not generate the entire set of efficient solutions, even 27 

for small-scale problems. To curb this shortcoming, the authors suggested a mixed 0-1 multi-28 

objective LP model based on modified version of the branch and bound algorithm. It has the 29 

ability to generate the whole set of efficient solutions by implicitly enumerating all potentially 30 

efficient solutions and then eliminating the non-efficient ones through pairwise comparison. 31 

Annual electricity production cost and yearly SO2 emissions were minimised by the model 32 

subject to capacity, minimum load requirements, demand satisfaction, natural gas supply and 33 

reserve margin constraints.  34 

 35 

Aghaei et al. [34] formulated a MOMILP model to simultaneously optimise five objectives: total 36 

costs, CO2 emissions, fuel consumption, fuel price risk and system reliability. Total costs is an 37 

all-encompassing objective function that involves cost of DSM programmes, benefits of RE 38 

generation and cost of wind intermittency in addition to the usual investment, operation and 39 

maintenance costs. Outage cost is used as a metric to represent the reliability of the system and is 40 

evaluated using the EENS index. Simulations carried out on three cases with different sets of 41 

weights for objective functions showed better results as compared to conventional and 42 

augmented ε-constraints methods. The authors proposed another multi-objective model for multi-43 

period GEP problems based on a Corrected Normal Boundary Intersection (CNBI) method to 44 

minimise the total cost and the amount of CO2 emissions and maximise the reliability of the 45 

system [40]. The latter objective function is evaluated using an analytical probabilistic method 46 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

11 

 

that computes Z values which are associated to the expected surplus of available generation. The 1 

CNBI method outputs efficient solutions that are evenly spread on the Pareto front while 2 

ensuring that dominated solutions are not produced. The efficiency of the model was 3 

demonstrated on three test cases with seven types of generating technologies in a 6-year planning 4 

horizon consisting of three 2-year stages and produced reliable portfolios of resources. 5 

3.3 HEURISTIC ALGORITHMS 6 

For most real optimisation problems, the search space is so huge that an exhaustive search to 7 

come up with an optimum solution is not envisaged. The complexity of multi-objective GEP 8 

problems has caused an upsurge in the development of heuristic algorithms due mainly to their 9 

inherent ability to find many alternative solutions under different boundary conditions within an 10 

acceptable time. While their principal weakness is that they cannot guarantee optimality of their 11 

solutions as opposed to exact methods, heuristic methods are normally used as part of a global 12 

procedure to ensure that optimum solutions are found. The multi-objective optimisation models 13 

for GEP that have been reviewed so far in this paper involved unique formulations involving 14 

single objective optimisation. They determine one Pareto solution at a time, and each solution is 15 

obtained through single-objective optimisation. Evolutionary optimisation algorithms have been 16 

recognised to be well-suited for multi-objective optimisation as they work with a population of 17 

solutions in each iteration [41]. Therefore, they can search for several Pareto optimal solutions 18 

simultaneously in a single run to provide the DM with an insight into the different trade-offs 19 

among objectives. 20 

 21 

Kannan et al. [42] analysed two different formulations for the GEP problem using the elitist 22 

Non-dominated Sorting Genetic Algorithm Version II (NSGA-II). Each formulation contained 23 

two objective functions. The first one aimed at minimising both the total cost and the sum of 24 

normalised constraint violations while the second one was designed to minimise investment costs 25 

and maximise the system reliability. NSGA-II implements elitism so as to retain all non-26 

dominated solutions and preserves diversity among the solutions through an explicit mechanism 27 

based on the crowding distance [43]. The authors encountered convergence problems when 28 

implementing the standard NSGA-II algorithm on the GEP problem. The overall additional 29 

generation capacity required by an expansion plan was found to be excessively sensitive to small 30 

changes in the decision vector. A Virtual Mapping Procedure (VMP) was introduced to modify 31 

the solution representation into dummy decision variable which ranks the candidate solutions 32 

according to their additional generation capacity in ascending order. In doing so, the number of 33 

decision variables was significantly reduced, resulting in much less computational time and 34 

memory requirements. The proposed models were compared with a GA-based weighted-sum 35 

model on a test system with 15 existing power plants for a six-year planning horizon divided into 36 

three equal sub-periods. Both models produced the Pareto-optimal front in a single simulation 37 

run and in considerably less time than the baseline model.  38 

4. UNCERTAINTY HANDLING 39 

The GEP models examined to this point are deterministic in the sense that they use best available 40 

predicted values of parameters and input data, overlooking uncertainties that inexorably arise in 41 

the real world. Long-term planning of power systems have always been characterised by 42 

uncertainties. Traditionally, they were associated with parameters of the models such as the 43 

forecasted load, cost and availability of fuel, economic growth of the country, plant construction 44 
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time, generation outages and regulatory policies. Figure 4 summarises the conventional 1 

uncertainties in GEP. The new paradigm in power systems planning, driven by growing 2 

environmental concerns, has introduced additional uncertainties, including the uncontrollability 3 

of intermittent renewable energy resources, governmental regulations for emissions, the response 4 

of customers to DSM programmes and advances in generation technologies. The large number of 5 

uncertainties further exacerbates the complexity in GEP, due to additional computational power 6 

requirements along with the difficulty in modelling the combination of their occurrences. 7 

Consequently, they have a profound effect on optimal decision making for power system 8 

planners. It is therefore imperative to integrate a systematic and consistent treatment of the 9 

various sources of uncertainty in the decision-making process so as to mitigate risks [7]. For this 10 

purpose, methodologies have been developed to address uncertainties in GEP in a 11 

computationally tractable manner. The most commonly used ones are scenario analysis, 12 

sensitivity analysis and probabilistic analysis [44]. These techniques have been derived from 13 

deterministic models and adapted to take uncertainties into account. Robustness and flexibility 14 

are the metrics that evaluate the effectiveness of the models to withstand uncertainties. The 15 

former pertains to the degree to which a plan is affected by changes in parameters while the latter 16 

is the inherent capability to modify a plan so as to accommodate and successfully adapt to such 17 

changes [45]. 18 

 19 

Scenario analysis generates a range of potential futures, referred to as scenarios, by making 20 

different assumptions about the future with varying forecasts for key uncertain variables. An 21 

expansion plan for the planning horizon is then generated for each scenario. This technique 22 

enables the DM to anticipate a broad range of realistic futures and to identify promising 23 

generation technology options that appear in many scenarios. However, a comprehensive 24 

discrimination of alternative plans would require that weights be assigned to individual scenarios 25 

to represent their perceived likelihood of occurrence and that the scenarios be mutually exclusive 26 

and exhaustive [46]. An alternative to scenarios is offered in the sensitivity analysis technique, 27 

which identifies sensitivities or areas of vulnerability in a problem. Initially, several optimal 28 

plans are developed on the basis of some assumptions. Subsequently, some key uncertain 29 

parameters are varied and the performance of each plan is studied under the new conditions. This 30 

technique is an appropriate tool for identifying the model parameters that have most impact on 31 

the output variables and for determining the parameter ranges over which the solutions remain 32 

optimal. A major shortcoming of scenario and sensitivity analyses is that they do not provide 33 

much information on the flexibility and robustness of the plans [46]. Moreover, they generate 34 

evidence on the extent of the consequences of changes in variables, but overlook the likelihoods 35 

of these changes. Probabilistic analysis address these limitations by allocating probabilities for 36 

the occurrence of uncertain variables  and then determining the optimal output through a range of 37 

analytical approaches like Monte Carlo simulation and stochastic programming. The latter 38 

technique represents the uncertain data by scenarios generated in advance. In its elementary 39 

form, stochastic programming finds an optimal solution that produces the best weighted average 40 

objective function value over all scenarios. In realistic applications where multi-period planning 41 

is performed, the number of scenarios increases exponentially with the number of periods. To 42 

keep the problem tractable, scenario sampling is used [47,48]. More advanced versions include 43 

risk considerations such as penalties for constraint violation and probabilistic guarantees [49].  44 

5. INTEGRATION OF INTERMITTENT RENEWABLE ENERGY 45 
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RE sources have been the predominant drivers of the green revolution during the last decade, 1 

spurred by a combination of technological developments, innovation, decline in costs and 2 

government policies. In addition to offering emission-free electricity, RE ensures long-term 3 

energy security to countries. For these reasons and in the face of stringent carbon emission 4 

policies, many countries are considering the adoption of a larger share of renewables in their 5 

electricity mix. A series of compelling governmental actions are commonly applied to foster the 6 

development of RE. These include carbon taxes applicable to GHG emissions, feed-in tariffs 7 

guaranteeing lucrative wholesale prices for RE and tax credits for renewable electricity 8 

generation. The International Energy Agency (IEA) forecasts that the worldwide shares of RE 9 

technologies will increase to 57% of the load served by 2050 [50]. Intermittent RE sources, 10 

notably wind and solar, are expected to account for an overwhelming majority of this share. 11 

Nevertheless, operation and planning of existing power systems have traditionally centred on 12 

fossil fuel generation that can be adjusted as required by varying fuel inputs to match variability 13 

on the load side. Integrating intermittent RE generation in the power system brings variability on 14 

the supply side as well. These technologies are characterised by fluctuations in the power output 15 

that can neither be fully anticipated nor controlled by the operator. Fluctuations in the RE 16 

resource availability can be cyclical, where they are related to diurnal and annual cycles or 17 

stochastic, where fluctuations cannot be forecasted based on historical data. Consequently, the 18 

integration of RE in the generation mix introduces more uncertainty in the power expansion 19 

problem. The task of balancing the supply and the load becomes more challenging. Likewise, 20 

ensuring supply adequacy so that there is enough generating capacity installed to satisfy peak 21 

load requirements plus a reserve margin turns out to be more complex. In-depth reviews of 22 

studies that determine the feasibility of integrating large amounts of wind power in power 23 

systems and the resulting operational impacts have been performed [51,52].  24 

 25 

5.1 POWER SUPPLY ADEQUACY 26 

Probabilistic metrics can provide meaningful insight into supply adequacy. Loss of Load 27 

Probability (LOLP) and LOLE measure the probability and number of days respectively, on 28 

average per given period, that the available capacity is likely to fall short of demand [53]. 29 

Besides these two capacity-related indices, EENS or expected unserved energy (EUE) evaluates 30 

the extent of power failure by conveying the expected amount of energy not supplied by the 31 

system over a specified time period. Conventional generation units are dispatchable, implying 32 

that they can be turned on and off or their outputs can be adjusted at will to match the load. 33 

Notwithstanding some mean outage rate, these units can rely on their full capacity when 34 

planning the generation capacity needs of a power system. In contrast, the intermittent nature of 35 

wind and solar energy makes them non-dispatchable and unable to count on their full rated 36 

capacity for capacity planning. Proper GEP must therefore determine the effective contribution 37 

of variable power sources to the overall system capacity. Capacity value or capacity credit of a 38 

generation unit is often used by planners to determine the firm capacity it adds to the grid. It 39 

quantifies how much extra load can be served by the power system due to the addition of the unit 40 

while maintaining existing levels of reliability. It is defined as the ratio of the conventional 41 

capacity displaced to the rated capacity of the variable unit. The extra load that can be 42 

accommodated in the system due to the intermittent unit is termed as the effective load carrying 43 

capacity (ELCC). Figure 5 shows a graphical illustration of ELCC, where the addition of a new 44 

generation plant allows the power system to service an additional load of 400 MW while keeping 45 

the LOLE unchanged at 1 day in 10 years [53]. Several reviews of the different techniques to 46 
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evaluate the capacity credit of RE sources exist in literature [53–56]. The most commonly used 1 

methods are briefly described here. 2 

 3 

One of the first attempts to devise a probabilistic method to compute capacity credit of future 4 

wind power plants was performed by Van Wijk et al. [57]. The LOLE of a baseline power 5 

system which excluded the wind power plant is first calculated. Then, the LOLE for the power 6 

system with the wind power plant is computed after subtracting the predicted hourly wind power 7 

generation from the projected hourly load. Conventional capacity is then removed iteratively 8 

until the initial LOLE is achieved. The difference between the conventional capacities found in 9 

the two cases represents the ELCC of the proposed wind power plant. It was found that the 10 

capacity credit decreased with increasing wind power penetration, expressed as a percentage of 11 

the projected peak load. For example, 100 MW of installed wind power, corresponding to a 12 

penetration level of 0.9%, would have a capacity credit of 28%. In contrast, 2000 MW of 13 

installed wind power representing an 18% penetration level would result in a capacity credit of 14 

13.6%. It was also shown that dispersing the wind turbines over a large geographical area 15 

improves the capacity credit. A slightly modified version of the methodology proposed by Van 16 

Wijk et al. [57] was recommended as the preferred method to determine capacity credit by a task 17 

force on “Capacity Value of Wind” set up by the IEEE Power and Energy Society [58]. Again, 18 

the power system without wind power is considered first. The capacity and forced outage rate of 19 

each generator is convoluted through an iterative algorithm to generate the capacity outage 20 

probability table (COPT) of the power system. The probabilities from this table are combined 21 

with the hourly load profile of the system to produce the hourly LOLPs, from which the annual 22 

LOLE can be easily derived. The loads can be adjusted to ensure that the LOLE meets the 23 

reliability standards. The same procedure is followed to find the LOLE for the power system 24 

with wind capacity by treating the wind power as a negative load in the hourly load time series. 25 

The load data is increased incrementally across all hours using an iterative process until the 26 

initial LOLE is reached. The net increase in peak load then corresponds to the ELCC. The task 27 

force highlighted the importance of using reliable hourly wind and load data from the same years 28 

so that the methodology captures the underlying correlation between wind and load. This 29 

observation was corroborated by the task force set up by the North American Electric Reliability 30 

Corporation (NERC) to investigate the integration of variable generation. In [59], the task force 31 

stated that ELCC calculations must be based on long-term variable generation output data just 32 

like LOLP calculations for conventional plants depend upon accurate long-term performance 33 

data. It is also important that all wind and solar data relating to variable generation is 34 

synchronised with each other and with the load data as they are dependent on the weather. Use of 35 

asynchronous data will miss the relationship between the variable resources and the load leading 36 

to erroneous results. 37 

 38 

The multi-state model is an approximate calculation method for capacity credit that adopts a 39 

probabilistic representation of the intermittent generation plant. The approach is inspired from 40 

the two-state model of a conventional generation unit which can be either on or off depending 41 

whether there is an outage or not. D’Annunzio and Santoso [60] adopted this approach by 42 

considering wind generation in the calculation of the COPT as a multi-state unit that can exist in 43 

one or more partial capacity outage states with some individual probability. A histogram of the 44 

wind output power, obtained from historical resource profile and generation data, is segmented 45 

into different generation capacity bands with each band representing a state. The probability of 46 
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partial capacity outage for each state is then found. A parameter is also determined from a graph 1 

depicting the dependence of LOLE on the load. A mathematical function finally combined the 2 

probabilities with the parameter to compute the ELCC. Strbac et al. [61] studied the impact of 3 

wind energy on the UK electricity market using a modified version of the multi-state method. It 4 

was observed that wind power displaced conventional generation capacity only to a modest 5 

extent, with capacity credits ranging from 34% for 5 GW of installed wind power to 20% for 25 6 

GW. Calculation of capacity credit was based on an LOLP of 0.09 corresponding to the 7 

established capacity reserve margin of 24%. The intermittent behaviour of wind was derived 8 

from the frequency distribution of wind generation obtained from the past annual 0.5-hourly data 9 

of various wind farms. The authors noted that the LOLP-based capacity credit calculation does 10 

not provide any information about the frequency and duration of potential power shortages. To 11 

incorporate these parameters, a Markov Chain model was used to compute the transition rates 12 

and frequencies of departures for each generation capacity state of all units. The results showed 13 

that significant reductions in wind capacity credit are expected due to low wind conditions. Thus, 14 

a single day of no wind generation availability across the entire wind source would reduce the 15 

capacity credit of wind by 20%. These factors suggested that large conventional back-up 16 

capacities must be retained in the system to maintain the same level of supply security. The IEEE 17 

task force emphasised on the shortfall of information regarding wind-load correlation in the 18 

multi-state model [58]. Applying the model in regions marked by major seasonal and diurnal 19 

fluctuations in wind energy availability and demand can result in substantial inaccuracies in the 20 

computation of capacity credit of wind power. 21 

 22 

Brouwer et al. [62] conducted a review of the literature on the impacts of power generation from 23 

intermittent renewable sources and noted that most studies performed after 2005 report a 24 

capacity credit ranging from 8% to 28% at 10% penetration level of intermittent energy sources. 25 

It was noticed that these values are generally lower than those reported in studies carried out 26 

before 2005, where the capacity credits exceed 15% at 10% penetration level. The authors 27 

suggested that the divergence may arise from the calculation methodology applied in older 28 

methods which for example, used time steps larger than 1 hour. It was also observed that studies 29 

conducted in large interconnected areas, such as Europe, reported higher capacity credits and that 30 

multiple years of data are necessary for an accurate quantification of capacity credit. 31 

 32 

5.2 OPERATIONAL FLEXIBILITY 33 

At high levels of intermittent generation penetration, it becomes imperative for GEP process to 34 

ensure not only that there is adequacy of generation capacity to meet the demand at all times but 35 

also that there is sufficient operational flexibility in the power system. The latter refers to the 36 

ability of the power system to quickly adjust supply to match predicted and unpredicted 37 

fluctuations in net load, where net load represents the remaining demand that must be supplied 38 

by the conventional generation fleet if all of intermittent energy is to be utilised [63]. At small 39 

levels of variable RE penetration, the power system is able to absorb fluctuations in renewable 40 

output because these fluctuations will be dwarfed by those commonly encountered on the 41 

demand side [64]. At higher penetration levels however, the extent and frequency of variability 42 

in net load escalates. As clearly illustrated in Figure 6, high variable RE penetration is usually 43 

marked by steeper ramps, shorter peaks and lower turn-downs [65]. Accordingly, the generation 44 

fleet of the power system must be endowed with conventional resources that possess the 45 

following crucial technical requirements to be able to follow the net load adequately: fast cycling 46 
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and ramping capabilities, efficient partial load operation as well as sufficient reserve capacity. 1 

The cycling capability of a generator is its ability to start-up and shutdown frequently and rapidly 2 

[66]. Ramping capability refers to the speed at which a generating unit can change its output 3 

while partial loading efficiency pertains to the efficiency of the generator when it is operated at 4 

various output levels lower than its rated capacity [66]. Reserve capacity was already needed in 5 

traditional GEP to handle the possibility of insufficient supply capability due to unforeseen 6 

increase in demand or unexpected unavailability of some generation capacity. Increasing the 7 

share of RE in the grid calls for additional reserve requirements to cater for the enhanced 8 

uncertainty in the net load arising from inaccurate forecasting of the RE output. In many cases, 9 

DSM programmes have proved to be effective as a source of supplemental reserves in response 10 

to unexpected outage of a large generation unit or substantial decrease in intermittent generation 11 

within a short period. In large geographical areas, the availability of interconnections to adjacent 12 

power systems can provide additional flexibility to export excess or import supplementary 13 

power. In light of these requirements, simply having the required generation capacity may not be 14 

adequate for system security if that capacity is not flexible enough to respond to system 15 

variability [67]. It is important to note that operational flexibility should not be confused with 16 

uncertainty flexibility mentioned in Section 4, which relates to the power system’s ability to 17 

adapt to changes in uncertain parameters. 18 

  19 

Contemporary GEP therefore needs to assess whether the power system is flexible enough to 20 

successfully integrate renewable generation targets at all stages of the planning horizon. 21 

Inadequate flexibility may force power system operators to frequently curtail intermittent 22 

generation, thereby decreasing revenues and making it more difficult to meet emissions targets. 23 

There is currently a lack of established metrics and methods to perform tasks involved in GEP 24 

with high levels of RE integration: to quantify flexibility and its associated cost, to determine the 25 

degree of flexibility required, and to find the optimal generation mix in order to meet the targeted 26 

degree of flexibility. More specifically, GEP studies that delve into large-scale integration of 27 

intermittent generation considering adequacy of both generation capacity and generation 28 

flexibility are practically non-existent.  29 

 30 

One of the early methods that provided an indication of operational flexibility in a power system 31 

was by determining the reserve capacity. Several methods have been devised to evaluate its 32 

optimal value for varying degrees of RE integration. Söder [68] found the margins of 33 

instantaneous, slow and fast reserves available on an hourly basis in the daily operation planning 34 

of a wind-hydro-thermal power system. The reserve margins were computed from the standard 35 

deviation of the system load and wind speed forecast errors and ramp rates of thermal units. 36 

Doherty and O’Malley [69] combined uncertainty in load and wind power forecasts with outage 37 

probability to calculate reserve margin requirements for a desired level of system reliability 38 

defined by the acceptable number of load shedding events annually.  Ela et al. [70] broadly 39 

reviewed other studies to quantify reserve needs for power system with high RE penetration. 40 

Many of them used a two-stage stochastic programming model whereby numerous wind 41 

generation scenarios were simulated and unit commitment solutions were obtained reliably for 42 

each of the scenarios. 43 

 44 

Several factors affect the degree of operational flexibility of the grid. They include the level of 45 

penetration of intermittent generation sources in the grid, the correlation between intermittent 46 
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generation and total load and the outage rate of conventional generation resources [71]. All these 1 

dependent parameters contribute to the increased uncertainty and difficulty in flexibility 2 

computations. A classification into three categories of increasing complexity was proposed in a 3 

state-of-the-art review of existing metrics for flexibility assessment [65]. Metrics in the first 4 

category provide a glimpse of the system flexibility. In this regards, Yasuda [72] developed a 5 

flexibility chart that presents an easy and non-technical way to identify potential flexibility 6 

resources in a power system at a glance. The chart indicates the percentage of installed capacity 7 

of five potential sources of flexibility, namely pumped hydro, hydro, combined heat and power, 8 

combined cycle gas turbine and interconnection, relative to peak demand. Nevertheless, this 9 

method is indicative only as it does not allow computation of the overall power system 10 

flexibility. Besides, capacity is not a good pointer to flexibility. 11 

 12 

The second category of metrics takes into account the time-specific nature of flexibility to 13 

provide a more meaningful appraisal of the system response to supply-demand imbalances 14 

[65].The IEA devised the Flexibility Assessment Tool (FAST) to provide a measure of the 15 

flexibility requirements and resources in different areas of a power system with varying levels of 16 

RE integration [64]. FAST has the benefit of being computationally simple as it basically 17 

consists of a four-step procedure that relates to key questions pertaining to the resources of the 18 

power system. Initially, the ramping capabilities of four already present flexible resources, 19 

namely dispatchable plants, interconnection, storage and DSM, are assessed over four different 20 

balancing time frames ranging from 15 minutes to 36 hours. Then, the extent to which aspects of 21 

the power system will limit the availability of the four flexible resources is determined. Thirdly, 22 

the maximum flexibility need of the system is computed from various parameters including the 23 

fluctuations and forecast errors in demand, variable generation output and unexpected outages. 24 

Finally, the availability of flexible resources is compared with the flexibility needs of the system 25 

to establish the extent to which intermittent RE capacity can be reliably balanced by the current. 26 

The IEA presented a refined version of their flexibility assessment tool in 2014, FAST2. It 27 

enables flexibility assessment on many timescales by processing synchronised historic time 28 

series of variable generation output and load data within an interactive environment [73]. FAST2 29 

requires additional data such as flexibility features of conventional units together with 30 

interconnection and DSM information. It evaluates the power system flexibility by determining 31 

the maximum change in supply/demand balance that the system can meet at a given instant [65]. 32 

It also has the capability of computing the level of intermittent RE penetration at which 33 

additional flexibility will most likely be needed [73]. 34 

 35 

The third category of flexibility assessment tools adopts a holistic approach of the power system 36 

to incorporate its physical, institutional and interconnection characteristics in the evaluation [65]. 37 

The complexity of the analysis implies that data requirements for this category of metrics are 38 

substantial. Ma et al. [74] devised an “offline” flexibility metric that estimates the flexibility 39 

level of the overall power system along with those of individual generators in the system. The 40 

flexibility of each generator is calculated using its ramp rate and adjustable capacity given by the 41 

difference between its maximum and minimum generation levels. It is then normalised with 42 

respect to the maximum capacity of the plant.  The flexibility index of the whole system is 43 

obtained from the weighted sum of the indices of individual generators.  44 

 45 
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Some flexibility metrics have been derived from techniques applied to obtain established 1 

generation adequacy indices. Thus, a task force set up by the NERC to study flexibility in power 2 

systems used the ELCC methodology to propose an Effective Ramping Capability (ERC) metric 3 

[59]. Just like ELCC estimates the contribution of a new unit to the overall firm capacity of a 4 

power system, ERC approximates the contribution of a unit to the overall ramping capacity of 5 

the power system. ERC basically specifies the ability of a generation unit to ramp in a given 6 

direction over various time scales. Its computation follows that of ELCC except for two things. 7 

Firstly, the highest ramp in a given direction and time scale is considered rather than the 8 

maximum rated output of the unit. Secondly, the ramping availability rate of the unit replaces its 9 

forced outage rate to represent the probability that it will be able to supply its maximum ramp at 10 

any instant. It is calculated from historical dispatch data at a small resolution. 11 

 12 

Lannoye et al. [75] recommended insertion of a flexibility evaluation stage following the 13 

capacity adequacy assessment step in long-term GEP of power systems with a high share of 14 

intermittent RE. To this end, the authors drew on the LOLE methodology to devise the 15 

insufficient ramping resource expectation (IRRE) metric. The latter quantifies the risk that the 16 

power system will face a shortage of ramping resources to follow changes in net load over 17 

various time horizons. Adequacy of ramping resources can only be assessed if an appropriate 18 

unit commitment mechanism is applied to dispatch the resources in the system. This facilitates 19 

the comparison of the extent of ramping capability available in the power system with the 20 

ramping requirement at different time steps. Time series data of conventional and variable RE 21 

generation synchronised with load data for selected time horizons are processed to get time series 22 

data about net load ramping requirements. In a similar way to the creation of a COPT for LOLE 23 

calculation, an available flexibility distribution (AFD) is then generated for all upward and 24 

downward ramping resources from plant operational characteristics for each time horizon. By 25 

comparing the AFD with the net load ramp requirements, the probability that the power system 26 

lacks flexibility to meet each positive or negative ramp over each time horizon is computed and 27 

summed to obtain the overall system IRRE. The algorithm was tested on a 6-unit power system 28 

to underline the time horizons when the system is more vulnerable to deficiencies in ramping 29 

ability and to reveal the effect of increased variable RE penetration on overall system flexibility. 30 

In view of the substantial data and computational complexity involved in IRRE computation, a 31 

high-level methodology was subsequently proposed by the same authors to make the IREE 32 

calculation more manageable for stakeholders with limited exposure to RE integration [76]. 33 

Simplicity of the power system operations is achieved by assuming that units are dispatched on 34 

the basis of energy cost merit order. As a result, data requirements are constrained to 35 

synchronised time series of load and variable RE production for the smallest time horizon 36 

considered together with the features of individual flexible resource units. Once time series of 37 

the available flexibility are calculated from this data, the ability of the system to follow net load 38 

ramps can be determined. Hence, a period of flexibility deficit (PFD) metric can be deduced to 39 

give an indication of the number of periods when the system experiences a flexibility deficit 40 

within a given time horizon. 41 

 42 

The Electric Power Research Institute (EPRI) elaborated an integrated long-term planning 43 

framework for power systems consisting of four levels of flexibility assessment that may arise at 44 

different stages of the planning process [86]. A multi-level assessment tool, InFLEXion, was 45 

developed to facilitate understanding of flexibility needs of the power system by decision-makers 46 
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through four different metrics. Besides IRRE and PFD, expected unserved ramping (EUR) and 1 

well-being assessment are used to appraise flexibility issues in planning decisions. EUR is 2 

analogous to the EUE index used in quantifying capacity adequacy in the sense that it refers to 3 

the total magnitude of the flexibility shortage instead of its total duration. It represents the 4 

aggregate ramping deficits over a specific time horizon based on large ramps up to a certain 5 

percentile. Well-being analysis, first coined by Billinton and Fotuhi-Firuzabad [87], combined 6 

probabilistic and deterministic indices to express the well-being of a power system into one of 7 

three states: healthy, marginal or at risk. In a similar way, InFLEXion maps the frequency and 8 

magnitude of flexibility shortages over a particular period through PFD and EUR respectively, to 9 

determine whether a system is in a user-defined safe, warning, or dangerous state [86].  10 

 11 

Hargreaves et al. [88] explored a novel stance on the flexibility problem. The authors observed 12 

that previous studies had focused mostly on characterising operating issues of the power system 13 

and did not address the cost implications of adding flexibility resources to the system. 14 

Consequently, a stochastic production simulation model, known as Renewable Energy Flexibility 15 

(REFLEX), was developed. It tracks the distribution of system load, dispatch, generation, outage 16 

and ramping conditions using synchronised historical data to capture unit commitment, forecast 17 

errors and ramping requirements. Various reliability and flexibility metrics, including EUR, EUE 18 

and Expected Overgeneration (EOG) are derived to characterise expected system flexibility and 19 

adequacy shortages. Penalty values are assigned to each violation based on the value of unserved 20 

energy for upward violations and excess generation for downward violations. REFLEX then 21 

performs an economic analysis to evaluate optimal flexible capacity investments by trading off 22 

the cost of new flexible resources against the gain achieved by avoiding flexibility violations. 23 

The proposed framework enables power system planners to evaluate the integrity of their power 24 

system in the face of challenges introduced by intermittent RE integration and to determine the 25 

least-cost capacity planning strategy to meet these challenges in various timescales. 26 

 27 

5.3 RECENT LONG-TERM CAPACITY PLANNING MODELS 28 

In the wake of the increased integration of intermittent RE sources in the electricity grid, it is 29 

essential for the new long-term GEP paradigm to capture the operational characteristics of the 30 

generation fleet and gain insight into the actual dispatch practices in order to integrate flexibility 31 

issues. As observed throughout this paper, traditional GEP models used to simply ignore short-32 

term system operational details or account for them by using highly simplified assumptions. For 33 

example, cycling and load following features of individual power plants are often overlooked 34 

and the chronology of demand is entirely absent in the load duration curve used to approximate 35 

the annual load profile. Recent literature has mostly been directed towards finding ways to 36 

incorporate short-term power system operational details in GEP while ensuring that the problem 37 

remains computationally tractable. Typically, methods developed for this purpose integrate unit 38 

commitment and dispatch processes within the existing GEP models. Ma et al. [77] proposed a 39 

Unit Construction and Commitment (UCC) algorithm to find the optimal generation portfolio 40 

that satisfies the flexibility requirements at a given wind penetration level. The UCC algorithm 41 

represents one of the first efforts to capture flexibility within GEP by integrating short-term 42 

operational decisions in the long-term planning. Rather than considering a fixed set of existing 43 

generating units and their operational costs as traditionally done in unit commitment planning, 44 

the UCC has the possibility of adding new generation plants along with their associated 45 

investment costs. Limitations of this work include the use of a deterministic methodology to 46 
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model stochastic wind energy output and inability to study intra-hour variations in intermittent 1 

generation and demand. Palmintier and Webster [84] merged GEP with unit commitment 2 

planning in another study to capture the influence of flexibility on long-term capacity planning. 3 

Computational tractability is ensured by clustering generators that share the same technical 4 

characteristics in terms of ramp rates, heat rate as well as minimum and maximum operating 5 

levels. A one-year simulation conducted at an hourly resolution on a 205-unit power system 6 

indicates not only that flexibility significantly affects generation mixes but also that ignoring 7 

flexibility can lead to generation portfolios that are infeasible to operate. A major drawback of 8 

this methodology relates to its deterministic approach to reserves. Once reserve constraints are 9 

satisfied, the model does not investigate scenarios where reserves may be inadequate due to 10 

capacity outages and forecast errors. Batlle and Rodilla [78] incorporated the cycling features of 11 

thermal units in a traditional least-cost optimisation GEP model. The unit scheduling process 12 

considered start-up times and minimum generation levels of units together with usual cost 13 

functions in determining the most appropriate technologies to provide power at various intervals 14 

of the planning horizon. The main problems of this method relate to its unique economic 15 

objective function and the absence of uncertainties in its formulation. Jin et al. [79] attended to 16 

the issue of uncertainties by proposing a stochastic GEP model where long-term uncertainty in 17 

the wind resource is introduced by using multiple scenarios consisting of weekly time series of 18 

hourly wind power output data. On the other hand, short-term errors in wind forecast are 19 

compensated by a calculated amount of operating reserves. Power plant operational details are 20 

included through a simple unit dispatch model regulated by economic aspects and constrained by 21 

ramping characteristics of generators. However, due to the computational complexity, the model 22 

can handle only a subset of weekly wind power scenarios. Other shortcomings pertain to the 23 

relatively basic treatment of short-term wind forecast errors and to the representation of 24 

operational constraints of generating units by ramp rates only. Flores-Quiroz et al. [80] reduced 25 

the computation complexity by using a decomposition technique that allows for the inclusion of 26 

integer variables in the various stages of the GEP. A wide range of unit operational 27 

characteristics appear as constraints in the model. The main deficiencies of this method are 28 

concerned with the sequential approach to its multi-stage solution and its deterministic nature 29 

that prevents it from handling uncertainties adequately. Koltsaklis and Georgiadis [79] 30 

implemented a mixed integer linear programming model that also makes investment decisions 31 

based on short-term operational constraints of energy planning. Computational tractability has 32 

been preserved by taking a typical day to represent each month over a long period to determine 33 

the optimal generation mix and energy planning details of the power system. One common 34 

drawback of all these studies is that they focused solely on thermal generating units for 35 

flexibility provision and did not consider alternative sources of flexibility. Moreover, the models 36 

apply long temporal resolutions, in order to avoid the prohibitive computational complexity 37 

associated with smaller temporal resolutions. Such high resolutions are not able to fully capture 38 

the intricacies of the generator operations. 39 

 40 

In recent years, a rational strategy that has been widely applied to represent operational details in 41 

GEP is the soft-linking of two commercially available energy modelling tools [81–86]. A first 42 

tool is selected to implement traditional long-term capacity planning by optimising the 43 

generation portfolio while a second one executes short-term modelling of the resulting power 44 

system in terms of unit commitment and dispatch. The second tool thus transposes short-term 45 

operational dynamics of the power system to the generation mix resulting from the high-level 46 
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optimisation procedure of the first tool. The two tools are usually applied iteratively in order to 1 

verify the operational feasibility of the expansion plan. The wide acceptance of this hybrid 2 

framework stems from its simplicity, computational tractability and use of well-known 3 

commercial modelling packages. Nevertheless, several limitations of the soft-linking approach 4 

have been reported. The fact that the two tools use overlapping but different sets of input 5 

parameters could lead to hidden input data inconsistency [85]. Additionally, it is unlikely that 6 

investment decisions on new power plants will be guided predominantly by short-term 7 

operational constraints of the power system. Moreover, since most applications of the hybrid 8 

model use long time steps in the capacity expansion tool, they are unable to directly include 9 

flexibility constraints in it [87]. Another weakness is the single least-cost minimisation objective 10 

function used in most studies which dictates that other potential objectives are converted into 11 

constraints. 12 

6. SUMMARY AND RESEARCH QUESTIONS 13 

The power generation industry has been subjected and forced to constant evolution since its 14 

inception. Among other things, this review has shown that power system DMs have had to 15 

continuously adjust their long-term planning models in order to fully capture changes in policies 16 

and technological progress. During the last two decades in particular, a major transition has 17 

occurred in power systems characterised by the rising influx of RE sources in the generation mix. 18 

This shift is motivated by environmental, energy security and sustainability concerns. The salient 19 

modifications in GEP modelling in response to this transformation in the electricity industry 20 

have been highlighted chronologically in this paper. More recently, the increased integration of 21 

intermittent RE sources in the electricity grid has presented several new challenges to long-term 22 

energy planning. In particular, the dynamics and variability of these resources on small 23 

timescales must be considered to verify the feasibility of capacity expansion plans. Conventional 24 

GEP models have ignored or considerably simplified operational details of the power system at 25 

the level of individual generating plants and focused on ensuring that the planned generation 26 

capacity is sufficient to meet the forecasted demand. Guaranteeing the required generation 27 

capacity is no longer adequate for system security if that capacity is not flexible enough to 28 

respond to supply and demand variability. Key state-of-the-art models that have been devised to 29 

depict the dynamics experienced in actual operations to some extent have been discussed 30 

critically in this paper. The discussion has enabled the identification of gaps that offer interesting 31 

opportunities for further research, as iterated below:  32 

Operational flexibility: During this review, we have established that generation portfolios with 33 

high shares of variable RE must have sufficient operational flexibility in order to meet larger and 34 

more frequent fluctuations in net load. For this purpose, several metrics of varying complexity 35 

have been developed to evaluate the flexibility requirements of power systems and the flexibility 36 

availability in power systems. It is essential to capture both types of metrics in GEP to shed light 37 

on the feasibility of the generation plans. As explained in sections 5.2 and 5.3, most efforts in 38 

this direction have used less data-intensive metrics that provide a high-level representation of 39 

flexibility in the planning process. Investigating the coupling of accurate flexibility metrics with 40 
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GEP will provide a more detailed and realistic overview of operations. Such metrics, however, 1 

rely on detailed simulations of extensive historical load and generation time-series data. Future 2 

research efforts could focus on developing computationally tractable algorithms to deal with the 3 

enhanced complexity. Another issue that requires immediate attention of researchers is the 4 

economic value associated with operational flexibility. Improving the flexibility availability 5 

within the power system entails additional costs. Although some studies have attempted to 6 

estimate the cost of flexibility provision through solar and wind power [88–90], a collective 7 

framework is required to harmonize the inherent differences among various power systems and 8 

the features that are considered in the economic evaluation. Costs associated with provision of 9 

flexibility are of prime importance to DMs in their selection of the optimal expansion plan. The 10 

literature survey has also revealed that GEP studies incorporating flexibility mostly consider 11 

conventional power plants as the sole source of flexibility. Future works need to account for 12 

other sources of flexibility in the power system, including sort-term DSM programmes, storage 13 

devices and interconnection with neighbouring networks, in order to provide a holistic view into 14 

the real potential of the system to cope with variable RE. Methods to assess the flexibility 15 

provision by these sources need to be devised. A crucial gap in present knowledge relates to 16 

determining the minimum level of flexibility that a power system must possess in order to accept 17 

a given share of intermittent RE. Along the same lines, it is presently impossible to evaluate 18 

precisely the additional amount of variable renewables that the grid can take even if its flexibility 19 

resources are known. Again, such information is vital for DMs before undertaking new RE 20 

obligations. 21 

Treatment of uncertainties: Measures taken to decarbonize the electricity grid have contributed 22 

to an escalation of uncertainties in energy planning and heightened the complexity of GEP. 23 

Models have strived to incorporate the uncertainties caused by variations in RE output and 24 

demand separately in GEP [91–93]. However, simplistic formulations are applied to represent 25 

uncertainties in both RE output and load in the modelling process to ensure its computational 26 

tractability. Future load is usually estimated through one or more of the following factors: 27 

projected population, economic state and technological progress. The effects of diurnal, weekly, 28 

and seasonal patterns on demand could be combined with the aforementioned factors. Similarly, 29 

uncertainties in intermittent RE output is commonly represented by the average annual output. In 30 

this context, capacity credit and ELCC computation could be introduced in GEP to convincingly 31 

represent the firm contribution of wind and solar energy outputs to the grid. The geographical 32 

availability of variable RE resources could also be incorporated in the formulation. Moreover, 33 

given that both demand and variable RE output depend on climatic conditions, the correlation 34 

between them and its effect on the generation mix could be investigated in GEP. Variable RE 35 

sources also introduce uncertainties in short-term operational details. Current unit commitment 36 

models used in GEP attempt to forego its traditional deterministic nature by considering a few 37 

cycling and ramping constraints of individual plants. The actual operations of units could be 38 

more accurately captured by integrating a whole range of technical characteristics of generators 39 

in the model. Furthermore, unit commitment and dispatch can be simulated more effectively by 40 
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incorporating forecasting algorithms that anticipate wind and solar resources in GEP models. 1 

Until now, forecasting techniques have hardly been considered but their potential to mitigate 2 

reliability and resource overscheduling risks can be valuable in capacity planning models. 3 

Smart grid technologies:  The impact of smart grid technologies on GEP is likely to intensify in 4 

the future as more variable renewables are added to the grid. The main reason for their growing 5 

influence stems from their ability to decrease the variability in the power system by facilitating 6 

the supply-demand balance through DSM programmes, modern information and communication 7 

technologies, advanced metering infrastructure, sensor networks and enhanced grid management 8 

and control. Future research efforts in GEP should therefore optimally involve these smart 9 

technologies in a rational way. Notably, the performance of smart grid technologies from 10 

operational and economic perspectives could feature in upcoming GEP models by analysing the 11 

benefits and problems associated with them. Most of the existing literature on the impacts of 12 

smart grid technologies on GEP has focused on DSM programmes. Other emerging alternatives 13 

that help in maintaining the grid demand-supply balance, such as distributed energy resources 14 

and plug-in electric vehicles, could also be investigated. 15 

Finally, it is important to note that the suggested future research directions will add new 16 

dimensions to GEP, thereby exacerbating the complexity of an already convoluted problem. 17 

More sophisticated techniques, tools and algorithms will inevitably be needed to cope with the 18 

additional computational requirements. More often than not, GEP model developers will be 19 

faced with the delicate task of making trade-offs between the level of granularity implemented in 20 

their models and the computational complexity. 21 
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Figure Captions 

Figure 1: External costs associated with a coal-fired generation plant. 

 

Figure 2: Classification of Multi-Attribute Decision Making methods. 

 

Figure 3: Pareto-optimal surface for a problem with two objectives. 

 

Figure 4: Traditional uncertainties considered in GEP. 

 

Figure 5: Example illustrating the concept of ELCC of an additional power plant [53]. 

 

Figure 6: Variability in wind generation, demand and net load during a one-week period [65]. 
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