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Abstract

Aim— To determine whether fluid flow-induced shear stress affects the differentiation of bone

marrow-derived human mesenchymal stem cells (hMSCs) into osteogenic cells.

Materials & methods— hMSCs cultured with or without osteogenic differentiation medium

were exposed to fluid flow-induced shear stress and analyzed for alkaline phosphatase activity and

expression of osteogenic genes.

Results— Immediately following shear stress, alkaline phosphatase activity in osteogenic

medium was significantly increased. At days 4 and 8 of culture the mRNA expression of bone

morphogenetic protein-2 and osteopontin was significantly higher in hMSCs subjected to shear

stress than those cultured in static conditions. However, hMSCs cultured in osteogenic

differentiation medium were less responsive in gene expression of alkaline phosphatase and bone

morphogenetic protein-2.

Conclusion— These data demonstrate that shear stress stimulates hMSCs towards an

osteoblastic phenotype in the absence of chemical induction, suggesting that certain mechanical

stresses may serve as an alternative to chemical stimulation of stem cell differentiation.
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Mesenchymal stem cells (MSCs) are defined as self-renewing multipotent cells of the

mesenchymal lineage with the capacity to differentiate into cell types that form bone,

cartilage, adipose, tendon, muscle, neural and other connective tissues [1-6]. There is much

interest in the potential of using human MSCs (hMSCs) in bone and cartilage regenerative

medicine for the treatment of musculoskeletal trauma and disease [6,7], since they can be

obtained from the patient to be treated [8].

Mesenchymal stem cells have been successfully isolated from bone marrow [9] and adipose

tissue [10] and are directed towards osteogenic differentiation in vitro when cultured in the

presence of dexamethasone, Ś-glycerophosphate and L-ascorbic acid-2-phosphate [11].

Dexamethasone, a synthetic hormone, is a member of the glucocorticoid family of steroids

and regulates bone morphogenetic proteins (BMPs), which are major inducers of

osteogenesis [12]. Ś-glycerophosphate provides phosphate for calcium phosphate deposition

[13] and ascorbic acid is essential for the production of collagen [14]. Rat MSCs

differentiate into osteogenic cells upon stimulation with BMPs. However, the use of BMPs

for osteogenic differentiation may not be as effective in hMSCs as in nonhuman cells [15].

Dexamethasone is a main component of osteogenic, chondrogenic and adipogenic media for

MSCs, and does not specifically induce osteogenesis. In long-term in vitro osteogenic

differentiation conditions, it can promote adipogenesis [16]. Systematic administration of

glucocorticoids in human patients has deleterious effects such as bone loss [17] and can

induce cell apoptosis [18].

Besides chemical signaling, mechanical stress regulates bone mass and strength across

multiple species [19,20]. Among the multiple theories regarding the primary mechanical

signal to which bone cells respond, strain-induced fluid shear stress has received abundant

experimental support [21,22]. Fluid shear stress occurs in the interstitial spaces around bone

cells during repetitive loading and unloading of bone [23] and probably in the bone marrow

cavity. Fluid shear stress regulates cell function by stimulating multiple intracellular

signaling pathways [24], including those involved in differentiation. Accordingly, there is

growing interest in the regulation of differentiation of bone progenitor cells by mechanical

stress. With mechanical stimulation, the time in culture required to predifferentiate cells may

be greatly reduced. Recent data indicate that mechanical stimulation may be used to

stimulate the osteogenic differentiation of bone marrow MSCs on both 2D planar substrates

and 3D scaffolds [25,26]. In 2D culture, rat MSCs exposed to shear stress showed increases

in bone sialoprotein (BSP) and osteopontin (OP) gene expression, as well as alkaline

phosphatase (ALP) activity [27]. Increased cell proliferation and production of osteogenic

markers, including ALP and calcium, were found when MSCs derived from rat bone were

mechanically stimulated in a 3D scaffold [28]. However, it is difficult to calculate shear

stress magnitudes applied to a 3D scaffold, given the variety of materials and structures in

use [29].

We hypothesized that shear stress alone might be a potential osteogenic stimulator for

preculture of hMSCs prior to regenerative medicine therapies owing to the demonstrated

disadvantages of chemical supplementation discussed above. We applied shear stress in a

simplified and well characterized parallel plate flow chamber system, which has potential
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for use in scaled-up and routine preculture protocols. We show that a fluid shear stress

increases the expression of genes that are regulated during the differentiation of hMSCs to

bone cells.

Materials & methods

Cell isolation & culture

Isolated bone marrow (AllCells, Berkeley, CA, USA) from multiple healthy human donors

aged between 20 and 26 years (seven male and one female) was enriched for hMSCs using

RosetteSep® (StemCell Technologies, Vancouver, BC, Canada). Bone marrow was

incubated with a cocktail of antibodies (50 μl per 1 ml of bone marrow) that bind to marrow

cells other than MSCs, for 20 min at room temperature. The cells were then diluted twofold

in phosphate-buffered saline (PBS; Cambrex, East Rutherford, NJ, USA), containing 2%

fetal bovine serum (FBS) and 1 mM EDTA solution. The cells were layered on Ficoll-

Paque® (StemCell Technologies) and centrifuged at 300 × g for 25 min. The cell layer

enriched for MSCs at the Ficoll-Paque plasma interface was removed and seeded at a

density of 6.7–13.3 × 103 cells/cm2. The cells were cultured in basal culture media, which

consisted of Dulbecco’ s modified Eagle’ s medium-low glucose (Sigma, St Louis, MO,

USA), 1% antibiotic (containing 10 units/l penicillin G sodium, 10 mg/ml streptomycin

sulfate and 0.25 mg/ml amphotericine B; Gibco, Invitrogen Corporation, Carlsbad, CA,

USA) and 10% FBS (Atlanta Biologicals, Norcross, GA, USA). The cells were incubated at

37°C in the presence of 5% CO2 and 95% humidity with fresh media changes every 3–4

days. Nonpooled cells from passages 3–5 were plated at a density of 7.6–8.6 × 103 cells/cm2

on polycarbonate slides for ALP experiments and glass slides for gene expression

experiments. The hMSCs were cultured in basal media and basal media containing the

osteogenic supplements 100 nM dexamethasone, 50 μg/ml L-ascorbic acid-2-phosphate and

10 mM Ś-glycerophosphate. Cells grown in osteogenic media are assumed to be

preosteoblastic (hMSC-Ost).

Fluid shear stress

Cells were exposed to fluid shear stress using a parallel plate flow chamber as shown in

Figure 1 [30]. The flow chamber consists of a machine-milled polycarbonate base, a

rectangular silastic (0.20 in size, Dow Corning, Midland, MI, USA) gasket and the slide

with the attached cells. The gasket provides a seal between the base and the slide and also

creates the channel by providing separation between the slide and the base. Media enters and

exits the flow chamber through slits in the polycarbonate plate. Wall shear stress on the cell

monolayer can be calculated assuming Newtonian fluid and parallel-plate geometry:

where Q is the flow rate (cm2/s); μ is the viscosity of the media; h is the channel height

(0.022 cm); b is the slit width (2.5 cm); and Ŭ is the wall shear stress (dynes/cm2).
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The recirculating hydrostatic pressure drop system consists of two glass reservoirs, one

above the other, with a parallel-plate flow chamber connected to them. Media exits the flow

chamber and is then pumped though the system from the lower to the upper reservoir. Media

from the upper reservoir then re-enters the flow chamber. The hydrostatic pressure head

created by the distance between the opening of the upper reservoir and the inlet of the lower

reservoir can be varied by adding or removing glass tubes between the reservoirs. By

varying this distance, and thus Q, and keeping all other variables constant in the previous

equation, the shear stress (Ŭ) within the chamber can be varied.

Cells to be analyzed for gene expression were switched to serum-free respective media for

cell cycle synchronization 12–16 h before experimentation. The assembled flow chamber

was sealed and attached to the hydrostatic pressure system, which was filled with 20 ml

basal (hMSC) or osteogenic supplemented (hMSC-Ost) media, with the substitution of 2%

FBS for 10% FBS [31]. All shear stress experiments were conducted in standard culture

conditions of 37°C, 5% CO2 and 95% humidity. Cells not exposed to shear stress

(designated as ‘ control’  for the remainder of this paper) were given 20 ml of respective

experimental media and placed in an incubator.

ALP activity stain

After experimentation, cells were washed twice with ice-cold PBS. The cells were incubated

in a staining solution that consisted of 0.5 mg/ml napthol AS-BI phosphate in N,N̘-dimethyl

formamide and 1 mg/ml ‘ fast red’  in 50 mM Tris and filtered through Whatman paper #1 for

30–60 min at 37°C. The cells were then washed with PBS, fixed for 20 min in 3.7%

formaldehyde at room temperature in PBS and imaged.

ALP activity quantification

Cells were lysed using 0.1% Triton X-100 in PBS. At the same time as cell collection the

conditioned media (12–15 ml) was concentrated using Amicon Ultra-15 centrifugal filter

units (Millipore, Billerica, MA, USA) with 50 kDa cutoff, centrifuged at 4000 × g at 4°C for

20 min. ALP activity was assayed using a colorimetric assay (Raichem, San Diego, CA,

USA) per the manufacturer’ s instructions and normalized to DNA content. The assay

measures the rate at which ALP converts p-nitrophenol phosphate (colorless) to p-

nitrophenyl (yellow). For analysis of ALP activity, 25 μl of cellular lysate or concentrated

media was added to 250 μl of p-nitrophenol phosphate in a 96-well plate. Samples were read

in a microplate reader (BioRad 680 microplate reader; Hercules, CA, USA) at 405 nm. The

change in color intensity was measured to give a quantification of ALP as nmol of substrate

converted/minutes using a standard curve. ALP activity per 1 ml of concentrated media was

normalized to the total amount of experimental media (20 ml). For DNA quantification a kit

was used (BioRad) per the manufacturer’ s instructions. A total of 10 μl of cell lysate was

added to 2 ml of 0.1 mg/ml Hoechst dye in TEN buffer. Absorbance at 360 nm excitation

and 460 nm emission was read using a VersaFluor Fluorometer System (BioRad) and DNA

concentration (ng/ml) was determined from a DNA standard curve.

Yourek et al. Page 4

Regen Med. Author manuscript; available in PMC 2014 July 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Real-time PCR

For gene expression analysis, cells were washed twice with ice-cold PBS and total RNA was

isolated using Trizol Reagent (Invitrogen) or RNeasy (Qiagen, Valencia, CA, USA)

according to the manufacturers’  instructions. RNA concentration was quantified using a

spectrophotometer at 260 nm and quality was assessed using gel electrophoresis. A total of 2

μg of RNA was reverse transcribed in 5 mM MgCl2, 1X PCR Buffer II, 1 mM each of

dGTP, dATP, dTTP and dCTP, 1 U/ml RNase inhibitor, 2.5 U/ml MuLV reverse

transcriptase and 2.5 mM random hexamers solution (GeneAMP RNA PCR Kit, Applied

Biosystems, Foster City, CA, USA). The reverse transcription reaction was carried out in an

iCycler Thermal Cycler (BioRad) with the following parameters: 25°C for 10 min, 42°C for

15 min and 99°C for 5 min. Samples were kept on ice until analyzed by real-time PCR.

For real-time PCR reaction, 2 × TaqMan Master Mix (Applied Biosystem) was mixed with

100 ng of transcribed sample mRNA. Samples, nontemplate controls and primers (Applied

Biosystems assay-on-Demand) were added to a 96-well plate. Endogeneous primers were

18S (assay ID: Hs99999901_s1) and glyceralde-hyde-3-phosphatase dehydrogenase

(GAPDH) (assay ID: Hs00266705_g1). Target primers were BMP-2 (assay ID:

Hs00154192_m1), BSP (assay ID: Hs00173720_m1) and OP (assay ID: Hs00167093_m1).

Each gene expression profile for each sample was completed in duplicate. The cDNA was

amplified in Applied Biosystems ABI PRISM 7000 Sequence Detection System using the

following thermal cycling parameters: 50°C, 2 min (1 cycle); 95°C, 10 min (1 cycle); PCR

(40 cycles): step 1, denaturation: 95°C, 15 s; step 2, annealing/extension/detection: 60°C, 1

min.

Data were analyzed using Applied Biosystems ABI PRISM® 7000 System Software, v1.2.3

with relative quantification study. Baseline and cycle threshold values were determined

automatically via the software and verified in each case. The ratio of treated mRNA levels to

control mRNA levels was calculated using the ΔΔ cycle threshold method.

Statistics

Control and experimental cells were compared using a paired student’ s t-test. For real-time

PCR gene expression experiments, a Mann–Whitney Rank Sum Test was performed for

cells exposed to osteogenic supplements (hMSC-Osts) compared with cells in basal media

(hMSCs) at each time point and a Kruskal–Wallis one-way analysis of variance (ANOVA)

on ranks was performed with all shear stress groups relative to the control group for each

cell type at each time point.

Results

Effect of shear stress on cell morphology

Human MSCs and hMSC-Osts were exposed to 9 dynes/cm2 shear stress for 24 h 3 days

after plating on slides and the addition of the basal and osteogenic media, respectively.

Control (no exposure to shear stress) hMSCs were spindle-shaped with a fibroblast-like

morphology (Figure 2A). After exposure to osteogenic supplements, the hMSC-Osts (Figure
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2C) had a cuboidal shape similar to that of osteoblasts. Shear stress had little effect on the

alignment and shape of hMSCs and hMSC-Osts (Figure 2A VSB & C VS D).

Effect of shear stress on cell membrane ALP activity

Cells were treated as above. Control hMSC-Osts displayed a marked increase in ALP

staining intensity compared with control hMSCs (Figure 3A VS C). Staining intensity

increased from days 7 to 11 for hMSC-Osts (Figure 3B & D VS F & H). Shear stress had no

noticeable effect on ALP staining intensity of the hMSCs and hMSC-Osts (Figure 3A VS B,

C VS D, E VS F & G VS H).

Effect of shear stress on cellular & media ALP activity

For all time points, ALP activity was greater in hMSC-Osts than in hMSCs (Figure 4A).

Cells were treated as above and assayed for ALP activity immediately and 3 days after 24 h

of shear stress exposure, and ALP activity of hMSC-Osts exposed to shear stress was

significantly lower than that of control hMSC-Osts at day 7 and 11 (38 and 80% less,

respectively) (Figure 4A). There was no change in hMSC and hMSC-Ost ALP activity

immediately after exposure to shear stress.

Since cellular ALP significantly decreased after exposure to shear stress, we wanted to

determine if this was due to release of ALP into the media during shear stress exposure. On

day 8, immediately after exposure to 24 h shear stress on day 7, media ALP activity was

significantly higher for hMSC-Osts (6.98 vs 13.71 mU/ng/ml) (Figure 4B) than for control

hMSC-Osts at 8 days.

Effect of osteogenic supplements on BMP-2, BSP & OP gene expression

After 4 days, BMP-2 and BSP gene expression levels were not significantly different

between hMSC-Osts and hMSCs. However, OP expression was 0.8-fold less than in hMSCs

(Figure 5). After 8 days, there was a significantly higher (0.9-fold) BSP expression in

hMSC-Osts relative to hMSCs (Figure 5).

Effect of shear stress on BMP-2, BSP & OP gene expression

To analyze the effect of shear stress on gene expression, hMSCs and hMSC-Osts cultured

for 3 and 7 days were exposed to 4, 15 and 22 dynes/cm2 shear stress for 24 h. The

expressions of genes affiliated with an osteogenic phenotype were increased in hMSCs in

response to 24 h of shear stress after 3 days of static culture. BMP-2 expression was

significantly upregulated in a shear stress magnitude-dependent manner compared with

control hMSCs (Figure 6A). BSP expression appeared to increase with increasing shear

stress magnitudes; however, it was not significantly higher than in controls for any

magnitude of shear stress (Figure 6B). OP mRNA was significantly (2.1-fold) higher after

exposure to 22 dynes/cm2 shear stress (Figure 6C).

Human MSCs subjected to shear stress on day 7 showed greater effects on mRNA

expression compared with those subjected to the stress on day 3. BMP-2 expression was

highest after 22 dynes/cm2 of shear stress compared with control cells (Figure 6A). BSP

mRNA was significantly increased 9.4- and 6.3-fold at 15 and 22 dynes/cm2, respectively
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(Figure 6B). There was a significant 7.7-fold increase in OP expression in hMSCs exposed

to 22 dynes/cm2 shear stress (Figure 6C). In hMSC-Osts cultured for 3 days and then

exposed to 24 h shear stress, only OP mRNA levels were increased 1.8- and 3.8-fold at 4

and 22 dynes/cm2, respectively, relative to their controls (Figure 6C).

Discussion

Cells for tissue engineering bone repair/replacement should be readily available and have

osteogenic potential. MSCs meet this requirement as they can be harvested from the patient,

expanded and differentiated into bone cells [6]. Here we show that mechanical stimulation

alone affects the differentiation of hMSCs by upregulating the expression of osteogenic

factors, BMP-2, a growth factor, and BSP and OP, matrix proteins whose production

increases in response to chemical osteogenic treatments [32,33].

Alkaline phosphatase activity is an early marker of osteogenic differentiation [11] and plays

a role in early mineralization via its enzymatic hydrolysis activity [34]. This was

demonstrated in the current study, where cellular ALP activity was higher in MSCs grown in

osteogenic supplements. There was no effect of shear stress on cellular ALP levels found in

non-osteogenic conditions. However, in osteogenic conditions, ALP levels were

significantly lower 3 days after shear stress exposure. Interestingly, Grellier et al. subjected

hMSCs to shorter bouts of fluid shear stress in osteogenic conditions and showed that 30

min exposure upregulated ALP mRNA but 90 min reduced it to almost basal levels [35].

Furthermore, MSCs exposed to an oscillatory fluid flow profile showed reduced ALP

activity despite upregulating OP and osteocalcin mRNA under the same conditions [36]. In

other studies, tensile loading of hMSCs upregulated ALP activity in nonosteogenic medium

[26] and compression loading of MSCs in a porous scaffold upregulated ALP activity in

nonosteogenic conditions but not when osteogenic supplements were added [25]. Clearly,

the effect of mechanical stress on ALP activity and the downstream outcomes of ALP are

complex.

Despite no change in cellular ALP activity levels, we found that 24 h exposure to shear

stress following 7 days culture in osteogenic supplemented media induced a greater amount

of ALP activity in the media than control cells, indicating the possibility that ALP is being

produced and secreted into the media. ALP is a glycosylphosphatidylinisotol protein that is

anchored to the cell membrane via a phosphoethanolamine bound to an oligosaccharide [37].

It is possible that fluid shear stresses of sufficient magnitude, such as those used in our

experiments, may be able to break these bonds. A release of ALP to cell media during

MC3T3 differentiation has been noted with the onset of mineralization [38]. If more ALP

was released in cells subjected to shear stress this would have created a deficit of ALP

within the cells (as measured 3 days after shear stress exposure) and an increase of ALP in

the surrounding media. This could explain why in the studies discussed above, there was

lower cellular ALP activity in experiments in which fluid flow was the mechanical stimulus

[26] but higher ALP when substrate strain was the stimulus [25]. One of the pathways

through which shear stress stimulates osteogenic differentiation of MSCs may include the

regulation of autocrine factors. Here we show that BMP-2, an important inducer of

osteogenic differentiation, is regulated in hMSCs by shear stress in a magnitude-dependent
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manner in vitro. This is particularly interesting given that osteogenic supplements did not

upregulate BMP-2 mRNA in our experiments and hMSCs do not respond well to exogenous

BMP-2 in standard osteogenic media conditions [39], although many genes involved in the

BMP-2 pathways have been shown to be upregulated in hMSCs in osteogenic medium [33].

In vivo, there is a rise in BMP-2 levels in bone tissue and an induction of remodeling with an

increase in loads [40]. This upregulation in BMP-2 expression may be due not only to an

increase in its production by fully differentiated bone cells but also by bone marrow MSCs,

which are also likely to be exposed to increased levels of shear stress as a result of loading

on the whole bone. By contrast, there was a less consistent effect of shear stress on BMP-2

mRNA when cells were stimulated with osteogenic supplements. This is in agreement with

Sharp et al., who showed no effect of 24 h continuous shear stress in osteogenic conditions

on BMP-2 mRNA levels immediately post flow [41].

It has been previously shown that OP mRNA is upregulated by hMSC exposure to

osteogenic supplements [32,33]. However, OP expression by stem cells exposed to

osteogenic supplements has been found to be variably regulated; for instance, Diefenderfer

et al. also showed that dexamethasone slightly reduced OP mRNA expression in MSCs from

some human donors [42]. In differentiated bone cells, OP expression is increased upon

exposure to shear stress in vitro [43], cyclic strain [44,45] and hydrostatic pressure [46].

Likewise, in vivo, OP is upregulated after mechanical loading [47]. In the current

experiments, OP gene expression was higher in hMSCs exposed to shear stress and was the

only gene significantly upregulated by shear stress in hMSC-Osts. Similarly, after rat MSCs

were exposed to continuous shear stress in osteogenic media, there was no effect on BMP-2,

as noted above, while there was an effect on OP [41]. Less is known about the response of

BSP to mechanical loading in mature bone, but its role as a mechanosensitive extracellular

matrix protein in stimulation of hMSCs is becoming better understood. Here we show that

BSP is significantly upregulated by shear stress in the 8-day group, reflecting its later

appearance in osteogenic differentiation, where it is associated with the onset of

mineralization [48].

Disruption of the cytoskeleton can alter the response of cells to shear stress [49,50].

Previously, we have shown that when differentiating to osteoblasts, the cytoskeleton of

hMSCs changes from thick, defined actin stress fibers to a more dispersed actin fiber

arrangement. Likewise, the cell becomes less stiff upon differentiation [51,52]. In the

present study, we found that hMSCs are more sensitive to shear stress than hMSCs

differentiated into bone-like cells. We suggest that hMSCs have greater sensitivity to shear

stress than early osteoblast-like cells differentiating from hMSCs because of the higher cell

stiffness caused by the more defined cytoskeleton in the undifferentiated cells. The cell

signaling pathways involved in transmitting the mechanical signal into an osteogenic

response by the cells are unknown; however, they are highly likely to involve the MAPK

pathways, as shear stress was shown to stimulate upregulation of mRNA for a MAPK kinase

in hMSCs [53] and the ERK and P38 pathways in osteoblasts [43]. MAPK have been well

demonstrated to be key regulators in the cytoskeleton-mediated osteogenesis of hMSCs

[54,55].
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It is interesting that without soluble factors to stimulate differentiation along any specific

lineage, cells exposed to shear stress exhibited bone matrix-specific differentiation markers

such as OP and BSP. While we did not test for markers of other lineages, this indicates that

they preferentially differentiate to osteoblasts rather than alternative mesenchymal lineage

cells, such as myoblasts, adipocytes or fibroblasts. This may be because specific mechanical

forces allow differentiation to specific lineages. For example, human MSCs seeded on

collagen gels and subjected to dynamic tensile and torsional forces in the range of those

experienced by tendons and ligaments differentiated to ligament-like fibroblasts without the

aid of exogenous growth differentiation stimulants [56]. Another explanation is that these

cells were grown on a hard substrate (polycarbonate or glass) and MSCs are more likely to

differentiate towards the osteogenic lineage on hard compared with soft substrates in the

absence of other stimulators of cell differentiation [57]. It would be interesting to examine

whether the osteogenic response to shear stress is as robust on softer substrates, which tend

to favor myogenic differentiation [58] or cell quiescence [59]. A substrate-specific effect on

the expression of chondrogenic versus osteogenic markers in hMSCs grown in 3D has also

been observed [60].

Conclusion

Human bone marrow MSCs from multiple donors and passage numbers respond to fluid

shear stress by increasing the expression of the bone markers BMP-2, BSP and OP. Human

MSCs are more sensitive to fluid shear stress than chemically differentiated osteoblast-like

cells from hMSCs and sensitivity of hMSCs to shear stress is greater after they have a longer

attachment time prior to shear stress exposure. It is important to apply the appropriate

pretreatment to hMSC prior to clinical application and that the pretreatment does not induce

unwanted side effects. Exposure of proliferating MSCs to shear stress may be a cost-

effective and straightforward method of predifferentiating cells without chemical treatment

for orthopedic and other applications.

Future perspective

There is interest in increasing the economic efficiency of the processing of human MSCs in

sterile bioreactor conditions for therapeutic use of these cells. Much recent work in the field

indicates that mechanical preconditioning of these cells may be an important step in this

culture process. Culturing cells in the presence of fluid flow-induced shear stress without

chemical differentiation has the potential to become a routine method for preconditioning.
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Executive summary

ߖ Human mesenchymal stem cells respond to laminar fluid flow-induced shear

stress applied in a parallel plate flow chamber with upregulation of

osteogenic markers. This response is increased after several days of

preculture.

ߖ Human mesenchymal stem cells cultured in osteogenic media do not show a

consistent additive affect of shear stress exposure.

ߖ Mechanical conditioning could be a useful way to avoid chemical

differentiation in the preculture of human mesenchymal stem cells for

therapeutic use.
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Figure 1. Hydrostatic pressure device attached to the flow chamber with cells on the slide used
for the fluid shear stress experiments
Cells are exposed to steady laminar fluid shear stress in the direction of the arrows. Media

flow follows arrows from the assembled flow chamber to the lower reservoir of the

hydrostatic pressure device and is then pumped to the upper reservoir via a peristaltic pump.

The media then flows back into the flow chamber via the upper reservoir of the hydrostatic

pressure system. The shear stress, Ŭ, is defined by the flow rate, Q, the height of the channel,

h, the width of the channel, b, and the viscosity of the liquid, μ (not shown). The flow rate,

Q, and thus shear stress, Ŭ, in the flow chamber, can be varied by changing the height

between the opening of the upper reservoir and inlet of the hydrostatic pressure system. The

entire system is in a 37°C environment and has humidified 5% CO2 flowing into the system

where noted.
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Figure 2. Morphology of human mesenchymal stem cells and human mesenchymal cells exposed
to osteogenic supplements exposed to shear stress (left to right) for 24 h
Phase contrast microscopy images of (A) hMSCs and (B) hMSC-Osts not exposed to shear

stress, and (C) hMSCs and (D) hMSC-Osts exposed to shear stress. hMSCs changed their

fibroblast-like, spindle-shaped morphology to a more cuboidal morphology after exposure to

osteogenic supplements (A vs B). There were no obvious changes in morphology of hMSCs

(A vs C) and hMSC-Osts (B vs D) after 24 h exposure to 9 dynes/cm2 steady shear stress.

hMSC: Human mesenchymal cell; hMSC-Osts: Human mesenchymal cells exposed to

osteogenic supplement.
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Figure 3. Alkaline phosphatase stain of human mesenchymal stem cells and human
mesenchymal cells exposed to osteogenic supplements exposed to shear stress
(A) hMSCs and (B) hMSC-Osts, in a 7 day experiment, not exposed to shear stress; (C)
hMSCs and (D) hMSCs-Osts in a 7 day experiment, exposed to shear stress; (E) hMSCs and

(F) hMSCs-Osts, in an 11 day experiment, not exposed to shear stress; and (G) hMSCs and

(H) hMSCs-Osts in an 11 day experiment, exposed to shear stress. An increase in alkaline

phosphatase expression evidenced by red staining was displayed after 7 days exposure to

osteogenic supplements (A vs B), (E vs F). There were minimal differences in both cell

groups upon exposure to fluid shear stress for 24 h (A vs C), (B vs D), (E vs G), (F vs H).
hMSC: Human mesenchymal cell; hMSC-Osts: Human mesenchymal cells exposed to

osteogenic supplement.
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Figure 4. Alkaline phosphatase activity regulation of human mesenchymal stem cells and human
mesenchymal cells exposed to osteogenic supplements by fluid shear stress
Fluid SS significantly reduced sustained cellular ALP activity in hMSC-Osts exposed to 9

dynes/cm2 steady SS for 24 h compared with hMSC-Osts not exposed to SS. Cellular ALP

was analyzed 3 days after experimentation at both 7 and 11 days, and immediately after

experimentation at 8 days (A). Fluid SS significantly increased released ALP activity in

hMSC-Osts exposed to 9 dynes/cm2 steady SS for 24 h compared with hMSC-Osts not

exposed to SS. Media ALP was analyzed 3 days after experimentation at 8 days (B). Values

are mean ± standard error of the mean of independent experiments (7 days, n = 4; 8 days,

hMSC n = 6, hMSC-Ost n = 7; 11 days, n = 5; cellular ALP, n = 6; released ALP, n = 4;

cellular plus released ALP, n = 4).

*p < 0.05; **p < 0.01.
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ALP: Alkaline phosphatase; hMSC: Human mesenchymal cell; hMSC-Osts: Human

mesenchymal cells exposed to osteogenic supplement; SS: Shear stress.
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Figure 5. Real-time PCR gene expression of human mesenchymal cells exposed to osteogenic
media
Human MSCs were cultured in osteogenic supplemented media for 4 and 8 days (hMSC-

Osts). The gene expressions analyzed were BMP-2, BSP and OP; all were calculated using

the ΔΔ cycle threshold method normalized to GAPDH. Those values were then normalized

to undifferentiated hMSCs and mean values ± standard error of the mean plotted as relative

values on a log scale.

*p < 0.05; ***p < 0.001 compared with no osteogenic supplements, Mann–Whitney Rank

Sum Test.

BMP: Bone morphogenetic protein; BSP: Bone sialoprotein; hMSC-Osts: Human

mesenchymal cells exposed to osteogenic supplement; OP: Osteopontin.
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Figure 6. Real-time PCR gene expression of human mesenchymal cells exposed to shear stress
Cells were exposed to 4, 15 and 22 dynes/cm2 for 24 h after 3 and 7 days in culture in basal

(hMSC) and osteogenic supplemented (hMSC-Osts) media. The gene expression of BMP-2

(A), BSP (B) and OP (C) was analyzed. They were calculated using the ΔΔ cycle threshold

method and all were normalized to GAPDH. Those values were then normalized to hMSCs

and hMSC-Osts not exposed to shear stress and mean values ± standard error of the mean

plotted as relative values on a log scale. *p < 0.05 relative to no shear stress in the same

group, Kruskal–Wallis one-way ANOVA on ranks. BMP: Bone morphogenetic protein;

BSP: Bone sialoprotein; hMSC: Human mesenchymal cell; hMSC-Osts: Human

mesenchymal cells exposed to osteogenic supplement; OP: Osteopontin.
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