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Abstract

Context Urbanisation places increasing stress on

ecosystem services; however existing methods and

data for testing relationships between service delivery

and urban landscapes remain imprecise and uncertain.

Unknown impacts of scale are among several factors

that complicate research. This study models ecosys-

tem services in the urban area comprising the towns of

Milton Keynes, Bedford and Luton which together

represent a wide range of the urban forms present in

the UK.

Objectives The objectives of this study were to test

(1) the sensitivity of ecosystem service model outputs

to the spatial resolution of input data, and (2) whether

any resultant scale dependency is constant across

different ecosystem services and model approaches

(e.g. stock- versus flow-based).

Methods Carbon storage, sediment erosion, and

pollination were modelled with the InVEST frame-

work using input data representative of common

coarse (25 m) and fine (5 m) spatial resolutions.

Results Fine scale analysis generated higher esti-

mates of total carbon storage (9.32 vs. 7.17 kg m-2)

and much lower potential sediment erosion estimates

(6.4 vs. 18.1 Mg km-2 year-1) than analyses con-

ducted at coarser resolutions; however coarse-scale

analysis estimated more abundant pollination service

provision.

Conclusions Scale sensitivities depend on the type

of service beingmodelled; stock estimates (e.g. carbon

storage) are most sensitive to aggregation across

scales, dynamic flow models (e.g. sediment erosion)

are most sensitive to spatial resolution, and ecological

process models involving both stocks and dynamics

(e.g. pollination) are sensitive to both. Care must be

taken to select model data appropriate to the scale of

inquiry.

Keywords Ecosystem services � Urban � Model �
Natural capital � Scale � InVEST � Pollination �
Erosion � Carbon � England

Introduction

The influence of scale has long been an important topic

in ecological research, and it is well-documented that
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many spatial patterns in ecology are highly scale

dependent (e.g. Wiens 1989; Elith and Leathwick

2009; Chave 2013). Ecosystem services are dependent

on dynamic processes that act and interact at different

scales; however a clear understanding of how best to

study such services and account for their complex

spatial and temporal relationships remains the subject

of ongoing research (e.g. Konarska et al. 2002;

Andersson et al. 2015; Holt et al. 2015). In both the

measurement and modelling of such services, trade-

offs between accuracy and feasibility exist when

selecting a scale of inquiry, and finding an optimal

balance depends on research goals and decision-

making contexts (Schröter et al. 2015). There are

numerous challenges in modelling the ecosystem

service provision of a landscape, but principal among

them are:

(1) the ability to specify the relationship between a

particular element of the environment (e.g. type

of land cover) and the generation of a particular

service; and,

(2) possessing information about the composition

of the environment at the appropriate scale and

resolution.

The first of these primarily concerns our under-

standing of the key processes that underpin services,

and how these work in different ecosystems, i.e. the

mechanisms used in the modelling process. The

second, the scale and classification of data on the

environment, concerns the nature of input data, and is

our focus here.

When representing natural systems and their ser-

vices as spatial data, the resolution may not be

appropriate or optimal for the service under study

which may in turn lead to misrepresentations of

ecosystem service provision, however well-suited the

model used to generate it (Konarska et al. 2002; Di

Sabatino et al. 2013). The extent or magnitude of these

problems can be difficult to gauge, but Foody (2015),

in a comparison of ecosystem service assessments

based on data with and without a validation procedure

to correct for land cover classification errors, found

that such errors could lead to absolute differences in

results exceeding a factor of two. Similarly, Konarska

et al. (2002) calculated ecosystem service value for the

conterminous US based on 30 m land cover data at

nearly double that of analysis based on 1 km data.

Ecosystem services in urban landscapes have

remained under-studied until relatively recently, as

mainstream ecosystem science and large-scale preser-

vation efforts tended to focus on expansive and

biodiverse ‘pristine’ environments (Chiesura 2004;

Kaye et al. 2006; Davies et al. 2013). However, despite

their relatively small area (\3 % of the global terres-

trial surface), there is an increasing recognition that

urban ecosystems and their services have a dispropor-

tionate importance due to their proximity to human

activity and occupancy (Grimm et al. 2008). As a

consequence, the ecological study of urban environ-

ments has increased markedly in recent years, reveal-

ing particular challenges resulting from complex fine

scale patterns and interactions, a high degree of spatial

heterogeneity, and diverse habitat characteristics that

are dependent on culture and geography (Pouyat et al.

2002; Alberti 2005; Davies et al. 2011; Dobbs et al.

2014). These challenges are exacerbated when multi-

ple systems and interactions are considered, such that

few previous studies of urban ecosystem services have

considered multiple services (Haase et al. 2014) and

most have been based on coarse scale land use/land

cover data with arbitrary characterisation schemes

(Derkzen et al. 2015). The complexities of urban

landscapes mean that the measuring and modelling of

their ecosystem services, as well as relationships

between those services, are likely to be highly sensitive

to changes in the scale and resolution of input data

(Holt et al. 2015). This presents a challenge for

modelling urban ecosystem services and an imperative

for understanding the nature of this scale dependence.

The degree of difficulty in assessing urban ecosys-

tem services can vary by the service being studied.

Even services that are conceptually simple to model

require an accurate and appropriate characterisation of

urban environments; a task which is not always easy or

possible with readily available data. While moderate

to coarse resolution (e.g.[20 m) land use/land cover

data are often more cheaply and easily available than

higher resolution data, these can fail to capture the

necessary detail of landscape patterns, urban or

otherwise, and produce fundamentally different

results than fine scale data when used as model input

(Konarska et al. 2002; Haase et al. 2014; Li et al.

2015). Coarser scales may also necessitate a degree of

spatial aggregation, which can result in the loss of

characteristic spatial heterogeneity.
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In this paper we test the effects of spatial scale on

outcomes of modelling urban ecosystem services. To

do this we modelled carbon storage, sediment erosion,

and pollination in an urban environment using input

datasets at relatively high (5 m) and low (25 m)

resolutions. The modelled services represent three

different conceptual approaches; carbon storage being

a stock model, sediment erosion a dynamic flow

model, and pollination being an ecological model that

depends on both stocks and flows. Services were

modelled across three urban areas: the towns ofMilton

Keynes, Bedford, and Luton, UK, which were chosen

as collectively they exhibit a high diversity of urban

forms. We use as our modelling framework the

Integrated Valuation of Environmental Services and

Tradeoffs (InVEST), being one of the most widely-

used ecosystem service model frameworks available

and one accessible to the widest range of potential

users (Tallis et al. 2014). The objectives of the study

were to test: (1) the sensitivity of ecosystem service

model outputs to the spatial resolution of input data,

and (2) whether any scale dependencies are consistent

across different services and model conceptual

approaches. We use these outputs to explore how the

benefits of working with fine scale data balance

against the added difficulties in computation and data

availability relative to more readily-available coarse

scale datasets, and to compare spatial patterns and

quantifications of potential ecosystem services within

the study area when modelled based on the differing

assumptions that are associated with input data at

different scales.

Data and methods

Study area

The study area for this project was the combined urban

areas of three large towns: Milton Keynes, Bedford,

and Luton, UK (Fig. 1). Collectively these towns

exhibit a broad range of urban forms and histories,

including historic urban centres, areas of industrial

expansion and planned new town development. This

diversity captures much of the range of urban forms

found in the UK. The focus of this study is on urban

form and it should be noted that, given the differences

in urban form between the three towns, these cannot be

considered as replicates in this analysis; rather an

extension of a continuum of urban form. For this

reason, we concentrate on description of the variation

across all the areas rather than statistical comparison

between them. This approach allows the results to be

more widely applicable to other urban areas across the

UK, giving this study a greater relevance than a

rigorous study of a single location would have.

Milton Keynes is one of several planned ‘new

towns’ in England built during the late 20th century. It

is located in Buckinghamshire, approximately 72 km

northwest of central London (52� 00 N, 0� 470 W), and

is noteworthy for its unique road layout and urban

form. Unlike the radial road network based on a town

centre that is common to many UK urban areas, Milton

Keynes possesses an approximately 1.2 km grid road

network designed for speed and efficiency of automo-

tive travel (Peiser and Chang 1999). The population of

the urban area in 2011 was 229,941, and the town

covers an area of 89 km2 with a population density of

2584 inhabitants km-2 (Office for National Statistics

2013). The town is also characterised by a high

proportion of green space relative to many urban

environments, both along the major roads and inter-

spersed within the various residential areas (Milton

Keynes Council 2015).

Bedford, the county town of Bedfordshire (52� 80 N,
0� 270 W), originated as a medieval market town. As

such, it differs from Milton Keynes by exhibiting a

radial road pattern around the town centre like many

British urban areas. Its 2011 population was 106,940

and it covers 36 km2, with a population density of

2971 inhabitants km-2 (Office for National Statistics

2013).

Luton, by further contrast, is a larger industrial

town typified by extensive industrial parks and

nineteenth century residential ‘terraces’ that make up

much of its urban pattern (51� 520 N, 0� 250 W).

Studied here as the combined Luton/Dunstable urban

area, the region has a population of 258,018 and covers

an area of 58 km2, with a population density of 4448

inhabitants km-2 (Office for National Statistics 2013).

Taken collectively, the diversity of the three towns

encompasses a range of urban forms and population

density that represents much of the variation present in

the UK, making the results here more general and

robust than would be possible in any single urban area.

The combined study area, accounting for some

additional urban fringe, encompasses an area of

approximately 204 km2.
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InVEST modelling framework

The InVEST 3.1.0 modelling suite was developed by

the Natural Capital Project and Stanford University to

provide a framework for estimating and valuing

various ecosystem services through a set of standalone

but linkable models (Tallis et al. 2014). The InVEST

framework currently consists of nine terrestrial models

and eight marine models, and is one of the most widely

used and accessible options for modelling ecosystem

services. For this study three models were chosen

according to their functional treatment of ecosystem

services; ‘Carbon Storage and Sequestration’ repre-

sents a stock estimation model, ‘Sediment Delivery’

models flows over the landscape, and ‘Pollination’ is

an ecological model that depends on both stocks and

flows. GIS analysis, data organisation, and visualisa-

tion were conducted in ArcGIS 10.2 (ESRI 2013).

Land use/land cover and terrain

The fine scale (5 m) land use/land cover map used in

this study was created from colour infrared aerial

photography originally at 0.5 m resolution obtained

from LandMap Spatial Discovery (http://landmap.

mimas.ac.uk/). The imagery was taken on 2 June 2009

for Bedford; 30 June 2009 and 24 April 2010 for

Luton; and 8, 15 June 2007 and 2 June 2009 for Milton

Keynes, based on cloud-free image availability.

Buildings and water features were identified from UK

Ordnance Survey MasterMap layers, and remaining

paved surfaces were separated from vegetation

through the use of a Normalised Difference Vegeta-

tion Index (NDVI) threshold. Vegetation was then

classified into broadleaf trees, coniferous trees, and

grass/herbaceous using image segmentation in the

software package eCognition (Trimble 2011). To

facilitate feasibility of processing and agreement

across data types, the land cover map was resampled to

5 m resolution for all modelling and analysis.

Models were also run using a 25 m resolution land

cover raster from the UK Ordnance Survey (OS),

created from a 2007 parcel-based classification of UK

land cover (Digimap 2007). This map was chosen to

represent widely available datasets that, while not

ideal for urban ecosystem service modelling, might in

many cases be the best available source for some

modellers. While created with a rural focus, this

dataset was deemed more appropriate than other

common land cover maps such as CORINE due to

the coarse resolution of the latter (100 m), and the

belief that such a coarse scale would be unsuitable for

accurately depicting important landscape features in

the study area (cf. Di Sabatino et al. 2013). Despite the

Fig. 1 Study area location

and 5 m land use/land cover

for Bedford, Luton, and

Milton Keynes, UK
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rural focus of its origin, the map exhibits a scheme of

classification and spatial aggregation in urban lands

comparable to other land cover maps at similar and

coarser scales such as CORINE. Cover types were

parameterised to be as congruent as possible between

the imagery-based 5 m and OS 25 m classification

schemes; similar grassland/herbaceous and agricul-

tural classes in the 25 m classification were grouped

together and parameterised broadly as grass/herba-

ceous. Additionally, this classification contained a

‘suburban’ class that the 5 m map did not. This class

had no direct analogue in the 5 m data, representing an

aggregate of paved and vegetated features at too fine a

scale to distinguish at 25 m resolution. This class was

therefore parameterised in all three models as an area-

weighted average of the parameters used for its

constituent classes according to their relative occur-

rence in the suburban areas of the 5 m land cover map.

Finally, the OS map was chosen over a coarsened

version of our own fine-scale map in order to avoid the

uncertainty and complex justifications that would

have resulted from conducting our own aggregation.

For the sediment erosion model, two digital terrain

models (DTMs) were compared as inputs in this study.

A relatively course-scale 50 m resolution DTM was

obtained from the UK Ordnance Survey (Ordnance

Survey, 2013) and resampled using bilinear interpo-

lation to 25 m to match the coarse scale land cover

map; while a 5 m resolution bare ground (e.g.

buildings and trees removed) DTM, produced from

airborne LiDAR was used as the fine-scale input. This

was collected by the NERC-ARSF Leica ALS50-II

LiDAR instrument and produced by identifying

ground returns using LAStools (Isenburg 2015) then

interpolating by fitting a 5th order polynomial over

50 m by 50 m patches at 50 cm resolution. This

dataset did not have the exact same coverage available

as the OS DTM, so the northwest and southeast

corners of Milton Keynes appear clipped in model

results based on this dataset. Both DTMs were

prepared for hydrological use by the filling of ‘sinks’

in the data and calculation of watershed basins (‘Fill’

and ‘Basin’ tools in ArcGIS Spatial Analyst).

Modelling carbon storage

The basic data requirements of InVEST’s carbon

storage model are a raster-based land cover map and

data identifying the carbon storage capability in

carbon pools for each land cover class in the map.

The 5 and 25 m land cover classifications described

above were used and their results compared with one

another. Two studies based in Leicester, England,

were chosen as the primary sources for data on

aboveground (Davies et al. 2011) and soil (Edmond-

son et al. 2014) carbon storage. Broadleaf and

coniferous trees were parameterised the same as one

another in model runs to facilitate areal measures and

agreement between the data taken from the two

papers. The suburban class in the 25 m analysis was

parameterised as an area-weighted average of the

vegetated and non-vegetated classes that comprised it

in the 5 m map. Buildings, paved surfaces, and water

were all set to zero (Table 1); while non-vegetated

classes will contain stored carbon in reality, it is rarely

feasible for urban authorities to actively manage

carbon sequestration in these locations so it is common

practise for them to not be considered in such studies

(e.g. Davies et al. 2011; Strohbach and Haase 2012;

Jiang et al. 2013; Nowak et al. 2013; Edmondson et al.

2014).

Modelling sediment erosion

InVEST’s sediment erosion model calculates erosion

risks and sediment generation and flow based on

topography, climate, soil and land cover properties.

While the erosion of sediment is itself a negative

impact on the landscape, this model was used to

represent the inverse of a positive ecosystem service;

the ability of urban green space to mitigate erosional

losses. The fine-scale run of the model used the 5 m

land cover map and DTM, while the coarse-scale run

used the 25 m land cover map and DTM. Basin maps,

also a required input, were calculated separately from

the fine and coarse scale DTMs.

Table 1 Model input values for land cover class carbon pools

(Mg C ha-1)

Land use/land cover class Aboveground Soil

Trees 284.60 40.00

Grass 1.45 34.50

Non-vegetated—buildings 0 0

Non-vegetated—other 0 0

Non-vegetated—water 0 0

unclassified 0 0

Suburban (25 m only) 84.85 19.24
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Annual soil loss per pixel in the model is calculated

according to the revised universal soil loss equation

(RUSLE):

soil loss ¼ R� K � LS� C � P ð1Þ

whereR is the rainfall erosivity (MJ mm (ha hr)-1),K is

the soil erodibility (Mg ha h (MJ ha mm)-1), LS is the

slope length-gradient factor, C is a crop-management

factor, and P is a support practise factor (explained

below). Rainfall erosivity Rwas calculated based on an

equation given in the InVEST user manual (Tallis et al.

2014) after guidelines recommended by the FAO,

resulting in a value of 190 MJ mm (ha h year)-1. A

raster reporting the soil erosivity index K was acquired

from the UK National Soil Map (Farewell et al. 2011).

Gaps in the source data led to some soil series reporting

erroneous K factors below zero; these were replaced

with values of zero which the model treated as ‘no data’

pixels, and removed from subsequent analysis. The

cover management factorCwas parameterised for each

land cover class after Morgan (2005): 0.002 for

broadleaf trees; 0.004 for coniferous trees; 0.010 for

grassland; 0 for buildings, water and paved surfaces;

and 0.003 for suburban (25 m analysis only, as an area-

weighted average of constituent classes). The support

practise factor P is an index value between 0 and 1,

where 1 has no effect on the equation and values less

than 1 represent standard management practices that

impede erosion, such as contour farming. Since this

parameter is specific to row crop commercial agricul-

ture practices in the United States, it was not applicable

here and omitted from the study by assigning it a value

of 1 for all classes.

Whereas the RUSLE calculates the amount of

eroded sediment lost from each pixel, the sediment

delivery ratio (SDR) models the delivery of that

sediment to the stream network. The SDR function-

ality is based on work by Borselli et al. (2008), and is

calculated for each pixel i according to the equation:

SDRi ¼
SDRmax

1þ exp IC0�ICi

k

� � ð2Þ

where SDRi is the maximum theoretical SDR, IC is a

connectivity index after Borselli et al. (2008), and IC0

and k are calibration parameters that define the shape

of the SDR function. The model’s default parameters

for threshold flow accumulation (1000), Borselli

k parameter (2), Borselli IC0 parameter (0.5) and

maximum SDR value (0.8) were used according to

recommendations in the InVEST user manual (Tallis

et al. 2014) after Vigiak et al. (2012).

Finally, the model calculates a sediment retention

index for each pixel based on land cover parameters of

both the RUSLE and SDR functionality, which

represents the avoided soil loss by the current land

cover compared to bare soil. A measure of sediment

export is produced which represents the combination

of these factors; the amount of sediment from each

pixel per year that is eroded, not captured and retained

by vegetated land cover, and ultimately lost to the

stream network. Here total potential soil loss is

reported to facilitate comparison with published

works, and sediment export is considered as a measure

of the potential for urban vegetated land covers to

mitigate these losses.

Modelling pollination

InVEST’s pollination model allows the user to input

nesting and foraging parameters for multiple pollina-

tor species or species groups, along with nest and

flower availability by land cover type for a landscape,

to predict the spatial extent over which pollination can

be expected to occur within a study area. Here, three

species groups were parameterised for their estimated

foraging distance and habitat nesting and foraging

likelihood in each land cover class according to

published literature; honey bees (Beekman and Rat-

nieks 2000; Garbuzov et al. 2014), bumble bees

(Chapman et al. 2003; Charman et al. 2010), and

butterflies (Cant et al. 2005). These species groups are

not exhaustive of UK pollinators; the objective here

was to estimate scale dependence rather than calculate

total pollination service provision. Parameters were

chosen as rounded estimates based on published

ranges (Table 2). As with other models, the process

was run on both the 5 and 25 m land cover data.

Results

Carbon storage results

Using the 5 m land cover dataset and the carbon

storage values listed previously, the total potential

carbon storage for the study area was calculated as

1902.13 Gg, equivalent to a mean carbon storage
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density of 9.32 kg C m-2 of urban land (Fig. 2). The

effects of different land cover classes can be clearly

seen in the result maps. The majority of the carbon

storage is present in the tree classes, storing an order of

magnitude more carbon per unit area than grass/

herbaceous, with the latter class displaying low-

middle values. At this resolution, the complex patterns

blending low and high carbon storage areas are

apparent, particularly in residential areas.

For the 25 m analysis, the total C result was

calculated at 1464.03 Gg, equivalent to a mean density

of 7.17 kg C m-2. These are roughly three quarters of

the total and area adjusted values of the high-

resolution analysis. The same broad relationships with

land cover can be seen; however the scale of the

classification greatly changes the visible spatial pat-

terns. Differences in patterns between the two maps

are most apparent in spatially complex residential

regions, where trees, grass, and impervious surfaces

were treated separately at 5 m resolution but aggre-

gated under the suburban class at 25 m resolution.

Sediment delivery results

The sediment delivery ratio model used the framework

of the revised universal soil loss equation (RUSLE) to

calculate annual potential sediment losses from each

pixel in the study area, based on its topography and

land cover characteristics (Fig. 3). For the three towns,

the fine scale model run calculated an average

Table 2 Parameters for

foraging distance, habitat

nesting likelihood and

foraging suitability for each

species group and land

use/land cover class

Habitat suitability estimates

are given as an index

between 0 and 1 where 0 is

unsuitable and 1 is

maximally suitable

Honey bees Bumble bees Butterflies

Foraging distance (m) 1000 1500 200

Broadleaf tree nesting 1 1 0

Broadleaf tree foraging 0.5 0.5 0.5

Coniferous tree nesting 0.75 0.75 0

Coniferous tree foraging 0.5 0.5 0.5

Grass nesting 0.5 0.5 1

Grass foraging 1 1 1

Suburban nesting (25 m only) 0.41 0.41 0.36

Suburban foraging (25 m only) 0.36 0.36 0.36

Fig. 2 Modelled potential

carbon storage in Bedford,

Luton, and Milton Keynes,

UK (kg C m-2), based on 5

versus 25 m resolution land

use/land cover

Landscape Ecol (2016) 31:1509–1522 1515

123



potential soil loss of 6.4 Mg km-2 year-1. The coarse

scale run by contrast calculated an average soil loss of

18.1 Mg km-2 year-1; roughly three times that of the

fine scale run.

The fine scale results show a high degree of spatial

complexity, subject as they are to the interface of the

underlying topographical drainage patterns and the

largely heterogeneous patterns of land cover; by

contrast, the coarse scale results can be seen to show

patterns of soil loss that are much more driven by

broad underlying drainage patterns. The coarse scale

land cover data contains simpler spatial patterns and

greater homogeneity, resulting in erosion patterns that

follow the topography of the land with fewer modelled

barriers. This underlying topography is also smoother

and simpler than in the fine scale data, presenting

fewer impediments to surface flow.

Sediment export considers the mitigating effects

that topography and land cover have on potential soil

erosion and represents net losses to the stream

network. Totalled across the study area, the fine scale

analysis calculated this net export at 0.31 Mg km-2

year-1. Coarse scale analysis calculated the same

export at 0.59 Mg km-2 year-1. Output maps of

sediment export (not shown) exhibited the same

spatial characteristics as soil loss described above,

but with decreased intensity due to vegetated surfaces

acting as both sources and sinks of eroded material.

Pollination results

Pollinator abundance is calculated by InVEST as a

relative index value between zero and 1, based on

habitat suitability and proximity to likely nesting sites.

The results at different resolutions have been plotted

on the same scale to enable visual comparison (0–0.5;

neither scale approached the peak index value of 1),

and the evident differences in pattern show that

modelling at different resolutions has a considerable

impact on the results. Fine scale results suggest that

habitats are more suitable with increasing distance

from dense, built-up areas and in larger areas of

contiguous green space. Coarse scale results show a

similar general interpretation but are more favourable

to suburban areas due to their large and continuous

occurrence at this scale (Fig. 4). As a measure of this

difference, 9 % of the habitat pixels in the 25 m map

exhibited a pollinator abundance index value greater

than 0.25; in the 5 m map 6 % did.

Discussion

Carbon storage

The potential for urban green spaces to capture and

store atmospheric carbon is important amidst steadily

Fig. 3 Potential soil loss

(Mg pixel-1 year-1) in

Bedford, Luton, and Milton

Keynes, UK, based on 5 m

land use/land cover and

digital terrain model versus

25 m land use/land cover

and digital terrain model.

Blank spaces denote data

gaps in USLE K factor

erosivity input at these

locations for which erosion

was not calculated. Attribute

scale difference between

maps is due to differences in

pixel size
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growing concerns over the role played by anthro-

pogenic CO2 in global climate change. The computa-

tions performed by InVEST’s carbon storage model

are simple relative to process-based carbon cycle

models, making a straightforward summation of the

input carbon pools for each land cover class in the

analysis. However, the ability to quickly visualise and

examine spatial patterns of carbon storage across the

study area has utility in its capacity to create a visually

striking and communicative image showing the ‘hot

spots’ for carbon storage within the three towns. Here,

these hot spots are clearly the larger woodland areas;

however the fine scale maps highlight the importance

of residential tree stands as smaller but widely

distributed high value patches not present in the

coarse scale maps.

When divided by the total study area, a mean

storage density of 9.32 kg C m-2 of urban land was

estimated by the fine scale result. Other studies

reported varying amounts of carbon storage ranging

from 1.19 kg C m-2 in Leipzig, Germany (Strohbach

and Haase 2012, only aboveground tree carbon was

considered) to 9.81 kg C m-2 in rural Dorset, UK

(Jiang et al. 2013) due to differences in estimation

approaches and urban configurations. By contrast,

carbon storage estimates in Leicester, UK combining

aboveground (Davies et al. 2011) and soil (Edmond-

son et al. 2014) storage equated to 8.80 kg Cm-2; only

slightly below the total value modelled here. Such

studies suggest that carbon storage is highly variable

between cities and it may be problematic to treat one

study area as representative of another (Pouyat et al.

2002; Strohbach and Haase 2012; Davies et al. 2013).

Greater certainty can be obtained by parameterising

models with field-sampled values from within the

specific study area, but this is rarely feasible.

The difference between the fine and coarse scale

model runs suggests that coarse scale estimates of

carbon storage in urban areas may under-predict true

values. This is consistent with findings in Davies et al.

(2011), where carbon storage in Leicester, UK was

modelled based on 0.25 m2 resolution data and found

to be an order of magnitude higher than results given

by the 1 km2 resolution UK national above-ground

carbon storage map. The difficulties in characterising

aggregated land cover regions at coarse scales may be

a cause of this discrepancy when estimating urban

carbon storage. In the current study, fine scale data

were available to inform an accurate area-weighted

characterisation of the aggregate suburban class.

Fig. 4 Relative index of pollination service provision in Bedford, Luton, and Milton Keynes, UK, based on 5 versus 25 m land

use/land cover
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Research conducted where only coarse scale data are

available would face an increased difficulty in accu-

rately characterising aggregate classes such as this,

which can be expected to produce greater error.

Sediment delivery

The effect of input scale on modelled sediment erosion

and export was noteworthy, with the run based on

25 m data predicting more soil loss on average by a

factor of three than the fine scale run (18.1 Mg km-2

year-1 vs. 6.4 Mg km-2 year-1) and more net sedi-

ment export from the study area by a factor of two

(0.59 Mg km-2 year-1 vs. 0.31 Mg km-2 year-1).

Given that all input factors apart from land cover and

terrain were held equal, this difference is entirely due

to the scale differences in these two inputs. The 25 m

DTM contained relatively few barriers to runoff,

modelling high sediment erosion near any noteworthy

stream channels on the map. Large areas of homoge-

neous cover type in the 25 m land cover data

(predominantly suburban) also had relatively little

effect on sediment retention, allowing results to

directly reflect the underlying drainage network. The

fine scale DTM by contrast presented much more

complexity and small barriers to surface flow; restrict-

ing areas of high erosion to relatively isolated steep

hill slopes. Additionally, the fine scale land cover map

contained greater pattern complexity than its coarse

scale counterpart. Pockets of grass and tree cover

within the urban matrix were modelled to act as further

barriers to sediment transport, restricting erosional

flow into stream networks to a greater extent than the

25 m land cover data. Together, this accounted for

considerable differences in overall model results. This

appears consistent with findings that high habitat

complexity can reduce runoff in urban green spaces by

an order of magnitude relative to vegetated spaces

with low complexity, due to differences in both soil

properties and surface cover (Ossola et al. 2015). It

also supports the assertion that, under common land

use practices in England, urban areas tend to experi-

ence less erosion than intensive agriculture (e.g.

Collins and Anthony 2008; Collins et al. 2012). This

is reflected in the sediment export results as well,

which were modelled to be over an order of magnitude

less than potential erosion due to the topography of the

study area and the ability of vegetated surfaces to

capture and retain eroded sediment. This retention

ability reflects the underlying ecosystem service of

interest here, and the factor of two difference made by

the scale of input data further highlights the scale

dependencies of the model. The impacts of input scale

found here suggest that extreme care should be taken

in the selection of appropriate input data when using

this type of flow model in complex urban

environments.

The large difference caused by input data resolution

in this model is striking, but in agreement with past

findings concerning the impact that input scale can

have on analysis results (e.g. Konarska et al. 2002; Di

Sabatino et al. 2013; Li et al. 2015). Few studies of

urban soil erosion could be found with which to

directly compare results; in most cases studies of

stream sediment load for catchments containing urban

areas were the closest available analogue. Available

results varied heavily but were consistently higher

than those found here: Pelacani et al. (2008) estimated

2004 soil erosion in the predominantly agricultural

upper Orme stream catchment in Italy at

530 Mg km-2 year-1; Pope and Odhiambo (2014)

estimated soil loss in a rapidly urbanising watershed in

Virginia, USA at 357 Mg km-2 year-1; and Angela

et al. (2015) estimated erosion in the Magdalena-

Eslava sub-basin in Mexico City at ‘less than’

5000 Mg km-2 year-1, presenting this as a low value

relative to expectation. Such a large scale difference

from the current study is presumably the result of

differences in the physical geography of the basin (the

authors describe the Magdalena-Eslava sub-basin as

possessing steep slopes and fast currents, while rivers

in the Milton Keynes/Bedford/Luton area are rela-

tively small) as well as significant differences in

climate, land management, and construction practices

(Hogan et al. 2014). While available published values

are considerably higher than those modelled here,

differences in climate, land cover, soil properties and

management practices, coupled with uncertainties in

the nature and modelling of urban soil erosion,

confound valid comparisons.

Pollination

The importance of models capable of addressing

pollination is considerable given recent documented

worldwide declines in many pollinator species
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(Carvell et al. 2011; Polce et al. 2013). While

primarily developed for agricultural applications, the

model was used here in consideration of the benefits of

pollination to urban residents. Private and community

garden food production as well as landscape greenery

all benefit from urban pollinators and the context of the

landscape surrounding these sites can have important

driving influences on species richness and behaviour

(Carvell et al. 2011).

The results of the pollination model were highly

influenced by the underlying spatial pattern of the

urban landscapes. Under the assumptions of the

model, large continuous patches of grassland (e.g.

Ouzel Valley Park in Milton Keynes, east of the city

centre) were predicted to be the most favourable for

urban pollinators and experience the greatest provi-

sion of this ecosystem service. This reflects the

anticipated effects of habitat connectivity and conti-

guity that underpins the model’s assumptions, and is

common in the literature, that pollinators benefit

heavily from well-connected, high-quality habitats in

close proximity to the desired targets for pollination

(Kennedy et al. 2013). By contrast, the mixed

landscape of residential land appeared much less

favourable, particularly in the fine scale model run.

The scale difference was noteworthy, with index

values higher across much the study area in the coarse

scale results than in the fine scale maps.

The impacts of scale found here relate to how the

study area was modelled with respect to the size and

suitability of available habitats. Course scale analysis

indicated considerably higher overall habitat suitabil-

ity for pollinators than fine scale, but may overstate the

importance of large, contiguous habitat patches rela-

tive to smaller patches. While larger habitat patches

are believed to be more suitable for pollinator species,

pollinators are nevertheless extensively documented

as existing within the urban matrix and surviving off

relatively small urban habitat patches (Baldock et al.

2015). As such, the fine scale inputs used here may

skew the model toward an unrealistically poor result.

Previous research on pollination in the literature has

often been conducted at coarse scales more similar to

the OS land cover map than the 5 m dataset used here.

Carvell et al. (2011) related field survey data to a UK

Ordnance Survey base map at 25 m resolution to

investigate the landscape context in pollination

dynamics. Similarly, Kennedy et al.’s (2013) use of

the InVEST pollination model and Jha and Kremen’s

(2013) investigation of pollination across time and

land covers near San Francisco, US, both operated on

30 m resolution land cover data. Moderate to coarse

resolutions of 25–30 m therefore appear to be the

current norm for such studies, with little research

considering finer scales of mapping. For large and

predominantly rural study areas this may indeed be

appropriate; however greater uncertainty persists

regarding the optimal scale of investigation for urban

pollinators. Urban landscapes introduce greater com-

plexity, and uncertainties persist in how pollinators

make use of habitats in these environments. Contin-

uing research into the relevant spatial scales and land

cover dependencies of pollinator dynamics in urban

areas will strengthen the utility of such research.

The impact of scale

The comparison of results based on different input

data scales highlighted key sensitivities of ecosystem

service models that were dependent upon the type of

model being run. The carbon storage model represents

an ecosystem service based on static stock estimates,

and was most sensitive to the landscape characterisa-

tion; small but ‘high value’ landscape features must be

accurately represented to ensure valid estimates. The

sediment delivery model, by contrast, addresses a

dynamic system where flows depend on an accurate

representation of the landscape pattern that includes

barriers and facilitators. As such, the spatial scale of

the data was the most important element. Finally, the

pollination model deals with a complex ecological

system which depends on both stocks and dynamics;

both an accurate landscape characterisation and an

appropriate resolution are needed in order to model the

system effectively. In all cases the underlying land-

scape plays a key role; the results of this work suggest

the presence of spatial variation in scale dependencies,

which may relate to differences in urban form.

As data resolution moves from fine to coarse spatial

scales, the ability to distinguish between absolute

cover types and resolve small features becomes

weaker and categorical classifications necessarily

become more aggregate (Ju et al. 2005). The differ-

ences in results encountered here highlight how found

datasets can force the use of both scales and landscape

characterisations that may be sub-optimal for
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modelling a given ecological process. Alternative

datasets at coarse spatial scales may be suitable for

some work; the 100 m resolution CORINE land cover

classification system has been widely used across

Europe for ecosystem service assessments (Van der

Biest et al. 2015). However, while more detailed in

some landscapes, many of its classes are nonetheless

aggregations of vegetated and non-vegetated surfaces,

so the same parameterization challenges persist in

addition to the increased drawbacks of such a coarse

resolution. Coarse-scale datasets such as CORINE

remain appropriate for regional to national scale

ecosystem services assessments (e.g. national carbon

stock inventories), where fine-scale data are likely to

introduce computational limitations and an unneces-

sary degree of complexity. Given the expected or

desired outcomes from these models, which, to be

informative, will need to be aggregated to meaningful

spatial units at the scale of the assessment (e.g. fine

scale variation in land form or use will necessarily be

lost in regional or national assessments), data at a scale

such as CORINE is generally acceptable. Modelling of

fine-scale processes and contexts, however, will

benefit the most from using fine-scale data. The

research carried out here suggests that urban areas

exhibit sufficient heterogeneity at fine scales that they

should commonly be addressed with appropriately

fine-scale data to avoid inaccuracies owing to spatial

aggregation. Ultimately, it is fundamental that the

scale of inquiry be determined by the nature of the

research goal, study area, and ecosystem service of

interest, rather than simply being driven by data

availability.

The scale dependencies of modelled ecosystem

services explored here have implications extending

beyond scientific inquiry and into an urban manage-

ment context. The importance of spatial scale is less

apparent when dealing with stock-based models (e.g.

carbon storage) than dynamic models (e.g. sediment

erosion and pollination), and when concerning large,

contiguous habitat patches; a large woodland will

possess visibly high ecosystem service value at any

scale that can resolve it. However, fine scale mapping

has been shown here to possess two key advantages

over coarse scale mapping: (1) quantitative assess-

ments of ecosystem service provision over large areas

can be expected to produce more accurate results; and

(2) it is possible to locate smaller habitat patches of

high ecological value (‘hotspots’) that may be

obscured at coarse scales (Holt et al. in press).

Conclusions

Fine scale datasets can generally be expected to

produce better, more accurate results in complex urban

environments than coarse data; however they tend to

be costly to obtain and may exceed the processing

ability of models and equipment. Coarse scale datasets

are often more readily available and inexpensive, but

may not possess the appropriate scale to accurately

represent the complexities of urban landscapes. In

modelling ecosystem services an optimal balance

must be sought between feasibility and capability.

This balance is of particular importance in urban

environments given their high complexity over small

spatial scales. Crucially, data selection must consider

the sensitivities of the services being modelled and

prioritise accordingly. For stock estimates, researchers

should ensure accurate landscape characterisation; for

dynamic flow models, appropriate scale and inclusion

of relevant landscape features is vital; for ecological

models requiring both stock estimates and flows, both

considerations must be balanced. The specifics of the

questions being asked, and the nature of the landscape

being studied, must inform the process of data

selection to determine the most appropriate scales of

inquiry.
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