
This is a repository copy of A bacterial glycan core linked to surface (S)-layer proteins 
modulates host immunity through Th17 suppression.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/110845/

Version: Accepted Version

Article:

Settem, R.P., Honma, K., Nakajima, T. et al. (4 more authors) (2013) A bacterial glycan 
core linked to surface (S)-layer proteins modulates host immunity through Th17 
suppression. Mucosal Immunology, 6 (2). pp. 415-426. ISSN 1933-0219 

https://doi.org/10.1038/mi.2012.85

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


A bacterial glycan core linked to surface (S)-layer proteins
modulates host immunity through Th17 suppression

Rajendra P. Settem1, Kiyonobu Honma1, Takuma Nakajima1, Chatchawal Phansopa2,
Sumita Roy2, Graham P. Stafford2, and Ashu Sharma1,*

1Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of
New York, Buffalo, NY 14214, USA

2Oral and Maxillofacial Pathology, School of Clinical Dentistry, Claremont Crescent, University of
Sheffield, Sheffield S10 2TA, UK

Abstract

Tannerella forsythia is a pathogen implicated in periodontitis, an inflammatory disease of the

tooth supporting tissues often leading to tooth loss. This key periodontal pathogen is decorated

with a unique glycan core O-glycosidically linked to the bacterium’ s proteinacious surface(S)-

layer lattice and other glycoproteins. Herein we show that the terminal motif of this glycan core

acts to modulate dendritic cell effector functions to suppress Th17 responses. In contrast to the

wild-type bacterial strain, infection with a mutant strain lacking the complete S-layer glycan core

induced robust Th17 and reduced periodontal bone loss in mice. Our findings demonstrate that

surface glycosylation of this pathogen acts to ensure its persistence in the host by suppressing

Th17 responses. In addition our data suggest that the bacterium then induces the TLR2-Th2

inflammatory axis that has previously shown to cause bone destruction. Our study provides a

biological basis for pathogenesis and opens opportunities in exploiting bacterial glycans as

therapeutic targets against periodontitis and a range of other infectious diseases.

INTRODUCTION

Periodontitis is a chronic inflammatory disease whose pathology is defined by interplay

between bacterial factors and host immune responses. Tannerella forsythia is a Gram-

negative periodontal bacterium, which together with Porphyromonas gingivalis and the

spirochete Treponema denticola constitutes the so-called ‘ red complex’  consortium

implicated in the etiology of periodontitis 1. These bacteria inhabit subgingival biofilms in

the human oral cavity where they modulate immune responses to instigate the periodontal

tissue and bone destruction that is a hallmark of this disease. Furthermore, clinical studies

also suggest a link between periodontitis and systemic diseases such as cardiovascular

disease, diabetes and obesity 2, 3, and rheumatoid arthritis 4. In some respects, the etiology

of periodontitis is somewhat analogous to that of inflammatory bowl disease (IBD) where
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disturbances in host defense responses against gut flora contribute to the disease

progression 5.

T. forsythia is a relatively under-studied pathogen despite being a key member of the

pathogenic consortium. Its virulence mechanisms are just beginning to be revealed 6, 7. In

contrast to its red complex partners, T. forsythia lacks surface fimbriae, capsule and is non-

motile but exclusively possesses a unique surface layer (S-layer) glycoprotein lattice. S-

layers are water-insoluble proteins intrinsically capable of self-assembling into crystalline

lattices on bacterial cell surfaces, and are believed to provide selective advantages to

bacteria such as resistance to predation or immune clearance 8. Interestingly, T. forsythia is

the only Gram-negative bacterium that is known to possess a glycosylated S-layer 9. It is

composed of two high molecular weight glycoproteins, TfsA and TfsB, with predicted

protein molecular masses of 135- and 154-kDa, respectively 9. However, due to

glycosylation, TfsA and TfsB proteins migrate as 200- and 210-kDa molecular size bands on

SDS-PAGE, respectively 9. We previously identified a genetic operon involved in the

glycosylation of these S-layer proteins and predicted a direct role for the wecC gene

(TF2055; postulated to encode UDP-N-acetylmannosaminuronic acid dehydrogenase) in the

glycosylation of S-layer proteins, and showed that this plays a role in defining the physical

properties of the cell surface affecting biofilm formation on inert surfaces 10. In line with our

hypothesis, a recent study identified that the wecC operon in T. forsythia plays a role in O-

glycosylation of the S-layer glycoproteins with a unique oligosaccharide core 11.

Specifically, wecC seems to be key to the addition of a terminal sugar motif consisting of

two sub-terminal mannosuronic acid residues and a terminal pseudaminic acid residue

(Pse5Am7Gc, 5-acetimidol-7-N-glycolyl-pseudaminic acid) on this oligosaccharide core 11.

Cell surface glycosylation in bacteria can modulate immune responses during

pathogenesis 12, 13. In this regard, much of our knowledge on the role of glycosylation in

bacteria colonizing the mucosal surfaces has come from the studies of capsule

polysaccharides, glycosylated flagella/pilli and outer-membrane glycoproteins in gut

dwelling organisms such as Bacteroides fragilis and S-layer from Gram positive bacteria.

For example, evidence obtained from Bacteroides spp. indicate that surface polysaccharides

can modulate dendritic cell activation and cytokine production 14, 15. These

immunomodulatory polysaccharides can regulate the differentiation of CD4(+) T cells and

IL-10 secretion via Toll-like receptor 2 signaling 16. Likewise, the Gram-positive

Lactobacillus acidophilus S-layer glycoprotein can regulate dendritic cell (DC) function by

interacting with the C-type lectin receptor DC-SIGN (dendritic cell-specific intercellular

adhesion molecule-3-grabbing non-integrin) to induce specific T cell functions 17. Similarly,

P. gingivalis minor fimbriae glycoprotein targets DCs through DC-SIGN to elicit distinct

effector functions 18, 19,

Recent in vitro studies suggested that T. forsythia S-layer proteinacious lattice per se could

play a role in dampening the immune response during infection 20, However, the underlying

mechanisms responsible for this immune suppression or the role of S-layer during

periodontal inflammation in infection models has not been defined. Our hypothesis at the

start of this study was that T. forsythia surface glycans would modulate DC and macrophage
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responses, and influence T cell dependent periodontal inflammation and alveolar bone

homeostasis.

Collectively, our results indicate that Tannerella surface glycosylation plays a role in

restraining the Th17-mediated neutrophil infiltration in the gingival tissues. This probably

allows the bacteria to persist and induce TLR2 and Th2 responses to cause tissue and bone

destruction 21. Overall, these results may help to explain how this oral pathogen utilizes its

surface glycosylation to exploit the immune response to colonize and induce disease.

RESULTS

WecC controls surface protein glycosylation in T. forsythia

Our previous study showed that inactivation of the wecC gene in T. forsythia coding for a

putative UDP-N-acetylmannosaminuronic acid dehydrogenase affects the surface

glycosylation 10. This was based on the findings that in comparison to the wild-type parental

strain the wecC-deletion mutant showed increased surface hydrophobicity and the S-layer

proteins of the deletion mutant migrated with increased mobility on SDS-PAGE gels 10. A

recent study by Posch and colleagues 11 which was published during the course of our study

showed that this mutant lacks a terminal branch of the S-layer glycan. To phenotypically

characterize the mutant further we performed ultrastructure analysis using transmission

electron microscopy of ultra-thin sections of the wild-type T. forsythia and its wecC deletion

mutant TFM-ED1 previously constructed in our laboratory 10 (hereafter called ED1). The

results clearly demonstrate that while the wild-type cells show the characteristic ~ 25 nm

thick regular lattice or striated ‘ teeth-like’  S-layer first observed by Anne Tanner 22 (Fig.

1A, left), the ED1 mutant cells possess an irregular but intact S-layer of similar thickness

(25nm)(Fig. 1A, right). This indicates that removal of the terminal glycosyl branches affects

the S-layer assembly but not the secretion of localization on the cell surface. To further

prove this notion we performed an outer membrane purification and observed both by SDS-

PAGE glycoprotein-specific staining (Pro-Q Emerald) and western blotting using an anti-S-

layer polyclonal antibody raised against intact purified wild-type S-layer, that the altered S-

layer proteins are still present in the outer membrane fraction of ED1, albeit at an altered

molecular weight (Fig. 1 A & B). In addition, and in agreement with Posch et al 11, we find

that a number of other proteins appear to be glycosylated with a WecC-dependent glycosyl

domain, but that the S-layer is the most abundant. In addition we also proved the surface

localization of these glycoproteins using our antibody on Tannerella cells by fluorescence

microscopy and showed that these proteins are localized on the periphery of the cell in both

the wild-type and ED1 mutant (Fig. S1).

Additionally, since LPS and protein glycosylation are sometimes linked in Gram-negative

bacteria, e.g. Aeromonas sp. 23, we examined whether the lipopolysaccharide pattern of the

ED1 mutant was altered compared to the wild-type. Purified lipopolysaccharide fractions

form the wild-type and the mutant strains were subjected to Urea-SDS-PAGE followed by

LPS-silver staining 24. The results (Fig. 1C) showed an identical electrophoretic pattern for

the LPS of the two strains, indicating that the wecC deletion does not affect the chemical

nature of LPS expression in T. forsythia. Taken together, these results imply that the ED1
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mutant is defective with respect to surface glycosylation associated with the S-layer and

other surface glycoproteins but does not present any abnormality with respect to LPS.

Glycosylation-deficient mutant induces increased NF-kB activity

We postulated that the wild-type and the ED1 strains would be differentially recognized by

immune cells. This hypothesis was based on: i) pathogen-associated polysaccharides act as

ligands for TLRs (TLR2 and TLR4), NODs and C-type lectin receptors; ii) surface

glycosylation can modulate immune response by blocking recognition of other pathogen-

associated molecules, and thus might help in immune evasion, and; iii) in a recent study a T.

forsythia mutant completely deficient in S-layer was shown to cause increased secretion of

inflammatory cytokines in a monocytic cell line and human gingival fibroblasts in vitro

compared to the wild-type strain 20. However, since the complete S-layer deletion strain was

used in the previous study, it was not clear whether surface glycosylation per se was

modulating any effects of the S-layer on the host response. Therefore, our ED1 mutant

presents a unique opportunity to test the role of the novel protein glycosylation pattern of

surface proteins in Tannerella on immune responses. Thus, we first investigated the

inflammatory response to T. forsythia wild-type and ED1 mutant strains using a reporter cell

line, THP-1-Blue that is derived from the human monocytic cell line THP-1. In addition this

was stably transfected with a reporter plasmid expressing a secreted form of embryonic

alkaline phosphatase (SEAP) under the control of an NF-ŢB- and AP-1-inducible promoter.

The results showed significantly elevated SEAP activity in THP-1-Blue cells in response to

ED1 challenge over THP-1-Blue cells challenged with the wild-type bacteria at a similar

dose (Supplementary Fig. S2). These initial results provided a basis for dissecting the role of

surface glycosylation in modulating the immune response to T. forsythia in detail.

Bacterial glycosylation regulates levels and nature of cytokine induction in APCs

As shown previously 21, T. forsythia challenge primarily induces Th2 development in vivo.

We were therefore interested to investigate whether surface glycosylation in T. forsythia

plays a role in modulating the secretion of specific T helper cell differentiating cytokines by

antigen-presenting cells (APCs). For this purpose, mouse bone marrow-derived dendritic

cells (mBMDCs) and macrophages were challenged with the T. forsythia wild-type or ED1

mutant cells at a multiplicity of infection (MOI) of 10. The cytokines secreted in the

medium were then assayed by ELISA. BMDCs and peritoneal macrophages were purified

by positive selection and confirmed to be 90-95% pure, verified by staining for CD11c,

MHC-II, and CD86 (BMDCs) or CD11b (macrophages) by flow cytometry (data not

shown). Pure E. coli LPS (eLPS) was used as a positive agonist. The data showed that T.

forsythia ED1 mutant induced significantly higher amounts of IL-6 and IL-1Ś secretion in

both BMDCs and macrophages compared to the wild-type T. forsythia (Fig. 2A). However,

no significant difference was observed with regard to IL-10 secretion in either BMDCs or

macrophages (Fig, 2A). As expected, eLPS induced potent production of these cytokines

(Fig. 2A). Interestingly, IL-12p40 (the shared subunit for IL-12 and IL-23) and IL-23 levels

were higher but IL-12p70 (IL-12 p35 and p40 heterodimer) level was lower in BMDCs

challenged with the ED1 mutant compared to the wild-type strain. In macrophages, a similar

pattern was observed for IL-12p40 and IL-23 (Fig. 2B). Strikingly, a heightened IL-12p40

response was observed in both DCs and macrophages. IL-12p40 can form a homodimer
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(IL-12p80), which can potentially block Th1 differentiation through competing with IL-12

for IL-12R 25-27. Moreover, IL-12p80 through its interaction with IL-12RŚ1 stimulates

migration of DCs to chemokine CCL19 28, and thus the heightened IL-12p40 dimer

secretion in response to T. forsythia challenge might play a role in DC recruitment as well.

As expected 21, no significant IL-12p70 secretion was observed in macrophages in response

to ED1 challenge (Fig. 2B) or the wild-type bacteria (Fig. 2B). These results demonstrate

that T. forsythia induces differential responses in APCs (BMDCs versus macrophages) with

respect to the Th1 cytokine IL-12. This suggests that DCs and macrophages utilize a

different mechanism to handle T. forsythia. While DCs and macrophages share many

pattern-recognition receptors, differences in nucleosome remodeling for transcription and

transcript stability in these cell types can impact the expression of cytokines. In support,

Mycobacterium tuberculosis induces increased IL-12 secretion in DCs compared to that in

macrophages through extensive nucleosome remodeling in DCs via the p40 promoter 29. In

addition, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin

(DC-SIGN) lectin-like receptor can modulate the responses of other PRRs by moderating

the crosstalk between intracellular signaling pathways 30, 31.

Surface glycosylation protects T. forsythia from DC recognition

The increased ability of the ED1 mutant to induce IL-23 secretion in BMDCs led us to

hypothesize that glycosylation affects the ability of DCs to process the bacteria. To test this

hypothesis, DCs were incubated with fluorescently-labeled bacteria at an m.o.i of 10 for 30

min and the ability of the DCs to bind/uptake bacteria was evaluated by flow cytometry.

Flow cytometry analysis (Fig. 3 A & B) showed that a significantly lower population of DCs

stained positive when incubated with the wild-type T. forsythia compared to ED1.

Correspondingly, a larger DC population remained negative when incubated with wild-type

T. forsythia cells compared to ED1 and vice versa (Fig. 3 A & B). There was an

approximately two-fold increase in the mean fluorescent intensity of DCs (M2; Fig. 3C)

associated with ED1 compared to the wild-type T. forsythia (Fig. 3C). Moreover, the flow

cytometry data were confirmed by an in vitro bacterial killing assay in which bacteria were

enumerated following incubation of live bacteria with DCs for different time points. The

data from this assay show that a significantly greater numbers of ED1 cells than the wild-

type strain associated with DCs initially (15 min; Fig 3 D). Moreover, the increased

recognition of ED1 translated to an increased bacterial killing since a significantly fewer

numbers ED1 cells were recovered at a later time point (60 min) compared to the wild-type

strain (Fig. 3D). These results indicate that loss of surface glycosylation renders T. forsythia

increasingly prone to capture by DCs, which probably leads to enhanced bacterial

processing by DCs as well

Surface glycosylation deficiency results in reduced in vivo virulence

In vitro data above show that ED1 mutant is significantly more potent than the wild-type

strain in causing IL-1Ś and IL-6 secretion in both DCs and macrophages. Since DCs are able

to recognize the glycosylation-deficient ED1 mutant more efficiently and respond by

secreting increased levels of IL-23, the contribution of surface glycosylation in modulating

T helper cell responses and periodontal inflammation in vivo was determined. For this

purpose, BALB/cJ mice were infected with 6 doses of bacteria (108 cfu per dose) at 48 h
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intervals, using either the wild-type or ED1 mutant cells by oral gavage. Control sham-

infected animals were inoculated with vehicle (1% carboxymethyl cellulose) alone. One

week following the last infection, PCR analyses of oral swabs confirmed infection via

expression T. forsythia-specific 641-bp 16s rDNA product for all mice infected with T.

forsythia (wt) or ED1 mutant (n=8 per group). As expected, sham-infected mice were

positive only for the 1.4 kb universal eubacteria 16s rDNA product but not T. forsythia

specific 16s rDNA product (supplementary Fig. S3). Furthermore, analysis of T. forsythia-

specific IgG titers 6 weeks after the first infection confirmed that the mice were successfully

infected. Our results showed that the bacteria-specific serum IgG titers to the wild-type and

ED1 strains increased several fold over sham-infected levels in mice infected with

corresponding strains (Fig. 4A). The low IgG titer to T. forsythia even in the sham-infected

mice is presumably due to non-specific cross reaction to anti-bacterial antibodies elicited to

normal resident bacteria. Taken together the results of PCR analysis and antibody responses,

indicated that mice orally gavaged with the T. forsythia wild-type and ED1 strains were

successfully infected with each strain.

To assess periodontal bone loss induction, the distance from the alveolar bone crest (ACB)

to the cementoenamal junction (CEJ) was measured at 14 buccal sites six weeks post-

infection. As expected, significant alveolar bone loss was observed in T. forsythia wild-type

infected mice at multiple sites compared to the sham-treated controls (Fig. 4 B & C).

Strikingly, mice infected with the ED1 mutant did not show statistically significant

periodontal bone loss. Moreover, the net alveolar bone loss induced by the ED1 mutant

(calculated as the average total ABC-CEJ distance of the sham-treated group subtracted

from the bacteria-infected group) was significantly lower than the net bone loss induced by

the T. forsythia wild-type strain (Fig. 4C). Thus, the T. forsythia ED1 mutant is less virulent

in a periodontitis model.

Resistance to glycosylation-deficient strain correlates with Th17 responses

We compared Th cell response of mice infected with the wild-type and the ED1 strains by

analyzing T helper cells from draining cervical lymph nodes (cLN) of infected mice. Mice

were infected orally 3 times at 48 h intervals with the wild-type or the ED1 strain, and 72 h

after the last infection, cLN cells were stimulated with anti-CD3 and -CD28 Abs to stimulate

the TCR and induce cytokine production. Cells were then treated with PMA-ionomycin,

stained for cell surface CD4, and intracellularly stained for IL-5, IFN-ś and IL-17 to detect

Th2, Th1 and Th17 cells, respectively. As shown (Fig. 5), in wild-type strain infected mice

(susceptible to bone loss), the number of Th2 cells increased while the number of Th1 and

Th17 cells decreased following infection (Fig. 5). Conversely, the number of Th2 cells was

reduced with a concomitant increase in Th17 cells in mice infected with ED1 (resistant

mice) compared to sham (Fig. 5). The number of Th1 cells decreased significantly in both

the wild-type T. forsythia and ED1 infected groups compared to sham. This decrease was

greater following wild-type T. forsythia infection compared to ED1 infection. Since the ED1

mutant caused skewing to a Th17 response, we conclude that T. forsythia surface

glycosylation plays a role in dampening Th17 responses.
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Resistance to glycosylation-deficient strain correlates with decreased osteoclastic activity
and increased neutrophil infiltration

To evaluate osteoclastic activity, maxillary bones were stained for TRAP (tartrate resistance

alkaline phosphatase, a marker of osteoclasts) positive cells. Approximately a two-fold

increase in the numbers of TRAP+ cells was observed in the wild-type T. forsythia-infected

maxillae compared to those of ED1 mutant or sham-infected mice (Fig. 6 A & B). Thus,

induction of alveolar bone loss induced by wild-type T. forsythia correlated with increased

osteoclastic activity in maxillary bones. Strikingly, the ED1 infection did not enhance

osteoclastic activity, even though increased Th17 response was observed in ED1 infected

mice (Fig. 5). Interestingly, contrary to the role of Th17 in bone destruction as seen in

rheumatoid arthritis 32, Th17 cells are playing a protective role in infection induced bone

loss in the context of the oral niche.

To evaluate inflammatory cells in the gingival space, maxillae were stained with anti-CD45

and anti-neutrophil specific marker antibody. The results indicated that T. forsythia wild-

type and ED1 infection caused an increase in the CD45+ lymphocytic population in gingival

tissues compared to the sham-infected tissues (Fig. 7). In line with the increased ability of

the ED1 to induce inflammatory cytokines (Fig. S1 & Fig 2A), this mutant also caused

increased infiltration of CD45+ lymphocytes in gingival tissues (Fig. 7). There was

approximately a 3-fold increase in neutrophil numbers in ED1 infected mice over wild-type

strain infected mice (Fig. 7 B). Not surprisingly, the increase in neutrophil numbers

following ED1 infection parallels the increase in Th17 response in ED1 infected mice.

Glycosylation-deficient strain is cleared faster than the wild-type strain from gingival
tissues

Reduced alveolar bone loss paralleling increased neutrophil infiltration in gingival tissues in

glycosylation-deficient strain infected mice suggested that neutrophils might be playing a

role in bacterial clearance. To evaluate this possibility, bacterial burdens were estimated in

gingival tissues of mice following infection. Our results show that in comparison to the

wild-type strain the survival of glycosylation deficient strain was significantly reduced in

mice (Fig. 8), suggesting that neutrophils are likely playing protective role in the current

infection setting.

DISCUSSION

In this study, we investigated the immunomodulatory effect of WecC-dependent O-linked

protein glycosylation in T. forsythia. We observed increased secretion of Th17

differentiating cytokines IL-23 and IL-6 secretion in BMDCs and macrophages in response

to the T. forsythia strain ED1 lacking the terminal sugar motif of a O-glycan core compared

to the T. forsythia ATCC 43037 strain having the complete glycosylation repertoire.

Moreover, as would be predicted based on these cytokine expression profiles, an increase in

Th17 cells was detected in draining lymph nodes of mice orally infected with the

glycosylation deficient mutant ED1 compared to the wild-type strain. Further, the

glycosylation deficiency impaired the bacterium’ s ability to induce alveolar bone loss,

which our evidence suggests is due to an increase in the Th17 response following infection
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and a resultant increased neutrophil infiltration in the gingival tissues. Moreover, in line with

an increase in neutrophil infiltration, reduced bacterial loads were found associated with

mouse gingival tissues. Therefore, the major finding of our study is that Tannerella surface

glycosylation associated with S-layer and other surface glycoproteins helps in inhibiting

bacterial association with DCs and in restraining Th17 response to bacterial challenge in a

murine model.

The T. forsythia ED1 mutant used in this study was previously generated by our group by a

specific deletion of the wecC gene (TF2055) postulated to encode UDP-N-

acetylmannosaminuronic acid dehydrogenase 10. This mutation results in altered

glycosylation of S-layer glycoproteins 10, specifically it causes deletion of a terminal

trisaccharide motif that consists of a terminally located mannosaminuronic acid

(ManpNAcA) and pseudaminic acid (Pse5Am7Gc) residue linked to another

mannosaminuronic acid residue 11. Importantly both our TEM and outer membrane

purification experiments illustrate that the ED1 strain contains an intact, if altered, S-layer

that still forms a protein coat around the cell surface but lacks full glycosylation resulting in

altered immune system interactions. Moreover, there are no obvious changes in LPS

presentation as judged by electrophoretic analysis of LPS preparations, thus indicating that

the observed phenotype of the ED1 mutant with respect to its ability to modulate the

immune response is due to the loss of surface glycosylation and not due to LPS abnormality.

In addition it is thought that the S-layer of T. forsythia is a member of a set of proteins in

that are thought to be secreted by a novel protein secretion mechanism known as the c-

terminal signal secreted proteins 33. These are thought to be secreted via a largely

uncharacterized protein secretion machinery that relies on a conserved c-terminal secretion

domain (CTD) and has been most well-characterized in the partner periodontal pathogen P.

gingivalis 34, 35. In P. gingivalis it is becoming clear that the CTD acts as a recognition site

for a sortase-like protease that cleaves the CTD sequence linking C-terminal carbonyl to a

sugar amine of A-LPS 35. Our finding that the altered S-layer (and other) glycoproteins of

the ED1 strain can still be exported to the surface suggest that the glycosylation pattern of

CTD proteins in T. forsythia is not likely to be part of the recognition signal for CTD system

in T. forsythia.

Periodontitis is an inflammatory disease in which both innate and adaptive immune

responses play critical roles. For instance, impairment in neutrophil and macrophage

recruitment due to deficiencies in adhesion molecules increases P. gingivalis-induced

alveolar bone destruction 36, and destructive roles for T and B cells in periodontal

pathogenesis is well documented 37, 38. Similar to other inflammatory diseases, a disruption

of the proper balance between individual T helper subtypes (Th1, Th2 and Th17) contributes

to the progression of periodontitis. The role of these different Th cell types and how

bacterial factors promote or downregulate specific Th cell types and disrupt this balance is a

major focus of many investigations 39-42. With respect to T. forsythia, we have previously

shown that T. forsythia infection causes a Th2 bias because of TLR2 activation, and that

TLR2-Th2 inflammatory axis is primarily responsible for T. forsythia-induced alveolar bone

loss 21. In the present study we show that surface glycosylation of Tannerella specifically

acts to prevent Th17 generation, allowing generation of TLR2-dependent Th2 bias
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beneficial to bacteria by causing inflammatory tissue destruction and releasing components

needed for bacterial growth. The protective role of Th17 against T. forsythia-induced

alveolar bone loss in the periodontitis mouse model is in agreement with the findings of a

previous study showing increased susceptibility of IL-17 receptor deficient mice to the

fellow periodontal pathogen P. gingivalis 43. However, Th17 responses have also been

implicated in the progression of periodontitis 39, 44. It is likely that Th17 (IL-17) responses

have protective as well as destructive roles during periodontal disease depending on the

disease phase and the pathogens involved. Th17 during early stages may provide

antimicrobial immunity and have a role in controlling the disease. Moreover, the presence of

Th17 cells may not always translate to excessive IL-17 production deleterious to the

periodontal tissue. This has been recently demonstrated in a recent study investigating P.

gingivalis-induced inflammatory bone loss in older mice in which neutrophils and gamma-

delta T cells, but not Th17 cells, were found to be the major source of IL-17 in the gingival

tissue 45.

The present study highlights the fundamental role of T. forsythia surface glycosylation in

restraining the Th17 response, which otherwise might be detrimental to the pathogen by

facilitating its clearance through neutrophils. Our model of events, which is outlined in

Figure 9 envisages that T. forsythia engagement of TLR2 by surface ligands such as BspA

and lipoproteins then skew the responses toward Th2, inducing alveolar bone loss. The exact

mechanism by which surface layer glycans help to suppress Th17 response is unknown.

However, it is likely that glycosylation, by blocking APC uptake of bacteria as shown in the

present study, might minimize the interactions of bacterial ligands with intracellular pattern-

recognition receptors (NODs, TLR9). Another possibility exists that surface glycans by

interacting with C-type lectin receptors (CTLRs) skew the response towards Th2. In this

regard DC-SIGN as well as cytoplasmic NOD-like receptors have been shown to control

Th2 responses 46. While TLR2 signaling plays a dominant role in DCs against T. forsythia

as shown previously, O-glycan mediated signaling and its crosstalk with TLR2 impacts the

net outcome of the DC-Tannerella interactions. This is because the differential expression of

IL-12p40, IL-12p70, and IL-23 cytokines was lost when both TLR2 and O-glycan mediated

signaling were abolished (i. e. tlr2−/− DCs stimulated with ED1, supplementary Fig. S4).

Here, it is also tempting to speculate that the terminal trisaccharide lacking in the S-layer

glycoproteins of the ED1 mutant, which contains pseudaminic acid (a modified form of siaic

acid in bacteria) can putatively interact with Siglecs (sialic acid binding Ig-like lectins)

receptors on immune cells. Siglecs can act both as positive and negative regulators of

immune response 47. The presence of pseudaminic acid is not unique to the T. forsythia S-

layer with the flagellin molecule of a range of species containing versions of this sugar 23.

While its role in flagellar glycosylation is thought to be largely structural, the non-

glycosylated Pseudomonas aeruginosa flagellin is less immunostimulatory in inducing an

IL-8 response than the wild-type glycosylated form of flagellin 48. As outlined above our

data suggest control of Th17 responses as key to periodontal disease progression, and it is of

note that several other types of infection by other pathogens and human dwelling bacteria

also influence this arm of the immune system. For example, another oral organism Candida

albicans dampens Th17 responses in vivo by secreting yet to be identified factors 49. In

addition, the polysaccharide antigens (PSA) of the gut organism Bacteroides fragilis account
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for the suppression of Th17 responses critical for its persistence in the gut 50. Taken together

these, and our, data suggest that therapeutic modulation of Th17 immunity might be an

attractive strategy for clinical intervention of a range of pathologies including periodontitis.

In summary, S-layer glycosylation in T. forsythia acts by selectively suppressing the specific

Th17 and innate immune neutrophil responses. The evolution of this trait by T. forsythia

presumably increases its persistence in the human cavity by acting as an immune evasion

tactic. At the same time the organism exploits TLR2 mediated Th2 responses to its

advantage in colonization of its primary environmental niche within periodontal pockets,

which ultimately results in alveolar bone loss and expansion of this habitat. Overall, these

results highlight how glycosylation of its surface layer proteins is part of a range of novel

strategies that this persistent colonizer of the oral cavity utilizes to both cause periodontal

disease but also survive in the body for many years and cause recurring bouts of this

condition. These data have wide-ranging implications for the mechanisms used by persistent

bacterial pathogens in immune manipulation, evasion and exploitation and reveal yet more

of the intricacies of bacterial-host interactions that have evolved over time.

EXPERIMENTAL PROCEDURES

Bacterial strains and culture conditions

T. forsythia ATCC 43037 was grown in TF-broth (brain heart infusion media containing 5

μg/ml hemin, 0.5-μg/ml menadione, 0.001% N -acetylmuramic acid, 0.1% L-cysteine and

5% fetal bovine serum) as liquid cultures or on plates containing 1.5 % agar in broth under

anaerobic conditions as described previously grown 51. An isogenic T. forsythia mutant

TFM-ED1 (hereafter called ED1) 10 inactivated of wecC gene encoding UDP-N-acetyl-

mannosaminuronic dehydrogenase was grown in broth or agar plates containing 5 μg/mL

erythromycin.

TEM method

For electron microscopy, 1ml of plate grown bacterial cell suspension of OD600 1.0 was

centrifuged and the supernatant was discarded. The cell pellet was washed twice with

cacodylate buffer (0.1M cacodylate buffer pH 7.4) for 5 mins before fixing with 3%

glutaraldehyde for 2-4h at 4 °C. This was then rinsed in cacodylate buffer (pH 7.4) 3× 20

mins 4°C. The pellet was then soaked with 1% aqueous OsO4 (Osmium tetraoxide) for 1h

room temperature (RT) and washed three times (2mins) with dH2O at RT, followed by two

washes (3 mins) with 70% ethanol at RT, before two washes with 95% ethanol and two with

100%. After drying the pellet was then soaked twice for 15 minutes in Propylene oxide. This

sample was then incubated overnight in propylene oxide:avaldite solution (1:1, v/v) for 16h

(lids on) before removal and addition of 100% avaldite for 8h (lids off). The pellet was then

embedded in fresh avaldite and left to polymerize at 60C for 24-48h. Avaldite was prepared

using 20ml of Agar 100 epoxy resin, 16ml of hardener (DDSA), 8ml of hardener (MNA)

and 1.3 ml of accelerator (BDMA, C.3%). The embedded cell pellet was sectioned at

70-90nm and placed on to a formvar-coated grid.
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The grids were stained using uranyl acetate and lead citrate. Uranyl acetate (7%) was

saturated in 50 % methanol and used for staining. Lead citrate was prepared by adding 1.33g

lead nitrate, 1.76g sodium citrate in 50ml H2O/NaOH. Stained cross sections were viewed

by TEM at the University of Sheffield Electron Microscopy service in the Department of

Biological Sciences.

Outer-membrane purification and analysis

Cells were incubated at 37 °C in an anaerobic atmosphere (10% CO2, 10% H2 and 80% N2)

for 3 days, harvested using sterile loops and resuspended by pipetting in 1 mL pre-chilled 50

mM HEPES, 50 mM NaCl, pH 7.4. Cell suspensions were placed in ethanol/ice water bath

and lysed by sonication. Undisrupted cells and cell debris were pelleted by centrifugation at

15,000 rpm for 30 minutes at 4 °C and discarded. The supernatants were ultracentrifuged at

60,000 rpm in a Beckman Ti70.1 fixed angle rotor for 2 hours at 4 °C to pellet the inner and

outer membranes. The supernatants were carefully decanted and discarded, while the

membrane pellets were gently washed twice in 50 mM HEPES, 50 mM NaCl, pH 7.4. The

pellets were then resuspended in 1 mL 50 mM HEPES, 50 mM NaCl, pH 7.4. To solubilize

the inner membrane, an equal volume of 2% (v/v) sodium N-lauroyl sarcosinate in 50 mM

HEPES, 50 mM NaCl, pH 7.4, was added and mixed thoroughly by pipetting, followed by

an incubation at 37 °C for 30 minutes. The suspensions were centrifuged at 20,000 rpm for

30 minutes at 4 °C, and the supernatants containing the inner membrane fraction were

carefully decanted. The outer membrane pellets were gently washed twice in 50 mM

HEPES, 50 mM NaCl, pH 7.4, after which these pellets were resuspended in 500 μL 50 mM

HEPES, 50 mM NaCl, pH 7.4, and stored at −20 °C.

Samples were then analysed by SDS-PAGE on Invitrogen NuPAGE 4-8% gradient gels and

silver stained (BioRad SilverStainPlus). In addition parallel gels were oxidized with Periodic

Acid before staining with a ProQ-Emerald glycoprotein staining kit from Molecular Probes

according to manufacturer’ s instructions (visualized on a UV transilluminator). Samples

were also transferred to Nitrocellulose membrane before probing with a rabbit antibody

raised against purified intact S-layer and detected with anti-rabbit HRP and Pierce

Supersignal WestPico chemiluminescent substrate before exposure to Kodak X-ray film and

development in a Kodak X-Omat developer.

Production of anti S-layer antibody

Intact native S-layer from the wild-type T. forsythia 43037 was purified by cesium chloride

gradient ultracentrifugation according to a previously described protocol 9 and 100 mg used

to prepare antibodies in rabbits within the Sheffield Antibody unit (Bioserv UK Ltd).

LPS

Lipopolysaccharide was extracted from agar grown T. forsythia wild-type and ED1 strains

using the equivalent of 1ml of an OD600 of 5 cells resuspended in PBS and using an LPS

extraction kit from ChemBio with modifications. Briefly, after extraction the LPS was

treated with Proteinase K and DNAse before re-extraction using the same kit according to

manufacturer’ s instructions. LPS was visualized after separation of samples on a 10%Urea-
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SDS-PAGE gel and oxidation with periodic acid (0.7%) before silver staining as described

previously 24

Inoculation of mice

Specific-pathogen-free BALB/cJ mice (Jackson Laboratory, Bar Harbor, ME, USA), 5-6

weeks old (8-10 female mice per group) at the start of the experiment were maintained in the

Laboratory Animal Facility of the University at Buffalo. The Institutional Animal Care and

Use Committee approved all the experimental protocols used in the study. After 1-week

quarantine, mice were infected with T. forsythia as per previously described protocol 21.

After one week of Kanamycin (1 mg/mL) in drinking water ad libitum followed by a three-

day antibiotic-free period to suppress the resident bacteria, mice were infected by oral

gavage with 109 cfu /mL of live bacteria (T. forsythia wild-type ATCC 43037, or the mutant

strain ED1) in 100 μL of PBS with 100 μl of 2% carboxymethyl cellulose (CMC) 3 times

per week with 48-hour intervals and the schedule was repeated the following week. Control

(sham-infected) mice received antibiotic pre-treatment and the 200μL of 1% CMC without

the bacteria.

Assessment of infection by PCR

Sub gingival plaque samples were obtained from the molars of each mouse by placing sterile

paper points (Johnson & Johnson, Piscataway, NJ, USA) sub-gingivally for 5 sec and then

transferring and vortexing into 1 mL T. forsythia growth medium. Following one week’ s

incubation, medium was spun at 12,000 × g for 10 min, and the total bacterial genomic DNA

was isolated with use of the Pure Gene genomic DNA isolation kit (Gentra, Minneapolis,

MN, USA). PCR was performed on 250 ng of genomic DNA using a primer pair specific for

T. forsythia 16S RNA gene (amplicon length 641 bp) or a universal primer pair that matches

almost all bacterial 16S RNA genes (amplicon length 1.4 kb) as described previously 52.

PCR products were analyzed by agarose (1%) gel electrophoresis and ethidium bromide

staining.

Assessment of alveolar bone loss

Horizontal bone loss around the maxillary molars was assessed by a morphometric method.

After 6 weeks of first infection the mice were scarified and the serum samples were

collected for IgG antibody response against the T. forsythia wild-type and ED1 strains by

ELISA as described earlier 21. Skulls were autoclaved, de fleshed and jaws were immersed

in 3 percent hydrogen peroxide overnight and stained with 1 % methylene blue. The

distances between the alveolar bone crest (ABC) and cement-enamel junction (CEJ)

considered as alveolar bone loss were measured by two independent evaluators in blinded

fashion at 7 buccal sites on each side with the help of a dissecting microscope attached to an

imaging system with a software (Aquinto imaging system, a4i America, Brook-Anco,

Rochester, NY).

Real-time PCR quantification of bacterial burden

Maxillary periodontal tissues (soft gingival and hard tissue) were excised on day 10

postinfection from mice. DNA was extracted using a DNeasy tissue kit (Qiagen, Valencia,
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CA), and Tannerella forsythia loads were determined by real-time PCR with primers

targeting 16S rRNA gene described above using an iCycler IQ and SYBR green master mix

from Bio-Rad (Hercules, CA), In addition, mouse glyceraldehyde-3-phosphate

dehydrogenase (gapdh) gene amplified (primers 5̘-GCACAGTCAAGGCCGAGAAT-3̘

and 5̘-GCCTTCTCCATGGTGGTGAA-3̘) from the same sample was used to normalize

bacterial loads in extracted tissues as described 53; bacterial loads were expressed as the

number of Log10 CFUs per 109 copies of gapdh. The real-time Ct values were converted to

weights of DNA by interpolation from DNA weight versus Ct standard curve. For

calculating CFUs from the weights of DNA, the genome size of 3.4 MB for T. forsythia

(http://www.homd.org) was used.

T. forsythia specific IgG antibody response by ELISA

T. forsythia wild-type and ED1 strain specific IgG antibody responses were measured by

ELISA as described previously 21. Briefly, 96-well Immuno-Maxisorp plates (Nalgene Nunc

International, Rochester, NY) coated with formalin-fixed bacteria (109 cells/mL and 100μL/

well) were incubated with serial dilutions of mouse sera, followed by HRP-conjugated goat

anti-mouse IgG (Bethyl Laboratories, TX). ELISA wells were color developed with TMB

Microwell enzyme substrate (Kirkgaards and Perry, MD) and plates were read at 495 nm.

Titers was defined as the log2 of the highest dilution with a signal that was 0.1 optical

density unit above the background level.

Generation of bone marrow derived dendritic cells and in vitro stimulation

Immature DCs were generated by using EasySep mouse CD11c positive selection kit (Stem

cell technologies, USA) following the manufactures instructions. Briefly bone marrow

progenitor cells were flushed with a 23 gauge needle in to the recommended medium.

Disperse the clumps by gently passing the cell suspension through syringe and remove the

debris by passing cell suspension through 70μm nylon cell strainer. After centrifugation

resuspend in RPMI 1640 which contains 10 percent heat inactivated fetal calf serum (FCS),

2 mM glutamine, penicillin and streptomycin, 5 μM 2-mercatoethanol and GM-CSF(10 ng/

mL). Plate 20 mL/150 mm Petri dish and incubate at 37°C for 5 days. Collect non-adherent

cells, wash once and purify the CD11c positive cells by using purple Easy Sep magnet

(Stem cell technologies). This protocol yielded BMDCs with > 93% purity. Purified bone

marrow derived dendritic cells (BMDCs) were stimulated with bacteria for 12 h and the

cytokine levels in the medium were quantified by ELISA.

For DC-mediated bacterial processing, BMDCs were infected with live bacteria at MOI of

1:10 in antibiotic free medium and at time points 15 and 60 minute post infection BMDC

were extensively washed, lysed with sterile water, serially diluted and bacterial CFU

determined by plating.

Isolation of peritoneal macrophages and challenge with stimulants

Mouse peritoneal macrophages were prepared as described previously 54 Purified

macrophages were seeded in 48-well culture plates at a density of 105 cells per well in 250μl

growth medium. T. forsythia cells were enumerated with Petroff-Hausser chamber

immediately prior to each experiment. For challenge, multiplicity of infection (m.o.i;
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number of bacteria per mammalian cell) of 10 was used. E. coli LPS (100ng/mL) was used

as a positive control. After 12 hrs of stimulation cytokine levels were quantified by ELISA.

Determination of cytokine levels by ELISA

Culture supernatants were collected from BMDCs pulsed with TF strains (TF 43037, TFM-

ED1-Wec C mutant) to assess the levels of IL-1Ś, IL-6, IL-12p40, IL-12p70, IL-23 and

IL-10 by ELISA with Ready-SET-Go kits (eBioscience, San Diego, CA, USA) as per

manufacturer instructions. Supernatants were used as undiluted and 1:10 fold dilutions. The

detection limit for all cytokines was 5 pg /mL.

Intracellular staining and FACS analysis

The following Abs and isotype controls were purchased from eBiosciences: PE-conjugated

anti– IFN-ś, IL-5 and rat IgG2a; PECy5-labeled anti-CD4; anti-CD80 (16-10A1) and anti-

CD83 (Michel-17); PE-conjugated anti-CD11c (N418); hamster IgG, and; PE-conjugated

anti-IL-17A (eBio17B7). For intracellular staining, cell suspensions from cervical lymph

nodes (cLNs) were stimulated with anti-CD3 and anti-CD28 Abs (eBioscience) for 48 h,

followed by PMA (50 ng/ml), ionomycin (1 μg/ml), and brefeldin A (10 μg/ml) for 6 h.

Cells were washed, incubated with FcR block (1 μg/ml; eBiosciences), and stained for CD4.

Cells were fixed with 2% paraformaldehyde, permeabilized with 0.1% saponin (Sigma), and

stained for IL-5, IL-17, or IFN-ś. Cells were analyzed on a FACS Calibur (BD Biosciences)

with FCS Express software (DeNovo Software).

Quantification of CD45+ cells and infiltrated neutrophils

The right and left halves of the maxillary and mandibular bones were removed, fixed and

embedded in paraffin; 4-μm sections were cut and mounted. They were deparafinized in

xylene and hydrated in graded ethanol. After antigen retrieval by incubating at 90 °C for 10

min with BD Retrievagen A (BD PharMingen), specimens were sequentially incubated in:

(i) blocking solution containing and 0.1% Triton X-100 in 0.1 M PBS for 1 h at room

temperature; (ii) monoclonal rat anti-mouse CD45 (BD PharMingen) antibody diluted 1:30

in PBS containing 0.1% Triton X-100 or anti-neutrophil marker antibody (NIMP-R14,

Santacruz Biotechnology, CA,USA) for 1 h at room temperature. The slides were incubated

with a biotinylated secondary antibody (goat anti-rat) followed by an avidin-biotin complex

developed with 3, 3-diaminobenzidine (DAB) (Vector Labs, Burlingame, CA); the counter

stain was haematoxylin. After each step, slides were rinsed in PBST (3 × 10 min). Slides

were scanned at an absolute magnification of 400X at using the Aperio Scan Scope CS

system (Aperio Technologies, Vista CA). Slides (six slides per mouse) were viewed and

analyzed remotely using desktop personal computers employing the virtual image viewer

software (Aperio). Antibody positive cells (stained brown) were enumerated manually in the

inter-dental areas from the first to third molar at randomly selected locations in each slide (6

per slide). The areas associated with these locations were then obtained from the software to

calculate the average cell densities per square millimeter.
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TRAP staining

Mice maxillary and mandibular bones (n = 4) were fixed in 10% phosphate-buffered

formalin and decalcified in 10% EDTA. The samples were then embedded in paraffin, and

sections at 4 μm were prepared and stained for tartrate-resistant acid phosphatase (TRAP;

Sigma).The TRAP-stained whole slides were digitally scanned immediately with a Scan

Scope CS system (Aperio) to minimize color fading. The scanned slides were viewed with

Image Scope viewing software (Aperio). The right maxillary and mandibular inter dental

areas (average of 10 higher power fields/ slide) of the crestal alveolar bone from the first

molar to third molar were used to quantify osteoclasts.

Data analysis

Data were analyzed on Graph Pad Prism software (Graph Pad, San Diego, CA).

Comparisons between groups were made using a Student’ s t test (between two groups) Or

ANOVA (multiple group comparisons), as 1 appropriate. Statistical significance was

defined as p < 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Alteration of the glycosylation pattern of surface proteins of T. forsythia by deletion of the
wecC gene results in an altered but intact S-layer and no changes in LPS
(A) TEM of negatively stained ultrathin sections of wild-type and ED1 mutant strains.

Arrowheads indicate the S-layer structure covering the outer membrane.

(B) Outer membrane preparations of wild-type and ED1 strains were separated on SDS-

PAGE (4-8%) gels and stained with silver (left), ProQ Emerald glycostain (middle) and

probed with an anti-S-layer antibody after western blotting (right)

(C) LPS was extracted and separated on a 10% Urea SDS-PAGE gel and silver stained
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Fig. 2. T. forsythia surface glycosylation differentially regulates cytokine expression in
macrophages and dendritic cells
Inflammatory cytokine levels (A. IL-1 Ś, IL-6 and IL-10; B. IL12p40, IL12p70-, IL-23)

were examined by ELISA in supernatants of mouse DC’ s and peritoneal macrophages

following challenge with either the wild-type (Tf WT) or the glycosylation deficient mutant

(ED1) of T. forsythia. The data show the means ± standard deviations of triplicate

determinations in one of 3 independent sets of experiments that yielded similar results;

statistically significant differences between the groups are indicated by asterisks (***,

p<0.001; **, p<0.01; *, p< 0.05).
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Fig. 3. Abrogation of surface glycosylation in T. forsythia causes enhanced dendritic cell
association
Association of FITC-labeled wild-type (Tf WT) and ED1 strains was assessed by flow

cytometry. (A) Representative traces of bacteria bound/engulfed by BMDCs are demarcated

by the thick grey (wild-type strain) and dark (ED1 strain) lines. Autofluorescence signal is

demarcated by the thin line (untreated BMDCs) and corresponds to BMDCs without bound/

ingested bacteria. (B) Bar graphs show percentages of BMDCs in gates M1 (representing the

background autofluorescence and unbound bacteria) and M2 (representing brightly

fluorescent cell population with bound and/or internalized FITC-labeled bacteria. (C) Bar

graphs represent the mean fluorescent intensities (±S.D.). (D) Bacterial killing by DCs. Dcs

were infected with bacteria (wild-type or ED1) at an MOI of 10. The number of viable

bacteria were determined (CFU) at indicated time points post infection. Data represent mean

CFU (±S.D.) per 105 DC cells of triplicate readings from two independent experiments.

*** P<0.001.
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Fig. 4. T. forsythia wild-type strain is more virulent than the glycosylation deficient ED1 mutant
strain in a mouse model of periodontitis
(A) Specific and cross-reactive antibodies are elevated in mice following oral infection. Sera

from mice after 6 weeks of first infection (sham, Tf WT, or ED1) were analyzed for T.

forsythia specific IgG by ELISA. Antibody levels are presented as log2 titers. Data

represents means and standard deviations for each group (n=8), and statistical differences

between the group means was determined (*, p<0.05 vs sham-infected group; #, p<0.05 vs

Tf infected group). (B & C) ED1 mutant causes significantly less bone loss compared to the

wild-type strain. Mice (n = 8) were infected by oral gavage with 6 doses (109 cells/dose) of

Settem et al. Page 22

Mucosal Immunol. Author manuscript; available in PMC 2014 June 09.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



either T. forsythia wild-type strain (109 cells/dose; Tf WT) or T. forsythia ED1 mutant or

sham-infected. (B) Alveolar bone destruction was assessed after 6 weeks by measuring the

distance from the ABC to the CEJ at 14 maxillary buccal sites per mouse (R1-R7 = right

jaw; L1-L7 = left jaw). (C) Net bone loss induced by wild-type or ED1 bacteria was

calculated as mean total ABC-CEJ distance of bacterially infected group minus mean total

ABC-CEJ distance of the sham-infected group. The data show that the net bone loss caused

by the wild-type strain is significantly higher than that by the ED1 mutant. Bars indicate

means and standard deviations. Data were analyzed by a Mann-Whitney unpaired t test, and

statistically significant differences are indicated with an asterisk (***, p<0.001; **, p<0.01;

n. s. not significant).
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Fig. 5. T. forsythia glycosylation deficient ED1 mutant induces Th17 cells following infection
Production of IFN-ś, IL-5 and IL-17 in cervical lymph nodes of mice. Mice (n=4) were

infected 3 times at 48 h intervals. 72 h after the final infection, cLN cells were stimulated

with anti-CD3 and anti-CD28 Abs for 48 h. Cells were then stimulated with ionomycin and

PMA for 4-6 h prior to intracellular staining for IL-5, IFN-ś or IL-17 (A) Representative

flow cytometry dot plots of CD4+ T cells from sham and bacteria infected mice

intracellularly stained for IL-5, IFN-ś or IL-17. (B) Bar graphs showing percentages (mean

and standard deviations) of specific cytokine positive T cells for each group. Statistically

significant differences between the groups is indicated by; *, p< 0.05, n.s, not significant.
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Fig. 6. T. forsythia wild-type strain induces increased osteoclastic activity in alveolar bone
(A) Representative histological sections showing TRAP+ cells from sham- and bacteria-

infected mice. (B) Average number of TRAP+ cells in 10 high power magnification fields/

slide (4 mice/group). Statistically significant differences between groups is indicated by; **,

p<0.01.
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Fig. 7. T. forsythia glycosylation deficient ED1 mutant induces enhanced lymphocytes/neutrophil
infiltration following infection
(A) Immunohistochemical staining for total inflammatory cells (CD45 positive) and

neutrophils in gingival tissue 3 weeks following infection. All images are representative of

400x magnification. (B) Slide images were viewed with Aperio Image Scope viewing

software and the inter-dental areas from the first to third molar were used to quantify

inflammatory cells. Bar graphs showing number of CD45 positive and neutrophil antibody

positive cells. Statistically significant differences between the respective T. forsythia-

infected and sham-infected groups is indicated by; ***, p<0.001; **, p<0.01; *, p< 0.05, n.s,

not significant.
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Fig. 8. Glycosylation deficiency impairs bacterial survival
Bacterial loads in gingival tissues from mice infected mice with T. forsythia wild-type or

ED1 strains on day 10 postinfection as determined by quantitative real-time PCR. The bars

and error bars indicate the means and standard deviations for four mice in each group; *, p<

0.05.
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Fig. 9. A model depicting the role of T. forsythia surface glycosylation in pathogenesis
The S-layer glycoproteins modulate DC effector functions to suppress Th17 responses,

promoting bacterial persistence in the oral cavity. Bacteria then exploit TLR2 signaling to

favor dominance of Th2 responses. The TLR2-Th2 inflammatory axis causes tissue

destruction and drives osteoclastogenesis. Concurrently, inflammation promotes bacterial

growth by making available peptides, heme and other factors as nutrients.
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