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In a previous paper we introduced and developed a recursive construction of joint eigenfunctions JN (a+, a−
, b;x, y) for

the Hamiltonians of the hyperbolic relativistic Calogero-Moser system with arbitrary particle number N . In this paper

we focus on the cases N = 2 and N = 3, and establish a number of conjectured features of the corresponding joint

eigenfunctions. More specifically, choosing a+, a−
positive, we prove that J2(b;x, y) and J3(b;x, y) extend to globally

meromorphic functions that satisfy various invariance properties as well as a duality relation. We also obtain detailed

information on the asymptotic behavior of similarity transformed functions E2(b;x, y) and E3(b;x, y). In particular, we

determine the dominant asymptotics for y1 − y2 → ∞ and y1 − y2, y2 − y3 → ∞, resp., from which the conjectured

factorized scattering can be read off.

1 Introduction

In a previous paper [6], we initiated a recursive scheme for constructing joint eigenfunctions JN (a+, a−, b;x, y)
of the commuting analytic difference operators (henceforth A∆Os) associated with the integrable N -particle
quantum systems of hyperbolic relativistic Calogero-Moser type. As mentioned in the introduction of that paper,
the possible existence of such a recursive scheme was suggested by earlier work on related integrable quantum
systems, including the non-relativistic Calogero-Moser systems and the Toda systems of non-relativistic and
relativistic type. (In [3] we detailed the connections between these systems and their associated kernel functions.)
Accordingly, our starting point owes much to this pioneering work. It includes various papers by Gerasimov,
Kharchev, Lebedev, Oblezin and Semenov-Tian-Shansky; the work of this group of authors can be traced back
from what appears to be the most recent paper [4]. (The first recursive construction for the Jack polynomials
seems to occur in Section 5 of [12]; the author informed us that it dates back to his 1989 PhD thesis. Recently,
we also learned about a recursive construction of eigenfunctions for the rational Calogero-Moser system due to
Guhr and Kohler [5].)

In our previous paper we established holomorphy domains and uniform decay bounds that were sufficient for
proving that the scheme provides well-defined functions JN that satisfy the expected joint eigenvalue equations.
We also presented an introduction to the general setting at issue, and information on the hyperbolic gamma
function and related functions that enter in the recursive scheme. We shall make use of this information without
further ado, referring back to sections and equations in [6] by using a prefix I.

As outlined in I Section 7, numerous aspects of the recursive scheme, associated with conjectured features of
the joint eigenfunctions JN , remain to be investigated. In the present paper, we deduce a rather comprehensive
picture of the joint eigenfunctions in the N = 2 and N = 3 cases. Indeed, we establish global meromorphy,
a number of invariance properties and a duality relation, and undertake a detailed study of their asymptotic
behavior. For the N = 2 case, nearly all of the results were already obtained in [11]. The point of rederiving
them here is not only to render them more accessible in the present context, but also to switch from the flow
chart of [11] to methods and arguments that allow a generalization to N > 2.

We proceed to sketch the main results and organization of this paper in more detail. With a view towards
making it more self-contained, we briefly recall some key constructions and results from I as we go along.
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Throughout the paper we take a+, a− ∈ (0,∞), use further parameters

α ≡ 2π/a+a−, a ≡ (a+ + a−)/2, (1.1)

as ≡ min(a+, a−), al ≡ max(a+, a−), (1.2)

and work with b-values in the strip
Sa ≡ {b ∈ C | Re b ∈ (0, 2a)}. (1.3)

Section 2 is devoted to the step from N = 1 to N = 2. From I Section 4, we recall that the first step J1 → J2
of the recursive scheme yields the representation

J2(b;x, y) = exp(iαy2(x1 + x2))

∫

R

dzI2(b;x, y, z), b ∈ Sa, x, y ∈ R2, (1.4)

with integrand

I2(b;x, y, z) ≡ J1(z, y1 − y2)S♯
2(b;x, z) = exp(iαz(y1 − y2))

2
∏

j=1

G(xj − z − ib/2)

G(xj − z + ib/2)
, (1.5)

where G(z) ≡ G(a+, a−; z) denotes the hyperbolic gamma function, reviewed in I Appendix A. (Here and below,
we suppress the dependence on the parameters a+, a−, whenever this is not likely to cause ambiguities; the
dependence on b is often omitted as well.)

Taking z → z + (x1 + x2)/2 in the integral on the right-hand side of (1.4) and using the reflection equation
I (A.6) (viz., G(−z) = 1/G(z)), we obtain another revealing representation, namely,

J2(b;x, y) = exp(iα(x1 + x2)(y1 + y2)/2)

×
∫

R

dz exp(iαz(y1 − y2))
∏

δ1,δ2=+,−

G(δ1z + δ2(x1 − x2)/2− ib/2).
(1.6)

Next, we note that the integrand I2 (1.5) can be written as a product of two factors, each of which involves
only two hyperbolic gamma functions. Using the Plancherel relation and an explicit Fourier transform formula
for factors of this type from [11], we deduce a further representation for J2 in Subsection 2.1, which is related
to the defining representation (1.4) by the involution (b, x, y) 7→ (2a− b, y, x). As a consequence, we obtain a
corresponding duality relation for J2(b;x, y), namely,

J2(b;x, y) = G(ia− ib)2J2(2a− b; y, x). (1.7)

Since J2 has S2-invariance in the variable x (as is clear from (1.4) and (1.5)), this duality relation entails that
J2 is also S2-symmetric in the variable y (which is at face value not clear from (1.4) and(1.5)):

J2(b;x, y) = J2(b;σx, τy), (σ, τ) ∈ S2 × S2. (1.8)

(Alternatively, the y-symmetry can be seen from (1.6).)
Subsection 2.2 is devoted to global holomorphy and meromorphy features. We recall that a simple contour

shift procedure reveals that for y ∈ R2 the function J2(b;x, y) is holomorphic in (b, x) on the domain

D2 ≡ {(b, x) ∈ Sa ×C2 | |Im (x1 − x2)| < 2a− Re b}, (1.9)

cf. I Proposition 4.1. Moreover, starting from the representation (1.6), we concluded that J2 has an analytic
continuation to all y ∈ C2 satisfying |Im (y1 − y2)| < Re b, thus arriving at the holomorphy domain

D2 ≡ {(b, x, y) ∈ Sa ×C2 ×C2 | (b, x) ∈ D2, |Im (y1 − y2)| < Re b}. (1.10)

In Subsection 2.2 we improve these results by showing that the function J2(b;x, y) has a meromorphic
extension to Sa ×C2 ×C2, and we also determine the locations of its poles and bounds on their orders. To this
end, we make use of the entire function E(z) ≡ E(a+, a−; z), reviewed in Appendix A. Specifically, introducing

P2(b;x, y) ≡ J2(b;x, y)
∏

δ=+,−

E(δ(x1 − x2) + ib− ia)E(δ(y1 − y2) + ia− ib), (1.11)
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we show that the product function P2(b;x, y) has a holomorphic continuation to all (b, x, y) ∈ Sa ×C2 ×C2.
Since the zero locations and orders of E(z) are explicitly known, this yields the information on the polar divisor
of J2 just mentioned.

Now in Appendix B of [9] a quite general result was obtained, from which these holomorphy results can
also be derived. In fact, it has the stronger consequence that P2(b;x, y) is entire in b as well, and holomorphic
for a+ and a− varying over the (open) right half plane. (The link to [9] can be gleaned from Section 3 in [11].)
However, the methods used in [9] give rise to insurmountable difficulties for the multi-variable case.

By contrast, our present method of proof does extend to N > 2. It involves some simple key ideas that are
at risk of getting obscured by the inevitable technicalities required for their implementation. At this point it is
therefore expedient to digress and isolate these ideas. (The reader may wish to skip to (1.20) at first reading
and refer back to the following when the need arises.)

A key ingredient is Bochner’s theorem on analytic completion of tube domains. (See Chapter 5 of the
monograph [2] for a detailed account of Bochner’s original proof in [1].) For convenience we use the definition
that a tube T ⊂ CM , M ≥ 1, is any set of points z = (z1, . . . , zM ), that can be represented in the form

(Im z1, . . . , Im zM ) ∈ B, Re zj ∈ R, j = 1, . . . ,M, (1.12)

for some subset B ⊂ RM , called the base of T . In the mathematical literature it is customary to have the
imaginary rather than the real parts of the complex variables vary over all of R, but this is clearly just a matter
of convention; we actually need the latter convention for the dependence on the coupling parameter b. We shall
make use of Bochner’s theorem in the following form.

Theorem 1.1 (Bochner [1]). Every function that is holomorphic in a tube T with an open, connected base B
has a holomorphic continuation to the tube Tc whose base Bc is the convex hull of B.

We proceed to sketch how we use this theorem to deduce holomorphy of P2(b;x, y) in Sa ×C2 ×C2,
restricting attention to those steps in the reasoning that have counterparts for N > 2. This will enable us to
shorten our account for the case N = 3 in Subsection 3.2, and show what needs to be supplied for N > 3.

First, we point out that the domain D2 (1.10) is a tube with respect to the variables (ib, x, y), with an open,
connected base

B2 ≡ {(Re b, Imx, Im y) ∈ (0, 2a)×R2 ×R2 | |Im (x1 − x2)| < 2a− Re b, |Im (y1 − y2)| < Re b}. (1.13)

Let us now assume that P2(b;x, y) has a holomorphic continuation to the tube with base

B2(ǫ2) ≡ {(Re b, Imx, Im y) ∈ (0, ǫ2)×R2 ×R2 | |Im (y1 − y2)| < Re b}, ǫ2 ∈ (0, a). (1.14)

Then it follows from the definition (1.11) of P2(b;x, y) and the duality relation (1.7) that P2(b;x, y) also has a
holomorphic continuation to the tube with base

B̂2(ǫ2) ≡ {(Re b, Imx, Im y) ∈ (2a− ǫ2, 2a)×R2 ×R2 | |Im (x1 − x2)| < 2a− Re b}. (1.15)

Indeed, the map (b, x, y) 7→ (2a− b, y, x) yields a bijection between B2(ǫ2) and B̂2(ǫ2), and both sets have a
non-empty intersection with B2.

We can now invoke Bochner’s theorem applied to the tube with open, connected base

Bu
2 ≡ B2 ∪ B2(ǫ2) ∪ B̂2(ǫ2). (1.16)

This yields holomorphy of P2(b;x, y) in the tube whose base is the convex hull of the union Bu
2 . It is not hard

to see that the latter base is given by

Bh
2 ≡ {(Re b, Imx, Im y) ∈ (0, 2a)×R2 ×R2}, (1.17)

so that this tube is the holomorphy domain Sa ×C2 ×C2 announced above. Specifically, for each b ∈ Sa, there
clearly exist λ ∈ (0, 1), b− with Re b− ∈ (0, ǫ2), and b+ with Re b+ ∈ (2a− ǫ2, 2a) such that

b = λb− + (1− λ)b+. (1.18)

As required, we can therefore write any (b, x, y) ∈ Sa ×C2 ×C2 as a convex combination

(b, x, y) = λ
(

b−, λ
−1x, 0

)

+ (1− λ)
(

b+, 0, (1− λ)−1y
)

. (1.19)
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It remains to prove our assumption (above (1.14)) that P2(b;x, y) is entire in x for Re b sufficiently small
and |Im (y1 − y2)| < Re b. We do so by exploiting one of the A∆Es satisfied by J2(b;x, y), cf. I Proposition 4.2.
This involves a similarity transformation to the corresponding A∆E for P2(b;x, y), which leads to coefficients
involving the (rational) gamma function, cf. Lemma 2.3.

In Subsection 2.3 we collect results concerning the asymptotic behavior of a function E2(b;x, y) that is
another similarity transform of J2(b;x, y). To sketch these results, we first recall the generalized Harish-Chandra
c-function

c(b; z) ≡ G(z + ia− ib)

G(z + ia)
, (1.20)

and its multivariate version
CN (b;x) ≡

∏

1≤j<k≤N

c(b;xj − xk), N ≥ 2. (1.21)

Introducing the phase function
φ(b) ≡ exp(iαb(b− 2a)/4), (1.22)

the pertinent J2-cousin is given by

E2(b;x, y) ≡
φ(b)G(ib− ia)

√
a+a−

J2(b;x, y)

C2(b;x)C2(2a− b; y)
. (1.23)

This function is particularly suitable for Hilbert space purposes. We deduce its dominant asymptotics for
y1 − y2 → ∞, namely,

E2(b;x, y) ∼ Eas
2 (b;x, y) ≡ exp(iα(x1y1 + x2y2))− u(b;x2 − x1) exp(iα(x2y1 + x1y2)), (1.24)

where u is the scattering function,

u(b; z) ≡ − c(b; z)

c(b;−z) = −
∏

δ=+,−

G(z + δi(a− b))

G(z + δia)
, (1.25)

and we obtain a bound on the remainder, cf. Proposition 2.7. In Proposition 2.8 we also establish a uniform
bound on E2(b;x, y) for (x, y) ∈ C2 ×R2 satisfying Im (x1 − x2) ∈ (−as, 0] and y1 − y2 ≥ 0, which is needed to
handle the N = 3 case.

Section 3 is concerned with the step from N = 2 to N = 3. It is structured in parallel with Section 2, but
several new ingredients and technical difficulties arise. To begin with, we recall that to construct J3 from J2 in
I Section 5, we started from the integrand

I3(b;x, y, z) ≡ S♯
3(b;x, z)W2(b; z)J2(b; z, (y1 − y3, y2 − y3)), (1.26)

with weight function
W2(b; z) ≡ 1/C2(b; z)C2(b;−z), (1.27)

and kernel function

S♯
3(b;x, z) ≡

3
∏

j=1

2
∏

k=1

G(xj − zk − ib/2)

G(xj − zk + ib/2)
. (1.28)

More precisely, from I (5.6) we have the representation

J3(b;x, y) = exp(iαy3(x1 + x2 + x3))

∫

G2

dz I3(b;x, y, z), b ∈ Sa, x, y ∈ R3, (1.29)

where we have introduced the ‘Weyl chamber’,

G2 ≡ {z ∈ R2 | z2 < z1}. (1.30)

To derive the counterpart of (1.6) (and for later purposes), we define

X3 ≡ 1

3

3
∑

j=1

xj , Y3 ≡ 1

3

3
∑

j=1

yj , x̃j ≡ xj −X3, ỹj ≡ yj − Y3, j = 1, 2, 3. (1.31)
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Taking z → z +X3 in the integral on the right-hand side of (1.29), and then using (1.6), we obtain

J3(b;x, y) = exp(3iαX3Y3)

∫

G2

dz S♯
3(b; x̃, z)W2(b; z)J2(b; z, (y1 − y3, y2 − y3)). (1.32)

Note that the integral yields a function that depends only on the differences xj − xk and yj − yk, j, k = 1, 2, 3.
As a principal result of Subsection 3.1, we deduce a novel representation for J3, related to (1.29) by taking

(b, x, y) 7→ (2a− b, y, x). To generalize our approach in the N = 2 case, we rely on results from our recent joint
paper [7] on product formulas for conical functions. Specifically, starting from the Plancherel relation for a
generalized Fourier transform, we make use of the remarkable fact that J2(b; z, y) is an eigenfunction of the
integral operator whose kernel is the product of the function

S2(b;x, z) ≡
2
∏

j,k=1

G(xj − zk − ib/2)

G(xj − zk + ib/2)
, (1.33)

and the weight function W2(b; z), with the eigenvalue given explicitly by a product of y-dependent G-functions.
(This can be viewed as the N = 2 counterpart of the Fourier transform formula used for N = 1.) We also need
to invoke the closely related explicit generalized eigenfunction expansion for the integral operator on L2(G2, dx)
with kernel W2(b;x)

1/2S2(b;x, y)W2(b; y)
1/2 from [7].

Once the new representation for J3 has been established, the N = 3 counterparts of (1.7) and (1.8) readily
follow. Specifically, they read

J3(b;x, y) = G(ia− ib)6J3(2a− b; y, x), (1.34)

and

J3(b;x, y) = J3(b;σx, τy), (σ, τ) ∈ S3 × S3. (1.35)

(Note that in this case the y-symmetry is not at all clear from the ‘center-of-mass’ representation (1.32).)
Turning to Subsection 3.2, we recall that in I Proposition 5.1 we proved, by shifting the two contours in

(1.29) simultaneously, that J3(b;x, y) (with y ∈ R3 fixed) is holomorphic in

D3 ≡
{

(b, x) ∈ Sa ×C3 | max
1≤j<k≤3

|Im (xj − xk)| < 2a− Re b
}

. (1.36)

To conclude analytic continuation to y ∈ C3 such that |Im (yj − yk)| < Re b, 1 ≤ j < k ≤ 3, we arrived at a
subdomain of D3 for the dependence on (b, x). Specifically, using the notation (1.31), we needed the restricted
domain

Dr
3 ≡ {(b, x) ∈ Sa ×C3 | |Im x̃j | < a− Re b/2, j = 1, 2, 3} ⊂ D3. (1.37)

In I Proposition 5.4 we then showed that J3(b;x, y) is holomorphic in the domain

D3 ≡
{

(b, x, y) ∈ Dr
3 ×C3 | max

1≤j<k≤3
|Im (yj − yk)| < Re b

}

. (1.38)

With these preliminaries in place, we can follow the N = 2 flow chart. Defining the counterpart

P3(b;x, y) ≡ J3(b;x, y)
∏

1≤j<k≤3

∏

δ=+,−

E(δ(xj − xk) + ib− ia)E(δ(yj − yk) + ia− ib), (1.39)

of (1.11), this leads to the conclusion that the functions P3(b;x, y)/J3(b;x, y) extend from D3 to holomor-
phic/meromorphic functions on all of Sa ×C3 ×C3, yielding as a corollary the locations of the J3-poles and
bounds on their orders. More specifically, there are natural N = 3 analogs of the bases (1.13)–(1.17), and the
role of the J2-duality relation (1.7) in the N = 2 reasoning is played by (1.34).

In order to prove the critical assumption that P3(b;x, y) is entire in x for Re b sufficiently small, however, it is
necessary to supplement the consideration of the pertinent P3-A∆E by a further inductive reasoning, exploiting
once more Bochner’s Theorem 1.1. (We intend to generalize this part of the argument to arbitrary N in the
next paper of this series.)

In Subsection 3.3 we consider the asymptotic behavior of the function

E3(b;x, y) ≡
(

φ(b)G(ib− ia)
√
a+a−

)3
J3(b;x, y)

C3(b;x)C3(2a− b; y)
. (1.40)
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This involves considerable technicalities, with an important auxiliary result relegated to Lemma 3.6. A highlight
is that Theorem 3.7 implies an explicit formula for the dominant asymptotics as y1 − y2, y2 − y3 → ∞, viz.,

E3(b;x, y) ∼ Eas
3 (b;x, y) ≡

∑

σ∈S3

∏

j<k

σ−1(j)>σ−1(k)

(−u(b;xk − xj)) · exp
(

iα

3
∑

j=1

xσ(j)yj

)

. (1.41)

Indeed, this formula amounts to the factorized scattering conjectured in I (7.6). With a view towards generalizing
our results concerning asymptotics to N > 3, we also derive a uniform bound on E3(b;x, y) for suitably restricted
(x, y) ∈ C3 ×R3, cf. Theorem 3.8.

2 The step from N = 1 to N = 2

2.1 Invariance properties and a duality relation

We begin this subsection by collecting some invariance properties for J2, which we have occasion to invoke
below.

Proposition 2.1. For all (b, x, y) ∈ D2 (1.10) and η ∈ C, we have

J2(b;x, y) = J2(b;−x,−y), (2.1)

J2(b;x, y) = exp(−iαη(y1 + y2))J2(b; (x1 + η, x2 + η), y)

= exp(−iαη(x1 + x2))J2(b;x, (y1 + η, y2 + η)).
(2.2)

Proof . To begin with, we assume x, y ∈ R2. It is clear from the reflection equation I (A.6) for G(z) (namely,
G(−z) = 1/G(z)) that the integrand I2 (1.5) satisfies

I2(−x,−y,−z) = I2(x, y, z). (2.3)

Taking z → −z in the defining representation (1.4), the invariance property (2.1) is immediate from (2.3).
Assuming also η ∈ R, we obtain (2.2) from the alternative representation (1.6). Clearly, (2.1)–(2.2) are preserved
under analytic continuation, and so the proposition follows.

We proceed to deduce a new representation for J2, which is related to (1.4) by the involution (b, x, y) 7→
(2a− b, y, x). We start from the Plancherel relation

∫

R

dzf(z)g(z) =

∫

R

dpf̂(p)ĝ(−p), f, g ∈ L2(R) ∩ L1(R), (2.4)

with the Fourier transform defined by

ĥ(p) =
( α

2π

)1/2
∫

R

dz exp(iαpz)h(z), h = f, g. (2.5)

Choosing

f(z) =
G(x1 − z − ib/2)

G(x1 − z + ib/2)
, g(z) = exp

(

iα(y2(x1 + x2) + z(y1 − y2))
)G(x2 − z − ib/2)

G(x2 − z + ib/2)
, (2.6)

the left-hand side of (2.4) coincides with the J2-representation (1.4). We can calculate the Fourier transforms
of these two functions by using the Fourier transform formula (A.11). Indeed, setting µ = x1 − ib/2 and
ν = x1 + ib/2, and invoking the reflection equation I (A.6), we obtain

f̂(p) = G(ia− ib) exp(iαx1p)
∏

δ=+,−

G(δp− ia+ ib/2). (2.7)

Swapping x1 and x2, and taking p→ p+ y1 − y2, we deduce

ĝ(−p) = G(ia− ib) exp(iα(x2y1 − x1y2 − x2p))
∏

δ=+,−

G(δ(y1 − y2 − p)− ia+ ib/2). (2.8)
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Substituting these expressions in the right-hand side of (2.4) and taking p→ p− y2, we get the new
representation

J2(b;x, y) = G(ia− ib)2 exp(iαx2(y1 + y2))

∫

R

dpI2(2a− b; y, x, p). (2.9)

We are now prepared for the following result.

Proposition 2.2. Letting b ∈ Sa and x, y ∈ R2, the duality relation (1.7) and symmetry relation (1.8) hold
true.

Proof . Comparing (2.9) to the defining representation (1.4), we obtain (1.7). Now S2-symmetry in x is
immediate from (1.4), so S2-symmetry in y then follows from the dual representation (2.9) or directly
from (1.6).

For completeness, we add that J2 has a further duality property, namely,

J2(b; y, x) = J2(b;x, y)
∏

δ=+,−

G(δ(x1 − x2)− ia+ ib)G(δ(y1 − y2) + ia− ib). (2.10)

It can be derived from (A.11) in the same way as before, by starting from (2.6) with the denominators swapped.
Indeed, this yields yet another J2-representation. Taking p→ p+ (y1 − y2)/2 in the latter, it becomes

J2(b;x, y) = exp(iα(x1 + x2)(y1 + y2)/2)
∏

δ=+,−

G(δ(x2 − x2) + ia− ib)

×
∫

R

dp
∏

δ=+,−

G(p+ δ(xd − yd)/2− ia+ ib/2)

G(p+ δ(xd + yd)/2 + ia− ib/2)
,

(2.11)

with xd ≡ x1 − x2 and yd ≡ y1 − y2. (The function defined by the integral is manifestly invariant under
swapping xd and yd ; it is a multiple of the relativistic conical function R(2a− b;xd, yd), cf. Eq. (1.3) in [11].)
Formula (2.10) easily follows from this representation.

The additional duality feature (2.10) entails that the function E2(b;x, y) given by (1.23) is invariant under
x↔ y. We believe that this self-duality feature also holds for the N = 3 counterpart E3(b;x, y) (1.40), but so
far a proof of this conjecture has not materialized.

2.2 Global meromorphy

In this subsection we show that the product function P2(b;x, y) (1.11) has a holomorphic continuation from the
domain D2 (1.10) to Sa ×C2 ×C2. To do so, we follow the flow chart outlined below (1.11).

We begin by noting that as a corollary of Propositions 2.1 and 2.2 we obtain

P2(b;x, y) = P2(b;−x,−y), (reflection invariance), (2.12)

P2(b;x, y) = G(ia− ib)2P2(2a− b; y, x), (duality), (2.13)

P2(b;x, y) = P2(b;σx, τy), (σ, τ) ∈ S2 × S2, (permutation invariance). (2.14)

Indeed, the E-function product in (1.11) is invariant under the reflections z 7→ −z, z = x, y, the map (b, x, y) 7→
(2a− b, y, x), as well as each of the four permutations (x, y) 7→ (σx, τy), (σ, τ) ∈ S2 × S2.

From the second J2-duality feature (2.10) it also follows that we have

P2(b;x, y) = P2(b; y, x), (self − duality). (2.15)

However, we shall avoid the use of this property, since we are so far unable to prove the expected self-duality
for P3(b;x, y).

Next, as announced below (1.19), we are going to replace one of the eigenvalue equations for J2 in
I Proposition 4.2 by the corresponding eigenvalue equation for P2. Specifically, we focus on the A∆E obtained
by setting k = 1 and choosing δ ∈ {+,−} such that a−δ = as (recall (1.2)). Using henceforth the notation

el(z) ≡ exp(πz/al), sl(z) ≡ sinh(πz/al), (2.16)

this equation reads

V2(b;x)J2(b;x+ iase1, y) + V2(b;σ12x)J2(b;x+ iase2, y) =
(

el(−2y1) + el(−2y2)
)

J2(b;x, y). (2.17)
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Here, we have e1 ≡ (1, 0), e2 ≡ (0, 1), the map σ12 swaps x1 and x2, and the coefficient function is given by

V2(b;x) ≡
sl(x2 − x1 − ib)

sl(x2 − x1)
. (2.18)

(To be quite precise, we have taken (x, y) → (−x,−y) in I (4.10) with k = 1 and used the reflection
invariance (2.1); cf. also I (1.21) and I (1.9).)

We need to ensure that the xj-shifts do not move the J2-argument out of D2 (1.10). To this end and also
for later purposes (in particular, to complete the definition of the base B2(ǫ2) (1.14)), we introduce the number

ǫ2 ≡ al/2, (2.19)

the strip S(ǫ2), where
S(ǫ) ≡ {b ∈ Sa | Re b < ǫ}, ǫ ∈ (0, a), (2.20)

and the domains
A2 ≡ {x ∈ C2 | v1 − v2 > −Re b}, (2.21)

A(n)
2 ≡

{

{x ∈ C2 | |v1 − v2| < as +Re b}, n = 1,
{x ∈ A2 | v1 − v2 < nas +Re b}, n = 0, 2, 3, . . . .

(2.22)

Here and from now on, we use the notation

v ≡ Imx, x ∈ CM . (2.23)

Next, we introduce

D
(+)
2 ≡

{

(b, x) ∈ S(ǫ2)×C2 | x ∈ A2

}

, (2.24)

D
(n)
2 ≡

{

(b, x) ∈ S(ǫ2)×C2 | x ∈ A(n)
2

}

, (2.25)

D(+)
2 ≡

{

(b, x, y) ∈ D
(+)
2 ×C2 | |Im (y1 − y2)| < Re b

}

, (2.26)

D(n)
2 ≡

{

(b, x, y) ∈ D
(n)
2 ×C2 | |Im (y1 − y2)| < Re b

}

, (2.27)

and note that we have inclusions
D

(1)
2 ⊂ D2, D(1)

2 ⊂ D2. (2.28)

(Indeed, since b belongs to S(ǫ2), we have as +Re b < as + al − Re b.)
We are now prepared for the following lemma.

Lemma 2.3. Letting (b, x, y) ∈ D(0)
2 , we have the eigenvalue equation

V2(b;x)P2(b;x+ iase1, y) + V2(b;σ12x)P2(b;x+ iase2, y) =
(

el(−2y1) + el(−2y2)
)

P2(b;x, y), (2.29)

where the coefficient function is given by

V2(b;x) ≡ −iπ exp(i(2x2 − 2x1 − ias)Kl)

sl(x2 − x1)

×
[

Γ

(

i

al
(x2 − x1 − ib)

)

Γ

(

i

al
(x2 − x1 + ib− 2ia)

)]−1

,

(2.30)

with

Kl ≡
1

2al
ln

(

as
al

)

. (2.31)

Proof . Note first that for (b, x, y) ∈ D(0)
2 the three arguments of J2 occurring in (2.17) belong to D(1)

2 , and
thus to the holomorphy domain D2, cf. (2.28). Next, using the pertinent A∆E (A.7) satisfied by E(z) and the
reflection equation for Γ(z), we compute

∏

δ=+,−

E(δt+ ib− ia)

E(δt+ ib− ia+ δias)
= iπ

exp(i(−2t− ias)Kl)

sl(t+ ib)

×
[

Γ

(

i

al
(−t− ib)

)

Γ

(

i

al
(−t+ ib− 2ia)

)]−1

.

(2.32)

Using this, the A∆E (2.29) readily follows from (2.17).
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Now we are ready for the proof of the main result of this subsection.

Proposition 2.4. The product function P2(b;x, y) (1.11) admits a holomorphic continuation from D2 (1.10)
to Sa ×C2 ×C2.

Proof . We begin by proving holomorphic continuation to D(+)
2 (2.26). To this end, we assume inductively

that P2(b;x, y) is holomorphic in D(n)
2 with n ≥ 1. (For n = 1 the validity of the assumption follows from the

inclusion (2.28).) To establish holomorphic continuation to D(n+1)
2 , we rewrite the eigenvalue equation (2.29) in

a more convenient form. Letting
V̂2(b;x) ≡ sl(x2 − x1)V2(b;x), (2.33)

multiplying (2.29) by sl(x2 − x1), and rearranging, we obtain

V̂2(b;x)P2(b;x+ iase1, y) =V̂2(b;σ12x)P2(b;x+ iase2, y)

+ sl(x2 − x1)
(

el(−2y1) + el(−2y2)
)

P2(b;x, y).
(2.34)

Now 1/Γ(z) is an entire function with zeros at z = −k, k ∈ N, so the function V̂2(b;x) is entire as well, with
zeros located at

x1 − x2 = −ib− ikal, x1 − x2 = −2ia+ ib− ikal, k ∈ N. (2.35)

This implies, in particular, that V̂2(b;x) is nonzero on D
(+)
2 (2.24).

We now assert that it is enough to prove that the function R2(b;x, y) given by the right-hand side of (2.34)

is holomorphic for all points (b, x, y) ∈ D(n)
2 satisfying

v1 − v2 ∈ ((n− 1)as − Re b, nas +Re b). (2.36)

Indeed, this restriction yields a subdomain

D(n)
2,r ⊂ D(n)

2 , (2.37)

whose x-translation over iase1 equals D(n+1)
2,r , and D(n+1)

2,r meets D(n)
2 for all points with v1 − v2 ∈ (nas −

Re b, nas +Re b). Thus we obtain a holomorphic continuation to all of D(n+1)
2 , as announced.

To verify that R2(b;x, y) is indeed holomorphic in D(n)
2,r , we need only note that for n = 1 both terms

P2(b;x, y) and P2(b;x+ iase2, y) in R2(b;x, y) are holomorphic in D(1)
2,r by virtue of (2.28), while for n > 1 they

are holomorphic in D(n)
2,r thanks to the induction assumption. This completes the induction argument, so it

follows that P2(b;x, y) has a holomorphic continuation to D(+)
2 .

Finally, we invoke the reflection invariance (2.12) to deduce holomorphic continuation to the tube with base
B2(ǫ2) (1.14). We can then follow the reasoning detailed below (1.14) to complete the proof of the proposition.

2.3 Asymptotics

In this subsection we undertake a detailed study of the asymptotic behavior of the function E2(b;x, y) (1.23).
To begin with, we note that the phase function (1.22) and scattering function (1.25) satisfy

φ(2a− b) = φ(b), u(2a− b; z) = u(b; z), (2.38)

whereas the c-function (1.20) and its multivariate version CN (1.21) are not invariant under this b-involution.
Next, we invoke the G-function asymptotics I (A.14)–(A.16) to deduce the asymptotics of the c-function, namely,

|φ(b)∓1 exp(±αbz/2)c(b; z)− 1| ≤ C1(ρ, b, Im z) exp(−αρ|Re z|), Re z → ±∞. (2.39)

Here the decay rate ρ can be chosen in [as/2, as), and C1 is continuous on [as/2, as)× Sa ×R. It follows that
the u-function satisfies

|u(b; z)φ(b)∓2 + 1| ≤ C2(ρ, b, Im z) exp(−αρ|Re z|), Re z → ±∞, (2.40)

with C2 continuous on [as/2, as)× Sa ×R. Moreover, from (1.25) it is clear that

u(b; z)u(b;−z) = 1, (2.41)
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and, by the reflection equation I (A.6) and the conjugation relation I (A.9), we have

|u(b; z)| = 1, b, z ∈ R. (2.42)

From (1.20)–(1.21), Proposition 2.4, and (A.1)–(A.3), we deduce that E2(b;x, y) is meromorphic in x and
y, with b-independent pole locations

z1 − z2 = −2ia− ipkl, z = x, y, k, l ∈ N, (2.43)

and b-dependent poles located at

z1 − z2 = ib+ ipkl, z1 − z2 = 2ia− ib+ ipkl, z = x, y, k, l ∈ N. (2.44)

We collect further useful properties of E2 in the following lemma.

Lemma 2.5. For all (b, x, y) ∈ Sa ×C2 ×C2 and η ∈ C, the function E2(b;x, y) (1.23) satisfies

E2(b;−x,−y) = u(b;x1 − x2)u(b; y1 − y2)E2(b;x, y), (2.45)

E2(b;x, y) = exp(−iαη(y1 + y2))E2(b; (x1 + η, x2 + η), y)

= exp(−iαη(x1 + x2))E2(b;x, (y1 + η, y2 + η)),
(2.46)

E2(b;x, y) = E2(2a− b; y, x), (2.47)

E2(b;σx, τy) = (−u(b;x1 − x2))
|σ|(−u(b; y1 − y2))

|τ |E2(b;x, y), (σ, τ) ∈ S2 × S2, (2.48)

where |σ| = 0 for σ = id and |σ| = 1 for σ = σ12.

Proof . By global meromorphy, we need only check these features for (b, x, y) ∈ (0, 2a)×R2 ×R2. The first two
then readily follow from Proposition 2.1, using also (1.20), (1.21), (1.25) and (2.38). Likewise, the last two follow
from Proposition 2.2.

In fact, as mentioned at the end of Subsection 2.1, we also have

E2(b;x, y) = E2(b; y, x), (2.49)

but we shall not invoke this self-duality feature.
Thanks to these symmetry properties, we need only establish the y1 − y2 → ∞ asymptotics of E2 to obtain a

detailed picture of its asymptotic behavior. Indeed, from (2.48) and the u-asymptotics (2.40) the y1 − y2 → −∞
asymptotics easily follows, and the x1 − x2 → ±∞ asymptotics can then be found via (2.47).

Recalling from I (2.11) the kernel function

K♯
2(b;x, z) ≡ C2(b;x)

−1S♯
2(b;x, z), (2.50)

it is readily seen that (1.4)–(1.5) and (1.23) yield the representation

E2(b;x, y) =
φ(b)G(ib− ia)

√
a+a−

exp(iαy2(x1 + x2))

C2(2a− b; y)

∫

R

dzI2(b;x, y, z), b ∈ Sa, x, y ∈ R2, (2.51)

with integrand
I2(b;x, y, z) ≡ exp(iαz(y1 − y2))K♯

2(b;x, z). (2.52)

Assuming x1 6= x2 until further notice, we now shift the contour R up by a− Re b/2 + r, r ∈ (0, as), so that
we only meet the simple poles at

z = xm + ia− ib/2, m = 1, 2. (2.53)

(The bound I (4.5) ensures that the shift causes no problems at the contour tails.) Introducing the multiplier

M2(b; y) ≡
φ(b)

c(2a− b; y1 − y2)
ρ2(b; y), (2.54)

with
ρ2(b; y) ≡ exp(−α(a− b/2)(y1 − y2)), (2.55)

and the contour
Cb ≡ R+ i(a− Re b/2), (2.56)

we are prepared for the following lemma.
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Lemma 2.6. Letting (r, b) ∈ (0, as)× Sa and x, y ∈ R2 with x1 6= x2, we have

E2(b;x, y)

M2(b; y)
exp(−iαy2(x1 + x2)) =

1

ρ2(b; y)

G(ib− ia)
√
a+a−

∫

Cb+ir

dz I2(b;x, y, z)

+ exp(iαx1(y1 − y2))− u(b;x2 − x1) exp(iαx2(y1 − y2)). (2.57)

Proof . As just detailed, we shift contours in (2.51). Using the formula I (A.13) for the residue of G(z) at its
simple pole z = −ia, we obtain

2πiRes I2(x, y, z)|z=xm+ia−ib/2 = ρ2(b; y)

√
a+a−

G(ib− ia)

∏

j<m

(−u(xm − xj)) · exp(iαxm(y1 − y2)). (2.58)

From this we easily get (2.57).

Even though we derived the representation (2.57) for x1 6= x2, it is clearly valid for x1 = x2, too. In point
of fact, both E2(b;x, y) and Eas

2 (b;x, y) (given by (1.24)) vanish for x1 = x2. Indeed, recalling (1.20) and (1.25),
together with the simple zero/pole of G(z) for z = ia/z = −ia, we obtain

1/c(b; 0) = 0, u(b; 0) = 1, b ∈ Sa, (2.59)

from which this zero feature is plain.
For z on the contour Cb + ir, the integrand I2 (2.52) decays exponentially with rate α(a− Re b/2 + r) as

y1 − y2 → ∞. Moreover, from (2.38) and (2.39) we get

M2(b; y) = 1 +O(exp(−αρ(y1 − y2))), ρ ∈ [as/2, as), y2 − y2 → ∞. (2.60)

Combining these two observations with the representation (2.57), we are led to expect that the dominant
asymptotics of E2 for y1 − y2 → ∞ is given by the function Eas

2 defined in (1.24). This expectation is borne out
and improved by the following proposition.

Proposition 2.7. Letting (r, b) ∈ [as/2, as)× Sa, we have

|(E2 − Eas
2 ) (b;x, y)| < C(r, b)(1 + |x1 − x2|) exp(−αr(y1 − y2)), x, y ∈ R2, y1 − y2 ≥ 0, (2.61)

where C is continuous on [as/2, as)× Sa.

Proof . In view of Lemma 2.6 and (2.60), it suffices to show

∣

∣

∣

∣

∫

Cb+ir

dzI2(b;x, y, z)

∣

∣

∣

∣

≤ C ′(r, b)|ρ2(b; y)||x1 − x2| exp(−αr(y1 − y2)), (2.62)

for all x, y ∈ R2 and y1 − y2 ≥ 0, where C ′ is continuous on [as/2, as)× Sa. (Indeed, combining (1.24), (1.25)
and (2.40), it is clear that |Eas

2 (b;x, y)| is majorized by a continuous function c(b) for all (b, x, y) ∈ Sa ×R2 ×R2.)
Changing variables z → z + i(a− b/2 + r), we rewrite the integral as

ρ2(b; y) exp(−αr(y1 − y2))C2(b;x)
−1

∫

R

dz exp(iαz(y1 − y2))

2
∏

j=1

G(z + ir − xj + ia− ib)

G(z + ir − xj + ia)
. (2.63)

Note that we do not encounter the poles of the G-ratios so long as r ∈ (0, as). Furthermore, from (1.20) and
(2.39) we obtain the estimate

∣

∣

∣

∣

G(p+ ir + ia− ib)

G(p+ ir + ia)

∣

∣

∣

∣

≤ c(r, b)/ cosh(γp), (p, r, b) ∈ R× (0, as)× Sa, (2.64)

where

γ ≡ αRe b/2 =
πRe b

a+a−
, (2.65)
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and where c(r, b) is continuous on (0, as)× Sa. It follows that we have

∣

∣

∣

∣

∫

Cb+ir

dz I2(b;x, y, z)

∣

∣

∣

∣

≤ c(r, b)2|ρ2(b; y)| exp(−αr(y1 − y2))

× |C2(b;x)|−1

∫

R

dz
∏2

j=1 cosh(γ(z − xj))
.

(2.66)

By a standard residue calculation, we find that the latter integral equals

2
x1 − x2

sinh(γ(x1 − x2))
. (2.67)

(Alternatively, this evaluation can be deduced from I Lemma C.1 with N = 1.) Combining the simple zero of
C2(x)

−1 along x1 = x2 with the c-function asymptotics (2.39), this yields a bound |C2(x)
−1/ sinh(γ(x1 − x2))| ≤

c1(b), with c1 continuous on Sa. Hence the desired majorization (2.62) results.

In order to generalize the above line of reasoning to the N = 3 case, we need to obtain a uniform bound on
E2(x, y) for (x, y) ∈ C2 ×R2 such that

v1 − v2 ∈ (−as, 0], y1 − y2 ≥ 0, v = Imx. (2.68)

From the pole locations (2.43)–(2.44), it is clear that such a bound is compatible with the poles of E2(x, y).
In fact, since E2(x, y) has no pole for v1 − v2 ∈ (−2a, 0], one might expect as → 2a in (2.68). However, we are
unable to obtain a bound for this larger interval.

The most obvious starting point would seem to be the representation (2.51). Now (1.21) and (2.39) entail
that the factor C2(2a− b; y)−1 is O(exp(α(a− Re b/2)(y1 − y2)) as y1 − y2 → ∞. In order to retain boundedness,
we need a corresponding damping factor coming from the integral in (2.51). This can be obtained by shifting
the contour R up to Cb. However, such a shift is only allowed as long as no poles are met. We have already
observed that the nearest poles of I2 are located at (2.53), so this is never the case. As a consequence, we cannot
obtain the desired decay factor in any ‘simple’ way.

As it turns out, the representation (2.57) yields a much better starting point, even though we then have
one more term to bound. It is clear from (1.25) and the locations of the G-poles I (A.11) that u(b;x2 − x1) is
holomorphic for −as < v1 − v2 < m(Re b), where

m(d) ≡ min(2a− d, d), d ∈ (0, 2a). (2.69)

Using also (2.40) and (2.60), we deduce that for all (x, y) ∈ C2 ×R2 satisfying (2.68) we have

|M2(b; y)E
as
2 (b;x, y)| ≤ c(v1 − v2, b) exp(−α(y1v1 + y2v2)), (2.70)

where c is continuous on (−as, 0]× Sa.
Note that c(v1 − v2, b) → ∞ as v1 − v2 ↓ −as, since we then approach the pole of u(b;x2 − x1) at x1 − x2 =

−ias. Because we prove the bound (2.71) in the following proposition by using the representation (2.57), we
cannot handle the interval v1 − v2 ∈ (−2a,−as].

Proposition 2.8. Letting (δ, b) ∈ (0, as]× Sa, we have

|E2(b;x, y)| < C(δ, b)(1 + |Re (x1 − x2)|) exp(−α(y1v1 + y2v2)) (2.71)

for all (x, y) ∈ C2 ×R2 such that

v1 − v2 ∈ [−as + δ, 0], y1 − y2 ≥ 0, v = Imx, (2.72)

where C is continuous on (0, as]× Sa. Furthermore, for all (b, x, y) ∈ Sa ×R2 ×R2 we have

|E2(b;x, y)| ≤ c(b)|x1 − x2|(1 + |y1 − y2|), (2.73)

where c is continuous on Sa.
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Proof . Choosing first x ∈ R2, we begin by rewriting the integral of I2 along the z-contour Cb + ir in (2.57).
Letting z → z + x1 + i(a− b/2 + r), we arrive at

∫

Cb+ir

dz I2(x, y, z) = ρ2(y) exp(−α(r − ix1)(y1 − y2))C2(x)
−1

×
∫

R

dz exp(iαz(y1 − y2))
G(z + ir + ia− ib)

G(z + ir + ia)

G(z + ir + x1 − x2 + ia− ib)

G(z + ir + x1 − x2 + ia)
. (2.74)

As long as r ∈ (0, as), we stay clear of the poles of the two G-ratios. However, when allowing v1 − v2 < 0, we
must also ensure

0 < r + v1 − v2 < as, (2.75)

so as not to encounter the poles of the right G-ratio for z + ir + x1 − x2 = 0, as. In particular, we can allow any
x ∈ C2 satisfying v1 − v2 ∈ (−as, 0] when we choose (say)

v1 − v2 = −as + δ, r = as − δ/2, δ ∈ (0, as]. (2.76)

The most straightforward way to bound the integral on the right-hand side of (2.74) is to estimate the
y-dependent exponential factor away. Invoking the bound (2.64), this readily yields the estimate

∣

∣

∣

∣

∫

Cb+ir

dzI2(x, y, z)

∣

∣

∣

∣

≤ c1(δ, b)
2|ρ2(y)| exp(−α(r + v1)(y1 − y2))

× |c(b;x1 − x2)|−1

∫

R

dz

cosh(γz) cosh(γ(z +Re (x1 − x2)))
, (2.77)

with c1(δ, b) continuous on (0, as]× Sa. We met the latter integral before, cf. (2.66) and (2.67), whence we infer
it equals

2
Re (x1 − x2)

sinh(γRe (x1 − x2))
. (2.78)

Now c(b;x1 − x2)
−1 is regular for −2a < v1 − v2 < Re b, vanishes for x1 − x2 = 0, and has asymptotics

|c(b;x1 − x2)
−1| ∼ C(b) exp(γ|Re (x1 − x2)|), |Re (x1 − x2)| → ∞, (2.79)

with C(b) continuous on Sa, cf. (2.39). Hence we obtain
∣

∣

∣

∣

∫

Cb+ir

dzI2(x, y, z)

∣

∣

∣

∣

≤ C1(δ, b)|ρ2(y)|(1 + |Re (x1 − x2)|) exp(−α(r + v1)(y1 − y2)). (2.80)

Combining this with Lemma 2.6, (2.60) and (2.70), the first assertion now follows.
To prove the second one, we may restrict attention to the case y1 − y2 ≥ 0. (Indeed, we can invoke (2.45)

and boundedness of u(b; z) for (b, z) ∈ Sa ×R to handle y1 − y2 < 0.) We can now proceed as before, with
v1 = v2 = 0. Then we also get Re (x1 − x2) → x1 − x2 in (2.77)–(2.79), so in (2.80) we may replace the factor
1 + |Re (x1 − x2)| by |x1 − x2|. Hence it suffices to prove (cf. (2.57))

|M2(b; y)E
as
2 (b;x, y)| ≤ c1(b)(x1 − x2)(y1 − y2), x1 − x2 ≥ 0, y1 − y2 ≥ 0. (2.81)

Recalling (2.54) and (1.24), we see that (2.81) amounts to a bound of the form

∣

∣

∣

exp(−α(a− b/2)p)

c(2a− b; p)
F (b; q, p)

∣

∣

∣
≤ c2(b)qp, q, p ≥ 0, (2.82)

where
F (b; q, p) ≡ exp(iαqp/2)− u(b;−q) exp(−iαqp/2). (2.83)

Now from (2.39) we have
∣

∣

∣

exp(−α(a− b/2)p)

c(2a− b; p)

∣

∣

∣
≤ c3(b) tanh(p), p ≥ 0. (2.84)

Also, from u(b; 0) = 1 and the mean value theorem we infer

ReF (q, p) = q(∂qReF )(θ1(q), p), ImF (q, p) = q(∂qImF )(θ2(q), p), (2.85)

where θj(q) ∈ [0, q], j = 1, 2. This readily yields an estimate

|F (b; q, p)| ≤ c4(b)q(1 + p), q, p ≥ 0. (2.86)

Combining it with (2.84), we obtain (2.82), so that (2.73) follows.
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The reader may well ask whether the factor (y1 − y2) in (2.81) is necessary, since F (q, p) is obviously
bounded. Its necessity can be gleaned from the special cases

F (aδ; q, p) = 2i sin(αqp/2), δ = +,−. (2.87)

More precisely, we need the factor |x1 − x2| in the bound (2.73) to push through the proof of Theorem 3.7, so
we cannot bound the left-hand side of (2.81) simply by a constant, cf. (3.102). (To be sure, we believe that
E2(b;x, y) with b ∈ Sa fixed is bounded on R2 ×R2, but we have not proved this.)

3 The step from N = 2 to N = 3

3.1 Invariance properties and a duality relation

We begin this subsection by obtaining the counterpart of Proposition 2.1.

Proposition 3.1. For all (b, x, y) ∈ D3 (1.38) and η ∈ C, we have

J3(b;x, y) = J3(b;−x,−y), (3.1)

J3(b;x, y) = exp(−iαη(y1 + y2 + y3))J3(b; (x1 + η, x2 + η, x3 + η), y)

= exp(−iαη(x1 + x2 + x3))J3(b;x, (y1 + η, y2 + η, y3 + η)).
(3.2)

Proof . Following the proof of Proposition 2.1, we obtain, using (1.26)–(1.28), (2.1) and the reflection equation
I (A.6),

I3(−x,−y,−z) = I3(x, y, z). (3.3)

Hence (3.1) follows as before. The alternative representation (1.32) entails (3.2).

We continue by deducing a new representation for J3 that is related to (1.29) by the involution (b, x, y) 7→
(2a− b, y, x). Aiming to follow the flow chart of Subsection 2.1, we first need a suitable generalization of the
Plancherel relation (2.4). This involves a generalized Fourier transform with kernel

F2(b;x, y) ≡ (a+a−)
−1/2G(ib− ia)W2(b;x)

1/2J2(b;x, y)W2(2a− b; y)1/2, b ∈ (0, 2a), x, y ∈ G2. (3.4)

(Here and below, we choose positive square roots.) For future reference, we note the symmetry properties

F2(b;−x,−y) = F2(b;x, y), F2(b;x, y) = F2(2a− b; y, x), (3.5)

cf. Propositions 2.1–2.2. (Actually F2(b;x, y) is self-dual, too; this can be readily checked by using (2.10).)
By specialization of results in [10] (cf. also Subsection 2.2 in [11]), we inferred in Section 3 of [7] that the

operator

F2(b) : C2 ≡ C∞
0 (G2) ⊂ L2(G2) → L2(G2), b ∈ (0, 2a), (3.6)

defined by

(F2(b)ψ)(x) ≡
1

a+a−

∫

G2

F2(b;x, y)ψ(y)dy, ψ ∈ C2, x ∈ G2, (3.7)

extends to a unitary operator. Observing that (cf. I (A.6), (A.9))

F2(b;x, y) = F2(b;x,−y), b ∈ (0, 2a), x, y ∈ G2, (3.8)

we thus arrive at the generalized Plancherel relation

∫

G2

dzf(z)g(z) =

∫

G2

dp(F2f)(p)(F2g)(−p), f, g ∈ L2(G2) ∩ L1(G2). (3.9)

Restriction attention to b ∈ (0, 2a) at first, we choose

f(z) = S2(b; (x1, x2), (z1, z2))W2(b; z)
1/2, (3.10)
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and

g(z) = (a+a−)
1/2G(ia− ib) exp(iαy3(x1 + x2 + x3))

×W2(2a− b; (y1, y2))
−1/2F2(b; z, (y1 − y3, y2 − y3))

2
∏

k=1

G(x3 − zk − ib/2)

G(x3 − zk + ib/2)
,

(3.11)

cf. (1.33). Then it follows from (1.29) and (3.4) that J3(b;x, y) is given by the left-hand side of (3.9). The crux
is now that the F2-transforms of the functions f and g chosen above can be readily computed by using results
from [7]. We proceed to embark on this.

From Eq. (3.18) in [7] we recall the integral equation
∫

G2

dzW2(b; t)
1/2S2(b; t, z)W2(b; z)

1/2F2(b; z, p) = µ(b; p)F2(b; t, p), t, p ∈ G2, (3.12)

with eigenvalue

µ(b; p) ≡ a+a−G(ia− ib)2
2
∏

j=1

∏

δ=+,−

G(δpj − ia+ ib/2). (3.13)

(This result can be regarded as the N = 2 counterpart of the N = 1 formula (2.7).) Clearly, this implies

(F2f)(p) = (a+a−)
−1W2(b; (x1, x2))

−1/2µ(b; p)F2(b; (x1, x2), p). (3.14)

Using the reflection equation I (A.6), we find

2
∏

k=1

G(x3 − zk − ib/2)

G(x3 − zk + ib/2)
= (a+a−)

−1G(ia− ib)2µ(2a− b; (z1 − x3, z2 − x3)), (3.15)

which yields

(F2g)(−p) = (a+a−)
−3/2G(ia− ib)3 exp(iαy3(x1 + x2 + x3))W2(2a− b; (y1, y2))

−1/2

×
∫

G2

dzµ(2a− b; (z1 − x3, z2 − x3))F2(b; z, (y1 − y3, y2 − y3))F2(b; z,−p). (3.16)

Taking zk → zk + x3, we deduce from (3.4) and Proposition 2.1 that the integral on the right-hand side can be
rewritten as

exp(iαx3(y1 + y2 − 2y3 − p1 − p2))

∫

G2

dzµ(2a− b; z)F2(b; z, (y1 − y3, y2 − y3))F2(b; z,−p). (3.17)

Keeping in mind (3.5) and (3.8), we infer from Eq. (3.24) in [7] the generalized eigenfunction expansion

W2(2a− b; q)1/2S2(2a− b; q, p)W2(2a− b; p)1/2

=
1

(a+a−)2

∫

G2

dzµ(2a− b; z)F2(b; z, q)F2(b; z,−p), q, p ∈ G2. (3.18)

Hence we arrive at the generalized Fourier transform formula

(F2g)(−p) = (a+a−)
1/2G(ia− ib)3 exp(iαx3(y1 + y2 + y3)) exp

(

iα[y3(x1 + x2)− x3(2y3 + p1 + p2)]
)

×W2(2a− b; p)1/2S2(2a− b; (y1 − y3, y2 − y3), p). (3.19)

Substituting (3.14) and (3.19) in the right-hand side of (3.9), taking pk → pk − y3 and rewriting the resulting
integral in terms of J2 by using (3.4), we obtain

J3(b;x, y) = G(ia− ib)4 exp(iαx3(y1 + y2 + y3)) exp(iαy3(x1 + x2))

×
∫

G2

dpS♯
3(2a− b; y, p)W2(2a− b; p) exp(−iαx3(p1 + p2))J2(b;x, (p1 − y3, p2 − y3)). (3.20)

Using now the J2-duality relation (1.7) and invariance property (2.2), we deduce the representation

J3(b;x, y) = G(ia− ib)6 exp(iαx3(y1 + y2 + y3))

∫

G2

dp I3(2a− b; y, x, p). (3.21)

We note that this formula is valid for all b ∈ Sa and x, y ∈ R3. We are now prepared for the N = 3 analog of
Proposition 2.2. By contrast to the latter, the following theorem amounts to a substantial novel result, proving
some of the conjectures in I Section 7 for the case N = 3.



16 M. Hallnäs and S. Ruijsenaars

Theorem 3.2. Letting b ∈ Sa and x, y ∈ R3, the duality property (1.34) and symmetry property (1.35) hold
true.

Proof . We obtain (1.34) upon comparing the representations (1.29) and (3.21). Just as in the N = 2 case,
we then infer invariance under permutations of the variables (y1, y2, y3) by combining (1.34) with the manifest
invariance under permutations of the variables (x1, x2, x3).

3.2 Global meromorphy

We proceed to establish global meromorphy for J3(b;x, y), following the line of reasoning in Subsection 2.2 as
far as possible. Thus we need again a number of preliminaries. First, from Proposition 3.1 and Theorem 3.2 the
following invariance properties of P3 are readily inferred:

P3(b;−x,−y) = P3(b;x, y), (reflection invariance), (3.22)

P3(b;x, y) = G(ia− ib)6P3(2a− b; y, x), (duality), (3.23)

P3(b;x, y) = P3(b;σx, τy), (σ, τ) ∈ S3 × S3, (permutation invariance). (3.24)

Second, just as in the N = 2 case, a key ingredient is an eigenvalue equation for P3. It corresponds to the
k = 1 eigenvalue equation I (5.13) for J3, with δ ∈ {+,−} chosen such that a−δ = as, and with x, y → −x,−y.
Invoking the reflection invariance (3.1), the latter A∆E is given by

3
∑

j=1

V3(b;σ1jx)J3(b;x+ iasej , y) =

3
∑

j=1

el(−2yj)J3(b;x, y), (3.25)

where ej , j = 1, 2, 3, and σkl, k, l = 1, 2, 3, denote the standard basis elements in C3 and the reflection that acts
on x ≡ (x1, x2, x3) by interchanging xk and xl, resp.; moreover, the coefficient function reads

V3(b;x) ≡
∏

m=2,3

sl(xm − x1 − ib)

sl(xm − x1)
. (3.26)

Third, we define counterparts of (2.19)–(2.27):

ǫ3 ≡ al/4, (3.27)

A3 ≡ {x ∈ C3 | vj − vk > −Re b, 1 ≤ j < k ≤ 3}, (3.28)

A(n)
3 ≡

{

{x ∈ C3 | |vj − vk| < as +Re b, 1 ≤ j < k ≤ 3}, n = 1,
{x ∈ A3 | vj − vk < nas +Re b, 1 ≤ j < k ≤ 3}, n = 0, 2, 3, . . . ,

(3.29)

D
(+)
3 ≡

{

(b, x) ∈ S(ǫ3)×C3 | x ∈ A3

}

, (3.30)

D
(n)
3 ≡

{

(b, x) ∈ S(ǫ3)×C3 | x ∈ A(n)
3

}

, (3.31)

D(+)
3 ≡

{

(b, x, y) ∈ D
(+)
3 ×C3 | max

1≤j<k≤3
|Im (yj − yk)| < Re b

}

, (3.32)

D(n)
3 ≡

{

(b, x, y) ∈ D
(n)
3 ×C3 | max

1≤j<k≤3
|Im (yj − yk)| < Re b

}

. (3.33)

Then the counterpart of (2.28) is

D
(1)
3 ⊂ Dr

3, D(1)
3 ⊂ D3, (3.34)

cf. (1.36)–(1.38). To verify these inclusions, we need only note

|Im x̃j | ≤
1

3
|vj − vk|+

1

3
|vj − vl|, {j, k, l} = {1, 2, 3}, (3.35)

and use
2

3
(as +Re b) < a− 1

2
Re b, b ∈ S(ǫ3). (3.36)

Now we have the following analog of Lemma 2.3.
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Lemma 3.3. Letting (b, x, y) ∈ D(0)
3 , we have the eigenvalue equation

3
∑

j=1

V3(b;σ1jx)P3(b;x+ iasej , y) =

3
∑

j=1

el(−2yj)P3(b;x, y), (3.37)

where the coefficient function is given by

V3(b;x) ≡ −π2
∏

m=2,3

exp(i(2xm − 2x1 − ias)Kl)

sl(xm − x1)

×
[

Γ

(

i

al
(xm − x1 − ib)

)

Γ

(

i

al
(xm − x1 + ib− 2ia)

)]−1

,

(3.38)

with Kl defined by (2.31).

Proof . The restriction to D(0)
3 implies that the four arguments of J3 occurring in (3.25) belong to D(1)

3 , and
thus to the holomorphy domain D3, cf. (3.34). Hence the A∆E is well defined. Its similarity transform (3.37)
follows from a computation paralleling the one in the proof of Lemma 2.3.

We are now prepared for the following counterpart of Proposition 2.4, which again proves a conjecture made
in I Section 7.

Theorem 3.4. The product function P3(b;x, y) (1.39) admits a holomorphic continuation from D3 (1.38) to
Sa ×C3 ×C3.

Proof . For transparency, we follow the reasoning in the proof of Proposition 2.4 as far as possible, even though

we need to enlarge on it shortly. Thus, we first aim to prove holomorphic continuation toD(+)
3 (3.32). Accordingly,

we assume inductively that P3(b;x, y) is holomorphic in D(n)
3 with n ≥ 1. (This is true for n = 1, cf. (3.34).) To

handle the holomorphic continuation to D(n+1)
3 , we begin by rewriting (3.37).

First, we introduce

V̂3(b;x) = V3(b;x)
∏

m=2,3

sl(xm − x1). (3.39)

Then we multiply (3.37) by the two sl-functions, rearrange the terms, and invoke the permutation invariance
(3.24) to obtain

V̂3(b;x)P3(b;x+ iase1, y) = sl(x2 − x1)sl(x3 − x1)

3
∑

j=1

el(−2yj)P3(b;x, y)

+
1

sl(x3 − x2)

[

sl(x3 − x1)V̂3(b;σ12x)P3(b;x+ iase2, y)

− sl(x2 − x1)V̂3(b;σ13x)P3(b;σ23(x+ iase3), y)
]

. (3.40)

It now follows as before that the multiplier V̂3(b;x) on the left-hand side is nonzero on D
(+)
3 , cf. (2.35).

It is at this point, however, that we can no longer proceed as in the N = 2 case. For one thing, the zero of
the denominator function sl(x3 − x2) in (3.40) for x3 = x2 is innocuous (as the bracketed function then vanishes,
too), but we need to steer clear of the remaining zeros.

We can avoid this snag (and other ones) as follows. First, we define domains

A(n)
3,1 ≡ {x ∈ A(n)

3 | |v2 − v3| < Re b}, n ≥ 1, (3.41)

D
(n)
3,1 ≡

{

(b, x) ∈ S(ǫ3)×C3 | x ∈ A(n)
3,1

}

, (3.42)

D(n)
3,1 ≡

{

(b, x, y) ∈ D
(n)
3,1 ×C3 | max

1≤j<k≤3
|Im (yj − yk)| < Re b

}

. (3.43)

Second, we consider the function R3(b;x, y) on the right-hand side of (3.40) for all points (b, x, y) ∈ D(n)
3,1 such

that
v1 − v2, v1 − v3 ∈ ((n− 1)as − Re b, nas +Re b). (3.44)
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This yields a domainD(n)
3,1,r ⊂ D(n)

3,1 on whichR3(b;x, y) is holomorphic for n = 1. Using the induction assumption,
we also infer holomorphy for n > 1. (Note that we need the interchange σ23 for this to follow.) The x-translation

of D(n)
3,1,r over iase1 equals D(n+1)

3,1,r , and the latter domain meets D(n)
3 for all points with

v1 − v2, v1 − v3 ∈ (nas − Re b, nas +Re b), |v2 − v3| < Re b. (3.45)

As a result, we obtain a holomorphic continuation of P3(b;x, y) to all of D(n+1)
3,1 . However, this is a proper

subdomain of D(n+1)
3 , so we need yet another enlargement. This consists in further domains

A(n)
3,3 ≡ {x ∈ A(n)

3 | |v1 − v2| < Re b}, n ≥ 1, (3.46)

D
(n)
3,3 ≡

{

(b, x) ∈ S(ǫ3)×C3 | x ∈ A(n)
3,3

}

, (3.47)

D(n)
3,3 ≡

{

(b, x, y) ∈ D
(n)
3,3 ×C3 | max

1≤j<k≤3
|Im (yj − yk)| < Re b

}

. (3.48)

Consider now the involution
ϕ : C3 → C3, x 7→ −σ13x. (3.49)

It is easy to check

ϕ(A(n)
3 ) = A(n)

3 , ϕ(A(n)
3,1 ) = A(n)

3,3 , n ≥ 1, (3.50)

so it gives rise to a bijection between the domains (3.46)–(3.48) and (3.41)–(3.43).
The point is that the invariance properties (3.22)–(3.24) are preserved under analytic continuation, so that

we have
P3(b;x, y) = P3(b;ϕ(x),−y), x ∈ D(n)

3,3 . (3.51)

As a consequence, the function P3(b;x, y) has a holomorphic continuation to D(n+1)
3,1 as well as to D(n+1)

3,3 .
The latter two domains are tube domains with open, connected bases, and the two bases have a nontrivial

intersection. By Bochner’s Theorem 1.1 it then follows that P3(b;x, y) has a holomorphic continuation to the

tube whose base is the convex hull of the latter two bases. We claim that this tube equals D(n+1)
3 . Taking this

claim for granted, we have completed the induction argument, so it follows that P3 continues to D(+)
3 .

Now we need only invoke S3-symmetry in x to obtain holomorphy of P3(b;x, y) in the tube with base

B3(ǫ3) ≡ {(Re b, Imx, Im y) ∈ (0, ǫ3)×R3 ×R3 | max
1≤j<k≤3

|Im (yj − yk)| < Re b}. (3.52)

Then we are in the position to follow again the reasoning for the N = 2 case, with the equations (1.13)–(1.17)
all having N = 3 counterparts that will be clear upon comparing (3.52) with (1.14).

To conclude the proof of the theorem, it remains to prove the claim. We can reduce this to a claim for a
set U of two real numbers u1 ≡ v1 − v2, u2 ≡ v2 − v3 satisfying

u1, u2, u1 + u2 ∈ (−c, d), 0 < c < d. (3.53)

Specifically, the claim now amounts to the convex set U being equal to the convex hull of its two convex subsets

Uj ≡ {(u1, u2) ∈ U | uj ∈ (−c, c)}, j = 1, 2. (3.54)

Rephrased this way, a moment’s thought suffices to establish the validity of the claim. (Any u ∈ U that is not
in U1 ∪ U2 belongs to the interior of the triangle with corners (0, 0), (d, 0), (0, d), and (d, 0)/(0, d) belongs to the
closure of U2/U1.) Hence the theorem follows.

3.3 Asymptotics

Introducing the function
d3(y) ≡ min

1≤j<k≤3
(yj − yk), y ∈ R3, (3.55)

we proceed to elucidate the asymptotic behavior of the function E3(b;x, y) (1.40) for d3(y) → ∞.
Combining (1.20)–(1.21) with (A.1) and Theorem 3.4, we find that E3(b;x, y), b ∈ Sa, is meromorphic in x

and y, with b-independent poles located at

zj − zk = −2ia− ipmn, z = x, y, 1 ≤ j < k ≤ 3, m, n ∈ N, (3.56)

and b-dependent pole locations

zj − zk = ib+ ipmn, zj − zk = 2ia− ib+ ipmn, z = x, y, 1 ≤ j < k ≤ 3, m, n ∈ N. (3.57)

Just as in the N = 2 case, we now assemble further features in a lemma.
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Lemma 3.5. For all (b, x, y) ∈ Sa ×C3 ×C3 and η ∈ C, the function E3(b;x, y) (1.40) satisfies

E3(b;−x,−y) = E3(b;x, y)
∏

1≤j<k≤3

u(b;xj − xk)u(b; yj − yk), (3.58)

E3(b;x, y) = exp(−iαη(y1 + y2 + y3))E2(b; (x1 + η, x2 + η, x3 + η), y)

= exp(−iαη(x1 + x2 + x3))E2(b; (x, (y1 + η, y2 + η, y3 + η)),
(3.59)

E3(b;x, y) = E3(2a− b; y, x), (3.60)

E3(σx, τy) = E3(x, y)
∏

j<k

σ−1(j)>σ−1(k)

(−u(xj − xk))
∏

j<k

τ−1(j)>τ−1(k)

(−u(yj − yk)), (σ, τ) ∈ S3 × S3, (3.61)

where, e. g., (σx)j ≡ xσ(j), j = 1, 2, 3.

Proof . Like in the N = 2 case, these properties are easily derived from the corresponding features of J3(b;x, y)
in Proposition 3.1 and Theorem 3.2.

Recalling from I (2.11) the kernel function

K♯
3(b;x, z) ≡ [C3(b;x)C2(b;−z)]−1S♯

3(b;x, z), (3.62)

we infer from (1.23)–(1.29) and (1.40) the representation

E3(b;x, y) =
(φ(b)G(ib− ia))2

2a+a−

exp(iαy3(x1 + x2 + x3))
∏2

n=1 c(2a− b; yn − y3)

∫

R2

dz I3(b;x, y, z), b ∈ Sa, x, y ∈ R3, (3.63)

where the integrand is given by

I3(b;x, y, z) = K♯
3(b;x, z)E2(b; z, (y1 − y3, y2 − y3)). (3.64)

Indeed, since the integrand I3 in (1.29) is clearly invariant under the interchange z1 ↔ z2, we can replace the
integration over the Weyl chamber G2 in (1.29) by integration over R2 times 1/2.

Following the N = 2 case, we deduce the dominant asymptotics of E3 by shifting the zk-contours R in (3.63)
up past the poles of I3 located at

zk = xj + ia− ib/2, k = 1, 2, j = 1, 2, 3. (3.65)

Recalling the G-zeros (A.2), we infer from (1.40) and (1.20)–(1.21) that E3 vanishes along the hyperplanes
xj = xk, 1 ≤ j < k ≤ 3. Hence we may as well require

xj 6= xk, 1 ≤ j < k ≤ 3, (3.66)

so that the poles (3.65) are simple.
In order to keep track of the residues appearing, we need to shift the two contours separately. Assuming first

Im (z1 − z2) ∈ (−as, 0], we note that Proposition 2.8 and the bounds (2.39), I (B.6) entail that the integrand I3
has exponential decay for |Re zk| → ∞. Moreover, from invariance of I3 under z1 ↔ z2 it follows that I3 has the
same decay for Im (z1 − z2) ∈ [0, as). Hence, as long as the contours are separated by a distance less than as, we
encounter no problems with the contour tails. We must, however, take care to avoid the xj-independent poles
of I3, which are due either to zeros of C2(−z) or poles of E2(z, (y1 − y3, y2 − y3)). The former are located at

z1 − z2 = 2ia+ ipkl, z1 − z2 = −ib− ipkl, k, l ∈ N, (3.67)

whereas the locations of the latter are given by (2.43)–(2.44). Recalling the function m(d) (2.69), we thus see
that the poles in question are not met for |Im (z1 − z2)| < m(Re b).

Next, we let x(ν), ν = 1, 2, 3, denote the variables obtained by removing xν from x ≡ (x1, x2, x3):

x(1) = (x2, x3), x(2) = (x1, x3), x(3) = (x1, x2). (3.68)

Introducing the functions

M3(b; y) ≡
φ(b)2

∏2
n=1 c(2a− b; yn − y3)

ρ3(b; y), (3.69)

ρ3(b; y) ≡ exp(−α(a− b/2)(y1 + y2 − 2y3)), (3.70)

we are prepared for the following counterpart of Lemma 2.6.



20 M. Hallnäs and S. Ruijsenaars

Lemma 3.6. Letting (r, b) ∈ (0, as)× Sa and x, y ∈ R3 with the x-restriction (3.66) in effect, we have

E3(x, y)

M3(y)
exp(−iαy3(x1 + x2 + x3))

=
1

ρ3(b; y)

[

G(ib− ia)2

2a+a−

∫

(Cb+ir)2
dz I3(x, y, z) +

G(ib− ia)
√
a+a−

3
∑

ν=1

∏

j<ν

(−u(xν − xj)) ·
∫

Cb+ir

dt Î3,ν(x, y, t)

]

+

3
∑

ν=1

C3(x(ν), xν)

C3(x)
E2(x(ν), (y1 − y3, y2 − y3)), (3.71)

with

Î3,ν(b;x, y, t) ≡ K♯
2(b;x(ν), t)E2(b; (xν + ia− ib/2, t), (y1 − y3, y2 − y3)), (3.72)

where K♯
2 is given by (2.50) and Cb by (2.56).

Proof . First, we note that by (3.63)–(3.64) and (3.69) the left-hand side of (3.71) equals

G2

2ρ3(y)

∫

R2

dzK♯
3(x, z)E2(z, ŷ), (3.73)

where we have introduced

ŷ ≡ (y1 − y3, y2 − y3), G ≡ G(ib− ia)
√
a+a−

. (3.74)

When determining the effect of the pertinent contour shifts, we find it convenient to work with J2(z, (y1 −
y3, y2 − y3)), since it is invariant under the interchange z1 ↔ z2. Therefore, we use (1.23) and (3.62) to rewrite
(3.73) as

φ(b)G3

2ρ3(b; y)

L3(b;x, y)

C3(b;x)C2(2a− b; ŷ)
, (3.75)

with

L3(b;x, y) ≡
∫

R2

dzW2(b; z)S♯
3(b;x, z)J2(b; z, ŷ). (3.76)

Letting

0 < ǫ < min(m(Re b)/2, as/2), (3.77)

we move the two contours R simultaneously up to Cb − iǫ without meeting poles. Moreover, shifting the z1-
contour up by a further amount 2ǫ, we only encounter the three simple poles (3.65) with k = 1. These poles are

due to the factor G(xj − z1 − ib/2) in S♯
3(x, z) (1.28), and the G-residue I (A.13) entails

lim
z1→xj+ia−ib/2

(z1 − xj − ia+ ib/2)G(xj − z1 − ib/2) = lim
z1→−ia

(−z − ia)G(z) =

√
a+a−

2πi
. (3.78)

Observing that

2πiRes
G(xj − z1 − ib/2)

G(xj − z1 + ib/2)







z1=xj+ia−ib/2
=

√
a+a−

G(ib− ia)
= G−1, (3.79)

we thus deduce

L3(x, y) =

∫

Cb+iǫ

dz1

∫

Cb−iǫ

dz2W2(z)S♯
3(x, z)J2(z, ŷ)

+ G−1

∫

Cb−iǫ

dz2

3
∑

ν=1

Rν(x, z2)J2((xν + ia− ib/2, z2), ŷ), (3.80)
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with remainder residue (cf. (1.20))

Rν(x, z2) =
1

c(xν − z2 + ia− ib/2)c(z2 − xν − ia+ ib/2)

×
3
∏

j=1

c(z2 − xj − ia+ ib/2) ·
3
∏

j=1
j 6=ν

c(xν − xj)

=

3
∏

j=1
j 6=ν

c(z2 − xj − ia+ ib/2) ·

∏3
j=1
j 6=ν

c(xν − xj)

c(xν − z2 + ia− ib/2)

= S♯
2(x(ν), z2)

∏3
j=1
j 6=ν

c(xν − xj)

c(xν − z2 + ia− ib/2)
.

(3.81)

Now shifting the z2-contours in (3.80) up by 2ǫ, we only encounter the poles (3.65) with k = 2. In the
residues spawned by the first integral we perform the interchange z1 ↔ z2 and use the corresponding invariance
of J2(z, ŷ) to get

∫

(Cb+iǫ)2
dzW2(z)S♯

3(x, z)J2(z, ŷ) + G−1

∫

Cb+iǫ

dz2

3
∑

ν=1

Rν(x, z2)J2((xν + ia− ib/2, z2), ŷ). (3.82)

The second integral in (3.80) yields a copy of the second integral in (3.82) plus the residue term

G−2
3

∑

ν1,ν2=1
ν1 6=ν2

Rν1,ν2
(x)J2((xν1

+ ia− ib/2, xν2
+ ia− ib/2), ŷ), (3.83)

where

Rν1,ν2
(x) =

2
∏

ℓ=1

c(xνℓ
− xν3

), {ν1, ν2, ν3} = {1, 2, 3}. (3.84)

Hence, using invariance under the interchange xν1
↔ xν2

, we obtain

L3(x, y) =

∫

(Cb+iǫ)2
dzW2(z)S♯

3(x, z)J2(z, ŷ) + 2G−1

∫

Cb+iǫ

dt

3
∑

ν=1

Rν(x, t)J2((xν + ia− ib/2, t), ŷ)

+ 2G−2
∑

1≤ν1<ν2≤3

Rν1,ν2
(x)J2((xν1

+ ia− ib/2, xν2
+ ia− ib/2), ŷ). (3.85)

Shifting all contours up to Cb + ir without encountering further poles, we proceed to reformulate the
resulting expression in terms of E2. From (3.81), (2.50) and (1.23), we infer

Rν(x, t)J2((xν + ia− ib/2, t), ŷ)

C2(2a− b; ŷ)
= (φ(b)G)−1E2((xν + ia− ib/2, t), ŷ)

×K♯
2(x(ν), t)C2(x(ν))

3
∏

j=1
j 6=ν

c(xν − xj).
(3.86)

Multiplying (3.85) by the prefactors in (3.75), writing

C3(x) = C2(x(ν))
∏

j<ν

c(xj − xν) ·
∏

j>ν

c(xν − xj) (3.87)

and using (3.86), (1.25) and (2.46), we arrive at the right-hand side of (3.71).
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Multiplying (3.71) byM3(y) exp(iαy3(x1 + x2 + x3)), we continue by analyzing the last sum in the resulting
expression, anticipating that it yields the dominant asymptotics of E3. Using (2.38) and (2.39), we readily deduce

|M3(b; y)− 1| ≤ c(b, ρ) exp(−αρd3(y)), (b, y, ρ) ∈ Sa ×R3 × [as/2, as), d3(y) ≥ 0, (3.88)

where c(b, ρ) is continuous on Sa × [as/2, as). Moreover, observing that the function Eas
2 (z, w) (1.24) can be

rewritten

Eas
2 (z, w) =

∑

τ∈S2

C2(zτ )

C2(z)
exp(iαzτ · w), (3.89)

we infer from Proposition 2.7 that

exp(iαy3(x1 + x2 + x3))E2(x(ν), (y1 − y3, y2 − y3)) =
∑

σ∈S3

σ(3)=ν

C2(xσ(1), xσ(2))

C2(x(ν))
exp(iαxσ · y) +Rν(x, y), (3.90)

with the remainder satisfying

|Rν(b;x, y)| ≤ C(r, b)(1 + |x(ν)1 − x(ν)2|) exp(−αr(y1 − y2)), (3.91)

for all (b, x, y) ∈ Sa ×R3 ×R3 with y1 − y2 ≥ 0. Due to the identity

C3(x(ν), xν)C2(xσ(1), xσ(2))

C2(x(ν))
= c(xσ(1) − xσ(2))

3
∏

j=1
j 6=ν

c(xj − xσ(3)) = C3(xσ), (3.92)

we thus have

exp(iαy3(x1 + x2 + x3))

3
∑

ν=1

C3(x(ν), xν)

C3(x)
E2(x(ν), (y1 − y3, y2 − y3))

=
∑

σ∈S3

C3(xσ)

C3(x)
exp(iαxσ · y) +R(x, y) = Eas

3 (b;x, y) +R(x, y), (3.93)

with remainder

R(b;x, y) =

3
∑

ν=1

C3(x(ν), xν)

C3(x)
Rν(b;x, y). (3.94)

Combining (1.21) and the c-function asymptotics (2.39) with the bound (3.91), we obtain the majorization

|R(b;x, y)| ≤ C(r, b)
∑

1≤j<k≤3

(1 + |xj − xk|) · exp(−αr(y1 − y2)), (3.95)

valid for all (b, x, y) ∈ Sa ×R3 ×R3 with y1 − y2 ≥ 0, and with C continuous on [as/2, as)× Sa.
Our considerations thus far suggest that the dominant asymptotics of E3 is given by (1.41). The following

counterpart of Proposition 2.7 substantiates this, together with a crucial remainder estimate.

Theorem 3.7. Letting (r, b) ∈ [as/2, as)× Sa, we have

|(E3 − Eas
3 ) (b;x, y)| < C(r, b)

∏

1≤j<k≤3

(1 + |xj − xk|) · exp(−αrd3(y)), (3.96)

for all x, y ∈ R3 with d3(y) > 0; here, C is continuous on [as/2, as)× Sa.

Proof . It follows from Lemma 3.6 and (3.88), (3.93) and (3.95) that it suffices to prove the bounds

∣

∣

∣

∫

(Cb+ir′)2
dz I3(x, y, z)

∣

∣

∣
< C0(r, b)|ρ3(b; y)|

∏

1≤j<k≤3

|xj − xk| · exp(−αrd3(y)), (3.97)



Joint eigenfunctions for the hyperbolic relativistic Calogero-Moser Hamiltonians 23

∣

∣

∣

∫

Cb+ir′
dt Î3,ν(x, y, t)

∣

∣

∣
< Cν(r, b)|ρ3(b; y)|

×
(

1 + |x(ν)1 − x(ν)2|
)

(

1 +

2
∑

j=1

|xν − x(ν)j |
)

exp(−αrd3(y)), ν = 1, 2, 3, (3.98)

for all x, y ∈ R3 with d3(y) > 0. Here we have introduced

r′ ≡ (r + as)/2 ∈ (r, as), (3.99)

and the functions C0, . . . , C3 are continuous on [as/2, as)× Sa.
Taking zk → zk + i(a− b/2 + r′), we use the identity (2.46) to deduce

∫

(Cb+ir′)2
dz I3(x, y, z) = ρ3(b; y) exp(−αr′(y1 + y2 − 2y3))

× C3(b;x)
−1

∫

R2

dz
E2(b; z, (y1 − y3, y2 − y3))

c(b; z2 − z1)

3
∏

j=1

2
∏

k=1

G(zk + ir′ − xj + ia− ib)

G(zk + ir′ − xj + ia)
. (3.100)

Next, we note that (1.20) and (2.39) imply

|c(b; z)−1| ≤ C(b)| sinh(γz)|, (b, z) ∈ Sa ×R, γ = αRe b/2, (3.101)

with C continuous on Sa. Combining this with the estimates (2.73) and (2.64), we deduce

∣

∣

∣

∣

∫

(Cb+ir′)2
dz I3(x, y, z)

∣

∣

∣

∣

≤ c2(r, b)|ρ3(b; y)| exp(−αr′(y1 + y2 − 2y3))(1 + y1 − y2)

× |C3(b;x)|−1

∫

R2

dz
(z1 − z2) sinh(γ(z1 − z2))

∏3
j=1

∏2
k=1 cosh(γ(xj − zk))

, x, y ∈ R3, d3(y) > 0, (3.102)

for some c2 continuous on [as/2, as)× Sa. An explicit evaluation of the integral on the right-hand side can be
obtained from the N = 2 case of I Lemma C.2, which yields

∫

R2

dz
(z1 − z2) sinh(γ(z1 − z2))

∏3
j=1

∏2
k=1 cosh(γ(xj − zk))

= 4γ−3
∏

1≤j<k≤3

γ(xj − xk)

sinh(γ(xj − xk))
. (3.103)

Now we use (3.101) once more to obtain
∣

∣

∣
C3(b;x)

−1
/

∏

1≤j<k≤3

sinh(γ(xj − xk))
∣

∣

∣
≤ c3(b), (3.104)

with c3 continuous on Sa. Finally, since we assume d3(y) (3.55) is positive, we have

(y1 − y2) exp(−αr′(y1 + y2 − 2y3)) < (y1 − y3) exp(−αr′((y1 − y3) + (y2 − y3)))

< C(r) exp(−αr((y1 − y3) + (y2 − y3))) < C(r) exp(−αrd3(y)), (3.105)

with C continuous on [as/2, as). Putting the pieces together, the desired majorization (3.97) easily follows.
We continue by proving (3.98). Taking t→ t+ i(a− b/2 + r′) and appealing once more to (2.46), we arrive

at
∫

Cb+ir′
dt Î3,ν(x, y, t) = ρ3(b; y)C2(b;x(ν))

−1

×
∫

R

dtE2(b; (xν , t+ ir′), (y1 − y3, y2 − y3))
∏

j 6=ν

G(t+ ir′ − xj + ia− ib)

G(t+ ir′ − xj + ia)
. (3.106)

Using Proposition 2.8 and the bounds (2.39), (2.64), we now deduce

∣

∣

∣

∣

∫

Cb+ir′
dt Î3,ν(x, y, t)

∣

∣

∣

∣

≤ c4(r, b)|ρ3(b; y)| exp(−αr′(y2 − y3))

× exp(γ|x(ν)1 − x(ν)2|)
∫

R

dt (1 + |xν − t|) exp
(

− γ

2
∑

j=1

|x(ν)j − t|
)

, (3.107)
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with c4 continuous on [as/2, as)× Sa. To bound the remaining integral, we note that the integrand is invariant
under the interchange x(ν)1 ↔ x(ν)2, so that no generality is lost by assuming x(ν)2 ≤ x(ν)1. Then we can
write the integral as a sum of three integrals

In ≡
∫ x(ν)n−1

x(ν)n

dt (1 + |xν − t|) exp
(

− γ

2
∑

j=1

|x(ν)j − t|
)

, n = 1, 2, 3, (3.108)

where x(ν)0 ≡ ∞ and x(ν)3 ≡ −∞. For I1, we have

exp(γ|x(ν)1 − x(ν)2|)I1 = exp(γ(x(ν)1 − x(ν)2))

∫ ∞

x(ν)1

dt (1 + |xν − t|) exp(−γ(2t− x(ν)1 − x(ν)2))

=

∫ ∞

0

dt (1 + |xν − x(ν)1 − t|) exp(−2γt)

≤
∫ ∞

0

dt (1 + t+ |xν − x(ν)1|) exp(−2γt) < C(1 + |xν − x(ν)1|), (3.109)

where we can take C = (1 + 1/2γ)/2γ. Similarly, we obtain

exp(γ|x(ν)1 − x(ν)2|)I3 < C(1 + |xν − x(ν)2|). (3.110)

In the case of I2, we have

exp(γ|x(ν)1 − x(ν)2|)I2 =

∫ x(ν)1

x(ν)2

dt (1 + |xν − t|)

<

∫ x(ν)1

x(ν)2

dt
(

1 +

2
∑

j=1

|xν − x(ν)j |
)

= (x(ν)1 − x(ν)2)
(

1 +

2
∑

j=1

|xν − x(ν)j |
)

. (3.111)

Combining the bounds (3.107) and (3.109)–(3.111), we readily infer the majorization (3.98).

We conclude this section by deriving a uniform bound on E3(x, y), which is the counterpart of Prop. 2.8.

Theorem 3.8. Letting (δ, b) ∈ (0, as]× Sa, we have

|E3(b;x, y)| < C(δ, b)
∏

1≤j<k≤3

(

1 + |Re (xj − xk)|
)

· exp
(

− α

3
∑

j=1

yjvj

)

, (3.112)

for all (x, y) ∈ C3 ×R3 satisfying

vj − vk ∈ [−as + δ, 0], 1 ≤ j < k ≤ 3, d3(y) > 0, v = Imx, (3.113)

where C is a continuous function on (0, as]× Sa.

Proof . We exploit once more the representation for E3 given by (3.71). Focusing first on the last sum, we begin
by noting that the regularity of u(b;xk − xj) for −as < vj − vk < m(Re b) and the u-asymptotics (2.40) entail

|u(b;−z)| ≤ c(b, Im z), (b, Im z) ∈ Sa × (−as, 0], (3.114)

where c(b, Im z) is continuous on Sa × (−as, 0]. Next, Prop. 2.8 implies an estimate

|E2(x(ν), (y1 − y3, y2 − y3))| < C(δ, b)(1 + |Re (x(ν)1 − x(ν)2)|)

× exp
(

− α

2
∑

k=1

(yk − y3)Imx(ν)k

)

. (3.115)

Moreover, from (3.69) and (3.101), we obtain

|M3(b; y) exp(iy3(x1 + x2 + x3))| ≤ c(b) exp
(

− α

3
∑

j=1

yjvj

)

exp
(

α

2
∑

k=1

(yk − y3)vk

)

, (3.116)
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for all (x, y) ∈ C3 ×R3, where c is continuous on Sa.
When we now take the product of the functions at hand and use

exp
(

α

2
∑

k=1

(yk − y3)vk

)

exp
(

− α

2
∑

k=1

(yk − y3)Imx(ν)k

)

= exp
(

α

2
∑

k=ν

(yk − y3)(vk − vk+1)
)

≤ 1, d3(y) > 0, vk − vk+1 ≤ 0, k = 1, 2, (3.117)

then the desired bound for this contribution to E3(b;x, y) easily follows. As a consequence, it suffices to show
that the integrals appearing on the right-hand side of (3.71) are bounded by

C(δ, b)|ρ3(b; y)| exp
(

− α

2
∑

k=1

(yk − y3)vk

)

∏

1≤j<k≤3

(1 + |Re (xj − xk)|), (3.118)

for all (x, y) ∈ C3 ×R2 satisfying (3.113).
Specializing the first equality in (3.59) to η = −v1, it becomes clear that we may restrict attention to

0 ≤ v1 ≤ v2 ≤ v3 ≤ as − δ. (3.119)

Requiring at first x ∈ R3, we begin by considering the integral of I3 along the zk-contours Cb + ir. Taking
zk → zk + i(a− b/2 + r) and making use of the identity (2.46), we obtain again (3.100), but now with r′ → r.
Allowing next vj 6= 0, we require

δ′ ≤ r − vj ≤ as − δ′, δ′ ∈ (0, as/2], j = 1, 2, 3, (3.120)

in order to stay clear of the poles of the G-ratios for zk + ir − vj = 0, as. By setting

r = as − δ/2, δ′ = δ/2, (3.121)

we can admit any x ∈ C3 satisfying the conditions in (3.113). Using the bounds (2.73), (3.101) and (2.64), we
now infer

∣

∣

∣

∣

∫

(Cb+ir)2
dz I3(x, y, z)

∣

∣

∣

∣

≤ c2(δ, b)|ρ3(y)| exp(−αr(y1 + y2 − 2y3))(1 + y1 − y2)

× |C3(b;x)|−1

∫

R2

dz
(z1 − z2) sinh(γ(z1 − z2))

∏3
j=1

∏2
k=1 cosh(γ(Rexj − zk))

, (3.122)

with c2 continuous on (0, as]× Sa.
Recalling the c-asymptotics (2.39) and the integral evaluation (3.103), we see that for the majoriza-

tion (3.118) to hold, it suffices to show that

B ≡ exp(−α(r + v1 − v2)(y2 − y3)− αr(y1 − y3))(1 + y1 − y2) (3.123)

is bounded. Now since d3(y) > 0 by assumption, we have

B < exp(−αδ(y2 − y3)/2− αas(y1 − y3)/2)(1 + y1 − y3) < C, (3.124)

so this is indeed the case.
It remains to bound the integral of Î3,ν along the t-contour Cb + ir. Taking t→ t+ i(a− b/2 + r) and using

once more the identity (2.46), we obtain (3.106) with r′ → r. It follows from (2.71) and the bounds (2.39), (2.64)
that we have

∣

∣

∣

∣

∫

Cb+ir

dt Î3,ν(x, y, t)

∣

∣

∣

∣

≤ c3(δ, b)|ρ3(y)| exp
(

− α[vν(y1 − y3) + r(y2 − y3)]
)

× exp(γ|Re (x(ν)1 − x(ν)2)|)
∫

R

dt
(

1 + |Rexν − t|
)

exp
(

− γ|t− Rex(ν)1| − γ|t− Rex(ν)2|
)

, (3.125)

where c3 is continuous on (0, as]× Sa.
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Finally, it follows from vν ≥ v1 and r > v2 that

exp
(

− α[vν(y1 − y3) + r(y2 − y3)]
)

< exp
(

− α

2
∑

k=1

(yk − y3)vk

)

,

and to bound the remaining integral, we can proceed as in the proof of Theorem 3.7. Indeed, since the
integrand is x(ν)1 ↔ x(ν)2 invariant, we may assume Rex(ν)2 ≤ Rex(ν)1. Then writing R = (−∞,Rex(ν)2) ∪
[Rex(ν)2,Rex(ν)1) ∪ [Rex(ν)1,∞) and estimating the corresponding three integrals separately, we obtain the
desired bound.

A The hyperbolic gamma function revisited

In the main text we need a few properties of the hyperbolic gamma function that were not mentioned in I
Appendix A. They are collected in this appendix.

First, from Appendix A in [9] we recall that the hyperbolic gamma function can be written as a ratio of
entire functions,

G(a+, a−; z) = E(a+, a−; z)/E(a+, a−;−z), (A.1)

with the zeros of E(a+, a−; z) located at

z = ia+ ipkl, k, l ∈ N, (A.2)

where
pkl ≡ ka+ + la−. (A.3)

The order of these zeros equals the number of distinct pairs (m,n) ∈ N2 such that pmn = pkl. In particular, for
a+/a− /∈ Q all zeros are simple.

The function E(z) ≡ E(a+, a−; z) from [9] we employ in this paper is a cousin of Barnes’ double gamma
function. It has no zeros for z in the half plane

Λ ≡ {z ∈ C | Im z < a}, (A.4)

so it can be written as
E(z) = exp(e(z)), z ∈ Λ, (A.5)

with e(z) holomorphic in Λ. Explicitly, e(z) has the integral representation

e(a+, a−; z) =
1

4

∫ ∞

0

dy

y

(

1− e−2iyz

sha+y sha−y
− 2iz

a+a−y
− z2

a+a−
(e−2a+y + e−2a−y)

)

. (A.6)

A distinguishing feature of this E-function is that it satisfies the two A∆Es

E(z + ia−δ/2)

E(z − ia−δ/2)
=

√
2π

Γ(iz/aδ + 1/2)
exp(izKδ), δ = +,−, (A.7)

where

Kδ ≡ 1

2aδ
ln

(

a−δ

aδ

)

. (A.8)

We need one of these A∆Es in Subsections 2.2 and 3.2.
Finally, we have occasion to make use of the Fourier transform formula from Proposition C.1 in [11].

Specifically, let µ, ν ∈ C be such that
−a < Imµ < Im ν < a, (A.9)

and assume that y ∈ C satisfies
|Im y| < Im (ν − µ)/2. (A.10)

Then the pertinent formula can be written

( α

2π

)1/2
∫

R

dz exp(iαpz)
G(z − ν)

G(z − µ)
= exp(iαp(µ+ ν)/2)G(ia+ µ− ν)

∏

δ=+,−

G(δp− ia+ (ν − µ)/2). (A.11)
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