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Abstract

This study describes how the application of evolutionary algorithms (EAs) can be used to study 

motor function in humans with Parkinson’ s disease (PD) and in animal models of PD. Human data 

is obtained using commercially available sensors via a range of non-invasive procedures that 

follow conventional clinical practice. EAs can then be used to classify human data for a range of 

uses, including diagnosis and disease monitoring. New results are presented that demonstrate how 

EAs can also be used to classify fruit flies with and without genetic mutations that cause 

Parkinson’ s by using measurements of the proboscis extension reflex. The case is made for a 

computational approach that can be applied across human and animal studies of PD and lays the 

way for evaluation of existing and new drug therapies in a truly objective way.

1 Introduction

Parkinson’ s disease (PD) is the second most common neurodegenerative disease and its 

prevalence is likely to increase dramatically over the next decade as people live longer [1]. 

Conventional diagnostic approaches for PD are based on clinical observation and this 

subjective approach can be unreliable, especially at early stages of disease. Monitoring of 

response to treatment, where the rate of improvement or deterioration may be modest, is 

difficult to objectively quantify.

Tools that provide straightforward, objective measurement of disease progression would 

allow better tailoring of treatments to individuals with PD, improving quality of life and 

maximising health system resources. When disease-modifying drugs become available for 
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PD the need for early, accurate diagnosis and effective measurement of response to 

treatment will become even more important.

This paper describes computational approaches using evolutionary algorithms (EAs) that 

provide clinically relevant objective measures to identify and to quantify PD, both in 

humans and animal models. We begin by providing an overview of the diagnosis and 

monitoring of PD in humans. Thereafter two animal models of PD, the fruit fly (Drosophila 

melanogaster) and the zebrafish (Danio rerio), will be discussed. An overview of EAs will 

be provided and then a description of how we have used EAs to study motor function in 

humans and animal models not only to provide effective classifiers for discrimination 

between disease and controls, but also between disease types.

2 Parkinson’ s disease

PD is a progressive, incurable neurodegenerative condition characterised by distinct 

pathological changes including a loss of dopamine containing brain cells. A lack of 

dopamine in the brain causes a movement disorder, or ‘ motor dysfunction’ , characterised by 

slowness (‘ bradykinesia’ ), stiffness (‘ rigidity’ ), shaking of the body (‘ tremor’ ) and impaired 

balance (‘ postural instability’ ). Bradykinesia is a complex clinical sign and consists of a 

number of separable components such as the speed, frequency and rhythm of a movement. 

As well as slowness of movement, those with PD often exhibit a reduction in the amplitude 

of movements (‘ hypokinesia’ ) or absence of movement altogether (‘ akinesia’ ).

The cause of the majority of cases of PD is unknown, and clinicians often refer to this 

sporadic form as ‘ idiopathic PD’ . Only 5 to 15% of PD cases are familial and a number of 

causative autosomal dominant and recessive genetic mutations have been identified. All 

ethnic groups and countries are affected by PD [2]; approximately 1 in 500 of the whole 

population and 1 in 100 of those aged over 60 years [3]. The mean age of onset is 60 years, 

and incidence increases with age, but 5% of cases present before the age of 40.

2.1 Diagnosis of PD

The diagnosis of PD is primarily based on clinical interpretation of symptoms and signs 

elicited through history taking and examination. Sometimes it is straightforward for a doctor 

to make a confident diagnosis of PD, especially if there are several striking abnormal 

findings. However there are a number of other neurological conditions that can manifest 

with the same, or very similar, abnormal clinical signs, for example essential tremor (ET) or 

progressive supranuclear palsy (PSP). These conditions have most overlap during the early 

stages and it may be difficult to make an accurate diagnosis of PD based solely on clinical 

assessment, especially if the clinical findings are subtle or few.

Community studies suggest that at least 15–26% of people with a diagnosis of PD have been 

misdiagnosed [4, 5] and pathological studies broadly support these findings with 10–24% of 

clinical PD cases not confirmed at post mortem [6–8]. Even consultant neurologists with 

specific expertise in PD have been shown to misdiagnose PD for other tremor disorders with 

sensitivity/specificity in the range of 0.72–0.93/0.79–0.86 [9].
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If there is some diagnostic uncertainty after the initial clinical evaluation a period of 

‘ watchful waiting’  may be recommended, typically for 6 to 12 months. This allows the 

symptoms and signs to progress further in order for the diagnosis to hopefully be made with 

more confidence. In cases where this method is unacceptable to the patient or clinician, or 

the interval review has still not helped, ancillary tests may be employed to supplement 

clinical assessment and aid diagnosis making.

Over the last decade, single photon emission computed tomography (SPECT) scans that 

quantify the number of dopamine containing brain cells have played an important role in 

aiding accurate diagnosis of PD. The scans are abnormal in PD but they are normal in ET 

and some other differential diagnoses such as dystonic tremor. However, they are not 

specific for PD and may also be abnormal in other conditions such as PSP, thus limiting 

their usefulness in aiding PD diagnosis. SPECT scans are expensive, typically costing at 

least £600 each; they involve administering ionising radiation to the patient and are not 

available in all healthcare settings. There are no routinely used blood or spinal fluid tests to 

diagnose PD and standard CT and MRI brain scans are not usually helpful in the early stages 

of PD or its mimics.

In summary, the fallibility of clinical opinion, taken together with the limitations of 

radionuclide SPECT scans, means that there remains a real need for new tests that can help 

accurately diagnose and monitor PD.

2.2 Treatment and monitoring of PD

Treatment of PD usually involves patients taking oral medications several times a day. The 

drugs work by increasing brain dopamine levels and this improves motor function for 

several hours. Unfortunately though, after several years, most patients develop two 

troublesome drug side effects called ‘ dyskinesia’  and ‘ wearing off’ . Dyskinesia means that 

body parts will writhe or jerk involuntarily and is often caused by drug levels being too high 

in the body. ‘ Wearing off’  means the duration of each drug dose reduces so that the motor 

symptoms return unpredictably. Both of these side effects, taken together with the 

progressive nature of PD, results in increasingly more complicated drug regimens being 

required to keep the symptoms under control.

Patients with PD vary in terms of how they respond to the therapeutic and adverse effects of 

medications, how their symptoms progress, how other illnesses interact with the disease and 

its treatment, and how well they can recognise and report the signs and symptoms of PD. 

Thus it is very important that they are monitored to optimise their clinical management and 

to minimise functional disability. Typically clinical monitoring is undertaken during a 15 

min clinic appointment every 6 months or so. This method provides only a brief ‘ snapshot’  

of the patient’ s status and may not accurately reflect their functional impairment on a day-

to-day basis, particularly as motor dysfunction in PD can fluctuate. Patient-completed 

symptom diaries are sometimes used to gather more clinical data to supplement the clinic 

appointment review. They may be useful in a small subset of patients but generally are 

considered unhelpful as many patients simply find them too onerous to fill out regularly and 

the data from diaries has been shown to correlate poorly with clinician assessments [10]. 
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This latter point may be due to the fact that many PD patients are unaware of their own 

motor symptoms [11, 12].

The second important reason why PD patients require monitoring is for research studies. 

This typically involves serial detailed clinical measurements of impairment and disability 

using formal clinical rating scales. Whilst such scales allow a degree of standardisation 

across studies, they have a number of pertinent drawbacks such as length of time to 

complete the various assessments, limitations of using coarse-grained scales of severity, and 

the necessary subjective interpretation that results in inter-rater variability. Thus there is a 

real need for an accurate objective measure of PD clinical signs to improve the quality of 

monitoring for clinical and research purposes

2.3 Objective approaches to measuring PD

The scope for improving diagnosis of PD using automated and objective methods have been 

explored for many years and much progress has been made using a range of technologies 

and data processing approaches. Previous work can be summarised in terms of the particular 

symptoms of interest, the sensors employed to measure these symptoms and the methods 

used to analyse the resulting data.

Abnormal movement of the limbs and trunk in PD can be measured with accelerometers 

[13] gyroscopes [14], electromagnetic (EM) tracking sensors [15], line of sight tracking 

systems [16] and video motion capture [17]. Speech problems in PD can be measured using 

audio recordings and specialised devices such as the Laryngograph [18]. Cognitive problems 

in PD can be measured using conventional clinical and specialised tasks such as figure 

copying tests (using digitising tablets) [19], memory tasks [20], measuring reaction time 

[21] and completing questionnaires.

The subsequent analysis and classification of the data resulting from these sensors include 

conventional statistical approaches as well as machine learning including neural networks, 

support vector machine and EAs. EAs are the focus of the work presented in this paper and 

are considered in more detail in Section 4.

3 Animal models of PD

As already discussed, idiopathic PD is the most common form of PD in humans. Although 

the familial forms of PD are less common, studying the genes that are disrupted in these 

patients is beginning to provide a better understanding of what causes idiopathic PD. 

Elucidating the molecular function of the products of the genes that are mutated in some 

people with familial PD will shed light on the fundamental cellular and molecular processes 

underlying the disease. Understanding human pathogenesis at the cellular and molecular 

level relies on the use of animal models [22]. Because mouse models of PD have been 

disappointing [22] we will discuss the use of two genetic models for studying PD, the fruit 

fly (D. melanogaster) and the zebrafish (D. rerio).
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3.1 Drosophila

Drosophila (D. melanogaster) is the best understood of all model organisms; this is largely 

due to its sophisticated genetics [23]. Because of the small size of Drosophila and its short 

life cycle of only 2 weeks, it has been used extensively in genetic research for more than 100 

years and over this time vast numbers of mutants have been collected and accurate 

cytological and genetic maps of the chromosomes have been made.

Robust methods have been developed for mutating genes in specific tissues, at specific times 

or in response to a stimulus and used to investigate gene function. Importantly, it is known 

that many of the genes that control processes in the fruit fly are the same genes that control 

the same processes in vertebrates, including humans [24]. Indeed, flies share over 75% of 

genes linked to human disease. The highly conserved nature of the genetic control of 

biological processes means that what we learn from studies of the fruit fly is relevant to 

understanding human biology and disease.

Flies have provided an excellent model of genetic forms of PD [25], reflecting many 

features of the disease including loss of dopaminergic neurons, oxidative stress, 

mitochondrial abnormalities and reduced movement. Traditionally, movement has been 

recorded by timing the speed at which flies walk up a glass cylinder in response to a sharp 

tap [26–28]. This conflates their response to the startle stimulus, gravity and the central 

pattern generator for walking with the motor neuron and muscular physiology. This assay 

also fails to discriminate between the different possible movement defects (akinesia, 

hypokinesia and bradykinesia). Nor is it clear which of the sensory, motor and CNS 

processes contributing to the climbing response are influenced by dopamine and/or the 

expression of PD related genes. The multifaceted ‘ bradykinesia’  seen in these mutants, and 

the difficulty of relating it to neuronal function, suggest we need another, simpler assay 

system.

The requirement for a simpler assay is reinforced by the difficulty of determining which 

dopaminergic neurons are critical for controlling locomotion. The fly brain contains ~125 

dopaminergic neurons [29, 30], mostly grouped into clusters [31]. Most manipulations of 

PD-related transgenes result in a relatively small number of dopaminergic neurons dying, 

with many clusters unaffected. In a recent study of the LRRK2-G2019S mutation, the 

protocerebral posterior medial cluster dropped from 14 to 12 dopaminergic neurons without 

loss in others, for example, the protocerebral anterior lateral cluster [32]. Throughout the 

literature, the multiple processes involved in bradykinesia combine with the small loss of 

dopaminergic neurons to obscure the functional relationship. To progress, we need to link a 

precise measurement of movement with the physiology of a few specific dopaminergic 

neurons.

The discovery of dopaminergic modulation of the proboscis extension response (PER) 

presents an exciting way forward [33]. When a walking fly encounters a sweet solution, the 

chemosensory cells on its front legs respond (Fig. 1, step 1). Their axons signal to the sub-

oesophageal ganglion (SOG; the part of the brain responsible for taste, Fig. 1, step 2). 

Within the SOG, the chemosensory inputs activate a single dopaminergic neuron (Fig. 1, 

step 3) [35]. Action potentials in the single dopaminergic neuron are sufficient to excite the 
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pharyngeal E49 motoneurons [36] (Fig. 1, step 4), leading to contraction of a proboscis 

muscle (Fig. 1, step 5, muscle M3). This well-defined pathway results in the extrusion of the 

proboscis towards the food (Fig. 1, step 6). This simple reflex circuit allows the fly to feed 

on the sweet solution. A key observation is that genetic silencing of the single dopaminergic 

neuron prevents the PER, while ‘ thermogenetic’  activation of this cell elicits the full PER 

[35].

The fly GAL4/UAS system [37, 38], a biochemical method used to study gene expression, 

provides the tools for neuron-specific expression of PD related genes – for example, the 

tyrosine hydoxylase (TH) GAL4 can be used to express the LRRK2-G2019S mutation, 

which is the most common cause of PD in all dopaminergic neurons, while the Gr5a GAL4 

will express the transgene in just the sugar-sensitive neurons, or the GAD GAL4 in just the 

GABAergic inhibitory neurons. Equally, other PD related mutations (e.g. LRRK2-R1441C), 

or the wild-type hLRRK2, can be expressed by using the TH GAL4, by using the appropriate 

UAS sequence. Fly genetics also provides advanced tools for expression in subsets of 

neurons, for example, just a proportion of the dopaminergic neurons. In addition, the use of 

genetically encoded voltage or calcium sensing dyes [39] offers opportunities to record 

neural action potentials and/or synaptic activity during the sensory reflex.

In Drosophila, we therefore tested if expression of the LRRK2-G2019S transgene in 

dopaminergic neurons (TH > G2019S) affected the PER. We found 31% of these flies 

responded (N = 180), compared with 50% of flies expressing the wild-type hLRRK2 

transgene in the dopaminergic neurons (TH > hLRRK2, N = 160, flies 3 days old). This 

difference was significant (ů2 1df = 10.2, P = 0.0013). In older flies, (kept for 14 days at 29° 

C), the same result was found. Only 49% of the TH > G2019S (PD- mimic flies, N = 109) 

responded, compared with 66% of TH > hLRRK2 flies (N = 130, , P = 0.006). 

This demonstrates the PER in the PD-mimic (TH > G2019S) have a form of akinesia. In 

addition, the PER seems slower in old TH > G2019S flies compared with controls of the 

same age. We recorded video under a Zeiss Stemi microscope, and found that the TH > 

G2019S PER took approximately 1.5 as long as the control TH > hLRRK2 response (0.52 ± 

0.05 s v 0.34 ± 0.03 s; F1,19df = 8.3 P = 0.01). These observations suggest that the PER 

displays both akinesia and hypokinesia in flies expressing the PD-related mutation, TH > 

G2019S.

In summary, Drosophila provides a powerful genetic toolbox, it mimics many of the features 

of PD, and has a simple nervous system which can be explored to show dopaminergic 

expression of PD related genes generates a movement disorder.

3.2 Zebrafish

One major problem with using Drosophila as an animal model for human disease is that it is 

an invertebrate and its anatomy and physiology is therefore different from ours. Humans are 

vertebrates characterised by having a dorsal spinal cord and a similar organisation of 

neurons within the central nervous system. Harnessing the power of genetic analysis within 

a vertebrate animal model would improve the prospects for understanding human genetic 

disease. Over the last 25 years, the zebrafish (D. rerio) has been used as a vertebrate genetic 
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model to study development and disease. Very recent advances in genomic editing, and the 

simplicity of using these new tools in zebrafish, will provide a powerful method for 

modelling human genetic disease.

Zebra fish produce thousands of embryos when they spawn and these are useful because 

they develop outside the mother, are translucent, are easily injected, and are genetically 

tractable. One example of a human disease that has a zebrafish model is Duchenne’ s 

muscular dystrophy (DMD) [40]. There are zebrafish with a mutation in the dystrophin 

gene, the same gene that is defective in human patients with DMD, and in both humans and 

fish with this genotype the muscles degenerate and die. The zebrafish mutant for dystrophin 

was identified in a large-scale genetic screen [41] and these fish are currently being used for 

in vivo drug screens and real time analysis of muscle fibre loss. The identification of the 

dystrophin mutant was random and fortunate, but it was not directed.

One zebrafish mutant for a PD-associated gene has been identified in Pink 1 [42]. The 

pink1−/− zebrafish was found to have characteristics associated with human PD, such as 

loss of dopaminergic neurons and mitochondrial impairment. However, the method used to 

identify this mutation (targeting induced lesions in genomes) also relies on random mutation 

of the genome and a PCR based screen for mutations in specific genes [43]. It is now 

possible to undertake directed mutagenesis of genomes that until very recently was only 

possible using homologous recombination in mouse embryonic stem cells [43, 44]

There are significant new technologies that are making gene targeting not only possible but 

also practical. transcription activator-like effector nucleases (TALENs) are synthetic 

restriction endonucleases, comprising a DNA binding domain fused to one part of an 

endonuclease; specificity is ensured by a second TALEN that binds to an adjacent sequence 

and provides the other part of the nuclease. Each TALEN fusion protein can be specifically 

designed to bind to a DNA sequence flanking the region of the genome to be targeted 

resulting in cleavage of genomic DNA at the target site. Subsequent non-homologous end 

joining repair at the cleavage site results in the excision or insertion of a variable number of 

base pairs. If the TALENS are targeted to a protein coding exon, typically exon 1, the result 

is likely to be a mutant gene coding for a non-functional truncated protein [45].

Another new technology for gene editing is the clustered regularly interspersed short 

palindromic repeat (CRISPR)-Cas9 system [43]. Similar to TALENs, the CRISPR-Cas9 

system is another method to induce double stranded breaks in genomic DNA. The breaks are 

repaired by a cellular process called non-homologous end-joining. This process is error 

prone and leads to insertions or deletions that can disrupt the coding region of the targeted 

gene. The advantage of the CRISPR system is that it is driven by a guide strand RNA that 

undergoes standard base-pairing with the endogenous genomic target. The cas9 nuclease is 

recruited to the guide strand RNA and therefore to the target sequence. The simplicity of this 

system makes it practical for most labs experienced in molecular biology.

The key feature of these new technologies is that unlike many antisense knock-down and 

silencing strategies that have been widely used over the last 15 years to post-

transcriptionally inhibit genes, TALENs and CRISPR-cas9 produce heritable gene 

Smith et al. Page 7

IET Syst Biol. Author manuscript; available in PMC 2015 December 01.

 E
urope P

M
C

 F
unders A

uthor M
anuscripts

 E
urope P

M
C

 F
unders A

uthor M
anuscripts



disruption and germ line transmission of targeted mutation. This technology is effective in 

zebrafish and allows the efficient production of mutation targeted to genes of interest. To 

date, approximately 16 loci have been associated with PD [46]. Creating zebrafish mutants 

to model for each of these genes is now a practical and achievable goal.

4 Evolutionary algorithms

EAs [47] are a form of evolutionary computation and members of the artificial intelligence 

family, or more precisely computational intelligence, as they depend on a form of learning 

inspired by Darwinian evolution. They are in effect a number (or population) of candidate 

solutions (individuals) to a classification problem that are repeatedly refined (or evolved) 

over a number of iterations (generations) until a suitably accurate classifier algorithm is 

obtained or the computational resources have been exhausted.

The procedure for finding a classifier, for example to discriminate PD patient data from 

healthy control data, can be summarised as follows: A population of individuals (candidate 

solutions) is randomly initialised. The effectiveness or fitness of each individual to correctly 

classify data previously obtained from PD patients and healthy controls is determined using 

a fitness function. The fittest individual (the one with the highest fitness score determined by 

the fitness function) is retained and the others discarded. Copies (or clones) of this fittest 

individual are then generated and subtly modified (or mutated) to form a new population of 

individuals. The fitness of this new population of individuals is then evaluated in the same 

way using the fitness function and the process is repeated over a number of generations until 

a sufficiently fit classifier is obtained or the number of predetermined generations has been 

reached.

Many different types of evolutionary algorithm have been developed which specify not only 

the characteristics of the evolutionary process but also the representation of the individual 

candidate solutions. For our work Cartesian genetic programming (CGP) [48] is used, which 

does not adopt the tree structure representation of traditional genetic programming. In CGP 

each individual is represented by a network of processing nodes that are arranged in a non-

cyclic directed graph (two-dimensional grid).

A simplified example of a CGP network is shown in Fig. 2 with four central processing 

nodes arranged in a 2 × 2 grid. Two inputs, I/P 0 and I/P 1, provide input values to the 

network and an output, O/P 0, its result. Each node within the network comprises a function 

taken from a predefined set (an example of which is given in Table 1). Outputs from each of 

the nodes are connected to inputs of nodes to the right or the output. Nodes in the network 

are numbered consecutively starting at zero with the first of the input nodes, as shown in the 

top right-hand side corner of each node in Fig. 2. This allows the nodes within the network 

to be represented by a string of integers (or chromosome), an example of which is given in 

Fig. 3.

The chromosome representing any CGP network consists of triplets (referred to as genes), 

providing values for each respective (non-input) node in the network, for example, the first 

triplet relates to node number 2, the second to the node number 3, and so on. The first two 

genes of each triplet specify preceding nodes in the network that provide values to the 
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node’ s two inputs. The third value specifies the index of the function in the function set 

(shown in Table 1) to be applied to the values presented at the inputs. The final integer in the 

chromosome specifies the node that provides the value to be presented at the output node 

O/P 0. A CGP network comprising three columns of 10 rows as shown in Fig. 4 is more 

representative of that typically used.

A number of these chromosomes form the individuals of a population, which are initialised 

with random values. Each chromosome is then used to configure the network and 

subsequently calculate a result for the problem under consideration. The result presented at 

the output of this network is compared with the desired result, and a fitness score derived, 

which is then associated with the respective individual’ s chromosome. After all the 

individuals in the population have been evaluated in this manner, the fittest is retained and 

the remaining discarded. The subsequent generation of individuals is then constructed from 

this fittest individual and its clones, which are subjected to a variation function, typically a 

conventional mutation operation according to a predefined probability. Mutation is simply 

achieved by randomly altering the integer values of the chromosome within a valid range.

The training of the CGP networks is continued until either perfect fitness is achieved 

(according to the predetermined fitness function) or other criteria is met, such as a maximum 

number of generations. The fittest network can then be evaluated by applying conventional 

testing and validation stages with data not used in the training stage.

There are two ways in which CGP provides an advantage over other processing techniques. 

First of all, for highly non-linear, complex data sets such as that found in measurement of 

human movement disorders, CGP has been shown to evolve high performance classifiers. 

Second, unlike many processing techniques, once a high performing classifier has been 

evolved, a mathematical expression defining this classifier can be easily obtained by 

decoding the resulting CGP network. This can provide valuable insight into which data 

obtained from the physical measurements of movement have been used in the evolved 

classifier and are therefore an important distinguishing feature of the condition [49].

4.1 Application of EAs to measure movement disorders in humans

CGP EAs have been used by our group to process data obtained from a range of sensors to 

diagnose and monitor PD in humans:

Diagnosis of PD (Fig. 5a)— We attached EM tracking sensors to the finger and thumb of 

49 PD patients and 41 age-matched healthy controls whilst undertaking a finger tapping task 

for 30 s – a common conventional clinical evaluation. The majority (80%) of the patients 

had only clinically mild bradykinesia. The movement data collected by the EM sensors was 

analysed by custom-written EAs and compared with clinical diagnosis using receiver 

operating characteristic (ROC) curves. The best classifiers had an area under the ROC curve 

(AUC) of 0.9 corresponding to predictive accuracies of 80–90% depending on choice of 

threshold. This suggests that automated tests of bradykinesia could have a role to play in 

providing objective information to support a tentative clinical diagnosis of PD [15].
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Recognition and monitoring of levodopa-induced dyskinesia (Fig. 5b)—
Matchbox-sized accelerometer/gyroscope devices were worn on the limbs, head and trunk of 

PD patients for periods of up to 24 hours and movement data was analysed using EAs. 

Provisional results show that the device has excellent accuracy (AUC 0.9) for monitoring 

severe and moderate degrees of dyskinesia. Providing this kind of objective clinical 

information to clinicians would enable them to make more informed decisions regarding 

administration of medication and also could be used to evaluate new drugs for its treatment 

[50].

A unified test for neurodegenerative disorders (Fig. 5c)— Data gloves and motion 

tracking sensors are used to assess PD patients and healthy controls as they reach and grasp 

a cylinder under several different conditions, for example using an auditory cue, a visual cue 

and with eyes closed. Data analysis is currently underway. EAs will be applied to the 

movement data to classify healthy controls and PD patients as well as further classifying PD 

patients into those with and without cognitive impairment. Previous research using standard 

statistical analysis has shown differences in reaching and grasping between patients with PD 

and other neurodegenerative conditions such as Alzheimer’ s disease and corticobasal 

ganglionic degeneration [51, 52].

In all of these cases the processing of data resulting from the patient measurements is treated 

in the same way. The data, obtained from any of the sensors considered above, comprises a 

stream of co-ordinates that describe the motion of the patient, whether it is in response to a 

specific task (such as finger tapping, drawing or reach and grasp task) or resulting from 

unconstrained movement, as in the case of the wearable accelerometer/gyroscope devices. 

The data is preprocessed and then presented to each of the individual CGP networks in the 

population through a moving windowing operation that presents 10 data points at a time 

until the entire data stream has been presented.

4.2 Application of EAs to measure movement disorders in animal models

Once a genetically altered animal is generated, it is important to determine how good a 

model it is for the human disease being studied. For animal models of PD, there are methods 

to identify and measure numbers of dopamine producing neurons as well as physiological 

methods to assess the function of these neurons [53, 54]. An impaired diving behaviour has 

been noted in zebrafish lacking dopamine [55]. However, it would be an over-interpretation 

to align this aspect of fish behaviour to symptoms of PD patients. A hallmark of humans 

with PD is bradykinesia, which can be measured in humans and quantified using EAs as 

described above.

In zebrafish models, a high frame rate video of fish swimming has been analysed using 

computer vision techniques to generate a minimal set of data characterising how the body of 

the fish flexes, as shown in Fig. 6. We are currently developing methods to measure 

movement of the fish, in specially designed tanks, to enable EAs to be evolved. Adapting 

the protocols used to diagnose PD in humans for use in genetic models will provide an 

assessment of the effects of disrupting a specific PD gene. A zebrafish model of PD has the 
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potential for high throughput in vivo drug screening that is not economically viable using 

other vertebrate models.

In Drosophila models, we have analysed the videos of the PER by importing them into 

MATLAB, defining the frames in which the proboscis is extended, and then tracking its 

movement. This has allowed us to adopt the same strategy for analysis of movement in the 

fly as in the human. The results presented in Fig. 7 show the ability of an EA to train 

classifiers that discriminate (a) wild-type controls (46 flies) from TH > hLRRK2 (47 flies) 

with an AUC of 0.78, and (b) TH > LRRK2-G2019S mutation (45 flies) from TH > hLRRK2 

(47 flies) with an AUC of 0.78 according to this captured movement.

In conclusion, the fly model of PD recapitulates PD in a very simple sensory reflex, where 

activity of a single dopaminergic neuron is manipulated by a PD-related mutation to produce 

both akinesia and hypokinesia. It is amenable to genetic dissection, to identify the impact of 

G2019S expression on functioning neuronal components, and to analysis by the same EAs 

as used in patients. The results presented here demonstrate an exciting opportunity to relate 

the change in kinase activity in G2019S to subsequent cellular, neuronal and movement 

disorders. This offers the powerful potential to test the impact of existing drugs (e.g. L-

DOPA) and of first-in-vivo testing of novel tool compounds (e.g. BMPPB-32 [53]) in a 

quantifiable manner.

5 Summary and future work

This paper has reviewed how EAs can be successfully applied to the assessment of 

movements in humans to classify PD patients from healthy controls and classify severity of 

dyskinesia in PD patients. We have presented new results that demonstrate the ability of 

EAs to classify wild-type Drosophila from those with PD related genetic mutations. The 

ability to use CGP EAs in both human and animal models of PD represents an exciting 

development, as decoding of the CGP network will allow distinguishing movement features 

to be analysed and compared across species. This has great potential for increasing 

understanding of PD as well as the effects of new and existing drug therapies.

Work to apply EAs to zebrafish models of PD and to use EAs to classify degrees of 

cognitive impairment in humans with PD by analysing movement data is under way. 

Ultimately we hope that the application of EAs to movement data in animals and humans 

will provide a unifying model for motor dysfunction in PD.
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Fig. 1. 
Outline schematic of the PER pathway, showing the essential neuronal circuit. Sugar applied 

to the legs (step 1) stimulates the chemosensory neurons which project to the SOG. This 

contains a single dopaminergic neuron (yellow, DA, step 3), which modulates the 

connection between the sensory endings and the E49 motoneurons. When the sensory -

motor relay is permitted by dopaminergic activity, the E49 neurons fire (step 4), causing 

contraction of the muscle, M3 (step 5), and extension of the proboscis (step 6) [After Scott 

et al., [34]]
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Fig. 2. 
Example Cartesian Genetic Program. Node number is specified in the top right-hand side 

corner of each node, the node function is specified in the centre
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Fig. 3. 
Example chromosome for configuration of the CGP network
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Fig. 4. 
Typical CGP network configuration with 3 columns and 10 rows of nodes
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Fig. 5. 
Use of sensors for diagnosis, monitoring and differentiation of PD

a Finger tapping task using EM tracking sensors

b Unconstrained movement measurement using accelerometer/gyroscopes

c Reach and grasp task using computer data gloves
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Fig. 6. 
Automated tracking of the body flexion of the zebra fish

a Is the source video of the zebra fish

b Result of processing, with coloured knots representing segments of the body

c Plot of the movement of the fish represented by these knots with respect to the direction of 

travel
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Fig. 7. 
ROC curves demonstrating the evolutionary algorithm to correctly classify

a Wild-type (CS × w1118 outcross) and TH > hLRRK2 with an AUC of 0.78

b TH > LRRK2-G2019S mutation and wild-type TH > hLRRK2 with an AUC of 0.78 (flies 

aged 8 days)
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Table 1

Example function set

Function reference Function

1 +

2 −

3 *

4 /
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