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Abstract.

Edge Localised Modes (ELMs) are a repetitive MHD instability, which may be mitigated

or suppressed by the application of resonant magnetic perturbations (RMPs). In tokamaks

which have an upper and lower set of RMP coils, the applied spectrum of the RMPs can

be tuned for optimal ELM control, by introducing a toroidal phase difference ∆Φ between

the upper and lower rows. The magnitude of the outermost resonant component of the RMP

field |b1res| (other proposed criteria are discussed herein) has been shown experimentally to

correlate with mitigated ELM frequency, and to be controllable by ∆Φ (Kirk et al 2013 Plas.

Phys. Cont. Fus. 53 043007). This suggests that ELM mitigation may be optimised by

choosing ∆Φ = ∆Φopt, such that |b1res| is maximised. However it is currently impractical

to compute ∆Φopt in advance of experiments. This motivates this computational study of the

dependence of the optimal coil phase difference ∆Φopt, on global plasma parameters βN and

q95, in order to produce a simple parametrisation of ∆Φopt. In this work, a set of tokamak

equilibria spanning a wide range of (βN , q95) is produced, based on a reference equilibrium

from an ASDEX Upgrade experiment. The MARS-F code (Liu et al 2000 Phys. Plasmas 7

3681) is then used to compute ∆Φopt across this equilibrium set for toroidal mode numbers

n = 1 − 4, both for the vacuum field and including the plasma response. The computational

scan finds that for fixed plasma boundary shape, rotation profiles and toroidal mode number

n, ∆Φopt is a smoothly varying function of (βN , q95). A 2D quadratic function in (βN , q95)

is used to parametrise ∆Φopt, such that for given (βN , q95) and n, an estimate of ∆Φopt may

be made without requiring a plasma response computation. To quantify the uncertainty of

the parametrisation relative to a plasma response computation, ∆Φopt is also computed using

MARS-F for a set of benchmarking points. Each benchmarking point consists of a distinct

free boundary equilibrium reconstructed from an ASDEX Upgrade RMP experiment, and set

of experimental kinetic profiles and coil currents. Comparing the MARS-F predictions of

∆Φopt for these benchmarking points to predictions of the 2D quadratic, shows that relative

to a plasma response computation with MARS-F the 2D quadratic is accurate to 26.5 degrees

for n = 1, and 20.6 degrees for n = 2. Potential sources for uncertainty are assessed.
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1. Introduction

Edge Localised Modes (ELMs) are a repetitive MHD instability, driven by the high current

densities and pressure gradients found at the edge of high confinement mode tokamak

plasmas [2, 3]. Extrapolation from current machines suggests that, if left unmitigated, ELMs

pose a hazard to the plasma facing components of the ITER tokamak [4].

It has been shown that ELMs can be mitigated - an increase in the ELM frequency,

accompanied by a decrease in individual ELM size - by the application of Resonant Magnetic

Perturbations (RMPs) using dedicated magnetic coils, and ELM mitigation by RMPs has

now been demonstrated on most medium and large sized tokamaks [5–9]. Presently, most

tokamaks have two sets of RMP coils, one toroidal ring of 6-12 coils above the midplane,

and another below. The currents in the discrete coil sets are typically chosen to have an

approximately sinusoidal dependence in the toroidal direction, with a single dominant toroidal

mode number n. Having two sets of coils allows the poloidal spectrum to be tuned by

introducing a toroidal phase offset between the upper and lower coil currents, defined here

as ∆Φ = Φupper − Φlower, where Φupper and Φlower are the phases of the dominant n

component of the upper and lower toroidal current waveforms respectively. ∆Φ may be varied

independently of the global plasma parameters, so for a given set of plasma parameters it may

be used to optimise the applied field by choosing a value ∆Φopt, which maximises some figure

of merit. Numerous figures of merit have been proposed as discussed below, all of which

require a computation of the plasma response to quantify, which complicates prediction of

∆Φopt ahead of experiments. The aim of this work is to create an accessible map of ∆Φopt

with quantified uncertainty, which researchers may use to optimise experimental RMP fields

without requiring a plasma response computation.

It is well known that to correctly interpret magnetic perturbation experiments, it is

necessary to include the plasma response to the applied perturbation [10–16]. A review of

approaches to computing the plasma response to applied perturbations can be found in [17].

The plasma response calculations in this work are performed using MARS-F [18], which

numerically solves the linearised equations of resistive MHD including toroidal geometry and

toroidal rotation, using realistic experimental tokamak equilibria and applied coil currents.

MARS-F has been well validated against experiments on DIII-D and benchmarked against

other codes [19–21]. The perturbation is approximated as having a single n sinusoidal

dependence in the toroidal direction, we therefore ignore the effects of toroidal sidebands

which are expected to be small compared to the dominant n component [22].

By searching for correlations between aspects of the plasma response to the applied

RMPs and experimentally observed effects of the RMPs, several candidate figures of merit

for predicting RMP effects on ELMs have been proposed. The resonant component |b1res|

(also brres in some works, which differs only in normalisation) is the amplitude of the

component of the magnetic perturbation aligned to the equilibrium magnetic field (satisfying

m = nq) closest to the plasma edge. Correlations have been detected between |b1res| and
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mitigated ELM frequency on ASDEX Upgrade and MAST [23, 24]. As well as the magnetic

perturbation, the applied RMP also induces a displacement of the plasma which may be

predicted numerically and measured experimentally [25,26]. ξX refers to the maximum RMP

induced displacement of the plasma boundary in the region of the X-point, and has been shown

to correlate with density pump out on MAST [27, 28], and with mitigated ELM frequency on

ASDEX Upgrade [23]. The high field side (HFS) response refers to the magnitude of the

magnetic perturbation at the high field side midplane. The HFS response, both measured

experimentally and predicted numerically, has been shown to correlate with density pump out

and ELM suppression on DIII-D [16, 29]. The edge peeling response refers to amplification

of marginally stable MHD modes [30], localised near the plasma edge and with poloidal

harmonic numbers above resonance (m > nq). Correlations have been detected between

the edge peeling response and ELM suppression on DIII-D [15, 22], density pump out on

MAST [27], and ELM mitigation on ASDEX Upgrade [23, 31].

These diverse observed correlations are shown to be self consistent by modelling works,

which explain that as functions of ∆Φ these figures of merit are strongly correlated with each

other. It was shown previously that the displacement component of the amplified peeling

response is responsable for driving ξX [27], and the also that the magnetic component of the

peeling response can drive |b1res| via poloidal harmonic coupling [22, 31, 32], a mechanism

previously proposed to interpret error field correction experiments on NSTX and DIII-D [14].

Furthermore, examining the linearised equations of ideal MHD provides a direct relation

between ξX and b1res [33], explaining why these three are often seen to be strongly correlated

in modelling works [23, 34, 35]. Meanwhile, it is also shown computationally that the HFS

response also shares the same ∆Φ dependence as ξX and |b1res| [16, 29]. Therefore in the

context of optimising over ∆Φ, the figures of merit |b1res|, ξX , the peeling response and the

HFS response are all equivalent. Of these four, this work chooses to use |b1res| for ease of

computation, but the results will apply to any of the figures of merit discussed above. Thus

∆Φopt is defined here as ∆Φ for which |b1res| is maximised.

It must also be noted that in a recent work, it is shown that the amplified peeling

response can cause ELMs to reappear in ELM suppressed discharges on DIII-D, by pushing

the equilibrium closer to the peeling-ballooning stability limit and thereby increasing the

probability of ELMs [36]. This complicates the picture in the context of ELM suppression, but

in the context of ELM mitigation it supports the premise that the amplified peeling response

may drive ELMs prematurely unstable and hence increase the mitigated ELM frequency.

Furthermore, DIII-D experiments [37, 38] suggest that ELM suppression may be triggered

by the co-location of a rational surface of the RMP, the pedestal top and the ω⊥e = 0

location (where the electron perpendicular flow vanishes), which we here call the ’co-location’

criterion. However this criterion is not expected to be controllable by the coil phasing ∆Φ, and

so is not considered in this work. Implications of these two results for RMP optimisation for

ELM suppression are also not considered in this work, which instead focusses on optimising

RMP fields for ELM mitigation.



Numerically derived parametrisation of optimal RMP coil phase as a guide to experiments on ASDEX Upgrade4

It is well demonstrated experimentally [5, 15, 28, 29, 39–42] and computationally [22,

29, 33, 34, 43, 44] that RMP induced ELM effects are sensitive to the plasma safety factor

at the 95% poloidal magnetic flux surface q95. In particular, recent computational scaling

studies [22, 34] show that ∆Φopt varies approximately linearly with q95. Observed ELM

effects and computed ∆Φopt are also known to be sensitive to the plasma shape [34, 39],

but this dependence is not studied here. In this work, the dependence of ∆Φopt on the

normalised beta βN and q95, is numerically investigated and quantified for ASDEX Upgrade

plasmas. Normalised beta βN is defined as βN = β(%)a(m)B0(T )/Ip(MA), where a is

the plasma minor radius, B0 is the equilibrium magnetic field at the magnetic axis, Ip is the

total plasma current, and β is the normalised plasma pressure β = 2µ0<p>/<B
2>, where

<..> denotes an average over the plasma volume. A reference plasma equilibrium from

the ASDEX Upgrade tokamak is scaled in pressure and current, to create a set of equilibria

spanning a wide parameter space in (βN , q95), which covers the parameters most typically

accessed in ASDEX Upgrade experiments. At each point in (βN , q95) space and for toroidal

mode numbers n = 1 − 4, the plasma response to an applied perturbation is computed by

solving the linearised equations of resistive MHD in full toroidal geometry using the code

MARS-F [18], and the optimal coil phasing ∆Φopt computed. It is found that ∆Φopt increases

smoothly with q95, consistent with previous computational scans [22, 29, 34]. However a

previous experimental and computational study found ∆Φopt to be insensitive to βN [29], in

contrast to this work which finds a weak decrease in ∆Φopt with βN . A simple 2D quadratic

function is proposed to parametrize the dependence of ∆Φopt on (βN , q95). The coefficients

of this function are computed by linear regression, and included here for researchers to use

as a guide for future RMP experiments on ASDEX Upgrade. To evaluate the utility of the

2D quadratic function for predicting ∆Φopt (relative to a prediction using a MARS-F plasma

response computation), the plasma response to applied perturbations is computed for a set of

equilibria and kinetic profiles which are taken directly from a large set of distinct ASDEX

Upgrade experiments, with significant variation in βN and q95, as well as plasma shape,

rotation and kinetic profiles. For each of these benchmarking points, ∆Φopt is computed,

and by comparing the 2D quadratic to these benchmarking points, it is determined that the

2D quadratic is able to predict ∆Φopt to within 26 degrees of a plasma response computation

for n = 1 RMPs, and within 21 degrees for n = 2 RMPs, for most experimentally accessible

(βN , q95) values. This parametrisation and error estimate are the primary results of this work.

It should be noted that for n = 4, only odd and even phases (∆Φ=180,0) are experimentally

accessible with the ASDEX Upgrade coil set, so high accuracy is not required when predicting

∆Φopt. Due to limited available data, the benchmarking procedure for n = 3, 4 is left for

future work. To investigate possible sources of uncertainty in the 2D quadratic, ∆Φopt is

computed for scans of the pedestal width and amplitude of toroidal rotation, which find that

∆Φopt is robust to both. This suggests that neither of these factors contribute strongly to the

computed uncertainty in ∆Φopt, and the plasma shape is suggested as the primary source of

uncertainty.
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Figure 1. The pitch aligned component |b1res| is maximised when b1,ures and b1,lres are parallel in

the complex plane.

2. Alignment of applied field with equilibrium field

2.1. Extracting ∆Φopt from a plasma response computation

In this work, the plasma response due to the upper and lower coils (bu and bl respectively)

are computed separately, the field due to both coils are reconstructed in post process as

bt = bu + ble(−i∆Φ). This is valid because MARS-F is a linear code, so the sum of two

solutions is also a solution. For a given outermost pitch aligned component due to upper

coils b1,ures, and lower coils b1,lres (both complex valued scalars), the total outermost pitch aligned

component |b1res| = |b1,ures + b1,lrese
(−i∆Φ)| is maximised when b1,ures and b1,lres are parallel in the

complex plane. Therefore the optimal coil phase is simply the angle between b1,ures and b1,lres in

the complex plane, given by equation 1 below.

∆Φopt = ±arccos

(

b1,lres · b
1,u
res

|b1,lres||b
1,u
res|

)

(1)

This concept is described visually in figure 1. This formula eliminates the need for a

numerical scan of ∆Φ to determine ∆Φopt as used in previous works [35]. To account for the

sign uncertainty in Equation 1, it is necessary to determine the sign of ∆Φopt by comparing

|b1,ures+b
1,l
rese

(−i∆Φopt)| and |b1,ures+b
1,l
rese

(+i∆Φopt)|, and choosing the larger. Figure 2 demonstrates

that computing ∆Φopt using Equation 1, yields the same result as a conventional ∆Φ scan.

2.2. Effect on alignment of equilibrium parameters βN and q95

The parameters βN , q95 and n are chosen for this dependence study, because the spectral

alignment of the applied perturbation with the equilibrium field (ie, the extent to which the
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Figure 2. Previous works [32, 34, 35] have computed ∆Φopt using a scan of ∆Φ, which is

time consuming and limits the precision of ∆Φopt to the scan step size. In this figure, ∆Φopt

computed using Equation 1 is compared with a ∆Φ scan of |b1res|. It shows that the Equation

1 yields the same value for ∆Φopt as a scan of ∆Φ.

Figure 3. a) and b) shows the nq(s) = m line relative to the vacuum spectrum for a low (a)

and high (b) q95 case, with identical βN . This demonstrates how changing q95 or n moves

the nq(s) = m line relative to the spectrum of the applied perturbation. c) and d) shows

the nq(s) = m line relative to the vacuum spectrum for a low (a) and high (b) βN case, with

identical q95. Increasing plasma pressure βN moves the magnetic axis outwards, which distorts

the equilibrium magnetic geometry on the outboard side, such that the vacuum spectrum is

shifted to higher m.
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Figure 4. a,b) Grids showing the equilibrium based straight field line coordinate systems

for low (0.51) and high (4.86) βN cases. Note these are extreme examples of high and low

βN , chosen to best illustrate the effect. On both grids, the black solid bold lines are lines

of χ = ±15. The high βN case shows Shrafanov shift of the magnetic axis, and also that

χ = ±15 encompasses a larger arclength of the plasma boundary. c) The generalised poloidal

angle χ against geometric angle θ̂. The high βN case shows a lower dχ/dθ on the high field

side, so the same geometric features are represented with a smaller extent of χ. d) The normal

component of the applied vacuum perturbation at the plasma boundary for a high and low βN

case, plotted against geometric coordinate θ̂ to show that in real space both applied fields are

the same, and plotted against generalised poloidal angle χ to show how the high and low βN

fields differ when represented in SFL coordinates, due to the redistribution of χ with changing

βN . Notice that in the high βN case, the main peaks of the applied field (which naturally occur

near the RMP coils) are compressed into a narrower range of χ, causing the poloidal spectrum

to be shifted towards higher m.

applied perturbation aligns with the m = nq line in (m,s) space, where s = ψ
1/2
N is the radial

coordinate and m is the poloidal harmonic number), is expected to be modified by these

parameters, and they therefore affect the optimal coil phasing ∆Φopt. Figure 3 shows the

effect on the applied vacuum spectrum and equilibrium resonance line (satisfying m = nq),

of changing q95 and plasma βN . Figure 3a) and b) show that for constant βN , increasing q95 or

nmoves them = nq line in (m, s) space to higherm, thereby moving the resonant component

relative to the applied spectrum. Figure 3c) and d) show that for constant q95, changing βN
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distorts the spectrum of the applied field relative to the m = nq line, modifying alignment as

explained in more detail below. This result justifies the choice of q95 and βN as independent

variables for this study.

The dependence of field alignment on βN is explained in Figure 4. Physically relevant

poloidal harmonics may only be rigorously defined in a straight field line (SFL) coordinate

system, in which the poloidal angle is not the geometric poloidal angle θ, but the generalised

poloidal angle χ, which is defined such that field lines are straight in the (χ,φ) plane where φ is

the toroidal angle. χ and m are therefore defined relative to the magnetic equilibrium. Figure

4a,b) shows the SFL based grid for a high and low βN case. In the high βN case the magnetic

axis is shifted outwards by shrafranov shift (shown by the vertical dashed lines). Solid black

lines in the figure are lines of χ = ±15 degrees and the plasma boundary enclosed by this

angular range. It shows that in the high βN case, on the high field side where the RMPs are

applied, a given range of χ encloses a much larger arclength of the plasma boundary than the

low βN case. The RMP coils and applied field are identical in both cases in real (R,Z) space,

but the field in SFL coordinates changes with βN , because the definition of the SFL poloidal

angle χ, relative to geometric angle θ, changes with βN . Figure 4c) shows the generalised

poloidal angle χ against geometric angle θ̂ (where θ̂ is measured from an origin common

to both the high and low βN cases, rather than the magnetic axis). The figure shows that

increasing βN causes a redistribution of χ relative to θ̂. Figure 4d) shows the effect this has

on the vacuum magnetic perturbation at the plasma boundary as a function of χ. The figure

shows that in geometric coordinates the fields are the same, as expected, but SFL coordinates

they differ. In particular, in the high βN case, the main features of the perturbation (closest to

the coils) are compressed into a smaller range of χ, which means they are represented with

higher poloidal mode numbers. This is the cause of the spectral shift towards higher m with

increasing βN apparent in figure 3c,d).

It is acknowledged here that the plasma boundary shape, via its influence on the

equilibrium geometry near the edge, should also have a significant impact on alignment. This

is not included in this work, since the plasma boundary shape is not described by a single

scalar value, and so would add too many extra dimensions to consider here. The dependence

of ∆Φopt on the plasma boundary shape is investigated partially in [34].

3. Dependence of ∆Φopt with q95, βN , n

3.1. Scaled equilibrium set

Using the CHEASE fixed boundary equilibrium solver [45], a dense set of equilibria which

span a wide range of βN and q95 were produced by scaling a reference equilibrium from

ASDEX Upgrade experiment 30835 at 3.2s, which is used as a standard equilibrium in many

modelling works [32, 35]. The reference equilibrium was first truncated to exclude the X
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Figure 5. a) The set of equilibria (black dots) were made by scaling the reference equilibrium

(cyan pentagon) in plasma pressure and plasma current. The coloured squares correspond

to the 3 example cases plotted in Figure 6. b) Histogram of experimental βN values and

c) Histogram of experimental q95 values. Values are gathered from 20 timepoints from the

flattops of 4600 recent ASDEX Upgrade plasma discharges. Note also that q95 is defined as

always positive in this work.

point, by manually smoothing the plasma boundary in the vicinity of the X point. The

resulting boundary shape was held constant in this scan. q95 was scanned by scanning the

forced value of the core safety factor q0, resulting in a rigid shift of the q profile (including

edge safety factor qa) and self-consistent adjustments to the current and pressure profiles. To

scan βN the pressure was scaled self similarly, with self-consistent adjustments to the current

and q profiles, with the constraint that q0 be fixed. The inductance li was also constant to

within 5%. Figure 5a) shows the (βN , q95) values of the scaled equilibrium set produced,

the reference equilibrium, and three example cases for which profiles are plotted in figure

6. Each dot represents an individual equilibrium point. Figure 5b,c) shows histograms of

experimentally accessed values of q95 and βN , taken from 20 timepoints from the flattops of

4600 ASDEX Upgrade plasma discharges. The figure shows that the equilibrium set is wide

enough in βN and q95 to encompass the most commonly accessed ASDEX Upgrade global

plasma parameters. Figure 6 shows the q, pressure and current profiles for 3 of the scaled

equilibria as annotated in Figure 5a), to demonstrate the rigid shift of the q profile, and the

scaling of the pressure and current profiles.

3.2. ∆Φopt computed using MARS-F across (βN , q95) domain

For each point in the (βN , q95) scaled set and for n = 1 − 4, the vacuum field and plasma

response to the applied RMP field were computed, by solving the linearised equations of

resistive MHD using the MARS-F code. The field due to the upper and lower coils were

computed separately, to compute the outermost resonant field component due to the upper coil

set b1,ures, and lower coil set b1,lres. The optimal coil phase was then computed using Equation 1.
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Figure 6. a) q95 was scanned by changing the forced value of q0, resulting in a rigid shift

of the q profile b) βN was scaled by scaling the pressure profile c) The current density varies

consistent with the plasma pressure and safety factor, which are the two variables used to scale

q95 and βN . Case 1,2,3 are used to refer to the coloured points in Figure 5a).

Figure 7 shows ∆Φopt for the scan of (βN , q95), for n = 1− 4, in the vacuum approximation

and including the plasma response. In figure 7, the range of ∆Φopt can exceed 360 degrees.

This is because phase wraps were manually removed in this study, since they do not represent

physics and obscure the underlying trends. Generally, ∆Φopt increases with q95, and decreases

with βN . As found previously [22, 34, 35], the strongest dependence is on q95.

This work also finds a weak βN dependence of ∆Φopt, in contrast with a previous

work [29] in which a similar βN scan was performed both experimentally and numerically

and found that βN has no effect on ∆Φopt. In [29], βN is scaled by modifying the core

pressure profile while leaving the pressure pedestal approximately unchanged, whereas in

this work βN is modified by scaling the entire pressure profile including the pedestal by a

constant factor as shown in Figure 6b). |b1res| is defined at the last rational surface, which

is typically very close to the plasma edge near the pedestal foot. It is possible that in the

former approach in which pressure pedestal is approximately unchanged in the βN scan,

the equilibrium in the edge region is relatively unchanged by βN scaling. Therefore the

alignment of the perturbation with the equilibrium field in the pedestal would not be changed

by βN , explaining the absence of a βN dependence of ∆Φopt. Conversely if βN is scaled

by multiplying pressure profile by a constant factor, as in this work, the pressure pedestal

scales with βN , and therefore we would expect a change in alignment with βN as explained

in Figure 3. This may explain why the numerical approach in [29] does not detect a change

in ∆Φopt with βN , whereas the approach in this work does. This suggests that whether or

not a βN dependence is detected depends on whether the pedestal pressure is allowed to scale

with βN . However, the result in [29] is also supported by experimental measurements which

detect no ∆Φopt dependence on βN , suggesting that the βN scaling approach adopted in [29]

corresponds closer to the physical reality. Investigating whether the βN dependence can be

detected in ASDEX Upgrade experiments is left to future work.
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Figure 7. ∆Φopt computed at each point of the scaled equilibium set using MARS-F

to compute b1,ures and b1,lres, and Equation 1 for ∆Φopt. a,c,e,g) Optimal alignment of the

vacuum field for n = 1, 2, 3, 4 respectively. b,d,f,h) Optimal alignment of the total field for

n = 1, 2, 3, 4 respectively. In all cases ∆Φopt varies smoothly with βN and q95.
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RMSEpoly Linear Quadratic Cubic

n=1 vacuum 6.65 0.86 0.55

n=1 total 11.80 6.09 5.14

n=2 vacuum 12.80 1.58 0.90

n=2 total 12.99 4.73 4.50

n=3 vacuum 19.74 2.61 1.53

n=3 total 20.41 3.80 2.93

n=4 vacuum 26.25 4.45 3.19

n=4 total 25.73 6.49 4.67

Table 1. RMSEpoly for each scaled equilibrium set, for a linear, quadratic and cubic fit.

coeff a b c d e f g h i

n=1 vacuum 0.13898 0.15842 -1.6741 -0.51686 -7.6899 18.737 -1.2555 65.15 -312.19

n=1 total 0.43305 -5.7 17.097 -2.7405 29.94 -99.267 -0.45866 49.966 -210.18

n=2 vacuum 0.14571 1.7142 -6.3854 -0.2497 -23.719 56.206 -3.1508 127.83 -327.38

n=2 total 0.14047 1.7732 -8.5336 -0.33719 -22.025 63.892 -3.1757 129.07 -286.34

n=3 vacuum 0.28269 1.6533 -6.7085 -0.33683 -34.041 76.084 -4.6137 180.18 -676.44

n=3 total 0.21942 1.8076 -7.1436 -0.56169 -28.501 67.55 -3.9637 171.31 -604.86

n=4 vacuum 0.36048 2.047 -8.1855 -0.50638 -42.161 91.007 -5.1487 219.78 -646.41

n=4 total 0.50969 0.78126 -6.1876 -1.1285 -35.518 85.061 -4.1725 208.44 -572.3

Table 2. All coefficients of 2D quadratic parametrisation of ∆Φopt, for all cases scanned using

the scaled equilibrium set

3.3. Parametrisation of ∆Φopt

Figure 7 shows that for given n, ∆Φopt is a smoothly varying function of (βN , q95). This

allows the results to be parametrised with a simple analytic function, to allow researchers

to estimate ∆Φopt, which will be useful for interpreting experimental data and for planning

future experiments. The choice of a 2D polynomial function is motivated by ease of use and

to provide sufficient degrees of freedom to fit the scan results in Figure 7 closely. Linear,

quadratic and cubic 2D polynomials in (βN , q95) were fit to the data in Figure 7. To quantify

the fit of each polynomial to the scaled equilibrium data, an RMSE between the polynomial

and the scaled equilibrium set is used, defined below

RMSEpoly =

(

N
∑

i

(∆Φi
opt,set −∆Φi

opt,poly)
2/N

)

1

2

(2)

where N here is the number of points in the scaled equilibrium set, ∆Φi
opt,set are the

optimum coil phases for each point in the scaled equilibrium set as computed by MARS-F,

and ∆Φi
opt,poly are the optimum coil phases predicted by the linear, quadratic or cubic 2D
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polynomials. For each polynomial, the values of RMSEpoly for all 8 datasets are listed in

table 1. The table shows that while the quadratic fit is a significant improvement on the linear

fit, the cubic fit is not significantly better at representing the data than the quadratic. Since this

parametrisation is intended for use by researchers for planning experiments, the quadratic fit

is used, as a compromise between accessibility and accuracy. Equation 3 describes the form

of the 2D quadratic function, and table 2 lists the coefficient values of the 2D quadratic. In

the following, let ∆Φopt,quad be ∆Φopt predicted by the 2D quadratic parametrisation, x = βN
and y = q95

∆Φopt,quad = a(x2y2) + b(x2y) + c(x2) + d(xy2) + e(xy) + f(x) + g(y2) + h(y) + i (3)

Across the bulk of the (βN , q95) domain the 2D quadratic is within 6 degrees of the

computed scan in all datasets. However, when the plasma response is included, there are small

horizontal ’stripes’ in the (βN , q95) domain which correspond approximately to nqa being

immediately below an integer, where sharp peaks in the amplified kink-peeling response as

computed by MARS-F are observed, as previously detected and explained in [22, 34]. These

peaks cause a highly localised upward shift from the underlying trend of up to 20 degrees.

These points do not significantly affect the 2D quadratic fit however, which is dominated by

the bulk of the (βN , q95) domain outside the RFA peaks.

3.4. Uncertainty of the parametrisation

In order to quantify the uncertainty of the 2D quadratic compared to a full MARS-F

computation as in [32,35], a set of benchmarking points, consisting of 85 distinct time points

from 31 distinct plasma discharges (49 time points from 17 n = 1 discharges, 36 timepoints

from 14 n = 2 discharges), and their corresponding coil currents, equilibria and kinetic

profiles, were collected from the ASDEX Upgrade experimental database. The equilibria,

based on CLISTE [50] reconstructions which are routinely performed after each ASDEX

Upgrade experiment, were read from the ASDEX Upgrade database. Using the AUGPED

tool, analytic mtanh functions were fitted to experimental measurements aggregated over

20ms, of electron density ne, electron temperature Te, and ion temperature Ti, and a spline to

toroidal bulk plasma rotation vt, in order to produce the kinetic profiles for each benchmarking

point. Figure 8 shows the data and fits of kinetic profiles for an example benchmarking point.

Global plasma parameters (βN , q95) for each benchmarking point are summarised in figure

9. Plasma boundary shapes for the benchmarking equilibria and the reference equilibrium

(30835 at 3.2s), are shown in figure 10. Each benchmarking point consists of a plasma

equilibrium and plasma boundary reconstructed from magnetic measurements, kinetic profiles

of ne, Te, Ti and vt fitted to data from multiple diagnostics, and the experimentally applied

RMP coil currents. For each benchmarking point, the vacuum field and plasma response was

computed using the MARS-F code, to compute b1,lres and b1,ures, and ∆Φopt was then computed

using Equation 1. Figure 11 shows the values of ∆Φopt predicted by the 2D quadratic function,
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Figure 8. Kinetic data and fitted curves for ASDEX Upgrade discharge number 30641 at

4.0s, illustrating an example kinetic profile fit for a benchmarking point. The significant

scatter in the spatially resolved experimental measurements is typical. a) mtanh function

fitted to electron temperature data from the Thompson Scattering diagnostic [46] and Electron

Cyclotron Emission diagnostic [47]. b) mtanh function fitted to ion temperature data from

the Charge Exchange Recombination Spectroscopy diagnostic [48]. c) mtanh function

fitted to electron density data, from the Thompson Scattering diagnostic, the Lithium Beam

diagnostic [49] and interferometers. d) spline function fitted to toroidal bulk rotation data,

from the Charge Exchange Recombination Spectroscopy diagnostics

Figure 9. Experimental values of (βN , q95) used to benchmark the 2D quadratic

parametrisation. Each point consists of a distinct equilibrium, plasma boundary, set of kinetic

profiles and RMP coil currents.

compared with values computed using a MARS-F plasma response computation for the

diverse set of benchmarking points, for both n = 1 and n = 2 RMP experiments. Performing

this benchmarking for the n = 3, 4 scan is left for future work. To quantify the agreement

between the 2D quadratic (Equation 3 with coefficients in Table 2) and the benchmarking

points (computed with MARS-F for distinct equilibria and coil currents, and Equation 1), the

RMSE between them is defined below, where N is now the number of benchmarking points
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Figure 10. Plasma boundaries of each benchmarking point, and the boundary of the reference

equilibrium (black dashed line). There is significant variation in boundary shape in the set of

benchmarking points.

RMSEbench =

(

N
∑

i

(∆Φi
opt,bench −∆Φi

opt,quad)
2/N

)

1

2

(4)

The RMSE between the 2D quadratic function and the benchmarking points, is 7.8 for

n = 1 vacuum predictions, 26.5 for n = 1 total predictions, 15.8 for n = 2 vacuum

predictions, and 20.6 for n = 2 total predictions. Figure 11 shows the predictions of the

2D quadratic plotted against the MARS-F predictions. In Figure 2, it can be seen that the

gradient of |b1res| is low in the region of ∆Φopt, therefore misalignment on the order this

deviation may be tolerated without a great effect on |b1res|. Therefore the agreement shown

in Figure 11 is sufficient for experimental planning. As the figure shows, there are instances

where the prediction of the 2D quadratic differs significantly from the MARS-F predictions

for the benchmarking points. Several candidate causes for these deviations are now discussed.

3.5. Sources of uncertainty for ∆Φopt,quad

3.5.1. Rotation The benchmarking points have a widely varying rotation profiles, and core

and edge rotation speeds. However, the rotation profile was held constant when the plasma

response was computed for the (βN , q95) scan. In order to determine whether ∆Φopt is

sensitive to rotation, and therefore whether rotation may explain some of the scatter in Figure

11, ∆Φopt was computed using the reference equilibrium, while the rotation profile was scaled

from 0.1 to 10 times its experimental value. Figure 12 shows the computed values of ∆Φopt as
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Figure 11. ∆Φopt at each benchmarking point predicted by the 2D quadratic, with only βN ,

q95 and n as input, plotted against ∆Φopt at each benchmarking point predicted by a full

MARS-F computation, with a plasma equilibrium, plasma boundary shape, coil currents and

set of kinetic profiles as input. The 1:1 line is annotated on in solid black, and the dashed black

lines are RMSEbench degrees from the 1:1. The MARS-F computation is the more rigorous

approach, but the 2D quadratic is far simpler and quicker, and requires no specialist software

or expertise.

rotation speed is changed. The plot shows that ∆Φopt is insensitive to scaling of the rotation

profile, to within 10 degrees.

3.5.2. Kinetic pedestal uncertainty As Figure 8 shows, the kinetic profiles required for the

MARS-F computation are produced by fitting curves to experimental data. Any such fit

has an associated uncertainty, and as the kinetic profiles are used as input to MARS-F it

is possible that this uncertainty may propagate into the plasma response computations, or

even the vacuum calculations by modifying the equilibrium near the edge. In this section,

the effects of kinetic profile uncertainty on ∆Φopt are investigated, by recomputing ∆Φopt

while changing the kinetic pedestal width within its uncertainty. Figure 13 shows the profiles

used in the scan. The pedestal width is varied from −2σ to +2σ, where σ is the uncertainty

in pedestal width derived from the original mtanh fit to the kinetic data. The equilibrium

reconstruction was repeated for each pedestal width, such that the current and pressure profiles

were consistent with the kinetic profiles. This resulted in slight changes to the pressure

and q profiles, as shown in Figure 14 a), b) and c). The equilibrium reconstruction was
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Figure 12. ∆Φopt of the reference equilibrium computed by MARS-F, while the toroidal

rotation profile is scaled by factors of 0.1 to 10. The result shows that ∆Φopt is robust to

rotation profile scaling.

Figure 13. Profiles of the electron and ion temperature and the electron density are fitted to

mtanh curves. The fit parameters, specifically the pedestal width, has an associated uncertainty

σ. The profiles above represent a scan of the pedestal width from −2σ to 2σ.

performed using the CLISTE code [50], which computes the equilibrium based on magnetic

measurements and kinetic profiles, and self-consistently includes the bootstrap current. For

each set of self consistent kinetic profiles and equilibria, the optimal coil phase including

the plasma response was computed using MARS-F. Figure 14 d) shows ∆Φopt with varying

pedestal width. The figure shows that ∆Φopt is robust to uncertainties in the kinetic pedestal

width, therefore it is unlikely to be the cause of the deviations in Figure 11.

3.5.3. Plasma Boundary As Figure 10 shows, the plasma boundaries of the benchmarking

points vary widely, in particular many were significantly different to the reference equilibrium

used to derive the 2D quadratic function. In a recent work [34], also using MARS-F and 30835

at 3.2s as reference equilibrium, ∆Φopt was computed for a scan of the upper triangularity of

the plasma boundary shape. It was shown that a change in the upper triangularity of the

plasma boundary shape of 0.08, can result in a change to ∆Φopt of 60 degrees. It seems likely

then, that variations in the plasma shape may explain much of the scatter observed in Figure

11.
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Figure 14. For each step in the kinetic profile uncertainty scan, the equilibrium was

recomputed using CLISTE, causing changes to the equilibrium consistent with the kinetic

profile changes. Figure a) shows the magnetic helicity, b) equilibrium current profile and c) the

equilibrium current profile) . d) shows ∆Φopt computed with MARS-F for each equilibrium

in the kinetic profile scan. ∆Φopt is also robust to pedestal width within ±2σ of the fit

uncertainty.

As well as a random error, Figure 10b) shows what appears to be a systematic deviation

between the 2D quadratic and MARS-F predictions. The observation that the RMSE between

the 2D quadratic and scan data is small, and also that the 2D quadratic is within 6 degrees of

the scaled equilibrium data for the bulk of the domain (except the RFA peaks as previously

described), indicates that this is not simply a fitting error. It may be that this deviation results

from a systematic difference between the plasma boundaries of the n = 1 discharges, and

the reference discharge used to derive the 2D quadratic. To answer this, a systematic study

of the dependence of ∆Φopt on the plasma boundary shape, and orientation and proximity

to the RMP coils would be required, which is left for future work. Also in future works,

the coefficients in table 2 may be recomputed using an equilibrium which has a boundary

shape which is more representative of ASDEX Upgrade discharges, which may reduce the

uncertainties.
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4. Summary and Discussion

The effect of the plasma equilibrium parameters βN and q95 on the optimal RMP coil phase

∆Φopt is quantified for n = 1 − 4 RMP perturbations and ASDEX Upgrade plasmas. By

scaling a standard ASDEX Upgrade reference equilibrium in plasma current and pressure,

and computing the plasma response to an applied RMP field at each scaled point, the optimal

coil phase ∆Φopt as a function of (βN , q95) and n was computed. It was found that for given

n and plasma shape, ∆Φopt is a smoothly varying function of (βN , q95), allowing it to be

parametrized with a simple 2D quadratic function. By computing ∆Φopt using MARS-F for a

large and diverse set of free boundary equilibria from distinct ASDEX Upgrade experiments,

the accuracy of the 2D quadratic relative to MARS-F predictions was quantified. It was

found that the 2D quadratic agrees with rigorous MARS-F computations (ie, for a given

equilibrium, coil current set and experimental profiles) to within 7.8 degrees for n = 1

vacuum predictions, 26.5 degrees for n = 1 total predictions, 15.8 degrees for n = 2 vacuum

predictions, and 20.6 degrees for n = 2 total predictions. The 2D quadratic is a sufficiently

simple parametrization that ∆Φopt can be computed rapidly for large datasets, and also that

a coil phase optimisation feedback control system can be envisaged, which would change

the coil phase to follow its optimal value throughout a plasma discharge. Benchmarking

the 2D quadratic for n = 3, 4, quantifying thoroughly the effect of small misalignments on

the mitigated ELM frequency, improving the accuracy of the 2D quadratic by use of a more

representative reference equilibrium and by incorporating variation in the plasma boundary

shape, and also refining this parametrization and tailoring it for other tokamaks, both existing

and planned, is left for future work. Also left for future work is validating experimentally the

optimal coil phase dependence on q95 and βN , by measuring the ELM frequency during ∆Φ

scans at a range of q95 and βN values.
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