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Abstract The purpose of this paper is twofold: (1) we study different notions of the average

distance between two points of a self-similar subset of R, and (2) we investigate the asymptotic

behaviour of higher order average moments of self-similar measures on self-similar subsets

of R.
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1 Introduction

The purpose of this paper is twofold, namely, to study the average distance between two

points of a self-similar subset of R and to investigate the asymptotic behaviour of higher order
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average moments of self-similar measures in R. In particular, we investigate the following

two problems:

(1) We compute the “natural geometric” average distance between two points in a self-

similar Cantor subset C of R satisfying the so-called Open Set Condition. If Ck denotes the

k’th order approximation to C (the precise definition of Ck will be given in Sect. 1.1), then

the number
∫

C2
k
|x − y| d(x, y)
∫

C2
k

d(x, y)
,

may be interpreted as the average distance between two points chosen uniformly from Ck .

We now show that the following limiting average distance, namely,

lim
k

∫

C2
k
|x − y| d(x, y)
∫

C2
k

d(x, y)
(1.1)

exists and we provide an explicit value for it; this is the content of Corollary 2.2 (we note

that this result is not new, but was first proved by Leary et al. [18] in 2010; see below for a

more detailed discussion of this).

There is a another, and perhaps equally natural, way to define the average distance between

two points from C . Namely, the average distance between two points in C chosen with respect

to the “natural” uniform distribution on C , i.e. chosen with respect to the normalised Hausdorff

measure on C . More precisely, if s denotes the Hausdorff dimension of C and H
s denotes

the s-dimensional Hausdorff measure, then we compute the average distance between two

points in C chosen with respect to the normalised s-dimensional Hausdorff measure on C ,

i.e. we compute the integral

1

Hs(C)2

∫

C2
|x − y| d(Hs × H

s)(x, y); (1.2)

this is the content of Corollary 2.3. Somewhat surprisingly, in general, the averages in (1.1)

and (1.2) do not coincide. For example, if C denotes the self-similar subset of R such that

C = S1C ∪ S2C where S1, S2 : [0, 1] → [0, 1] are defined by S1(x) = 1
4

x and S2(x) =
1
2

x + 1
2

, then

lim
k

∫

C2
k
|x − y| d(x, y)
∫

C2
k

d(x, y)
=

8

21
≈ 0.381

and

1

Hs(C)2

∫

C2

|x − y| d(Hs × H
s)(x, y) =

12

5(4 +
√

5)
≈ 0.385;

see Sect. 2.1.

In fact, we compute far more general averages than those in (1.1) and (1.2). Namely, if μp

and μq are self-similar measures on C associated with the probability vectors p and q (the

precise definitions will be given in Sect. 1.1), then we compute the average distance between

two points in C where the first point is chosen with respect to the measure μp and where the

second point is chosen with respect to the measure μq, i.e. we compute the average distance

defined by
∫

C2

|x − y| d(μp × μq)(x, y); (1.3)
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see Theorem 2.1. For special choices of the probability vectors p and q, the average in (1.3)

simplifies to (1.1) and (1.2). Namely, if C is generated by the Iterated Function System

(S1, . . . , SN ) where each Si : [0, 1] → [0, 1] is a similarity map such that Si (0, 1) ∩
S j (0, 1) = ∅ for i �= j and the contracting ratio of Si is denoted to ri (the precise definitions

of these concepts will be given in Sect. 1.1), then (1.3) simplifies to (1.1) for p = q =
( r1
∑

i ri
, . . . ,

rN
∑

i ri
), and (1.3) simplifies to (1.2) for p = q = (r s

1, . . . , r s
N ) where s is the

unique solution to the equation
∑

i r s
i = 1.

The average distance between two points in a self-similar subset of R has recently been

investigated by Leary et al. [18] and Bailey et al. [1]. In particular, Leary et al. proved the

formula in Corollary 2.2 for the limiting “geometric” average distance in (1.1). Leary et al

also provide formulas for the average distance (1.1) between points belonging to some self-

similar subsets of R
n for n ≥ 2, and for points belonging to certain families of fat Cantor

subsets of R. Averages similar to (1.1) between points belonging to self-similar subsets of

R
n , have also been studied in Bailey et al. [1]. In particular, Bailey et al. are interested in

developing numerical methods that allow for high-precision approximation of the integrals

in (1.1). Finally, we note that other notions of average distances on fractals (different from

the ones considered in this paper and in [1,18]) have been studied by Bandt and Kuschel [2]

and Hinz and Schief [14].

There is also a connection between the results in this paper and recent studies of the

Kantorovich–Wasserstein distance between two self-similar measures. We first recall the

definition of the Kantorovich–Wasserstein distance W (μ, ν) between two Borel probability

measures μ and ν on a compact metric space X . We say that a Borel probability measure γ on

X × X is a coupling of μ and ν if μ = γ ◦ P−1 and ν = γ ◦ Q−1 where P, Q : X × X → X

are the projections given by P(x, y) = x and Q(x, y) = y, and we denote the family of

couplings of μ and ν by Ŵ(μ, ν). The Kantorovich–Wasserstein distance W (μ, ν) between

μ and ν is now defined by

W (μ, ν) = inf
γ∈Ŵ(μ,ν)

∫

|x − y| dγ (x, y),

see, for example [20]. It is well-known that convergence with respect to the Kantorovich–

Wasserstein distance is equivalent to weak convergence. The Kantorovich–Wasserstein

distance between self-similar measures has recently been studied by Fraser [11] and investi-

gated further by Cipriano and Pollicott [4] and Cipriano [5]. In particular, Fraser [11] found

an explicit formula for the Kantorovich–Wasserstein distance between two self-similar mea-

sures on the real line generated by Iterated Function Systems of two maps with a common

contractions ratio. For the self-similar measures μp and μq, the product measure μp × μq is

clearly a coupling of μp and μq (but typically not a coupling that realises the Kantorovich–

Wasserstein distance between μp and μq), and our results are therefore related to the study of

the Kantorovich–Wasserstein distance between self-similar measures in [4,5,11]. For exam-

ple, in order to derive his main results, Fraser [11, Theorem 2.1] first finds an explicit formula

for the average
∫

|x − y| dγr (x, y) for a certain family of self-similar measures γr indexed

by a parameter r , and a special case of this result is a special case of Theorem 2.1 providing

an explicit formula for the average
∫

|x − y| d(μp × μq)(x, y).

(2) We find the exact asymptotic behaviour of the higher order average moments of a self-

similar measure on a self-similar subset of R; this is the contents of Theorems 2.4 and 2.5.

More precisely, if C is a self-similar subset of R generated by an Iterated Function System

of the form (S1, S2) where
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S1(x) = r x,

S2(x) = r x + 1 − r,

for r ∈
(

0, 1
2

]

, i.e. C is the unique non-empty compact subset of R such that

C = S1C ∪ S2C.

(the precise definitions are given in Sect. 1.1) and μp is the self-similar measure on C

associated with the probability vector p = (p1, p2), then we establish the exact asymptotic

behaviour of the higher order moments

Mn =
∫

C2

|x − y|n d(μp × μp)(x, y) (1.4)

as n tends to infinity. In particular, in Theorems 2.4 and 2.5 we show that there is a multi-

plicatively periodic function � : (0,∞) → R with period equal to r and a sequence (εn)n

of real numbers with εn → 0, such that

n� Mn = �(n) + εn (1.5)

for all n, where

� =
log p1 p2

log r
. (1.6)

The proofs of Theorems 2.4 and 2.5 use techniques from number theory and dynamical sys-

tems involving Tauberian theory and “zeta-functions”. Using a Tauberian argument (namely,

the Mellin transform theorem), we first show that the n’th moment Mn can be written as the

sum of a complex contour integral of an appropriate “zeta-function” and an error-term. Next,

we compute the complex contour integral using the residue theorem. In particular, we show

that the contour integral can be written as the sum of a multiplicatively periodic function

�(n) of n and another error-term. Finally, combining these two results leads to (1.5).

We are, of course, not the first to investigate the asymptotic behaviour of different types

of moments. In particular, the moments Jn defined below have been studied, namely, if C

is a self-similar subset of the unit interval satisfying the Open Set Condition and μp is the

self-similar measure on C associated with the probability vector p, then the n’th moment Jn

is defined by

Jn =
∫

C

tn dμp(t) (1.7)

for n ∈ N. For example, within the past 15 years several authors [1,7,8] have outlined

arguments suggesting that Tauberian theory and “zeta-functions” can be used to investi-

gate the asymptotic behaviour of the moments Jn and related quantities of special classes

of self-similar measures and developed numerical methods that allow for high-precision

approximations.

More rigorous studies of special cases of the above constructions have also been consid-

ered. For example, Cristea and Prodinger [6] and Grabner and Prodinger [13] have outlined

how the same techniques, involving Tauberian theory and “zeta-functions”, can be used to

study the asymptotic behaviour of the moments Jn of so-called binomial measures, i.e. the

measures obtained by putting r = 1
2

and p = (p1, p2), and Goh & Wimp [12] use Tauberian

theory to study the asymptotic behaviour of the moments Jn of the Cantor measure, i.e. the

measure obtained by putting r = 1
3

and p = (p1, p2) = ( 1
2
, 1

2
), providing full and rigorous

proofs of their results.
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More recently Mellin transform ideas and “zeta-functions” have been introduced into

fractal geometry by Lapidus et al. [16,17]. In particular, due to work by Lapidus and his

collaborators [16,17], it has now been recognized that the study of different types of moments

is deeply related to the understanding of the geometry of many fractal sets and measures.

This viewpoint is also illustrated by the following observation. Namely, the drop-off rate �

of the moments Mn equals the sum of the local dimension dimloc(μp; 0) = log p1

log r
of μp at 0

and the local dimension dimloc(μp; 1) = log p2

log r
of μp at 1, i.e.

� =
log p1 p2

log r
=

log p1

log r
+

log p2

log r
= dimloc(μp; 0) + dimloc(μp; 1); (1.8)

recall, that if μ is a Borel measure on R
n and x ∈ R

n , then the local dimension of μ at x is

defined by

dimloc(μ; x) = lim
δց0

log μ(B(x, δ))

log δ

provided the limit exists, see, for example [9,10].

1.1 The setting: self-similar sets and self-similar measures in R

Let N be a positive integer with N > 1, and fix real positive numbers a1, . . . , aN and

r1, . . . rN , with

0 = a1 < a1 + r1 ≤ a2 < a2 + r2 ≤ · · · ≤ aN < aN + rN = 1.

Define Si : [0, 1] → [0, 1], by

Si (x) = ri x + ai .

It follows (see, for example [9]) that there is a unique non-empty compact subset C of [0, 1]
such that

C =
⋃

i

Si C; (1.9)

the set C is known as the self-similar set associated with the list (Si )i . The set C can also

be constructed as follows. In order to describe this construction, we introduce the following

notation. For a positive integer n, write

	n = {1, . . . , N }n (1.10)

and

	N = {1, . . . , N }N, (1.11)

i.e. 	n = {1, . . . , N }n denotes the family of strings i = i1 . . . in of length n with i j ∈
{1, . . . , N } for all j and 	N = {1, . . . , N }N denotes the family of infinitely long strings

i = i1i2 . . . with i j ∈ {1, . . . , N } for all j . For i = i1 . . . in ∈ 	n , we will write |i| = n for

the length of i. The set C can now be constructed as follows. For a positive integer n and

i = i1 . . . in ∈ 	n , let

Ii = Si1 . . . Sin [0, 1] (1.12)
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and

Cn =
⋃

|i|=n

Ii. (1.13)

Then C0 ⊇ C1 ⊇ C2 ⊇ · · · and C equals the intersection of the Cn’s, i.e.

C =
⋂

n

Cn . (1.14)

Loosely speaking (1.13) says that the Cn may be thought of as approximations to the set C ;

this interpretation will be useful in Sect. 1.3.

In this paper, we will consider average distances (and higher order average moments) with

respect to self-similar measures on C . Self-similar measures have attracted an enormous inter-

est in the literature during the past 30 years and are defined as follows. Let p = (p1, . . . , pN )

be a probability vector. Then there is a unique Borel probability measure μp supported on

the self-similar set C defined in (1.9) [or equivalently in (1.14)] such that

μp =
∑

i

piμp ◦ S−1
i , (1.15)

the measure μp is known as the self-similar measure (or the self-similar multifractal) asso-

ciated with the list (Si , pi )i , see, for example [10].

1.2 Average distances and average moments: the measure theoretic approach

For two Borel probability measures μ and ν on C , we define the average distance with respect

to the measures μ and ν by

A(μ, ν) =
∫

C2
|x − y| d(μ × ν)(x, y). (1.16)

We are also interested in higher order average moments defined as follows. Namely, for

a positive integer n, we define the n’th order average moment (or the n’th order average

distance) with respect to the measures μ and ν by

An(μ, ν) =
∫

C2
|x − y|n d(μ × ν)(x, y). (1.17)

1.3 Average distances and average moments: the geometric approach

There is a (perhaps) more intuitive approach for defining average distances and higher order

average moments. In order to introduce this approach, we first introduce the following nota-

tion. If μ is a Borel measure on R and E is a Borel subset of R, then we write μ E for the

restriction of μ to E , i.e.

(μ E)(B) = μ(E ∩ B)

for any Borel subset B of R. Also, for i, j ∈ 	k , write λ2
i,j for the normalized 2-dimensional

Lebesgue measure restricted to Ii × Ij, i.e.

λ2
i,j =

1

rirj

L
2 (Ii × Ij)

where L
2 denotes the 2-dimensional Lebesgue measure.
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We can now describe the alternative (and perhaps) more intuitive geometric approach for

defining average distances and higher order average moments. For Borel probability measures

μ and ν on C and a positive integer k, we define the k’th approximative n’th order average

moment with respect to μ and ν by

An
geo,k(μ, ν) =

∫

C2
k

|x − y|n d

⎛

⎝

∑

|i|=|j|=k

μ(Ii)ν(Ij) λ2
i,j

⎞

⎠ (x, y)

=
∑

|i|=|j|=k

μ(Ii)ν(Ij)

rirj

∫

Ii×Ij

|x − y|n d(x, y). (1.18)

Finally, we define the geometric average n’th order moment with respect to μ and ν by

An
geo(μ, ν) = lim

k
An

geo,k(μ, ν), (1.19)

provided the limit exists. If n = 1, then we will write Ageo,k(μ, ν) and Ageo(μ, ν) for

A1
geo,k(μ, ν) and A1

geo(μ, ν), respectively.

The number Ageo,k(μ, ν) has a clear geometric interpretation. Namely, two players A and

B, say, throw darts at the k’th approximation Ck = ∪|i|=k Ii to the Cantor set C . If for each

i ∈ 	k , we make the following two assumptions, namely:

Assumption 1 Player A has the probability μ(Ii) of hitting Ii.

Assumption 2 Player B has the probability ν(Ii) of hitting Ii.

then the number Ageo,k(μ, ν) is the average distance between a dart thrown by A and a

dart thrown by B; of course, this game of darts is most likely not very realistic since the

distribution of someone throwing darts at a line is more likely to be Gaussian than modelled

by the measures μ and ν.

The next result shows that this approach leads to the same notion of average distance as

the measure theoretical approach in (1.17); more precisely, the result shows that the limit

An
geo(μ, ν) = limk An

geo,k(μ, ν) always exists and equals An(μ, ν).

Proposition 1.1 Let μ and ν be non-atomic Borel probability measures on C and let n be a

positive integer. Then the limit An
geo(μ, ν) exists and

An
geo(μ, ν) = An(μ, ν).

Proof For i ∈ 	n , let λ1
i denote the normalized Lebesgue measure restricted to Ii, i.e.

λ1
i = 1

ri
L

1 Ii where L
1 denotes the 1-dimensional Lebesgue measure. Next, for a positive

integer k, define measures μ̃k and ν̃k by μ̃k =
∑

|i|=k μ(Ii) λ1
i and ν̃k =

∑

|i|=k ν(Ii) λ1
i . Since

μ and ν are non-atomic, it is not difficult to see that μ̃k → μ weakly and that ν̃k → ν weakly,

and it therefore follows from [3, Section 3.4] that μ̃k ×ν̃k → μ×ν. In particular, since clearly

An
geo,k(μ, ν) =

∫

|x − y|n d(μ̃k × ν̃k)(x, y) and An(μ, ν) =
∫

|x − y|n d(μ× ν)(x, y), this

now implies that

An
geo,k(μ, ν) =

∫

C2
k

|x − y|n d(μ̃k × ν̃k)(x, y) →
∫

C2
|x − y|n d(μ × ν)(x, y) = An(μ, ν).

This completes the proof. ⊓⊔
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2 Statements of results

2.1 First order moments

We first compute the average distance A(μp, μq) with respect to two self-similar measures

μp and μq associated with two (not necessarily identical) probability vectors p and q; this

is the content of the next theorem. Below we use the following notation, namely, for i, j =
1, . . . , N , we write si, j for the sign of i − j , i.e.

si, j =

⎧

⎨

⎩

i− j
|i− j | for i �= j;

0 for i = j.
(2.1)

Theorem 2.1 Let p = (p1, . . . , pN ) and q = (q1, . . . , qN ) be probability vectors. Then we

have

A(μp, μq) = Ageo(μp, μq)

=
1

1 −
∑

i pi qiri

⎛

⎝

∑

i, j

pi q j |ai − a j | +
∑

i pi ai

1 −
∑

i piri

∑

i, j

si, j pi q jri

+
∑

i qi ai

1 −
∑

i qiri

∑

i, j

si, j p j qiri

⎞

⎠ .

The proof of Theorem 2.1 is given in Sect. 3. We remark that the proof of Theorem 2.1 is

not difficult. Indeed, we first derive a 1’st order linear difference equation for the sequence

(Ageo,k(μp, μq))k . Using standard methods, this equation can now be solved giving the

limiting behaviour of Ageo,k(μp, μq) as k → ∞.

If p = q and all the contraction ratios coincide, i.e. if r1 = · · · = rN = r , then the formula

in Theorem 2.1 for the average A(μp, μq) simplifies considerably, namely, in this case it is

easily seen that

A(μp, μp) = Ageo(μp, μp) =
∑

i, j pi p j |ai − a j |
1 − r

∑

i p2
i

.

Below we consider two corollaries of Theorem 2.1. By applying Theorem 2.1 to the

vectors p = q = u where u = ( r1
S
, . . . ,

rN

S
) and S =

∑

i ri , we obtain the first corollary,

i.e. Corollary 2.2. This corollary shows that the following natural geometric limiting average

distance, namely, limk

∫

C2
k

|x−y| d(x,y)
∫

C2
k

d(x,y)
, exists and provides an explicit value for it. This result

was first obtained by Leary et al. [18] in 2010.

Corollary 2.2 [18] We have

lim
k

∫

C2
k
|x − y| d(x, y)
∫

C2
k

d(x, y)
=

1

(
∑

i ri )2 −
∑

i r3
i

⎛

⎝

∑

i, j

rir j |ai − a j |

+ 2

∑

i ri ai
∑

i ri −
∑

i r2
i

∑

i, j

si, jr
2
i r j

⎞

⎠ . (2.2)
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Proof Define the probability vector u by u = ( r1
S
, . . . ,

rN

S
) where S =

∑

i ri . It is clear that

Ageo,k(μu, μu) =

∫

C2
k
|x − y| d(x, y)
∫

C2
k

d(x, y)
,

and the result therefore follows immediately from Theorem 2.1. ⊓⊔

The second corollary, i.e. Corollary 2.3, computes the average distance between two points

in C with respect to the natural uniform distribution on C , namely, the normalised Hausdorff

measure. To state this formally, we introduce the following notation. For a positive number t ,

let H
t denote the t-dimensional Hausdorff measure. Corollary 2.3 now gives an explicit value

for the average distance between two points in C with respect to the normalised Hausdorff

measure, i.e. 1
Hs (C)2

∫

C2 |x − y| d(Hs ×H
s)(x, y) where s denotes the Hausdorff dimension

of C .

Corollary 2.3 Let s denote the Hausdorff dimension of C, i.e. s is the unique real number

such that
∑

i r s
i = 1 (see [9]). Then we have

1

Hs(C)2

∫

C2
|x − y| d(Hs × H

s)(x, y) =
1

1 −
∑

i r2s+1
i

⎛

⎝

∑

i, j

r s
i r s

j |ai − a j |

+ 2

∑

i r s
i ai

1 −
∑

i r s+1
i

∑

i, j

si, jr
s+1
i r s

j

⎞

⎠ . (2.3)

Proof Since
∑

i r s
i = 1, we can define the probability vector h by h = (r s

1, . . . , r s
N ). It is

well-known that the measure μh equals the normalised s-dimensional Hausdorff measure on

C , i.e. μh = 1
Hs (C)

H
s C (see, for example [9,10]), whence

A(μh, μh) =
1

Hs(C)2

∫

C2

|x − y| d(Hs × H
s)(x, y),

and the result therefore follows immediately from Theorem 2.1. ⊓⊔

If all the contraction ratios coincide, i.e. if r1 = · · · = rN = r , then it is easily seen that

the two “natural” averages in (2.2) and (2.3) coincide and that their common value equals
∑

i, j |ai −a j |
N 2−Nr

, i.e.

lim
k

∫

C2
k
|x − y| d(x, y)
∫

C2
k

d(x, y)
=

1

Hs(C)2

∫

C2

|x − y| d(Hs × H
s)(x, y) =

∑

i, j |ai − a j |
N 2 − Nr

.

However, it is interesting to note that the two “natural” averages in (2.2) and (2.3) do not, in

general, coincide. For example, let C denote the self-similar set obtained by letting N = 2,

r1 = 1
4

, r2 = 1
2

, a1 = 0 and a2 = 1
2

. It follows easily from Corollary 2.2 that in this

case limk

∫

C2
k

|x−y| d(x,y)
∫

C2
k

d(x,y)
= 8

21
≈ 0.381. Also, the Hausdorff dimension s of C satisfies the

equation r s
1 + r s

2 = 1, and so s = log ϕ
log 2

where ϕ = 1+
√

5
2

is the golden ratio, whence r s
1 = ϕ−2

and r s
2 = ϕ−1. Using this (and the fact that ϕ2 + ϕ = 1), it now follows from Corollary 2.3

that 1
Hs (C)2

∫

C2 |x − y| d(Hs × H
s)(x, y) = 12

5(4+
√

5)
≈ 0.385.
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2.2 Higher order moments

The second main result in this paper establishes the exact asymptotic behaviour of the average

moments An(μp, μq) as n → ∞ in the special, but important, case when p = q and all of

the contracting ratios ri coincide. More precisely, in this section we will assume that N = 2

and that the contraction ratios r1 and r2 are equal and we will denote the common value by

r , i.e.

r1 = r2 = r.

Also, let p = (p1, p2) be a probability vector and write

p = p2
1 + p2

2, q = p1 p2. (2.4)

Finally, let

� =
log q

log r
. (2.5)

We will now analyse the moments An(μp, μp). It is not difficult to find a recursive formula

for the moments An(μp, μp). Indeed, in Lemma 4.3 we prove that

An(μp, μp) = prn An(μp, μp) + 2q

[ n
2 ]

∑

i=0

(

n

2i

)

(1 − r)n−2ir2i A2i (μp, μp),

where [ n
2
] denotes the integer part of the real number n

2
. While the above recursive formula

provides an expression for An(μp, μp), this expression is not easy to analyse. For this reason,

it seems more meaningful to find explicit formulas describing the asymptotic behaviour of

An(μp, μp) for large n. We first note that it is clear that An(μp, μp) → 0 as n → ∞, and

it is therefore interesting and natural to ask how fast An(μp, μp) tends to 0 as n → ∞. We

answer this question in Theorem 2.5. In particular, we prove that

log An(μp, μp)

log n
→ −�; (2.6)

this result clearly provides information about how fast An(μp, μp) tends to 0 as n → ∞.

Indeed loosely speaking (2.6) says that:

An(μp, μp) behaves like
1

n�
for large n.

In fact, Theorem 2.5 provides significantly more detailed information. Not only does Theo-

rem 2.5 show that An(μp, μp) behaves like 1
n� for large n, but it gives an exact and explicit

asymptotic expression for An(μp, μp), namely, it shows that n� An(μp, μp) equals a multi-

plicatively period function of n plus an error term that tends to 0 as n → ∞.

Theorem 2.4 There is a function � : (0,∞) → C and a sequence (εn)n of real numbers

satisfying the following two conditions:

(1) � is multiplicatively periodic with period equal to r , i.e. �(ru) = �(u) for all u;

(2) lim supn n|εn | < ∞; in particular εn → 0,

such that

n� An(μp, μp) = �(n) + εn
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for all n. In particular,

log An(μp, μp)

log n
→ −�.

In fact, our methods allow us to obtain an explicit expression for the periodic function �. This

is the contents of the next theorem. In Theorem 2.5 we use the following notation, namely,

we write [x] for the integer part of a real number x .

Theorem 2.5 Define the sequence (λk)k recursively by

λ0 = 1 λk = prkλk + 2q

[ k
2 ]

∑

i=0

(

k

2i

)

(1 − r)k−2ir2iλ2i .

Then the series
∑∞

k=0
λk

k! (rs)k(pe−s + q(−1)ke−rs) converges for all s ∈ C, and we can

define the function � : C → C by

�(s) =
∞
∑

k=0

λk

k!
(rs)k

(

pe−s + q(−1)ke−rs
)

.

Then
∫ ∞

0 |�(u)us−1|du < ∞ for s ∈ C with Re s > 0, and we can define Z : {s ∈
C | Re s > 0} → C by

Z(s) =
∫ ∞

0

�(u)us−1du.

For n ∈ Z, write sn = � + 1
− log r

2πin. Then the trigonometric series
∑

n∈Z
Z(sn) e

2πi
log u
log r

converges for all u > 0, and

�(u) = 1
− log r

∑

n∈Z

Z(sn) e
2πi

log u
log r

for u > 0.

The proofs of Theorems 2.4 and 2.5 are given in Sects. 4, 5, 6 and 7. The proofs are divided

into three parts. To briefly describe this, we introduce the following notation, namely, write

Mn = An(μp, μp) and define L : C → C by

L(s) =
∞
∑

n=0

Mn

n!
sne−s .

Section 4 contains a number of useful technical estimates of the auxiliary function L and

the function � in Theorem 2.5. The remaining part of the proofs are now divided into the

following three parts.

Part 1, Sect. 5 We first show that there is constant K such that

∣

∣

∣
An(μp, μp) − L(n)

∣

∣

∣
≤ K

1

n�+1
(2.7)

for all n. The proof of (2.7) follows from Cauchy’s formula applied to the function L and is

presented in Sect. 5.
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Part 2, Sect. 6 Next, we show that for each real number d with d > � there is a constant Kd

such that
∣

∣

∣
L(u) − u−��(u)

∣

∣

∣
≤ Kd

1

ud
(2.8)

for all u > 0 where � is the function defined in Theorem 2.5. The proof of (2.8) is presented

in Sect. 6 and is divided in the following two sub-parts:

Part 2.1 Using the Mellin transform theory, we show that L can be written as a complex

curve integral involving Z , namely, we show that for 0 < c < � we have

L(u) =
1

2πi

∫ c+i∞

c−i∞

Z(s)

1 − qr−s
u−s ds (2.9)

for all u > 0; this is done in Theorem 6.3.

Part 2.2 Next, using the residue theorem, we compute the complex curve integral in (2.9).

In particular, we show that if 0 < c < � < d , then

1

2πi

∫ c+i∞

c−i∞

Z(s)

1 − qr−s
u−s ds = u−��(u) + O

(

1

ud

)

(2.10)

for all u > 0; this is done in Theorems 6.4, 6.5 and 6.6: in Theorems 6.4 and 6.5 estimates for

|Z(s)| and |1 − qr−s | are obtained and in Theorem 6.6 we use the residue theorem together

with the estimates from Theorems 6.4 and 6.5 to derive formula (2.10).

The desired inequality [i.e. (2.8)] follows immediately from combining (2.9) and (2.10).

Part 3, Sect. 7 Finally, Theorems 2.4 and 2.5 follow by combining (2.7) and (2.8). This is

done in Sect. 7.

3 Proof of Theorem 2.1

For brevity, we write

Ak = Ageo,k(μp, μq) =
∑

|i|=|j|=k

piqj

rirj

∫

Ii×Ij

|x − y| d(x, y). (3.1)

for positive integers k. Our aim now is to find an explicit formula for limk Ak ; observe

that it follows from Proposition 1.1 that the limit limk Ak exists. We first introduce the

following notation. For a probability vector πππ = (π1, . . . , πN ) and a positive integer k and

i = i1 . . . ik ∈ 	k , we write πi = πi1 . . . πik
and

Bπππ,k =
∑

|i|=k

πi

ri

∫

Ii

t dt, (3.2)

Bπππ =
∑

i πi ai

1 −
∑

i πiri

. (3.3)

Below we show that the elements in the sequence (Ak)k satisfy a recursive formula involving

the Bp,k’s and the Bq,k’s. The limiting behaviour of the Ak’s can then be established from

this recursive formula using the following well-known (and easily proven) result.

Lemma 3.1 Let t ∈ R with |t | < 1 and let (yn)n be a sequence of real numbers such that

yn → y. Let the sequence (xn)n be defined by

xn+1 = t xn + yn
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for all n. Then

xn →
y

1 − t
.

We will now obtain recursive formulas for the Bπππ,k’s and the Ak’s; this is done in Propo-

sitions 3.2 and 3.3 below.

Proposition 3.2 Let πππ = (π1, . . . , πN ) be a probability vector.

(1) For all positive integers k, we have Bπππ,k+1 = (
∑

i

πiri )Bπππ,k +
∑

i

πi ai .

(2) We have Bπππ,k → Bπππ .

Proof (1) For all positive integers k, we have

Bπππ,k+1 =
∑

i

∑

|i|=k

πi

ri

πi

ri

∫

Ii i

t dt. (3.4)

However, it is clear that if i ∈ 	k and i = 1, . . . , N , then Ii i = Si Ii, whence
∫

Ii i
t dt =

∫

Si Ii
t dt =

∫

Ii
Si (u)S′

i (u) du =
∫

Ii
(ri u + ai )ri du, and it therefore follows from (3.4) that

Bπππ,k =
∑

i

∑

|i|=k

πi

ri

πi

ri

∫

Ii

(ri u + ai )ri du

=
(

∑

i

πiri

)

⎛

⎝

∑

|i|=k

πi

ri

∫

Ii

u du

⎞

⎠ +
(

∑

i

πi ai

)

⎛

⎝

∑

|i|=k

πi

ri

∫

Ii

du

⎞

⎠ . (3.5)

Using the fact that
∑

|i|=k
πi
ri

∫

Ii
u du = Bπππ,k and

∑

|i|=k
πi
ri

∫

Ii
du =

∑

|i|=k
πi
ri

ri =
∑

|i|=k πi = 1, we now deduce from (3.5) that

Bπππ,n+1 =
(

∑

i

πiri

)

Bπππ,n +
∑

i

πi ai .

(2) This statement follows immediately from Part (1) and Lemma 3.1. ⊓⊔

Proposition 3.3 For i, j = 1, . . . , N, recall that si, j denotes the sign of i − j , and for a

positive integer k write

Yk =
∑

i, j

pi q j |ai − a j | + Bp,k

∑

i, j

si, j pi q jri + Bq,k

∑

i, j

si, j p j qiri .

(1) For all positive integers k, we have Ak+1 = (
∑

i pi qiri )Ak + Yk .

(2) We have Yk →
∑

i, j pi q j |ai − a j | + Bp

∑

i, j si, j pi q jri + Bq

∑

i, j si, j p j qiri .

Proof (1) For all positive integers k, we have

Ak+1 =
∑

i, j

∑

|i|=|j|=k

pi q j

rir j

piqj

rirj

∫

Ii i×I jj

|x − y| d(x, y). (3.6)

However, it is clear that if i, j ∈ 	k and i, j = 1, . . . , N , then Ii i = Si Ii and

I jj = S j Ij, whence
∫

Ii i×I jj
|x − y| d(x, y) =

∫

Si Ii×S j Ij
|x − y| d(x, y) =

∫

Ii×Ij
|Si (u) −
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S j (v)|rir j d(u, v) =
∫

Ii×Ij
|(ri u + ai ) − (r jv + a j )|rir j d(u, v), and it therefore follows

from (3.6) that

Ak+1 =
∑

i, j

∑

|i|=|j|=k

pi q j

rir j

piqj

rirj

∫

Ii×Ij

|(ri u + ai ) − (r jv + a j )|rir j d(u, v)

=
∑

i= j

∑

|i|=|j|=k

pi q j

piqj

rirj

∫

Ii×Ij

|(ri u + ai ) − (r jv + a j )| d(u, v)

+
∑

i �= j

∑

|i|=|j|=k

pi q j

piqj

rirj

∫

Ii×Ij

|(ri u + ai ) − (r jv + a j )| d(u, v)

=
(

∑

i

pi qiri

)

∑

|i|=|j|=k

piqj

rirj

∫

Ii×Ij

|u − v| d(u, v)

+
∑

i �= j

∑

|i|=|j|=k

pi q j

piqj

rirj

∫

Ii×Ij

|(ri u + ai ) − (r jv + a j )| d(u, v). (3.7)

Next, since ri u + ai = Si u ∈ Si ([0, 1]) and r jv + a j = S jv ∈ S j ([0, 1]) for all i, j =
1, . . . , N and u, v ∈ [0, 1], we conclude that |(ri u + ai ) − (r jv + a j )| = si, j ((ri u + ai ) −
(r jv + a j )) for all i, j = 1, . . . , N with i �= j and u, v ∈ [0, 1]. This and (3.7) imply that

Ak+1 =
(

∑

i

pi qiri

)

∑

|i|=|j|=k

piqj

rirj

∫

Ii×Ij

|u − v| d(u, v)

+
∑

i �= j

∑

|i|=|j|=k

pi q j

piqj

rirj

∫

Ii×Ij

si, j ((ri u + ai ) − (r jv + a j )) d(u, v)

=
(

∑

i

pi qiri

)

∑

|i|=|j|=n

piqj

rirj

∫

Ii×Ij

|u − v| d(u, v)

+
∑

i �= j

∑

|i|=|j|=k

piqj

rirj

si, j pi q j (ai − a j )

∫

Ii×Ij

d(u, v)

+
∑

i �= j

∑

|i|=|j|=k

piqj

rirj

si, j pi q j

∫

Ii×Ij

(ri u − r jv) d(u, v). (3.8)

Using the fact that
∑

|i|=|j|=k

piqj

rirj

∫

Ii×Ij
|u − v| d(u, v) = Ak and

∑

i �= j si, j pi q j (ai −
a j )

∫

Ii×Ij
d(u, v) =

∑

i �= j pi q j |ai − a j |
∫

Ii×Ij
d(u, v) =

∑

i, j pi q j |ai − a j |
∫

Ii×Ij
d(u, v) =

∑

i, j pi q j |ai − a j |rirj (because si, j (ai − a j ) = |ai − a j |), we conclude

from (3.8) that

Ak+1 =
(

∑

i

pi qiri

)

Ak +
∑

i, j

∑

|i|=|j|=k

piqj pi q j |ai − a j |

+
∑

i �= j

∑

|i|=|j|=k

piqj

rirj

si, j pi q j

∫

Ii×Ij

(ri u − r jv) d(u, v).
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Since clearly
∑

|i|=|j|=k piqj = 1, this simplifies to

Ak+1 =
(

∑

i

pi qiri

)

Ak +
∑

i, j

pi q j |ai − a j |

+
∑

i �= j

∑

|i|=|j|=k

piqj

rirj

si, j pi q j

∫

Ii×Ij

(ri u − r jv) d(u, v)

=
(

∑

i

pi qiri

)

Ak +
∑

i, j

pi q j |ai − a j | + Uk (3.9)

where

Uk =
∑

i �= j

∑

|i|=|j|=k

piqj

rirj

si, j pi q j

∫

Ii×Ij

(ri u − r jv) d(u, v).

We will now compute Uk . In particular, we will express Uk in terms of Bp,k and Bq,k . To

do so we note that

Uk =
∑

i �= j

si, j pi q jri

∑

|i|=|j|=k

piqj

rirj

∫

Ii×I j

u d(u, v)

−
∑

i �= j

si, j pi q jr j

∑

|i|=|j|=k

piqj

rirj

∫

Ii×I j

v d(u, v)

=
∑

i �= j

si, j pi q jri

⎛

⎝

∑

|i|=k

pi

ri

∫

Ii

u du

⎞

⎠

⎛

⎝

∑

|j|=k

qj

rj

∫

Ij

dv

⎞

⎠

−
∑

i �= j

si, j pi q jr j

⎛

⎝

∑

|i|=k

pi

ri

∫

Ii

du

⎞

⎠

⎛

⎝

∑

|j|=k

qj

rj

∫

Ij

v dv

⎞

⎠ . (3.10)

Using the fact that
∑

|i|=k
pi

ri

∫

Ii
u du = Bp,k ,

∑

|j|=k

qj

rj

∫

Ij
v dv = Bq,k ,

∑

|i|=k
pi

ri

∫

Ii
du =

∑

|i|=k
pi

ri
ri =

∑

|i|=k pi = 1 and
∑

|j|=k

qj

rj

∫

Ij
du =

∑

|j|=k

qj

rj
rj =

∑

|j|=k qj = 1, it

follows from (3.10) that

Uk = Bp,k

∑

i �= j

si, j pi q jri − Bq,k

∑

i �= j

si, j pi q jr j

= Bp,k

∑

i, j

si, j pi q jri − Bq,k

∑

i, j

si, j pi q jr j

= Bp,k

∑

i, j

si, j pi q jri + Bq,k

∑

i, j

s j,i pi q jr j . (3.11)

Finally, combining (3.9) and (3.11) shows that

Ak+1 =
(

∑

i

pi qiri

)

Ak +
∑

i, j

pi q j |ai − a j | + Bp,k

∑

i, j

si, j pi q jri + Bq,k

∑

i, j

s j,i pi q jr j

=
(

∑

i

pi qiri

)

An + Yn .
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This completes the proof.

(2) This statement follows from Proposition 3.2. ⊓⊔

We can now prove Theorem 2.1.

Proof of Theorem 2.1 It follows immediately from Lemma 3.1 and Proposition 3.3 that

Ageo,k(μp, μq) = Ak →
∑

i, j pi q j |ai − a j | + Bp

∑

i, j si, j pi q jri + Bq

∑

i, j si, j p j qiri

1 −
∑

i pi qiri

.

This completes the proof of Theorem 2.1. ⊓⊔

4 Proof of Theorems 2.4 and 2.5: the auxiliary functions L and �

The proofs of Theorems 2.4 and 2.5 are given in this and the next three sections. The main

purpose of this section is to introduce the two key auxiliary functions L and �, and to provide

estimates for the derivatives and the integral of �; this is done in Propositions 4.5 and 4.6,

respectively.

However, we first state and prove the following simple lemma that will be used several

times in this and the next sections when estimating L and �.

Lemma 4.1 Let f, g : C → C be functions and let a, ρ be complex numbers with |a| < 1

and |ρ| < 1. Assume that

f (s) = a f (ρs) + g(s) (4.1)

for all s ∈ C and that f is bounded in an open neighbourhood of 0. Then the series
∑∞

k=0 ak g(ρks) converges for all s ∈ C and

f (s) =
∞
∑

k=0

ak g(ρks)

for s ∈ C.

Proof Let s be a complex number. Repeated use of (4.1) shows that f (s) = an f (ρns) +
∑n

k=0 ak g(ρks) for all positive integers n, whence

∣

∣

∣

∣

f (s) −
n

∑

k=0

ak g(ρks)

∣

∣

∣

∣

≤ |a|n | f (ρns)| (4.2)

for all positive integers n. Since |a| < 1 and |ρ| < 1, and f is bounded in an open neigh-

bourhood of 0, it follows that |a|n | f (ρns)| → 0 as n → ∞, and we therefore deduce from

(4.2) that f (s) =
∑

k≥0 ak g(ρks). ⊓⊔

Next, we derive a recursive equation for the n’th moments An
geo,k(μp, μp); this is done

in Lemmas 4.2 and 4.3. The recursive equation in Lemma 4.3 plays a key role in proving

the estimates in Propositions 4.5 and 4.6. For brevity we introduce the following notation.

Namely, for non-negative integers n and k, we write

Mn,k = An
geo,k(μp, μp) =

∑

|i|=|j|=k

pi pj

rirj

∫

Ii×Ij

|x − y|n d(x, y),

Mn = An(μp, μp) =
∫

C2

|x − y|n d(μp × μp)(x, y).
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Also, recall that r1 = r2 = r and that p = (p1, p2). We also write

p = p2
1 + p2

2, q = p1 p2.

Finally, we write [x] for the integer part of a real number x .

Lemma 4.2 For all positive integers n and k, we have

Mn,k+1 = prn Mn,k + 2q

[ n
2 ]

∑

i=0

(

n

2i

)

(1 − r)n−2ir2i M2i,k .

Proof For all positive integers n and k, we have

Mn,k+1 =
∑

i, j

∑

|i|=|j|=k

pi i p jj

ri ir jj

∫

Ii i×I jj

|x − y|n d(x, y)

=
∑

i, j

∑

|i|=|j|=k

pi p j

rir j

pi pj

rirj

∫

Ii i×I jj

|x − y|n d(x, y). (4.3)

However, it is clear that if i, j ∈ 	k and i, j = 1, . . . , N , then Ii i = Si Ii and

I jj = S j Ij, whence
∫

Ii i×I jj
|x − y|n d(x, y) =

∫

Si Ii×S j Ij
|x − y|n d(x, y) =

∫

Ii×Ij
|Si (u) −

S j (v)|nrir j d(u, v) =
∫

Ii×Ij
|(ri u + ai ) − (r jv + a j )|nrir j d(u, v), and it therefore follows

from (4.3) that

Mn,k+1 =
∑

i= j

∑

|i|=|j|=k

pi p j

pi pj

rirj

∫

Ii×Ij

|(ri u + ai ) − (r jv + a j )|n d(u, v)

+
∑

i �= j

∑

|i|=|j|=k

pi p j

pi pj

rirj

∫

Ii×Ij

|(ri u + ai ) − (r jv + a j )|n d(u, v)

=
(

∑

i

p2
i rn

i

)

∑

|i|=|j|=k

pi pj

rirj

∫

Ii×Ij

|u − v|n d(u, v)

+
∑

i �= j

∑

|i|=|j|=k

pi p j

pi pj

rirj

∫

Ii×Ij

|(ri u + ai ) − (r jv + a j )|n d(u, v). (4.4)

Using the fact that
∑

|i|=|j|=k

pi pj

rirj

∫

Ii×Ij
|u − v|n d(u, v) = Mn,k , (4.4) now simplifies to

Mn,k+1 =
(

∑

i

p2
i rn

i

)

Mn.k +
∑

i �= j

∑

|i|=|j|=k

pi p j

pi pj

rirj

∫

Ii×Ij

|(ri u + ai )

−(r jv + a j )|n d(u, v). (4.5)

Next, since ri u + ai = Si u ∈ Si ([0, 1]) and r jv + a j = S jv ∈ S j ([0, 1]) for all i, j =
1, . . . , N and u, v ∈ [0, 1], we conclude that |(ri u + ai ) − (r jv + a j )| = si, j ((ri u + ai ) −
(r jv + a j )) for all i, j = 1, . . . , N with i �= j and u, v ∈ [0, 1]. This and (4.5) imply that

Mn,k+1 =
(

∑

i

p2
i rn

i

)

Mn.k +
∑

i �= j

∑

|i|=|j|=k

pi p j

pi pj

rirj

∫

Ii×Ij

sn
i, j ((ri u + ai )

−(r jv + a j ))
n d(u, v)

=
(

∑

i

pi pir
n
i

)

Mn.k + mn,k (4.6)
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where

mn,k =
∑

i �= j

∑

|i|=|j|=k

pi p j

pi pj

rirj

∫

Ii×Ij

sn
i, j ((ri u + ai ) − (r jv + a j ))

n d(u, v).

We will now compute mn,k . Since i, j ∈ {1, 2}, r1 = r2 = r , a1 = 0, a2 = 1 − r ,

s1,2 = −1 and s2,1 = 1, we conclude that

mn,k =
∑

|i|=|j|=k

p1 p2

pi pj

rirj

∫

Ii×Ij

sn
1,2((ru + a1) − (rv + a2))

n d(u, v)

+
∑

|i|=|j|=k

p2 p1

pi pj

rirj

∫

Ii×Ij

sn
2,1((ru + a2) − (rv + a1))

n d(u, v)

=
∑

|i|=|j|=k

p1 p2

pi pj

rirj

∫

Ii×Ij

(r(v − u) + (1 − r))n d(u, v)

+
∑

|i|=|j|=k

p1 p2

pi pj

rirj

∫

Ii×Ij

(r(u − v) + (1 − r))n d(u, v)

=
∑

|i|=|j|=k

p1 p2

pi pj

rirj

∫

Ii×Ij

n
∑

l=0

(

n

l

)

(1 − r)n−lr l(v − u)l d(u, v)

+
∑

|i|=|j|=k

p1 p2

pi pj

rirj

∫

Ii×Ij

n
∑

l=0

(

n

l

)

(1 − r)n−lr l(u − v)l d(u, v)

= p1 p2

n
∑

l=0

(

n

l

)

(1 − r)n−lr l
∑

|i|=|j|=k

pi pj

rirj

∫

Ii×Ij

(

(u − v)l

+ (v − u)l
)

d(u, v). (4.7)

However, it is clear that if (u, v) ∈ Ii × Ij and l is a positive integer, then (u−v)l +(v−u)l = 0

if l is odd and (u − v)l + (v − u)l = 2|u − v|l if l is even. It follows from this and (4.7) that

mn,k = 2p1 p2

∑

l=0,...,n

l is even

(

n

l

)

(1 − r)n−lr l
∑

|i|=|j|=k

pi pj

rirj

∫

Ii×Ij

|u − v|l d(u, v)

= 2p1 p2

[ n
2 ]

∑

i=0

(

n

2i

)

(1 − r)n−2ir2i
∑

|i|=|j|=k

pi pj

rirj

∫

Ii×Ij

|u − v|2i d(u, v).

Finally, using the fact that
∑

|i|=|j|=k

pi pj

rirj

∫

Ii×Ij
|u−v|2i d(u, v) = M2i,k , the previous equal-

ity simplifies to

mn,k = 2p1 p2

[ n
2 ]

∑

i=0

(

n

2i

)

(1 − r)n−2ir2i M2i,k . (4.8)

Combining (4.6) and (4.8) gives the desired result. ⊓⊔
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Lemma 4.3 For all positive integers n, we have

Mn = prn Mn + 2q

[ n
2 ]

∑

i=0

(

n

2i

)

(1 − r)n−2ir2i M2i .

Proof Since Mn,k = An
geo,k(μp, μp) → An(μp, μp) = Mn for all n (by Proposition 1.1),

the statement follows immediately from Lemma 4.2. ⊓⊔

We now turn towards the definitions of the auxiliary functions L and �. We first define

the moment generating function M : C → C by

M(s) =
∞
∑

k=0

Mk

k!
sk

for s ∈ C; observe that since |Mk | =
∫

|x − y|k d(μp × μp)(x, y) ≤ 1 for all k, it follows

that the series
∑

n
Mk

k! sk is convergent for all s ∈ C. We also define the even and odd moment

generating functions Me, Mo : C → C by

Me(s) =
∞
∑

k=0

M2k

(2k)!
s2k,

Mo(s) =
∞
∑

n=0

M2k+1

(2k + 1)!
s2k+1

for s ∈ C; since |Mk | ≤ 1 for all k, it follows that the series
∑∞

k=0
M2k

(2k)! s
2k and

∑∞
k=0

M2k+1

(2k+1)! s
2k+1 converge for all s ∈ C. Next, define L , Le, Lo : C → C by

L(s) = M(s)e−s,

Le(s) = Me(s)e
−s ,

Lo(s) = Mo(s)e
−s

for s ∈ C. Finally, define � : C → C by

�(s) = pL(rs)e−(1−r)s + q L(−rs)e−2rs .

The next three results (i.e. Lemma 4.4, Propositions 4.5 and 4.6) are estimates involving the

auxiliary functions M , L and �; these results play key roles in the later sections of the paper.

Lemma 4.4 provides functional equations for M , Me and Mo and Propositions 4.5 and 4.6

provide estimates for the derivatives and the integral of �, respectively.

Lemma 4.4 (Functional equations for M, Me and Mo) For s ∈ C, we have

M(s) = pM(rs) + 2q Me(rs)es(1−r),

Me(s) = pMe(rs) + 2q cosh(s(1 − r)) Me(rs),

Mo(s) = pMo(rs) + 2q sinh(s(1 − r)) Me(rs).
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Proof It follows from Lemma 4.3 and the definition of Me(s) that

Me(s) =
∞
∑

k=0

M2k

(2k)!
s2k

=
∞
∑

k=0

1

(2k)!

(

pr2k M2k + 2q

k
∑

i=0

(

2k

2i

)

(1 − r)2k−2ir2i M2i

)

s2k

= pMe(rs) + 2q

∞
∑

k=0

k
∑

i=0

s2k−2i

(2k − 2i)!
(1 − r)2k−2i s2i

(2i)!
r2i M2i

= pMe(rs) + 2q

( ∞
∑

k=0

s2k

(2k)!
(1 − r)2k

) ( ∞
∑

k=0

s2k

(2k)!
r2k M2k

)

= pMe(rs) + 2q cosh(s(1 − r)) Me(rs) (4.9)

for all complex numbers s. A similar argument shows that

Mo(s) = pMo(rs) + 2q sinh(s(1 − r)) Me(rs) (4.10)

for all complex numbers s. Since M(s) = Me(s) + Mo(s) and M(rs) = Me(rs) + Mo(rs),

it follows by adding (4.9) and (4.10) that M(s) = pM(rs) + 2qes(1−r)Me(rs). ⊓⊔

Below we use the following notation. If f : C → C is a differentiable function and n is a

positive integer with n ≥ 0, then Dn f denotes the n’th derivative of f .

Proposition 4.5 (Estimates of the derivatives of �). For each integer n with n ≥ 0 there is

positive constant cn such that

|Dn�(u)| ≤ cne−ru

for all u ≥ 0.

Proof We first note that if n is a positive integer and s is a complex number, then Dn L(s) =
dn

dsn ( M(s)e−s ) =
∑n

k=0

(

n
k

)

Dk M(s) dn−k

dsn−k ( e−s ) = e−s
∑n

k=0

(

n
k

)

(−1)n−k Dk M(s), whence

|Dn L(s)| ≤ |e−s |
n

∑

k=0

(

n

k

)

|Dk M(s)|. (4.11)

We now prove the following four claims. ⊓⊔

Claim 1 For all positive integers n and all u ≥ 0, we have |Dn M(u)| ≤ eu .

Proof of Claim 1 For positive integers n and s ∈ C, we have Dn M(s) =
∑∞

k=0
Mn+k

k! sk .

Since |Mk | ≤ 1 for all k, this implies that |Dn M(u)| ≤
∑∞

k=0
|Mn+k |

k! uk ≤
∑∞

k=0
1
k! u

k = eu

for all positive integers n and all u ≥ 0. This completes the proof of Claim 1. ⊓⊔

For brevity write Bn =
∑n

k=0

(

n
k

)

for positive integers n (note that Bn = 2n).

Claim 2 For all positive integers n and all u ≥ 0, we have |Dn L(u)| ≤ Bn .

Proof of Claim 2 For positive integers n and u ≥ 0, we have using (4.11) and Claim 1,

|Dn L(u)| ≤ e−u
∑n

k=0

(

n
k

)

|Dk M(u)| ≤ e−u
∑n

k=0

(

n
k

)

eu = Bn . This completes the proof

of Claim 2. ⊓⊔
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Claim 3 For all positive integers n and all u ≥ 0, we have |Dn M(−u)| ≤ 1.

Proof of Claim 3 It follows from Lemma 4.4 that if s is a complex number, then M(s) =
pM(rs) + 2q Me(rs)e(1−r)s . Differentiating this identity n times gives

Dn M(s) = prn Dn M(rs) + 2q dn

dsn ( Me(rs)e(1−r)s )

= prn Dn M(rs) + Hn(s)

where

Hn(s) = 2q dn

dsn ( Me(rs)e(1−r)s )

= 2q

n
∑

i=0

(

n

i

)

d i

dsi ( Me(rs) ) dn−i

dsn−i ( e(1−r)s )

= 2q

n
∑

i=0

(

n

i

)

r i (1 − r)n−i Di Me(rs)e(1−r)s

Applying Lemma 4.1 therefore shows that

Dn M(s) =
∞
∑

k=0

(prn)k Hn(rks).

In particular, we conclude from this that if u ≥ 0, then

|Dn M(−u)| =
∞
∑

k=0

(prn)k |Hn(−rku)|

≤ 2q

∞
∑

k=0

(prn)k

n
∑

i=0

(

n

i

)

r i (1 − r)n−i |Di Me(−rk+1u)|e−(1−r)rk u

It is not difficult to see that |Di Me(s)| ≤ e|s| for all positive integers i and all complex

numbers s. We deduce from this and the previous inequality that if u ≥ 0, then

|Dn M(−u)| ≤ 2q

∞
∑

k=0

(prn)k

n
∑

i=0

(

n

i

)

r i (1 − r)n−i e−rk+1ue−(1−r)rk u

= 2q

∞
∑

k=0

(prn)ke−rk+1ue−(1−r)rk u

= 2q

∞
∑

k=0

(prn)ke−(1−2r)rk u . (4.12)

Since r < 1
2

, it follows that −(1 − 2r)rku < 0, whence e−(1−2r)rk u ≤ 1, and we therefore

deduce from (4.12) that

|Dn M(−u)| ≤ 2q
∑

k≥0

(prn)k ≤ 2q
∑

k≥0

pk = 2q
1

1 − p
= 1,

where we have used the fact that 1 − p = 2q . This completes the proof of Claim 3. ⊓⊔

Claim 4 For all positive integers n and all u ≥ 0, we have |Dn L(−u)| ≤ Bneu .
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Proof of Claim 4 For positive integers n and u ≥ 0, we have using (4.11) and Claim 3,

|Dn L(−u)| ≤ eu
∑n

k=0

(

n
k

)

|Dk M(−u)| ≤ eu
∑n

k=0

(

n
k

)

= eu Bn . This completes the proof

of Claim 4. ⊓⊔

We can now estimate |Dn�(u)| for all positive integers n and all u ≥ 0. Indeed, for

positive integers n and u ≥ 0, we have

Dn�(u) = p dn

dun (L(ru)e−(1−r)u) + q dn

dun (L(−ru)e−2ru)

= p

n
∑

k=0

(

n

k

)

dk

duk (L(ru)) dn−k

dun−k ( e−(1−r)u )

+ q

n
∑

k=0

(

n

k

)

dk

duk (L(−ru)) dn−k

dun−k ( e−2ru )

= pe−(1−r)u

n
∑

k=0

(

n

k

)

rk(−(1 − r))n−k Dk L(ru)

+ qe−2ru

n
∑

k=0

(

n

k

)

(−r)k(−2r)n−k Dn L(−ru),

whence

|Dn�(u)| ≤ pe−(1−r)u

n
∑

k=0

(

n

k

)

rk(1 − r)n−k |Dk L(ru)|

+ qe−2ru

n
∑

k=0

(

n

k

)

rk(2r)n−k |Dn L(−ru)|. (4.13)

Next, it follows from Claim 2 that if u ≥ 0, then |Dn L(ru)| ≤ Bn , and it follows from

Claim 4 that if u ≥ 0, then |Dn L(−ru)| ≤ Bneru . We conclude immediately from this and

(4.13) that if u ≥ 0, then

|Dn�(u)| ≤ pe−(1−r)u

n
∑

k=0

(

n

k

)

rk(1 − r)n−k Bn

+ qe−2ru

n
∑

k=0

(

n

k

)

rk(2r)n−k Bneru . (4.14)

Finally, Since
∑N

K=0

(

N
K

)

RK (1 − R)N−K = 1 And
∑N

K=0

(

N
K

)

(R)K (2R)N−K = (3R)N , it

follows from (4.14) that

|Dn�(u)| ≤ pBne−(1−r)u + q Bn(3r)ne−ru .

The desired result follows immediately from the above inequality since r < 1 − r . ⊓⊔

Proposition 4.6 (Estimates of the integral of �). There is a constant c such that

∫ ∞

0

|�(rku) us−1| du ≤ c Ŵ(Re s)
1

ρRe srk+1 Re s

for all integers k with k ≥ 0 and all s ∈ C with Re s > 0 (here Ŵ(Re s) denotes the

Gamma-function evaluated at Re s).
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Proof Fix s ∈ C with Re s > 0. We conclude from Proposition 4.5 that there is a constant

c such that |�(u)| ≤ ce−ru for all u ≥ 0. This implies that
∫ ∞

0

|�(rku) us−1| du =
∫ ∞

0

|�(rku)| uRe s−1 du

≤ c

∫ ∞

0

e−rk+1u uRe s−1 du. (4.15)

Next, introducing the substitution v = ρrku into the integral
∫ ∞

0 e−rk+1u uRe s−1 du in (4.15)

shows that
∫ ∞

0

|�(rku) us−1| du ≤ c
1

(rk+1)Re s

∫ ∞

0

e−v vRe s−1 dv

= cŴ(Re s)
1

(rk+1)Re s
.

This completes the proof. ⊓⊔

5 Proof of Theorems 2.4 and 2.5: the proof of (2.7)

The purpose of this section is to prove (2.7), namely, that there is a constant K such that

|Mn − L(n)| ≤ K
1

n�+1

for all positive integers n (recall, that � = log q
log r

where q = p1 p2). The key tool for proving

this inequality is Theorem 5.1 below. For s ∈ C with s �= 0, let arg s denote the unique

argument of s with arg s ∈ [−π, π), and for θ ∈ [−π, π), write

�� =
{

s ∈ C\{0}
∣

∣

∣
| arg s| ≤ θ

}

.

Theorem 5.1 [15, p. 14, Theorem 1] Let (tn)n be a sequence of bounded positive numbers

and define f : C → C by

f (S) =
∞
∑

n=0

tn

n!
sne−s .

Assume that there are positive constants R0, R1, A0, A1, D, θ and δ with θ < π
2

and δ < 1

such that the following hold:

(1) If s ∈ �θ and |s| > R0, then | f (s)| ≤ A0
1

|s|D ;

(2) If s /∈ �θ and |s| > R1, then | f (s)es | ≤ A1 eδ|s|.

Then there is a constant K such that

|tn − f (n)| ≤ K
1

nD+1

for all n.

Theorem 5.2 Recall that the function L : C → C is defined by

L(s) =
∞
∑

n=0

Mn

n!
sne−s .
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There are positive constants R0, R1, A0, A1 and δ with δ < 1 such that the following hold:

(1) If s ∈ � π
4

and |s| > R0, then |L(s)| ≤ A0
1

|s|� ;

(2) If s /∈ � π
4

and |s| > R1, then |L(s)es | ≤ A1 eδ|s|.

Proof (1) We first prove the following three claims. ⊓⊔

Claim 1 For all s ∈ C, the series
∑∞

k=0 pk Le(r
k+1s) 1

e(1−rk )s
converges and L(s) =

2q
∑∞

k=0 pk Le(r
k+1s) 1

e(1−rk )s
.

Proof of Claim 1 It follows from Lemma 4.4 and the definition of Le that M(s) = pM(rs)+
2q Me(rs)e(1−r)s = pM(rs) + 2q Le(rs)es = pM(rs) + P(s) for all s ∈ C where P(s) =
2q Le(rs)es . This and Lemma 4.1 now implies that L(s)es = M(s) =

∑∞
p=0 pk P(rks) =

2q
∑∞

k=0 pk Le(r
k+1s) erk s . This completes the proof of Claim 1. ⊓⊔

Define Q : C → C by

Q(s) =
(

pe−(1−r)s + qe−2(1−r)s
)

Le(rs).

Claim 2 For all s ∈ C, the series
∑∞

l=0 ql Q(r ls) converges and Le(s) =
∑∞

l=0 ql Q(r ls).

Proof of Claim 2 Lemma 4.4 shows that Me(s) = pMe(rs) + 2q cosh((1 − r)s)Me(rs) for

all s ∈ C. It follows from this and a lengthy, but straight forward, calculation that

Le(s) = Me(s)e
−s

=
(

pMe(rs) + 2q cosh((1 − r)s)Me(rs)
)

e−s

= q Le(rs) +
(

pe−(1−r)s + qe−2(1−r)s
)

Le(rs)

= q Le(rs) + Q(s)

for all s ∈ C. This and Lemma 4.1 now implies that Le(s) =
∑∞

l=0 ql Q(r ls). This completes

the proof of Claim 2. ⊓⊔

Claim 3 For all s ∈ � π
4

, we have |Q(s)| ≤ (p + q)e− 1
8 |s|.

Proof of Claim 3 For s ∈ C, we have

|Q(s)| =
∣

∣

∣

(

pe−(1−r)s + qe−2(1−r)s
)

Le(rs)

∣

∣

∣

≤
(

p|e−(1−r)s | + q|e−2(1−r)s |
)

|Le(rs)|

≤
(

pe−(1−r) Re s + qe−2(1−r) Re s
)

|Le(rs)|. (5.1)

Next, observe that |Le(rs)|=|Me(rs)| |e−rs |=|
∑∞

k=0
(rs)2k

(2k)! M2k | e−r Re s ≤ (
∑∞

k=0
(r |s|)2k

(2k)! )

e−r Re s ≤ (
∑∞

k=0
(r |s|)k

k! ) e−r Re s = er |s| e−r Re s = er |s|−r Re s since Mk ≤ 1 for all k. This

and (5.1) imply that if s ∈ C, then

|Q(s)| ≤
(

pe−(1−r) Re s + qe−2(1−r) Re s
)

|Le(rs)|

≤
(

pe−(1−r) Re s + qe−2(1−r) Re s
)

er |s|−r Re s . (5.2)
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Also, if s ∈ � π
4

, then Re s ≥ 0, whence −2(1 − r) Re s ≤ −(1 − r) Re s, and so

e−2(1−r) Re s ≤ e−(1−r) Re s . We deduce from this and (5.2) that if s ∈ � π
4

, then

|Q(s)| ≤
(

pe−(1−r) Re s + qe−(1−r) Re s
)

er |s|−r Re s = (p + q)er |s|−Re s . (5.3)

We now note that if s ∈ � π
4

, then Re s = |s| cos arg s where | arg s| ≤ π
4

, whence (since

r ≤ 1
2

) r −cos arg s ≤ 1
2
−cos π

4
= 1

2
−

√
2

2
≤ − 1

8
, and so r |s|−Re s = r |s|−|s| cos arg s =

|s|(r − cos arg s) ≤ − 1
8
|s|. It finally follows from this and (5.3) that if s ∈ � π

4
, then

|Q(s)| ≤ (p + q)er |s|−Re s ≤ (p + q)e− 1
8 |s|.

This completes the proof of Claim 3.

Combining Claims 1 and 2 we deduce that if s ∈ C, then

|L(s)| =
∣

∣

∣

∣

2q

∞
∑

k=0

pk Le(r
k+1s)

1

e(1−rk )s

∣

∣

∣

∣

≤ 2q

∞
∑

k=0

pk |Le(r
k+1s)|

1

e(1−rk ) Re s

= 2q

∞
∑

k=0

pk

∣

∣

∣

∣

∞
∑

l=0

ql Q(r l+k+1s)

∣

∣

∣

∣

1

e(1−rk ) Re s

≤ 2q

∞
∑

k=0

∞
∑

l=0

pkql |Q(r l+k+1s)|
1

e(1−rk ) Re s
. (5.4)

Next, we observe that if s ∈ � π
4

, then rms ∈ � π
4

for all integers m. Using Claim 3 we

therefore deduce from (5.4) that if s ∈ � π
4

, then

|L(s)| ≤ 2q

∞
∑

k=0

∞
∑

l=0

pkql |Q(r l+k+1s)|
1

e(1−rk ) Re s

≤ 2q(p + q)

∞
∑

k=0

∞
∑

l=0

pkql e− 1
8 r l+k+1|s| 1

e(1−rk ) Re s

= 2q(p + q)

( ∞
∑

l=0

ql e− 1
8 r l+1|s| +

∞
∑

k=1

∞
∑

l=0

pkql e− 1
8 r l+k+1|s| 1

e(1−rk ) Re s

)

= 2q(p + q) ( U0(s) + U1(s) ), (5.5)

where

U0(s) =
∞
∑

l=0

ql e− 1
8 r l+1|s|,

U1(s) =
∞
∑

k=1

∞
∑

l=0

pkql e− 1
8 r l+k+1|s| 1

e(1−rk ) Re s
.

We will now estimate U0(s) and U1(s); this is done in Claims 4 and 5 below. ⊓⊔

Claim 4 There is a constant k0 such that U0(s) ≤ k0
1

|s|� for all s ∈ C.
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Proof of Claim 4 It is easily seen that

U0(s) =
∞
∑

l=0

ql e− 1
8 r l+1|s| ≤ 2

∫ ∞

0

qx e− 1
8 r x+1|s| dx . (5.6)

Introducing the substitution y = − 1
8
r x+1|s| into the integral

∫ ∞
0 qx e− 1

8 r x+1|s| dx in (5.6)

yields

U0(s) ≤ 2

∫ ∞

0

qx e− 1
8 r x+1|s| dx

= 2
1

− log r

(

r
8

)−�
∫ 1

8 r |s|

0

y�−1 e−y dy
1

|s|�

≤ 2
1

− log r

(

r
8

)−�
∫ ∞

0

y�−1 e−y dy
1

|s|�

= 2
1

− log r

(

r
8

)−�
Ŵ(�)

1

|s|�

= k0
1

|s|�

for s ∈ C where k0 = 2 1
− log r

( r
8
)−� Ŵ(�) (here Ŵ(�) =

∫ ∞
0 y�−1 e−y dy denotes the

Gamma-function evaluated at �). This completes the proof of Claim 4. ⊓⊔

Claim 5 There is a constant k1 such that U1(s) ≤ k1
1

e

√
2

2
(1−r)|s|

for all s ∈ � π
4

.

Proof of Claim 5 Fix s ∈ � π
4

. Since Re s ≥ 0 (because s ∈ � π
4

), we conclude that (1 −
rk) Re s ≥ (1 − r) Re s, whence 1

e(1−rk ) Re s
≤ 1

e(1−r) Re s for all integers k with k ≥ 1. We

deduce from this and the fact that e− 1
8 r l+k+1|s| ≤ 1 for all integers k and l that

U1(s) =
∞
∑

k=1

∞
∑

l=0

pkql e− 1
8 r l+k+1|s| 1

e(1−rk ) Re s

≤
∞
∑

k=1

∞
∑

l=0

pkql 1

e(1−r) Re s

= k1
1

e(1−r) Re s
(5.7)

where k1 =
∑∞

k=1

∑∞
l=0 pkql = (

∑∞
k=1 pk)(

∑∞
l=0 ql) < ∞. Also, since s ∈ � π

4
, it follows

that Re s = |s| cos arg s ≥ |s| cos π
4

=
√

2
2

|s|, and so 1
e(1−r) Re s ≤ 1

e

√
2

2
(1−r)|s|

. We deduce from

this and (5.7) that

U1(s) ≤ k1
1

e(1−r) Re s
≤ k1

1

e

√
2

2 (1−r)|s|
.

This completes the proof of Claim 5. ⊓⊔

Finally, it follows immediately from (5.5), Claims 4 and 5 that if s ∈ � π
4

, then

|L(s)| ≤ 2q(p + q)( U0(s) + U1(s) ) ≤ 2q(p + q)

(

k0
1

|s|�
+ k1

1

e

√
2

2 (1−r)|s|

)

for all complex numbers s. The desired result follows easily from this.
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(2) Lemma 4.4 shows that L(s)es = M(s) = pM(s) + 2q Me(rs)e(1−r)s for s ∈ C,

whence

|L(s)es | ≤ p|M(rs)| + 2q|Me(rs)| |e(1−r)s | = p|M(rs)| + 2q|Me(rs)| e(1−r) Re s (5.8)

for s ∈ C. Since |M(z)| = |
∑∞

k=0
zk

k! Mk | ≤
∑∞

k=0
|z|k
k! = e|z| and |Me(z)| =

|
∑∞

k=0
z2k

(2k)! M2k | ≤
∑∞

k=0
|z|2k

(2k)! ≤
∑∞

k=0
|z|k
k! = e|z| for z ∈ C, we now conclude from

(5.8) that

|L(s)es | ≤ per |s| + 2qer |s|+(1−r) Re s (5.9)

for s ∈ C. However, if s /∈ � π
4

and s �= 0, then | arg s| > π
4

, whence cos arg s ≤
√

2
2

, and so

r |s| + (1 − r) Re s = r |s| + (1 − r)|s| cos arg s ≤ r |s| + (1 − r)|s|
√

2
2

= (2−
√

2)r+
√

2
2

|s| ≤
(2−

√
2) 1

2 +
√

2

2
|s| = 2+

√
2

4
|s| ≤ 7

8
|s|. Since also r |s| ≤ 1

2
|s| ≤ 7

8
|s| for all s ∈ C, we therefore

conclude from (5.9) that if s /∈ � π
4

and s �= 0, then

|L(s)es | ≤ pe
7
8 |s| + 2qe

7
8 |s| = (p + 2q)e

7
8 |s|.

This completes the proof. ⊓⊔

Theorem 5.3 There is a constant K such that

|Mn − L(n)| ≤ K
1

n�+1

for all n.

Proof This follows immediately from Theorems 5.1 and 5.2. ⊓⊔

6 Proof of Theorems 2.4 and 2.5: proof of (2.8)

The purpose of this section is to prove inequality (2.8), namely, that for each real number d

with d > � (recall that � = log q
log r

= log p1 p2

log r
) there is a constant Kd such that

∣

∣

∣
L(u) − u−��(u)

∣

∣

∣
≤ Kd

1

ud
(6.1)

for all u > 0 where � is the function defined in Theorem 2.4 (or, alternatively, in Theorem 6.5

below). The proof of (6.1) is divided in the following four parts:

Part 1 We first define the moment zeta-function

Z :
{

s ∈ C

∣

∣

∣
Re s > 0

}

→ C :

this is done in Theorem and Definition 6.1.

Part 2 Next, using the Mellin transform theory, we show that L can be written as a complex

curve integral involving Z , namely, we show that for 0 < c < � we have

L(u) =
1

2πi

∫ c+i∞

c−i∞

Z(s)

1 − qr−s
u−s ds (6.2)

for all u > 0 (recall that q = p1 p2); this is done in Theorem 6.3.
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Part 3 Finally, using the residue theorem, we compute the complex curve integral in (6.2).

In particular, we show that if 0 < c < � < d , then

1

2πi

∫ c+i∞

c−i∞

Z(s)

1 − qr−s
u−s ds = u−��(u) + O( 1

ud ) (6.3)

for all u > 0; this is done in Theorems 6.4 and 6.6: in Theorems 6.4 and 6.5 estimates for

|Z(s)| and |1 − qr−s | are obtained and in Theorem 6.6 we use the residue theorem together

with the estimates from Theorems 6.4 and 6.5 to derive formula (6.3).

Part 4 The desired inequality [i.e. (6.1)] follows immediately from combining (6.2) and (6.3).

We now define the moment zeta-function Z .

Theorem and Definition 6.1 (The moment zeta-function) For s ∈ C with 0 < Re s, we

have
∫ ∞

0

|�(u) us−1| du < ∞.

In particular, the moment zeta function Z : {s ∈ C | Re s > 0} → C defined by

Z(s) =
∫ ∞

0

�(u) us−1 du

is well-defined.

Proof This follows from Proposition 4.6. ⊓⊔

Next, using the Mellin transform theory, we show that the function L can be expressed as

a complex curve integral involving the moment zeta-function Z . For the benefit of the reader

we first state the Mellin transform theorem.

Theorem 6.2 (The Mellin transform theorem [19]) Let a, b ∈ [−∞,∞] with a < b and

let f : (0,∞) → R be a real valued function. Assume that the following conditions are

satisfied:

(i) The function f is piecewise continuous on all compact subintervals of (0,∞), and at

all discontinuity points x0 > 0 of f , we have f (x0) = limxցx0
f (x)+limxրx0

f (x)

2
;

(ii) If s ∈ C satisfies a < Re s < b, then
∫ ∞

0 |x s−1 f (x)| dx < ∞.

Then we have:

(1) Fors ∈ C with a < Re s < b the integral

∫ ∞

0

x s−1 f (x) dx

is well-defined.

It follows from (1) that the function M f : {s ∈ C | a < Re s < b} → C given by

(M f )(s) =
∫ ∞

0

x s−1 f (x) dx

is well-defined. The function M f is called the Mellin transform of f .
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(2) For c ∈ R with a < c < b and x > 0 the integral

∫ c+i∞

c−i∞
x−s(M f )(s) ds

is well-defined.

(3) For c ∈ R with a < c < b and x > 0, we have

f (x) =
1

2πi

∫ c+i∞

c−i∞
x−s(M f )(s) ds.

Theorem 6.3 (1) For s ∈ C with 0 < Re s < �, we have
∫ ∞

0 |L(u) us−1| du < ∞. In

particular, the Mellin transform ML : {s ∈ C | 0 < Re s < �} → C of L defined by

(ML)(s) =
∫ ∞

0

L(u) us−1 du

is well-defined.

(2) For s ∈ C with 0 < Re s < �, we have

(ML)(s) =
Z(s)

1 − qr−s
.

(3) For c ∈ R with 0 < c < � and u > 0 the integral
∫ c+i∞

c−i∞ u−s(ML)(s) ds is well-defined

and we have

L(u) =
1

2πi

∫ c+i∞

c−i∞
u−s(ML)(s) ds.

In particular, for c ∈ R with 0 < c < � and u > 0, we have

L(u) =
1

2πi

∫ c+i∞

c−i∞

Z(s)

1 − qr−s
u−s ds. (6.4)

Proof (1)–(2) We first note that a simple calculation shows that L(s) = q L(rs) + �(s) for

s ∈ C, and it therefore follows from Lemma 4.1 that the series
∑∞

k=0 qk�(rks) converges

and that

L(s) =
∞
∑

k=0

qk�(rks)

for all s ∈ C.

Now fix s ∈ C with 0 < Re s < �, and define the functions fn, f, g : (0,∞) → C for

positive integers n by

fn(u) =
n

∑

k=0

qk�(rks) us−1,

f (u) = L(u) us−1 =
∞
∑

k=0

qk�(rks) us−1,

g(u) =
∞
∑

k=0

qk |�(rks) us−1|,

Since Re s < � = log q
log r

, we conclude that
q

rRe s < 1, whence
∑∞

k=0(
q

rRe s )
k < ∞. This

and Proposition 4.6 imply that
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∫ ∞

0

g(u) du =
∫ ∞

0

n
∑

k=0

qk |�(rks) us−1| du

≤
∞
∑

k=0

qk

∫ ∞

0

|�(rku)| uRe s−1 du

≤ c Ŵ(Re s)
1

rRe s

∞
∑

k=0

( q

rRe s

)k

< ∞. (6.5)

We also note that fn(u) → f (u) for all u ∈ (0,∞) and that | fn | ≤ g for all n. Since
∫ ∫ ∞

0 g(u) du < ∞ [by (6.5)], we now conclude from this and the dominated conver-

gence theorem that
∫ ∞

0 |L(u) us−1| du =
∫ ∞

0 | f (u)| du < ∞ and that
∫ ∞

0 f (u) du =
∫ ∞

0 limn fn(u) du = limn

∫ ∞
0 fn(u) du, whence

(ML)(s) =
∫ ∞

0

L(u) us−1 du

=
∫ ∞

0

f (u) du

= lim
n

∫ ∞

0

fn(u) du

= lim
n

∫ ∞

0

n
∑

k=0

qk�(rku) us−1 du

= lim
n

n
∑

k=0

qk

∫ ∞

0

�(rku) us−1 du

= lim
n

n
∑

k=0

( q

r s

)k
∫ ∞

0

�(v) vs−1 dv

=
∞
∑

k=0

( q

r s

)k

Z(s)

=
1

1 − qr−s
Z(s).

(3) This statement follows from Theorem 6.2. ⊓⊔

Finally, using the residue theorem, we compute the complex curve integral in (6.4). This

is done in Theorems 6.4, 6.5 and 6.6: in Theorems 6.4 and 6.5 estimates for |Z(s)| and

|1 − qr−s | are obtained and in Theorem 6.6 we use the residue theorem together with the

estimates from Theorems 6.4 and 6.5 to compute the curve integral in (6.4).

Theorem 6.4 For a real number d with 0 < d, write

Hd =
{

s ∈ C

∣

∣

∣
0 < Re s ≤ d

}

,

Kd =
{

s ∈ C

∣

∣

∣
0 < Re s ≤ d, Im s ∈ 2π(N− 1

2 )

log r
∪ 2π(−(N− 1

2 ))

log r

}

∪
{

s ∈ C

∣

∣

∣
Re s = d

}

. (6.6)
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(1) For all real numbers d with 0 < d, there is a constant hd such that

|Z(s)| ≤ hd

1

|s|2

for all s ∈ Hd .

(2) For all real numbers d with 0 < d and d �= �, there is a constant kd such that

1

|1 − qr−s |
≤ kd

for all s ∈ Kd .

Proof (1) For s ∈ C with Re s > 0, we have

Z(s) =
∫ ∞

0

�(u) us−1 du

= lim
n

∫ n

1
n

�(u) us−1 du

= lim
n

(

1

s

[

�(u) us
]u=n

u= 1
n

−
1

s

∫ n

1
n

�′(u) us du

)

= lim
n

(

1

s

[

�(u) us
]u=n

u= 1
n

−
1

s(s + 1)

[

�′(u) us+1
]u=n

u= 1
n

+
1

s(s + 1)

∫ n

1
n

�′′(u) us+1 du

)

. (6.7)

However, it follows from Proposition 4.5 that for each integer n, there is a positive constant cn

such that |Dn�(u)| ≤ cne−ru for all u ≥ 0. In particular, this implies that there are constants

c0 and c1 such that if s ∈ C, with Re s > 0, then

|�(u)us | ≤ c0e−ruuRe s → 0 as u → 0 and as u → ∞,

and

|�′(u)us+1| ≤ c1e−ruuRe s+1 → 0 as u → 0 and as u → ∞.

We conclude immediately from this that
[

�(u) us
]u=n

u= 1
n

→ 0 as n → ∞ and
[

�′(u) us+1
]u=n

u= 1
n

→ 0 as n → ∞,

and (6.7) therefore shows that

Z(s) = lim
n

1

s(s + 1)

∫ n

1
n

�′′(u) us+1 du.

Hence, for all s ∈ C with Re s > 0, we have

|Z(s)| ≤ lim sup
n

∣

∣

∣

∣

1

s(s + 1)

∫ n

1
n

�′′(u) us+1 du

∣

∣

∣

∣

≤ lim sup
n

1

|s(s + 1)|

∫ n

1
n

|�′′(u) us+1| du

∣

∣

∣

∣

=
1

|s|2

∫ ∞

0

|�′′(u) us+1| du. (6.8)
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Again, recalling that it follows from Proposition 4.5, that for each integer n, there is a

positive constant cn such that |Dn�(u)| ≤ cne−ρu for all u ≥ 0. In particular, this implies that

there is a constant c2 such that if s ∈ C, with Re s > 0, then |�′′(u)us+1| ≤ c2e−ρuuRe s+1.

We conclude from this and (6.8) that if s ∈ C, with Re s > 0, then

|Z(s)| ≤
1

|s|2

∫ ∞

0

|�′′(u) us+1| du

≤ c2
1

|s|2

∫ ∞

0

e−ruuRe s+1 du

= c2
1

rRe s+2

1

|s|2

∫ ∞

0

e−vvRe s+1 du

= c2
1

rRe s+2
Ŵ(Re s + 2)

1

|s|2
.

We deduce from this that if s ∈ Hd , then

|Z(s)| ≤ hd

1

|s|2

where hd = c2 supx∈[0,d](
1

r x+2 Ŵ(x + 2)) < ∞.

(2) Define f : C → R by f (s) = 1 − qr−s and write I = {z ∈ C | − π
− log r

≤ Im z ≤
π

− log r
}. It is clear that f is periodic with period equal to 2π

− log r
, and so infs∈Kd

| f (s)| =
infs∈Kd∩I

| f (s)|. It is also clear that f (s) = 0 if and only if s ∈ � + 2π
− log r

Z. Since d �= �,

we deduce from this that f (s) �= 0 for s ∈ Kd ∩ I, and the compactness of Kd ∩ I therefore

shows that there is a real constant kd such that | f (s)| ≥ 1
kd

for all s ∈ Kd ∩ I, whence

infs∈Kd
| f (s)| ≥ infs∈Kd

| f (s)| = infs∈Kd∩I
| f (s)| ≥ 1

kd
. This implies that 1

| f (s)| ≤ kd for

all s ∈ Kd . ⊓⊔

Below we use the following notation, namely, if f is a holomorphic function, then P( f )

denotes the set of poles of f , and if ω is a pole of f , then res( f ;ω) denotes the residue of

f at ω.

Theorem 6.5 For n ∈ Z, write

sn = � +
1

− log r
2πin.

Let u > 0.

(1) We have

P

(

s →
Z(s)

1 − qr−s
u−s

)

=
{

sn

∣

∣

∣
n ∈ Z

}

.

(2) For n ∈ Z, we have

res

(

s →
Z(s)

1 − qr−s
u−s; sn

)

=
1

− log r
Z(sn) u−sn

(3) We have

∑

n∈Z

∣

∣

∣

∣

res

(

s →
Z(s)

1 − qr−s
u−s; sn

)
∣

∣

∣

∣

< ∞.
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In particular, the series

∑

n∈Z

res

(

s →
Z(s)

1 − qr−s
u−s; sn

)

=
∑

n∈Z

1

− log r
Z(sn) u−sn

= u−� 1

− log r

∑

k∈Z

Z(sn) e
2πin

log u
log r

= u−� �(u),

where � : (0,∞) → C is defined by

�(u) =
1

− log r

∑

k∈Z

Z(sn) e
2πin

log u
log r ,

converges. In addition, � is a multiplicatively periodic function with period equal to r ,

i.e. �(ru) = �(u) for all u > 0.

Proof (1) This statement is clear.

(2) This statement is clear.

(3) Note that it follows from Theorem 6.4 that there is a constant h� such that |Z(s)| ≤
h�

1
|s|2 for all complex numbers s with 0 < Re s ≤ �. In particular, since Re sn = �

for all n ∈ Z, this implies that

|Z(sn)| ≤ h�

1

|sn |2

for all n. We now conclude from this and parts (1) and (2) that

∑

n∈Z

∣

∣

∣

∣

res

(

s →
Z(s)

1 − qr−s
u−s; sn

) ∣

∣

∣

∣

=
∑

n∈Z

∣

∣

∣

∣

1

− log r
Z(sn) u−sn

∣

∣

∣

∣

=
1

− log r

∑

n∈Z

|Z(sn)| |u−sn |

≤
h�

− log r

∑

n∈Z

1

|sn |2
u− Re sn

≤
h�

− log r

∑

n∈Z

1

�2 + ( 1
− log r

2π)2 n2
u−�

< ∞.

This completes the proof. ⊓⊔
Theorem 6.6 Let � : (0,∞) → C be defined as in Theorem 6.5. For all real numbers d

with � < d, there is a constant Kd such that
∣

∣

∣

∣

1

2πi

∫ c+i∞

c−i∞

Z(s)

1 − qr−s
u−s ds − u−� �(u)

∣

∣

∣

∣

≤ Kd

1

ud

for all u > 0 and all real numbers c with 0 < c < �.

In particular, for all real numbers c and d with 0 < c < � < d, we have

1

2πi

∫ c+i∞

c−i∞

Z(s)

1 − qr−s
u−s ds = u−� �(u) + O

(

1

ud

)

for all u > 0.
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Proof Write an = Im(
sn+sn−1

2
) for n ∈ N.

Fix a real numbers c and d with 0 < c < � < d and let Ŵd,n , γ −
c,d,n and γ +

c,d,n denote the

following paths in C:

Ŵd,n is the directed line segment from d + ian to d − ian;
γ −

c,d,n is the directed line segment from d − ian to c − ian;
γ +

c,d,n is the directed line segment from c + ian to d + ian .

Fix u > 0. Let Gc,d,n denote the region enclosed by the paths Ŵd,n , γ −
c,d,n , γ +

c,d,n and the

directed line segment from c−ian to c+ian . Since Gc,d,n ∩P(s → Z(s)
1−qr−s u−s) = {sk | |k| <

n}, it now follows from the residue theorem applied to the function s → Z(s)
1−qr−s u−s where

s ∈ C with Re s > 0 that

1

2πi

∫ c+ian

c−ian

Z(s)

1 − qr−s
u−s ds +

1

2πi

∫

Ŵd,n

Z(s)

1 − qr−s
u−s ds

+
1

2πi

∫

γ −
c,d,n

Z(s)

1 − qr−s
u−s ds +

1

2πi

∫

γ +
c,d,n

Z(s)

1 − qr−s
u−s ds

=
∑

|k|<n

res

(

s →
Z(s)

1 − qr−s
u−s; sk

)

and so
∣

∣

∣

∣

1

2πi

∫ c+ian

c−ian

Z(s)

1 − qr−s
u−s ds −

∑

|k|<n

res

(

s →
Z(s)

1 − qr−s
u−s; sk

) ∣

∣

∣

∣

=
∣

∣

∣

∣

1

2πi

∫

Ŵd,n

Z(s)

1 − qr−s
u−s ds

+
1

2πi

∫

γ −
c,d,n

Z(s)

1 − qr−s
u−s ds +

1

2πi

∫

γ +
c,d,n

Z(s)

1 − qr−s
u−s ds

∣

∣

∣

∣

≤
1

2π

∣

∣

∣

∣

∫

Ŵd,n

Z(s)

1 − qr−s
u−s ds

∣

∣

∣

∣

+
1

2π

∣

∣

∣

∣

∫

γ −
c,d,n

Z(s)

1 − qr−s
u−s ds

∣

∣

∣

∣

+
1

2π

∣

∣

∣

∣

∫

γ +
c,d,n

Z(s)

1 − qr−s
u−s ds

∣

∣

∣

∣

. (6.9)

Next, we note that it follows from Theorem 6.5 and Theorem 6.3 that the series
∑

k∈Z
res(s → Z(s)

1−qr−s u−s; sk) = u−� �(u) is convergent and that L(u) = 1
2πi

∫ c+i∞
c−i∞

Z(s)
1−qr−s u−s ds, respectively, whence

∣

∣

∣

∣

1

2πi

∫ c+ian

c−ian

Z(s)

1 − qr−s
u−s ds − u−� �(u)

∣

∣

∣

∣

=
∣

∣

∣

∣

1

2πi

∫ c+i∞

c−i∞

Z(s)

1 − qr−s
u−s ds −

∑

k∈Z

res

(

s →
Z(s)

1 − qr−s
u−s; sk

) ∣

∣

∣

∣

≤ vc,n(u) +
∣

∣

∣

∣

1

2πi

∫ c+ia−n

c+ian

Z(s)

1 − qr−s
u−s ds −

∑

|k|<n

res

(

s →
Z(s)

1 − qr−s
u−s; sk

) ∣

∣

∣

∣

+wc,n(u) (6.10)
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for all positive integers n, where

vc,n(u) =
∣

∣

∣

∣

1

2πi

∫ c+i∞

c−i∞

Z(s)

1 − qr−s
u−s ds −

1

2πi

∫ c+ian

c−ian

Z(s)

1 − qr−s
u−s ds

∣

∣

∣

∣

,

wc,n(u) =
∣

∣

∣

∣

∑

|k|<n

res

(

s →
Z(s)

1 − qr−s
u−s; sk

)

−
∑

k∈Z

res

(

s →
Z(s)

1 − qr−s
u−s; sk

) ∣

∣

∣

∣

.

Combining (6.9) and (6.10) we now conclude that

∣

∣

∣

∣

1

2πi

∫ c+ian

c−ian

Z(s)

1 − qr−s
u−s ds − u−� �(u)

∣

∣

∣

∣

≤ vc,n(u) + wc,n(u)

+
1

2π

∣

∣

∣

∣

∫

Ŵd,n

Z(s)

1 − qr−s
u−s ds

∣

∣

∣

∣

+
1

2π

∣

∣

∣

∣

∫

γ −
c,d,n

Z(s)

1 − qr−s
u−s ds

∣

∣

∣

∣

+
1

2π

∣

∣

∣

∣

∫

γ +
c,d,n

Z(s)

1 − qr−s
u−s ds

∣

∣

∣

∣

. (6.11)

We now prove the follows claims.

Claim 1 For all c with 0 < c < �, we have vc,n(u) → 0 as n → ∞ for all u > 0 and

wc,n(u) → 0 as n → ∞ for all u > 0.

Proof of Claim 1 This statement follows immediately from the definition of vc,n(u) and

wc,n(u). This completes the proof of Claim 1. ⊓⊔

Claim 2 For all c and d with 0 < c < � < d, we have |
∫

γ ±
c,d,n

Z(s)
1−qr−s u−s ds| → 0 as

n → ∞ for all u > 0.

Proof of Claim 2 Let the sets Hd and Kd be defined as in Theorem 6.4 and note that it follows

from Theorem 6.4 that there are constants hd and kd such that |Z(s)| ≤ hd
1

|s|2 for all s ∈ Hd

and 1
|1−qr−s | ≤ kd for s ∈ Kd . Since γ ±

c,d,n ⊆ Kd ⊆ Hd , we therefore conclude that if u > 0

and n ∈ N, then

∣

∣

∣

∣

∫

γ ±
c,d,n

Z(s)

1 − qr−s
u−s ds

∣

∣

∣

∣

≤
∫

γ ±
c,d,n

|Z(s)|
|1 − qr−s |

|u−s | ds

≤ hd kd

∫

γ ±
c,d,n

1

|s|2
u− Re s ds

= hd kd

∫ d

c

1

t2 + a2
n

u−t dt

≤ hd kd

∫ d

c

u−t dt
1

a2
n

→ 0 as n → ∞

since an → ∞ as n → ∞. This completes the proof of Claim 2. ⊓⊔

Claim 3 For all d with � < d, there is a constant Kd such that |
∫

Ŵd,n

Z(s)
1−qr−s u−s ds| ≤

Kd
1

ud for all u ≥ 0 and all n ∈ N.
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Proof of Claim 3 Again, let the sets Hd and Kd be defined as in Theorem 6.4 and, again, note

that it follows from Theorem 6.4 that there are constants hd and kd such that |Z(s)| ≤ hd
1
|s|

2

for all s ∈ Hd and 1
|1−qr−s | ≤ kd for s ∈ Kd . Since Ŵd,n ⊆ Kd ⊆ Hd , we therefore conclude

that if u > 0 and n ∈ N, then
∣

∣

∣

∣

∫

Ŵd,n

Z(s)

1 − qr−s
u−s ds

∣

∣

∣

∣

≤
∫

Ŵd,n

|Z(s)|
|1 − qr−s |

|u−s | ds

≤ hd kd

∫

Ŵd,n

1

|s|2
u− Re s ds

= hd kd

∫

Ŵd,n

1

|s|2
u−d ds

= hd kd u−d

∫ an

−an

1

d2 + t2
dt

≤ hd kd u−d

∫ ∞

−∞

1

d2 + t2
dt

= Kd u−d

where Kd = hd kd

∫ ∞
−∞

1
d2+t2 dt . This completes the proof of Claim 3.

Combining (6.11) and Claim 3 we conclude that

∣

∣

∣

∣

1

2πi

∫ c+ian

c−ian

Z(s)

1 − qr−s
u−s ds − u−� �(u)

∣

∣

∣

∣

≤ vc,n(u) + wc,n(u)

+
1

2π

∣

∣

∣

∣

∫

Ŵd,n

Z(s)

1 − qr−s
u−s ds

∣

∣

∣

∣

+
1

2π

∣

∣

∣

∣

∫

γ −
c,d,n

Z(s)

1 − qr−s
u−s ds

∣

∣

∣

∣

+
1

2π

∣

∣

∣

∣

∫

γ +
c,d,n

Z(s)

1 − qr−s
u−s ds

∣

∣

∣

∣

≤ vc,n(u) + wc,n(u)

+
1

2π

∣

∣

∣

∣

∫

γ −
c,d,n

Z(s)

1 − qr−s
u−s ds

∣

∣

∣

∣

+
1

2π

∣

∣

∣

∣

∫

γ +
c,d,n

Z(s)

1 − qr−s
u−s ds

∣

∣

∣

∣

+ Kd u−d

for all u > 0 and all n. Letting n → ∞ and using Claims 1 and 2, we deduce from this

inequality that

∣

∣

∣

∣

1

2πi

∫ c+i∞

c−i∞

Z(s)

1 − qr−s
u−s ds − u−� �(u)

∣

∣

∣

∣

≤ Kd u−d

for all u > 0. ⊓⊔

We can now prove inequality (6.1).

Theorem 6.7 Let � : (0,∞) → C be defined as in Theorem 6.5. For all real numbers d

with � < d, there is a constant Kd such that

∣

∣

∣
L(u) − u−� �(u)

∣

∣

∣
≤ Kd

1

ud

for all u > 0.

Proof This follows immediately by combining Theorems 6.3 and 6.6. ⊓⊔
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7 Proof of Theorems 2.4 and 2.5

Finally, we will now combine inequalities (2.7) and (2.8) (i.e. Theorems 5.3 and 6.7, respec-

tively), to prove Theorems 2.4 and 2.5.

Theorem 2.4 and Theorem 2.5 Let � : (0,∞) → C be defined as in Theorem 6.5. Then

there is a sequence (εn)n with lim supn n|εn | < ∞ such that

n�Mn = �(n) + εn

for all n.

Proof It follows from Theorem 5.3 that there is a constant K such that |Mn −L(n)| ≤ K 1
n1+�

for all n, and it follows from Theorem 6.7 that for each d with � < d there is a constant Kd

such that |L(u) − n−��(u)| ≤ Kd
1

ud for all u > 0. Hence

|Mn − n−��(n)| ≤ |Mn − L(n)| + |L(n) − n−��(n)| ≤ K
1

n1+�
+ Kd

1

ud

for all d with � < d and all n. In particular, for d = 1 + �, we have

|Mn − n−��(n)| ≤ K
1

n1+�
+ K1+�

1

n1+�
= (K + K1+�)

1

n1+�

for all n. This clearly implies the desired result. ⊓⊔
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