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Abstract   

A substantial amount of datasets stored for various applications are often high dimensional with 

redundant and irrelevant features. Processing and analyzing data under such circumstances is time 

consuming and makes it difficult to obtain efficient predictive models. There is a strong need to 

carry out analyses for high dimensional data in some lower dimensions, and one approach to 

achieve this is through feature selection. This paper presents a new relevancy-redundancy approach, 

called the maximum relevance–minimum multicollinearity (MRmMC) method, for feature selection 

and ranking, which can overcome some shortcomings of existing criteria. In the proposed method, 

relevant features are measured by correlation characteristics based on conditional variance while 

redundancy elimination is achieved according to multiple correlation assessment using an 

orthogonal projection scheme. A series of experiments were conducted on eight datasets from the 

UCI Machine Learning Repository and results show that the proposed method performed 

reasonably well for feature subset selection.  

Keywords 

Dimensionality reduction, feature selection, classification, correlation measure, qualitative and 

quantitative variables 

Highlights 

Ɣ    A new maximum relevance–minimum multicollinearity (MRmMC) method is proposed 

Ɣ   The proposed MRmRC algorithm was applied to a number of real-life datasets;  

      experimental results are reported and compared with several state-of-the-art methods 

 Ɣ   Numerical analysis results confirmed the promising performance of the proposed method    
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1. Introduction 

Technological advancement in data storage has led to the explosive growth in size of massive 

datasets which are usually of high dimensional with redundant and irrelevant features. Modelling 

high dimensional data is often computationally expensive and good predictive models are difficult 

to obtain because datasets may contain a large number redundant and irrelevant features. Thus, 

dimensionality reduction is seen as a crucial pre-processing step to overcome these problems which 

can be done by feature selection or feature extraction. In both approaches, the aim is to downscale a 

high dimensional data or feature space to a manageable low dimensional representation while 

retaining the data structure or useful information as much as possible.  

In feature extraction approaches such as principal component analysis [1] and linear 

discriminant analysis [2], new features are constructed from the original features to form a new 

reduced dimensional space by combining or transforming the original features using some 

functional mapping. Although the new features in the new reduced dimensional space are related to 

the original features, the actual interpretation of the original features and hence the relation to the 

original system variables is completely lost in most cases. This drawback should be taken into 

account when considering dimensionality reduction since the actual interpretation may be important 

to understand the learning process that generates the new feature space [3]. Feature extraction also 

often associated with computational inefficiency despite the fact that it may significantly reduce 

dimensional space since the new constructed features are based on transformation that involves all 

original features including irrelevant and redundant features.  

Unlike feature extraction which attempts to create new features based on all original features, 

feature selection is an approach which requires a selection of the most significant subset of features 

to a targeted concept by removing redundant and irrelevant features [4]. These redundant and 

irrelevant features can be ignored because they give very little or no unique information for data 

analysis and modelling.  

http://www.gabormelli.com/RKB/dimensionality_reduction_task
http://www.gabormelli.com/w/index.php?title=feature&action=edit&redlink=1
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Existing feature selection methods can be broadly categorized into three models: filter, wrapper 

and hybrid. Feature subset selection with a filter model is independent of specific mining algorithms 

as the search is based on the subset relevance to the targeted evaluation criterion. Hence, the filter 

model is not affected by any bias caused by the mining algorithm. The independent property also 

implies feature selection has to be carried out just once since the result can be used for different 

mining algorithms. In addition, the filter model is also considered as having simple search structure 

and is thus relatively easy to understand in comparison with other models.  

In contrast to the filter model which selects feature subset relevant to the targeted evaluation 

criterion, the wrapper model selects a feature subset which is relevant to a predetermined mining 

algorithm. The mining algorithm is used as a black box to evaluate the quality of each candidate 

feature subset in order to find the best feature subset. This means that the wrapper model performs 

feature selection based on the mining performance level in which a feature subset is selected when 

the mining algorithm shows an optimal performance while taking into account feature dependencies 

in the feature selection procedure. As a result, the feature subset selected using the wrapper model 

will give higher mining performance than the filter model since the wrapper model is designed to 

search feature subset that is particularly tailored to the employed mining algorithm. For the same 

reason, however, rendering the feature subset obtained by the mining algorithm is unlikely to be 

suitable for use with other mining algorithms. Besides, the wrapper model is computationally 

slower when compared to the filter model since the mining algorithm of the wrapper model has to 

perform its task repeatedly until the final feature subset that gives maximum mining performance is 

found. This explains why the filter model is preferable than the wrapper model in handling large 

feature space problems. 

The hybrid model emerged with an aim to combine the advantages possessed by both the filter 

and wrapper models. The model applies both an independent measure and a mining algorithm to 

measure the quality of each feature subset in the search space. Since mining performance is used as 

a guideline to stop the search, feature selection results based on the hybrid model is therefore 



5 

 

specific to the mining algorithm employed. Consequently, the selected feature subset may not fit 

well with other mining algorithms and hence the hybrid model suffers the same problem as in the 

wrapper model. 

Suppose that there are M original features in a dataset. An exhaustive search for an optimal 

feature subset when there exists M2 candidate subsets is impractical for large M and even with a 

moderate M since it is too time consuming. Nevertheless, a search does not necessarily need to be 

exhaustive in order for it to be optimal as demonstrated in branch and bound method and best first 

search approaches. However, all optimal methods can be expected to be considerably slow for high 

dimensional problems [3]. Thus, it is often preferable for many high dimensional problems to 

employ heuristic methods that compromise subset optimality for better computational efficiency. A 

few examples of such search strategies are sequential search [5, 6], floating search [7-9], random 

mutation hill climbing [10] and evolutionary-based approaches [11-14] . 

Much of the early work on feature selection focuses on choosing relevant features. 

Traditionally, feature redundancy was defined in some explicit or inexplicit manner, highlighting 

the need to remove redundant features [7, 15-18]. Recently, a more concrete definition of feature 

redundancy was given  in [19] with an illustration of the conceptual relationship between feature 

relevancy and redundancy. For example,  in [17] the Markov Blanket filtering process was utilized 

to form the definition and an explicit redundancy analysis was also presented.  

The concepts of feature relevancy and feature redundancy are translated and expressed by 

means of certain feature relationships in feature selection methods. The relevance of a feature is 

measured by evaluating its relationship with the target class label, while the redundancy of a feature 

is measured by its relationship with other features in the currently selected feature subset.  

2. Related Work 

Many feature selection methods in the literature use mutual information to measure feature 

relevancy and redundancy. In [20], features are ranked according to their mutual information with 

respect to the class label and also with respect to the previously selected features. The mutual 
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information based feature selection (MIFS) method proposed by [20] follows hill climbing selection 

scheme and chooses the next best feature that maximizes 
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where ),( iI fc  denotes mutual information between class label c  and candidate feature vector if  

while ),( ijI ff  denotes mutual information between previously selected feature jf  which have been 

accumulated in subset S and candidate feature if .  The parameter   is a user predefined value that 

will control the importance of redundant features. The larger the value, the more the measurement 

criterion will remove redundant features.  

A variant of the MIFS method called the MIFS-U [21] emerged later to overcome the MIFS 

limitation which does not reflect relationships between feature and class label properly in its 

redundancy term if   is set too large. The MIFS-U approach brought a slight change to the right-

hand side term so that the MIFS criterion becomes 
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where )( jH f  is the entropy of jf . However, the MIFS-U approach is limited for uniformly 

distributed information. 

As the number of features to be selected increases, the right-hand side term becomes 

incomparable with the left-hand side term for both MIFS and MIFS-U methods due to magnitude 

expansion of the right-hand side term [22]. Because of this problem, the methods may be forced to 

select and prioritize irrelevant features rather than relevant and/or redundant features. Another 

problem with both methods is that their optimal solution depends on the value assigned to   with 

optimal  ’s being considered subject to data structure. Hence no specific guided rule was given on 

how to choose parameter  . Apparently, a user may need to try different values before an optimal 

or acceptable suboptimal solution can be obtained.    
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The issue of incomparable terms in MIFS and MIFS-U methods mentioned earlier was 

overcome in the minimal-redundancy-maximum relevance (mRMR) feature selection criterion [23] 

by substituting   with reciprocal of the subset S cardinality, ./1 S  This will prevent the cumulative 

sum of the second term from having an excessive value in the expansion at any number of feature 

subsets to be considered which then lead to two equivalent terms for comparison.  The mRMR 

criterion maximizes  
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Mutual information is preferable as an evaluation criterion over the correlation function for 

many proposed feature selection methods because of its ability to measure arbitrary dependence 

relationships between two features [20, 24]. The method is not only limited to numerical features, 

but also applies to symbolic features consisting of discrete categories [24].  These two advantages 

made the mutual information based criterion to be seen as a more universal and robust measure.  

Despite the aforementioned advantages, the mutual information criterion also has a few notable 

drawbacks. Mutual information computation is straightforward for discrete (categorical) random 

variables where an exact solution can be obtained easily. However, for continuous random variables 

which are frequently encountered in mutual information computations, it is difficult to gain the 

exact solution since the computation of the exact probability density functions (pdfs)  is impossible 

[21]. Hence, an estimation of the mutual information is required and different methods can be 

employed. Among the possible methods are histogram-based [25], kernel density estimation [26], k-

nearest neighbour [27], Parzen window [28], B-spline [29], adaptive partitioning [30, 31] and 

fuzzy-based [32] approaches. These estimation methods typically involve some pre-set parameters 

whose optimal values heavily depend on problem characteristics. Parameter settings could possibly 

be the major source of large estimation errors but still the parameters are often assigned with 

arbitrary values because there is no clear-cut rule provided [33]. In addition, there are so many 
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available options for the mutual estimation calculations. Therefore, the efficiency of a feature 

selection approach greatly relies on the method applied.  

In [34], another form of relevancy-redundancy measurement criterion  similar to the three 

criteria discussed above (i.e., MIFS, MIFS-U and mRMR) was introduced particularly for 

continuous variables. This criterion, referred to as the F-test correlation difference (FCD), does not 

involve the calculation of mutual information. It selects the next best feature that maximizes 
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 where ),( iF fc  is the F-test statistic (or t-test statistic if two-class classification task is considered)  

comparing feature 
if  and the class label c  whereas ),( ijr ff  can be chosen to be Pearson correlation 

coefficient, Euclidean distance or any other appropriate measure. One problem with the FCD 

criterion is that the first term (F-test statistic) is not comparable with the second cluster of terms 

(redundancy terms) as they have different range of magnitude. The F-test statistic can take any 

positive value, while the value of redundancy coefficient ranging from zero to one. As a 

consequence, the F-test value may dominate the optimization criterion and reduce the impact of the 

second cluster of terms. 

This paper presents a new alternative relevancy-redundancy criterion for feature selection, 

which is designed to take advantage of the idea of both the mRMR and FCD criteria, and 

meanwhile avoid the drawback of the two methods inherited from the original MIFS algorithm 

introduced in [20].  It is known that MIFS has a drawback in that its performance replies on the 

choice of the parameter beta for controlling and penalising the redundancy; the optimal choice of 

the parameter beta, however, strongly depends on the problem to be solved [22]. The proposed 

criterion is different from the two criteria in that it does not require any pre-specification or 

determination of thresholds for parameter settings. In the proposed method, relevant features are 

measured using conditional variance [35] while redundancy elimination is achieved through 

multiple correlation assessment using an orthogonal projection scheme [36]. The combination of 
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these methods was motivated by the requirement to form a robust criterion that allow a comparable 

evaluation of feature relevancy and redundancy, yet avoiding mutual information based approach. 

Unlike mutual information based feature selection, the proposed method has the advantage of not 

demanding any control parameters, thus preventing any uncertainty associated with the method and 

providing consistency in the results.  

The remaining contents of the paper are organized as follows. Section 3 is mainly reserved for a 

comprehensive discussion on how feature relevancy can be assessed by means of conditional 

correlation. Section 4 presents the idea of feature redundancy assessment by utilizing the concept of 

multicollinearity. The description also includes the interrelation of multicollinearity and squared 

multiple correlation coefficient, as well as how the coefficient can be used to quantify feature 

redundancy. A new feature selection criterion that tries to optimize both feature relevancy and 

feature redundancy is then introduced in Section 5. Section 6 gives details of the experimental setup 

and the procedure used in order to show the efficiency of the proposed method. The empirical 

results and extensive discussion are given in Section 7, followed by conclusion for the paper in 

Section 8.  

3. Feature Relevancy Assessment  

While many powerful feature selection methods were proposed in the literature to tackle various 

issues, relatively less and limited work has been done to assess the correlation between discrete 

(nominal) and continuous (quantitative) features directly. The majority of the prominent correlation 

measures were specifically designed for use either between two features of the same data type or 

between continuous and ordinal features.  

The point-biserial correlation coefficient [37] is the most popular measure suggested when one 

feature is discrete while the other one is continuous. Yet the measure can only be used when the 

discrete feature is dichotomous or possibly be made dichotomous which is not always the case for 

many applications. An effort was made in [35] to fill this gap where a correlation measure between 

discrete and continuous features based on the underlying properties of marginal and conditional 
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expectation and variance was introduced. The measure was adopted as part of the evaluation 

criterion for the feature selection approach that is specific to address some problem in mineral 

resources domain. In [38], an efficient correlation measure based filter (ECMBF) algorithm was 

proposed for the assessment of both feature relevancy and feature redundancy for more general 

applications. The ECMBF algorithm requires two predefined parameters, to distinguish weak 

irrelevance/relevance and redundancy, respectively. The choice of the two parameters can 

significantly affect the quality of the selected feature subset. This is probably the main disadvantage 

of the algorithm. Another drawback of ECBMF is that the assessment of the redundancy of each 

candidate feature is independent of the current selected features.  In this study, an alternative 

approach is desired to overcome these drawbacks. The proposed correlation based method uses two 

measures that simultaneously evaluate features’ dependency and redundancy, based on which ‘best’ 

features are selected using a sequential forward algorithm. The proposed method in this study is 

different from other types of filter approaches for example the Fisher score based methods [39].          

In this paper, the potential of the correlation measure proposed in [35] is exploited; it will 

particularly be used to assess feature relevance. Towards better understanding the reliability of this 

correlation measure, its theoretical properties and conditions will be discussed first in detail.  

Let X  represent a quantitative random variable and Y  represent a nominal random variable 

with some possible outcomes 
iy . If every outcome 

iy  is described by a certain probability 

)( iyYP   then the marginal expectation (also known as the expected value of )X  symbolized by 

)(XE , is given by 

  
iy

ii yYXEyYPXE )|()()(  
(5) 

where )|( iyYXE   denotes the conditional expectation of X  given iyY  . It can be shown from 

this definition that the expected value of the conditional expectations, denoted by )]|([ YXEE , is 

)(XE , that is  
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 )]|([)( YXEEXE  . (6) 

Marginal variance of the random variable X  is defined as 

 222 )]([)())]([()(Var XEXEXEXEX  . (7) 

Analogous to equation (7), the conditional variance of X  given 
iyY   is 

 ))]|([)|()|(Var 22 YXEYXEYX  . (8) 

Note that )|(Var YX  can be considered as a random variable, thereby theoretically permits the 

computation of its expected value  

 })]|([)|({)]|([Var 22 YXEYXEEYXE  . (9) 

Based on the additive law of expectation, the equation (9) can be rewritten as 

 ))]|(([)]|([)]|([Var 22 YXEEYXEEYXE  . (10) 

Applying the relationship given by equation (6) to the first term at the right-hand side of equation 

(10) yields 

 ))]|(([)()]|([Var 22 YXEEXEYXE  . (11) 

Next, it is of interest to consider the variance of the conditional expectation, marked by

)]|([Var YXE . Using the marginal variance definition given in (7), )]|([Var YXE  can be 

expressed as  

 22 ))]|(([))]|(([)]|([Var YXEEYXEEYXE  . (12) 

Applying (6) in equation (12) implies 

 22 )]([))]|(([)]|([Var XEYXEEYXE  . (13) 

Then adding equation (11) to equation (13) gives 

 22 )]([)()]|(Var[E)]|([Var XEXEYXYXE  . (14) 

Notice that the right-hand side of equation (14) is equal to )(Var X  as stated in (7). Hence, the 

following relationship is obtained 

 )]|([Var)]|([Var)(Var YXEYXEX   (15) 
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which is well known as the law of total variance. A special case of the law is 

0)]|([Var)]|([Var)(Var  YXEYXEX . This biconditional implication is true when every 

conditional expectation given iyY   is equal to the marginal expected value. Since variances can 

never be negative, it is apparent that )]|([Var)(Var YXEX   and )]|([Var)(Var YXEX  .  

From equation (15) it can be observed that the overall variability of a random variable X

consists of two components. One component is the expected value of the conditional variance,

)]|([Var YXE , that quantifies the average variability within outcomes. Another component is the 

variance of the conditional means, )]|([Var YXE , that indicates how much the variability is between 

outcomes. The former is considered in the correlation measure which will be presented next.  

The correlation coefficient that measure the relationship between a quantitative random variable 

X  and a nominal random variable ܻ is defined by 

 2/1

qn
)(Var

)]|([Var
1),( 










X

YXE
YXr  (16) 

which actually exploits the law of total variance. Based on previous discussions about )(Var X  and 

)]|([Var YXE , it can be verified that 1),(0 qn  YXr . A value of ),(qn YXr  approaching ‘1’ 

indicates that there is a strong correlation or dependency between X  and .Y  Meanwhile, the value 

of ),(qn YXr  approaching ‘0’ suggests that there is a weak relationship between X  and .Y  If X  and  

Y  are totally independent or uncorrelated, then 0),(qn YXr , which is the special case of the law 

of total variance mentioned before.  On contrary, the presence of perfect dependency or correlation 

between X  and Y  is indicate by .1),(qn YXr  

The above correlation coefficient will be used to measure feature relevance. It will be integrated 

with multiple correlation assessment in order to define a new feature selection criterion that can 

measure both feature relevancy and feature redundancy simultaneously.  The multiple correlation 

assessment can be used to identify features with multicollinearity and thus can be used to detect and 

remove redundant features.   
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4.    Multicollinearity Redundancy and the Squared Multiple Correlation Coefficient 

4.1  Multicollinearity Redundancy 

Assume that there are a total of M original features in a dataset. Feature selection refers to a 

process of searching an optimal or suboptimal subset of m  features from the M  features [40]. The 

resulting feature subset from the process should essentially lead to a performance improvement or at 

least with minimal performance degradation as much as possible for the task under consideration. 

This objective can be realized by selecting representative features that hold important information 

characterizing all original features. In particular, it can be done by not only selecting features that 

have high relevancy to the targeted class but also have low redundancy within selected features.  

An ultimate feature redundancy occurs if a feature has exact linear dependency with the current 

selected features and thus provides no extra information. While exact linear dependency is rarely 

present in many real data, a significant type of redundancy is also taken into account in such a way 

that features with any potential multicollinearity will be removed. Multicollinearity is a term to 

describe the presence of strong correlation or high linear dependency among two or more 

independent variables. This means that a feature with multicollinearity can be linearly estimated by 

a set of other features at some high level of accuracy and therefore suggests such a feature has 

redundant information. In comparison to features having ultimate redundancy, features with 

multicollinearity redundancy still provide some unique information but not important enough to 

give notable impact for effective data analysis tasks for example classification.  

Multicollinearity can be identified from high values of the multiple correlation coefficient. 

However, since the actual interest is to assess predictive power of the current selected features in 

estimating a considered feature, the squared multiple correlation coefficient is often used instead of 

the multiple correlation coefficient. The squared multiple correlation coefficient specifically 

indicates the proportion of the variation in the considered feature that is predictable from the 

selected features. The value ranges from 0 to 1 with higher values implying a better predictive 

power. When a maximum value of the squared multiple correlation coefficient is obtained it 
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indicates a full predictive power which is the ultimate redundancy. Thus, the ultimate redundancy 

can be regarded as the best achievable multicollinearity. Note that the squared multiple correlation 

coefficient can be computed by utilizing pairwise orthogonal projection of features already selected 

[4, 41]. This will be further discussed in the next section.   

4.2  The Squared Multiple Correlation Coefficient 

Suppose that the set },,,{ 21 MF fff   is a complete dataset of M  features where each 

T)()(

2
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1 ],,,[ i

N

ii

i fff f  is a feature vector composed by N  observations. Also suppose that a subset 

S  consisting )1( k  features 
121

,,,
kiii fff   has already been selected from the set of M original 

features. These )1( k  features are then transformed into orthogonal variables 121 ,,, kqqq   using 

certain type of transformation. If the next feature 
ki

ff   is selected and included into S  later on, 

then the k th orthogonal variable, kq , associated to f  is calculated by 
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The squared correlation coefficient between a feature SF f  and an orthogonal variable 

},,,{ 21 kqqqq   is defined as 
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Based on (18), the squared multiple correlation coefficient for each remaining feature SF f  with 

the selected features 
kiii fff ,,,

21
  (or equivalently with kqqq ,,, 21  ) can be computed as 
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where the square root of 2R  geometrically represents the length of orthogonal projection of f  in the 

directions of the orthogonal variables kqqq ,,, 21   divided by the  norm (energy) of f . 
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5.   Monitoring Criterion  

In order to choose features that are most relevant to the targeted class c , the monitoring 

condition is to maximize the measure V : 

 SFrV jj  fcf such that),(2

qn  (20) 

which utilizes the squared value of the correlation coefficient given in (16). On the other hand, the 

squared multiple correlation coefficient defined in (19) is suggested to guide selection of features 

that are least mutually dissimilar or least redundant. Thus, the redundancy condition to be 

considered for measuring redundancy between feature jf  and the current selected feature subset S  

is to minimize the measure W : 

 
SFRW j

k

ijkj  
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fqfqqf such that),(sc),,;(
1i

1

2   (21) 

where kqqq ,,, 21   are orthogonal variables associated respectively with preceding selected 

features 
kiii fff ,,,

21
  contained in S . 

Because the aim of the feature selection is to select features that are highly relevant to the 

targeted class c  and also has low redundancy with other selected features, both measures V  and W  

are optimized simultaneously. A new feature to be added will be based on one possible single 

criterion combining both measures. The monitoring criterion used in this study is to maximize 

 SFRrJ jkjjj  fqqfcff such that),,;(),()( 1

22

qn   (22) 

which can also be written as 
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The correlation coefficient qnr  is squared in (22) so that a fair comparison can be made with the 

2R  term. Clearly, there is no pre-defined parameter required from user in the criterion. The feature 

selection method, based on the criterion (23), is referred to as the maximum relevance – minimum 

multicollinearity (MRmMC) method. 
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In the MRmMC method, the first feature is selected if it satisfies the optimization criteria stated 

in (20) and the rest are selected based on criterion (23) by using forward sequential search strategy. 

At every subsequent step, a new feature will be added to previously selected feature subset. This 

simple piecewise feature search strategy will avoid excessive computational burden to the MRmMC 

feature selection, and can therefore accelerate the feature search procedure. Note that although the 

search may lead to a suboptimal solution, it can meet the requirements for most real applications. 

      The proposed criterion (22) can overcome the drawback of the MIFS approach, and it can 

effectively manage relevance and redundancy as follows. The first part, V, measures relevance 

using a correlation coefficient defined by (16) and (20), while the second part , W, measures the 

redundancy of a candidate feature with features in a selected feature set by evaluating the 

multicollinearity when the candidate feature is added to the existing feature subset.  

      The proposed criterion has the following advantages: i) The two parts of the criterion are 

comparable, and can result in a good balance between relevance and redundancy; ii) There is no 

need to pre-specify a control parameter as required in MIFS, and iii) the algorithm is relatively 

easier to implement. Some implementation details (pseudo-code) of MRmMC is shown in Figure 1. 

Input:    },,,{
21 M

F fff   // A complete dataset of M features  

Output:                S    // Subset of features 

Initialize:  },,2,1{
1

ML  , {}S  

  m    // Number of features to be selected 

for 1j  to M  

Compute ),(2

qn
cf

jj
rV   such that F

j
f ; 

end for  

][maxarg
1

1 jLj
Vl


  such that 

11
Ll  ;  

11 l
fq  ;  

11 l
fz  ;   

add 
1

z  to S ; 

for 2h  to m   

}{\
11 

hhh
lLL ;  1 hk ; 

for 
l

Hj  

Find 


k

ijjj
rJ

1i

2

qn
),(sc),()( qfcff ; 

 end for  

 )]([maxarg
jSFj

h
Jl f

f 
   such that 

hh
Ll   

1

1

T

1

1

T

1

1

T

1

1

T






h
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hhlhl
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q

qq

qf
q

qq

qf
fq  ; 

hlh
fz  ;   

add h
z  to S   

end for 

Figure 1  The MRmMC algorithm 
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The time complexity of the MRmMC method is determined by three main parts: the assessment 

of feature relevancy to the class label, the computation of the squared correlation coefficient, and 

the orthogonalization operations. Feature relevancy assessment has a linear time complexity of 

),(MNO  where M is the number of candidate features and N  is the number of observations. The 

computation of the squared correlation coefficient has a worst-case time complexity of )( 2NMO  

while the orthogonalisation procedure is of a complexity of ))1(( NMO  . As a result, the overall 

time complexity takes the order of )( 2NMO . 

6.   Experimental Setup and Procedure 

A series of experiments were conducted to test and analyse the efficacy of the proposed 

MRmMC method from several perspectives.  Eight datasets were used as benchmarks, and relevant 

results were compared with those generated from mRMR and MIFS. 

6.1  Benchmark Datasets 

The eight public real datasets available from the UCI Machine Learning Repository, are 

depicted in Table 1. In order to provide comprehensive evaluation, the datasets were picked based 

on three different categories of dimensional size: low-dimension )10( M , medium-dimension 

)10010(  M , and high-dimension )100( M . Important details of the chosen datasets are 

summarized in Table 1. Observe that the datasets are also varied in terms of number of instances 

and number of classes.  

Table 1  A summary of the datasets characteristics. 

Dataset Number of features Number of instances Number of classes 

Glass [N] 9 214 7 

Magic Gamma [N] 10 19020 2 

Vowel [N] 10 990 11 

Statlog [N] 18 846 4 

Mfeat Zernike [N] 47 2000 10 

Sonar  60 208 2 

Musk [N] 166 476 2 

Mfeat Factors [N] 216 2000 10 

[N]: The raw dataset was normalized for the proposed method in the experiment. This also means the dataset was normalized in 

classification accuracy computation for all classifiers. 
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6.2  Comparison with Similar Methods 

The MIFS and mRMR methods are specifically employed for a comparison purpose as they 

possess similar forms of measurement criteria and use the same sequential feature search strategy.  

Feature subset solutions of the MIFS and mRMR methods were obtained  by running the Feature 

Selection Toolbox (FEAST) (available at: http://www.cs.man.ac.uk/׽gbrown/fstoolbox/) that was 

originally developed by [42]. In this work, the redundancy parameter was chosen to be 1  for the 

MIFS method.  This choice of parameter value was in the appropriate range suggested by [20].   

6.3  Validation Classifiers 

MRmMC is a filter method, and hence its efficiency might be different from one classifier to 

another classifier. Thus, four of the ten most influential algorithms in data mining [43], namely, the 

k-Nearest Neighbour (k-NN), Naïve Bayes, Support Vector Machine (SVM) and CART classifier 

algorithms, are used to verify the classification capability of the performance of the MRmMC 

method for feature subset selection. These classifiers were chosen not only because of their 

popularity but also because of their distinct learning mechanism. The aim is to test the overall 

performance of the newly proposed method in comparison to these popular classifiers. 

Note that the number of nearest neighbours in the kNN classifier was chosen to be 5k  in all 

experiments, and this is a fair choice for all the three methods: MRmMC, mRMR and MIFS.   

6.4   Cross Validation Procedure  

For each of the classifiers, a same holdout cross-validation scheme was used to test the 

performance. Particularly, 80% of the data were used for training whereas the remaining 20% were 

holdout (for testing) and once the training completed, these holdout data were then used to assess 

the spotted classification models in the testing stage.  

In addition, to reduce variability in the assessment, 30 rounds of cross-validation were 

performed. The validation results are presented as the 95% confidence intervals for the 

classification accuracies based on the accuracies obtained from that 30 rounds. 
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7.   Numerical Results and Discussion 

      Figure 2 through Figure 9 show classification results over different number of selected features 

by the three feature selection methods, tested with the four classifiers. The x-axis in each figure 

represents the number of selected features while the y-axis represents the average classification 

accuracy based on 30 rounds of cross-validation. For clear visualization and due to space 

limitations, the plots only present the performance of the first 30 selected features even if more than 

30 were selected. This doesn’t affect the performance evaluation of the feature selection methods.   

It can be observed that the overall pattern of the classification accuracies of the three methods 

based on the selected feature subset for Mfeat Zernike and Mfeat Factors datasets is comparable to 

each other for all the four classifiers as illustrated in Figure 6 and Figure 9, respectively. 

Interestingly, the classification accuracy by MRmMC outperforms the other two methods if only a 

few number of significant features need to be identified, and as more features were progressively 

added, MRmMC gains the same level of accuracy as the other two. This pattern is particularly 

distinct for Magic Gamma, Statlog, Sonar and Musk datasets as depicted in Figure 3, Figure 5, 

Figure 7 and Figure 8, respectively.  

Table 2 and Table 3 summarize the mean of the average classification accuracies based on a 

number of first selected features. The results presented in rows with m = 5, 10, 15, and 30 provide 

the average classification accuracies of the selected features from 2 to ),,min( Mmn f   

respectively, where M is the number of original features. As suggested in [44], the four ranges of 

the number of selected features in our study here are representative as these choices cover the 

approximate transitory period where the classification accuracy becomes stable for most of the 

datasets (see Figure 2-9). A one-tailed two-sample z-test was conducted for each case of the m 

values in order to evaluate the null hypothesis (H0) that “the mean accuracy of the proposed method 

is greater than the mean accuracy of the compared method”. The recorded p-value is the probability 

corresponding to the z-test. A significant difference is obtained to support the hypothesis if p is 

lower than 0.05 (5% significance level). Meanwhile, if p is greater than 0.95 then it can be 
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concluded that the compared method outperforms the proposed method. For ease of viewing, results 

in the p-value columns are marked with the symbol “” and “” to indicate that the MRmMC 

method is statically superior or inferior to the compared method, respectively. The p-value columns 

which are not highlighted by any symbol indicate that the two methods are comparable. 

From Table 2 and Table 3, it can be observed that the MRmMC method generally provides 

either better or comparable classification accuracy in comparison with the other two methods for all 

classifiers when fewer features (e.g. 2 to 15 features) are used to represent all the candidate features, 

except in Vowel and Mfeat Factors. The performance of MRmMC is not as good as mRMR for the 

Vowel dataset with Nearest Neighbour, Naïve Bayes and SVM classifiers but is comparable to 

mRMR with CART classifier. Furthermore, MRmMC is only slightly inferior to the MIFS method 

for the Vowel dataset with Nearest Neighbour classifier. 

Considering each classifier used, the MRmMC method is only inferior to either mRMR or 

MIFS for the Mfeat Factors dataset. Specifically, the MRmMC method shows slightly lower 

performance than the MIFS method with Naive Bayes classifier yet comparable/better performance 

with the other three classifiers, while conversely, MRmMC produces comparable performance with 

the mRMR with Naive Bayes classifier but slightly lower performance with the other three 

classifiers. 
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Figure 2   Classification results for Glass dataset over different number of selected features, tested 

with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot shows 

comparison among MRmMC, mRMR and MIFS methods.  

 

Figure 3   Classification results for Magic Gamma dataset over different number of selected 

features, tested with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot 

shows comparison among MRmMC, mRMR and MIFS methods. 
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Figure 4   Classification results for Vowel dataset over different number of selected features, tested 

with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot shows 

comparison among MRmMC, mRMR and MIFS methods. 

 

Figure 5   Classification results for Statlog dataset over different number of selected features, tested 

with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot shows 

comparison among MRmMC, mRMR and MIFS methods. 
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Figure 6   Classification results for Mfeat Zernike dataset over different number of selected 

features, tested with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot 

shows comparison among MRmMC, mRMR and MIFS methods. 

 
Figure 7   Classification results for Sonar dataset over different number of selected features, tested 

with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot shows 

comparison among MRmMC, mRMR and MIFS methods. 
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Figure 8   Classification results for Musk dataset over different number of selected features, tested 

with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot shows 

comparison among MRmMC, mRMR and MIFS methods. 

 

Figure 9   Classification results for Mfeat Factors dataset over different number of selected 

features, tested with four classifiers: (a) 5-NN, (b) Naïve Bayes, (c) SVM and (d) CART. Each plot 

shows comparison among MRmMC, mRMR and MIFS methods. 
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Table 4 and Table 5 present the performance of MRmMC, mRMR and MIFS methods, 

generated by using the least number of selected features, mleast, with which  a classification accuracy 

more than or close to that obtain by using the complete dataset (with no more than 5% difference). 

Results from Table 4 and Table 5 are further summarized in Table 6 with an intention to 

specifically demonstrate the capability of the MRmMC method in representing the full feature set. 

The win/tie/loss scores reported in Table 6 represent the number of benchmark datasets for which 

the MRmMC method gives lower/equal/higher number of selected features in comparison to other 

methods. 

As can be seen from Table 6, the MRmMC method performs better than the MIFS for all four 

classifiers. It performs better for two out of four classifiers and shows comparable performance for 

the fourth classifier (CART) when compared to the mRMR method but does not perform well with 

SVM classifier. It can also be noticed that MRmMC gives outstanding performance with Nearest 

Neighbour and Naïve Bayes classifiers. Based on the average results given in the last row of Table 

6, it can be concluded that the MRmMC method is the winner in overall when only a small number 

of features are required to represent the full feature set. 
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Table 2 

A comparison of the average classification accuracy based on the first m  selected features. 

 Glass      Magic Gamma 

 MRmMC mRMR MIFS   MRmMC mRMR  MIFS  

5-NN Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 62.38 62.42 0.51 58.65 0.01   80.38 77.61 0.00  77.22 0.00  

m = 10 64.28 64.68 0.60 62.25 0.10  81.21 79.91 0.00  79.91 0.00  

N Bayes Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 53.87 48.73 0.00  45.20 0.00   76.96 77.22 0.96 ʄ 77.09 0.79 

m = 10 54.53 54.40 0.47  51.55 0.05   76.55 76.85 0.98 ʄ 76.91 0.99 ʄ 

SVM Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 59.13 60.79 0.87 54.22 0.00   78.71 74.55 0.00  74.82 0.00  

m = 10 61.72 62.28 0.64 57.04 0.00   78.93 76.63 0.00  76.60 0.00  

CART Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 60.36 59.92 0.40 56.35 0.01   76.70 73.64 0.00  73.34 0.00  

m = 10 63.06 62.5 0.38 62.17 0.30  78.50 77.08 0.00  77.02 0.00  

 Vowel 
   

  Statlog     

 MRmMC mRMR  MIFS   MRmMC mRMR  MIFS  

5-NN Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 73.6 76.32 1.00 ʄ 76.45 1.00 ʄ  54.69 50.57 0.00  51.34 0.00  

m = 10 82.66 84.01 0.98 ʄ 84.05 0.98 ʄ  61.99 59.06 0.00  58.97 0.00  

m = 15 - - - - -  64.79 62.75 0.01  62.84 0.01  

m = 30 - - - - -  65.99 64.31 0.02  64.42 0.03  

N Bayes Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 59.67 61.03 0.96 ʄ 59.73 0.53  53.88 45.06 0.00  45.55 0.00  

m = 10 65.83 67.24 0.96 ʄ 66 0.58  59.20 52.84 0.00  52.21 0.00  

m = 15 - - - -   59.99 55.51 0.00  54.61 0.00  

m = 30 - - - -   60.08 56.57 0.00  55.77 0.00  

SVM Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 59.34 61.83 1.00 ʄ 60.53 0.94   50.7 46.54 0.00  47.37 0.00  

m = 10 67.23 69.00 0.99 ʄ 68.23 0.90   60.51 57.16 0.00  58.25 0.00  

m = 15 - - - - -  64.93 63.67 0.06 65.20 0.63 

m = 30 - - - - -  67.2 66.48 0.18 67.71 0.74 

CART Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 65.35 66.56 0.92  65.84 0.72  53.16 52.78 0.34 53.77 0.75 

m = 10 69.93 70.45 0.72  70.25 0.65  61.62 60.21 0.06 61.30 0.36 

m = 15 - - - - -  64.61 63.60 0.13 64.25 0.34 

m = 30 - - - - -  65.67 64.74 0.15 65.21 0.30 
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Table 3   

A comparison of the average classification accuracy based on the first m  selected features. 

 Mfeat Zernike     Sonar 

 MRmMC mRMR MIFS   MRmMC mRMR  MIFS  

5-NN Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 53.06 53.66 0.90 53.64 0.88  74.55 70.13 0.00  71.16 0.02  

m = 10 64.43 64.46 0.53 62.74 0.00   77.92 72.56 0.00  73.15 0.00  

m = 15 69.15 69.42 0.73 67.98 0.00   79.39 74.7 0.00  74.65 0.00  

m = 30 75.05 74.78 0.25 74.70 0.19  81.24 78.76 0.05 76.45 0.00  

N Bayes Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 55.96 55.58 0.24 55.54 0.20  75.08 74.81 0.43 74.00 0.27 

m = 10 63.62 62.52 0.02  61.55 0.00   74.59 75.87 0.78 73.59 0.28 

m = 15 66.28 65.57 0.08 64.77 0.00   74.41 76.35 0.88 73.86 0.37 

m = 30 69.5 68.24 0.00  69.30 0.34  74.93 75.62 0.66 74.15 0.33 

SVM Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 56.4 57.08 0.88 56.82 0.78  77.44 73.23 0.01  72.18 0.00  

m = 10 65.63 66.24 0.88 64.51 0.01   77.67 73.97 0.01  72.52 0.00  

m = 15 69.81 71.08 1.00 ʄ 68.97 0.04   77.12 75.23 0.12 73.31 0.01  

m = 30 75.66 76.31 0.94 75.89 0.70  77.48 76.58 0.29 73.86 0.01  

CART Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 49.54 49.47 0.45 49.45 0.44  69.96 66.67 0.04  67.01 0.07 

m = 10 56.83 57.00 0.62 55.51 0.01   73.54 67.81 0.00  67.4 0.00  

m = 15 59.53 60.40 0.94 58.46 0.03   73.84 69.4 0.01  67.68 0.00  

m = 30 63.37 63.71 0.73 62.27 0.02   73.16 70.25 0.05 68.46 0.00  

 
Musk 

     
Mfeat Factors 

   

 MRmMC mRMR  MIFS   MRmMC mRMR  MIFS  

5-NN Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 69.49 66.98 0.02  67.18 0.02   72.36 75.33 1.00 ʄ 72.13 0.32 

m = 10 73.12 70.52 0.01  69.12 0.00   82.63 84.90 1.00 ʄ 81.95 0.05 

m = 15 74.45 73.16 0.12 71.48 0.00   86.59 88.25 1.00 ʄ 86.11 0.10 

m = 30 78.53 78.02 0.31 75.72 0.00   90.98 92.10 1.00 ʄ 90.82 0.31 

N Bayes Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 70.3 52.41 0.00  50.31 0.00   72.91 74.09 0.99 ʄ 79.56 1.00 ʄ 

m = 10 72.3 58.61 0.00  56.26 0.00   81.83 82.35 0.90 83.69 1.00 ʄ 

m = 15 72.35 63.24 0.00  60.33 0.00   85.18 85.11 0.43 86.31 1.00 ʄ 

m = 30 75.58 71.78 0.00  68.51 0.00   89.22 89.05 0.31 89.92 0.98 ʄ 

SVM Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 74.09 64.29 0.00  63.14 0.00   73.85 75.96 1.00 ʄ 72.69 0.01  

m = 10 75.31 67.14 0.00  66.58 0.00   83.28 84.86 1.00 ʄ 82.57 0.04  

m = 15 76.29 69.42 0.00  69.31 0.00   87.02 88.33 1.00 ʄ 86.68 0.18 

m = 30 77.01 74.00 0.00  74.02 0.00   91.32 92.26 1.00 ʄ 91.29 0.46 

CART Accuracy Accuracy p-value Accuracy p-value  Accuracy Accuracy p-value Accuracy p-value 

m = 5 70.51 69.64 0.22 69.75 0.25  68.45 70.60 1.00 ʄ 66.84 0.00  

m = 10 72.43 71.78 0.29 71.27 0.16  76.34 77.93 1.00 ʄ 74.68 0.00  

m = 15 73.80 73.72 0.47 71.61 0.03   79.08 80.33 0.99 ʄ 78.05 0.02  

m = 30 75.59 75.25 0.39 72.93 0.01   82.32 83.37 0.99 ʄ 81.64 0.08 
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Table 4. The least number of selected features, mleast, by MRmMC, mRMR and MIFS methods that 

gives classification accuracy close to (at most 5% less than the full set accuracy) or better than the 

full feature set. The symbol “•” (or “Ƒ”) denotes the proposed method has lower (or larger) value of 
mleast than the compared method. Results are based on Glass, Magic Gamma, Vowel, Statlog, Mfeat 

Zernike and Sonar datasets.  
 Glass     Magic Gamma    

5-NN Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 64.52 ± 2.61  3 65.16 ± 1.97  83.72 ± 0.16  2 79.46 ± 0.18 

mRMR 64.52 ± 1.96  3 65.32 ± 1.86  83.76 ± 0.20  4   • 79.56 ± 0.18 

MIFS 66.43 ± 2.27  3 62.30 ± 2.23  83.76 ± 0.19  5   • 79.46 ± 0.21 

Naïve Bayes Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 61.67 ± 2.49  3 65.87 ± 2.44  76.13 ± 0.28  2 77.69 ± 0.23 

mRMR 60.48 ± 2.61  6   • 57.94 ± 2.66  76.22 ± 0.18  2 76.46 ± 0.15 

MIFS 61.59 ± 2.31  7   • 58.17 ± 2.59  76.27 ± 0.21  2 76.32 ± 0.24 

SVM Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 63.17 ± 1.98  3 61.27 ± 2.46  79.16 ± 0.22  2 78.34 ± 0.20 

mRMR 63.65 ± 2.35  3 65.87 ± 1.59  78.98 ± 0.14  3   • 74.40 ± 0.24 

MIFS 64.21 ± 2.03  8   • 62.78 ± 2.53  79.06 ± 0.22  3   • 74.36 ± 0.24 

CART Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 66.35 ± 2.52  3 63.10 ± 2.36  81.84 ± 0.22  4 77.41 ± 0.29 

mRMR 66.35 ± 2.30  3 64.84 ± 2.22  81.64 ± 0.21  6   • 77.84 ± 0.22 

MIFS 68.73 ± 2.41  5   • 66.27 ± 2.45  81.95 ± 0.32  7   • 78.41 ± 0.29 

 Vowel     Statlog    

5-NN Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 91.55 ± 0.64  6 87.12 ± 0.82  71.78 ± 0.95  6 67.34 ± 1.04 

mRMR 91.73 ± 0.92  6 89.09 ± 0.75  72.13 ± 0.97  9   • 68.93 ± 1.19 

MIFS 91.45 ± 0.89  6 87.29 ± 1.00  71.87 ± 1.23  11 • 69.90 ± 1.12 

Naïve Bayes Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 73.30 ± 1.19  7 72.73 ± 1.01  60.61 ± 1.25  5 59.03 ± 1.35 

mRMR 73.33 ± 1.03  6   ප 69.87 ± 1.13  61.44 ± 1.24  7   • 60.06 ± 1.32 

MIFS 73.13 ± 1.28  7 71.06 ± 1.28  60.34 ± 1.38  6   • 57.04 ± 1.23 

SVM Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 77.81 ± 1.12  8 73.23 ± 1.21  79.59 ± 0.92  16 76.11 ± 0.77 

mRMR 78.64 ± 1.18  8 75.57 ± 1.08  79.51 ± 0.89  13 ප 76.00 ± 1.02 

MIFS 78.42 ± 0.83  8 75.00 ± 1.01  79.57 ± 0.93  12 ප 77.57 ± 0.97 

CART Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 74.07 ± 1.23  5 71.41 ± 1.11  70.75 ± 0.97  7 68.90 ± 1.43 

mRMR 74.75 ± 1.36  4   ප 70.42 ± 1.11  70.37 ± 1.14  7 65.64 ± 1.31 

MIFS 74.58 ± 1.19  4   ප 70.37 ± 1.08  69.57 ± 1.08  5   ප 65.03 ± 1.19 

 Mfeat Zernike 
    

Sonar 
   

5-NN Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 80.61 ± 0.48  9 77.03 ± 0.52  78.13 ± 1.80  3 76.34 ± 2.17 

mRMR 80.60 ± 0.54  9 77.20 ± 0.65  79.43 ± 1.92  8   • 76.26 ± 1.96 

MIFS 80.58 ± 0.49  12 • 75.94 ± 0.60  77.89 ± 2.56  3 73.01 ± 1.74 

Naïve Bayes Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 72.33 ± 0.70  6 67.58 ± 0.51  75.61 ± 2.59  2 72.52 ± 2.55 

mRMR 72.43 ± 0.68  8   • 70.25 ± 0.72  75.12 ± 2.42  2 71.79 ± 2.25 

MIFS 72.58 ± 0.70  8   • 68.69 ± 0.54  76.67 ± 1.41  3   • 75.69 ± 2.66 

SVM Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 83.01 ± 0.57  14 78.17 ± 0.72  79.76 ± 2.25  3 78.70 ± 2.59 

mRMR 82.53 ± 0.41  9   ප 77.64 ± 0.52  76.18 ± 2.47  2   ප 72.36 ± 2.36 

MIFS 82.47 ± 0.45  15 • 78.38 ± 0.66  77.48 ± 1.86  4   • 72.93 ± 1.87 

CART Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 66.58 ± 0.82  8 63.19 ± 0.67  73.01 ± 1.79  3 70.16 ± 2.82 

mRMR 66.09 ± 0.64  8 63.74 ± 0.80  72.28 ± 2.30  3 67.40 ± 2.90 

MIFS 66.68 ± 0.85  8 62.20 ± 0.81  73.66 ± 2.25  3 69.76 ± 3.06 
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Table 5 

The least number of selected features, mleast, by MRmMC, mRMR and MIFS methods that gives 

classification accuracy close to (at most 5% less than the full set accuracy) or better than the full 

feature set. The symbol “•” (or “ප”) denotes the proposed method has lower (or larger) value of 
mleast than the compared method. Results are based on Musk and Mfeat Factors datasets. 

 Musk     Mfeat Factors    

5-NN Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 88.49 ± 0.96  21 83.89 ± 0.91  96.47 ± 0.26  8 92.20 ± 0.50 

mRMR 88.21 ± 1.21  23 • 83.54 ± 1.23  96.55 ± 0.24  7   ප 92.34 ± 0.37 

MIFS 87.37 ± 1.14  30 • 84.00 ± 1.41  96.63 ± 0.30  9   • 92.17 ± 0.51 

Naïve Bayes Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 82.81 ± 1.63  20 77.88 ± 2.37  93.87 ± 0.39  8 89.34 ± 0.64 

mRMR 82.14 ± 1.08  17  ප 78.76 ± 2.19  94.08 ± 0.39  9   • 89.59 ± 0.38 

MIFS 80.91 ± 1.50  20 76.86 ± 1.59  93.87 ± 0.32  10 • 90.03 ± 0.47 

SVM Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 85.68 ± 0.99  40 81.47 ± 1.22  97.46 ± 0.25  10 92.79 ± 0.51 

mRMR 85.05 ± 1.67  40 80.28 ± 1.61  97.62 ± 0.28  9   ප 92.97 ± 0.48 

MIFS 85.05 ± 1.27  30  ප 80.88 ± 1.20  97.74 ± 0.27  10 93.68 ± 0.50 

CART Full set accuracy  mleast Subset Accuracy  Full set accuracy  mleast Subset Accuracy 

MRmMC 77.09 ± 1.63  5 72.67 ± 1.17  88.38 ± 0.55  9 84.17 ± 0.73 

mRMR 78.74 ± 1.76  9   • 75.02 ± 1.37  88.01 ± 0.57  7   ප 83.67 ± 0.67 

MIFS 77.30 ± 1.97  7   • 75.12 ± 1.69  87.88 ± 0.58  9 83.09 ± 0.59 

 

Table 6 

A comparison of win/tie/loss counts of the MRmMC method against the other methods. The counts 

are based on the results presented in Table 4 and Table 5. 

Win/tie/lose mRMR MIFS 

5-NN 4 / 3 / 1 5 / 3 / 0 

Naïve Bayes 4 / 2 / 2 5 / 3 / 0 

SVM 1 / 3 / 4  4 / 2 / 2 

CART 2 / 4 / 2 3 / 3 / 2 

Average 2.75 / 3 / 2.25 4.25  2.75 / 1 

 

8.   Conclusions 

The MRmMC method uses a hill-climbing search structure with a straightforward measurement 

criterion that makes it simple and easy to implement. It is a filter feature selection method as it uses 

no specific classification scheme in the selection process, and therefore it works well with popular 

classifiers such as k-NN, naïve Bayes, SVM and CART.  

Although the method may not always find the optimal subset as the search is non-exhaustive, it 

is shown from the experimental and numerical case studies that the method is competent for feature 

selection and dimensionality reduction. 
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As mentioned in Section 5, MRmMC possesses several attractive properties, one of which is 

that there is no need to pre-specify control parameters as required in MIFS methods, and another 

important one is that it is relatively easier to implement. 

      The conditional correlation coefficient defined by (16) can well reveal linear relation between 

two variables X and Y. It also can reveal nonlinear relation if there is a clear functional relationship 

between X and Y in the strict sense of word.  Therefore, the proposed method can well capture linear 

relations between features, and can also identify nonlinear relations if features are related to each 

other in some nonlinear manners.  A limitation of MRmMC is that the proposed redundancy 

measure can is reliable for quantitative features, but cannot effectively evaluate the redundancy 

between a quantitative and a nominal random variable.  

      In future work, it is of interest to make use of other measures to assess feature redundancy and 

combine this idea with the feature relevancy measure applied in this paper. The combination is 

expected to form a new criterion that can be used to effectively deal with both nominal and 

quantitative features. It would be also interesting to explore the new criterion with other feature 

search strategies such as floating search selection and nature-inspired selection in order to find 

better feature subset solutions.  
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