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Abstract

We propose a Bayesian decision-theoretic model of a fully sequential experiment in

which the real-valued primary end point is observed with delay. The goal is to identify

the sequential experiment which maximises the expected benefits of technology adoption

decisions, minus sampling costs. The solution yields a unified policy defining the optimal

‘do not experiment’/‘fixed sample size experiment’/‘sequential experiment’ regions and op-

timal stopping boundaries for sequential sampling, as a function of the prior mean benefit

and the size of the delay. We apply the model to the field of medical statistics, using data

from published clinical trials.
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1 Introduction

The ethical and economic advantages of sequential and adaptive clinical trial designs are well

documented (Armitage, 1975; Berry, 1985; Whitehead, 1997; Jennison and Turnbull, 1999). It

is also common to observe data on patient outcomes some time after treatment has taken place.

For example, Brown et al. (2000) measured outcomes immediately following surgery and again

at one and twenty four hours post-surgery; Connor et al. (2015) measured the primary end point

at 90 days and Moses et al. (2003) measured outcomes over one year. Less well researched is the

question of how sequential experiments should be adjusted when the primary end point arrives

with delay.

This question is especially important given the increasing policy interest in sequential and

adaptive trial designs (European Medicines Agency, 2006; US FDA, 2010). Concern about

avoiding unnecessary recruitment to the trial, past the point at which evidence is deemed to

be conclusive, means there is a growing focus on valuing the cost of carrying out research, to-

gether with the benefits that accrue to trial participants and patients who may benefit from a new

technology (Lewis et al., 2007; Willan and Kowgier, 2008; Pertile et al., 2014). Indeed, the UK

National Institute for Health and Care Excellence (NICE, 2012) examines cost and effectiveness

when making tradeoffs in care, and the value-based health movement (Porter, 2010) calls for

increased attention to the health benefits obtained for a given level of expenditure.

Hampson and Jennison (2013) provide an overview of the emerging literature on group se-

quential trial design with delay. They derive new, frequentist, delayed response group sequential

tests for two-treatment comparisons of mean efficacy which minimise the trial’s expected sam-

ple size, subject to meeting prespecified type I and type II error probabilities. The authors derive

their optimal stopping rules by solving Bayes decision problems using dynamic programming.

Broglio et al. (2014) present a Bayes adaptive design which stops recruitment to a trial if the pre-

dictive probability of success upon immediate cessation of recruitment and follow-up of pipeline

patients exceeds a predefined probability, or if the predictive probability of success at the maxi-

mum sample size is lower than a predefined futility probability.

In discussing Hampson and Jennison (2013), Draper (2013) suggests that solving a Bayesian

decision-theoretic model, whose utility function measures outcomes on a clinically relevant scale

(such as the Quality Adjusted Life Year, or QALY, e.g. see NICE 2012) could provide real gains

over the type I/type II error probability scale. Burman (2013) also advocates use of a Bayesian

decision-theoretic framework which measures explicitly the cost of sampling and the value of

trial results and which incorporates a prior distribution for the expected outcome.

We implement the recommendations of Draper (2013) and Burman (2013) by proposing a

Bayesian decision-theoretic model for experimental design which compares two health tech-

nologies and which is fully sequential (as opposed to one which uses a fixed sample size, or

which allocates patients in a group sequential manner). Outcomes are observed with a specified

delay and converted to economic values using standard cost utility analysis; costs of sampling

and switching technologies are explicitly accounted for. The model selects the policy which

maximises the expected benefits of the technology adoption decision that is made on the ba-

sis of experimental data, minus the expected cost of the sequential experiment itself. Expected

benefits can include the treatment effect accruing to trial participants as the study progresses, as
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well as expected benefits which accrue to the patients who benefit from the adoption decision.

Discounting of future costs and benefits is permitted, so that the model may be applied to health

technology assessments such as those considered by NICE. To the best of our knowledge, ours

is the first to combine all of these features within a unified framework.

Section 2 presents and solves the model for the case of a known sampling variance. Section 3

highlights the main features of the optimal policy using an illustrative example. Section 4 con-

siders the case of an unknown sampling variance. Section 5 presents an application using data

from a published clinical trial for drug-eluting stents and assesses the operating characteristics of

the model’s optimal policy. Directions for future research are presented in section 6. Appendix A

and the Online Supplementary Material (OSM, Appendix S) provide mathematical proofs and

further details on our methods, as well as an additional application. Matlab code which imple-

ments these computations is provided at https://github.com/sechick/htadelay.

2 The model

We consider a two-armed, sequential clinical trial in which study units are allocated at random,

and in a pairwise manner, to either a control (the current best available standard) health technol-

ogy or a new one. There is a sampling cost c ∈ R≥0 ≡ [0,∞) per pairwise allocation made. The

purpose of the trial is to evaluate which technology should be used to treat P ∈ R>0 ≡ (0,∞)
patients upon stopping the trial. A one-time switching cost I ∈ R≥0 is incurred if the decision is

made to adopt the new technology. No such cost is incurred if the decision is made to continue

with the standard technology.

Effectiveness is denoted by the random variable EN ∈ R if a patient is assigned to the new

technology and ES ∈ R if the patient is assigned to the standard one. The patient-level costs of

using each technology are the random variables CN ∈ R≥0 and CS ∈ R≥0. It is assumed that all

patients complete their assigned course of treatment, there is no loss to follow up, and EN, ES,

CN and CS are observed without measurement error.

Following standard approaches in Bayesian decision-theoretic models (see, for example,

Berry and Ho 1988, Lewis et al. 2007 and Pertile et al. 2014) and in line with the suggestion

of Burman (2013), a common unit of measurement is used to value benefits and costs. We as-

sume that effectiveness is valued in monetary terms, using survey data or information provided

by a regulatory body such as NICE (for example, NICE values one Quality Adjusted Life Year

(QALY) at between £20,000 and £30,000). Define λ ∈ R>0 as the monetary value of one unit

of effectiveness. Then the individual level incremental net monetary benefit ( INMB ) of the new

technology versus the existing one for pairwise allocation i is:

Xi = λ(EN,i − ES,i)− δCE(CN,i − CS,i), (1)

where δCE = 1 if the experiment assesses cost-effectiveness and δCE = 0 if it assesses effectiveness

only. It is assumed that Xi ∼ N (W,σ2
X), i = 1, 2, . . . , Tmax, where Tmax ∈ Z>0 is the maximum

number of pairwise allocations which can be made in the trial. W is assumed to be unknown

and σ2
X is assumed known (we discuss unknown σ2

X in section 4). The prior distribution for W
is assumed to be N (µ0, σ

2
0). The choice of σ2

0 might be guided by expert judgment and available
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related data. For example, choice of the so-called ‘effective sample size’ of the prior distribution,

n0 = σ2
X/σ

2
0 , might be guided by the sample size of a related Phase II clinical trial or pilot study.

O’Hagan et al. (2006) provide additional guidance on specifying prior probability distributions.

The annual rate of accrual to the trial is assumed to be constant and equal to R ∈ R>0. In

contrast to the model of Pertile et al. (2014), the Xi arrive with a delay of τ ∈ Z≥0, τ < Tmax,

pairwise allocations, at which point they are used to update the prior/posterior distribution for W
in a sequential manner. The number of pairwise allocations τ of delay therefore depends on the

rate of accrual, R, and the time delay in observing the outcome. Future benefits and costs may

be down-weighted using a discount rate, defined at the level of one pairwise allocation as ρ̃ ≥ 0.

2.1 The decision problem in discrete time

Define T ≡ {0, 1, . . . , Tmax}, and define T ∈ T as the time at which pairwise allocations cease

to be made. Define T̄ ≡ {0, 1, . . . , Tmax + τ} as the set of equally spaced times where pairwise

allocations and/or a choice to adopt one of the two technologies may be made.

At each t ∈ T\{Tmax}, an action at is chosen from the set of available actions, A ≡ {0, 1},

such that at = 1 denotes choosing to make a pairwise allocation (so that T > t) and at = 0
denotes choosing not to make a pairwise allocation. It is assumed that, once pairwise allocations

cease to be made, sampling cannot be restarted: at the first occurrence of at = 0, pairwise

allocations cease (so that T = t and at = 0 for all t > T ).

For t ≤ τ , at is chosen only on the basis of prior information. For τ < t < Tmax, the action

can be a function of the {Xi}1≤i≤t−τ . For t = τ, . . . , Tmax − 1, the ordering of events is as

follows: action at is chosen; realisation Xt+1−τ = xt+1−τ is observed; prior distribution for W
is updated. If sampling continues as far as t = Tmax, T = Tmax and sampling stops.

Once sampling is stopped, one must wait to observe all outcomes for the ‘pipeline subjects’

– those who have been treated but whose outcomes have yet to be observed – before making the

technology adoption decision. Define D ∈ {N, S} as the decision concerning whether to choose

the new technology (N) or the standard (S). This adoption decision is made at time 0 if a0 = 0,

because no pairwise allocations will be made. It is made at time T +τ , T > 0, if a0 = 1, because

of the delay.

More compactly, the adoption decision is made at time 1T>0(T+τ), where 1F is the indicator

function, equal to 1 if the event F is realized and 0 otherwise. The expected reward from selecting

technology D, ignoring the cost of sampling and discounting, is 1D=N(PW − I). A policy π
is a dynamic method of deciding, at each time t, to take an action from A using the history of

choices and realisations that have so far accrued, and a technology adoption decision from D.

The objective is to establish a policy π∗ which maximises the expected reward of the sequential

sampling process and adoption decision.

Define F = (Ft)t∈T̄ as the natural filtration generated by the {Xi}1≤i≤t−τ for t ∈ T̄. Due to

the delay, Ft = F0 for t ∈ {0, 1, . . . , τ}. Define variables tracking the ‘effective sample size’ (as

a function of the number of realisations of pairwise allocations) in the posterior distribution for

W , and the ‘effective cumulative sum’ of realisations, given information available to time t ∈ T̄,
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nt = n0 + (t− τ)+, and Yt = µ0n0 +

(t−τ)+
∑

i=1

Xi, (2)

where (m)+ = max(0,m) and the sum is equal to 0 if the upper bound for the summation is 0.

The posterior distribution for W at time t has a normal distribution

W | Ft ∼ N (µt, σ
2
X/nt), where: (3a)

µt = Yt/nt. (3b)

We may use (yt, nt) as a sufficient statistic for W conditional on Ft and we use (yt, t) as a state

because it also provides information about the number of pipeline subjects.

A policy π defines a mapping f(yt, t) : R×T\{Tmax} → A from states to deciding whether

to make a pairwise allocation, which in turn determines T . A policy π also specifies the choice

of the new technology or standard, D ∈ {N, S}, as discussed above.

By construction, T is a stopping time with respect to the filtration F taking values in T; D
is F1T>0(T+τ)-measurable and π is measurable with respect to F . Let Π be the set of all policies

which are so measurable with respect to F . We write Eπ to denote the expectation with respect

to the measure induced by π on the sequence of observations and decisions, and E to indicate the

expectation when it does not depend on π. Table 1 summarizes the principal notation.

The expected reward from a policy π ∈ Π depends on the parameters of the prior distribu-

tion (µ0, n0), and is determined by the cost of sampling, benefits to patients during the trial (if

permitted), and benefits from the technology adoption decision:

V π(µ0, n0) = Eπ

[{

T−1
∑

t=0

−c+ δonXt+1

(1 + ρ̃)t

}

+
1D=N(PW − I)

(1 + ρ̃)1T>0(T+τ)

∣

∣

∣
µ0, n0

]

. (4)

Here, δon = 1 if the benefits to patients participating in the trial (in addition to the P post-

trial patients) are to be included in the reward function (known as ‘online learning’). δon =
0 if rewards for participants are not to be included in the reward function (‘offline learning’).

Traditional trials set δon = 0 implicitly. The term 1T>0(T + τ) indicates that a penalty for

discounting is only relevant for the terminal reward if at least one pairwise allocation is made.

The objective is defined to be that of finding a policy π∗ ∈ Π such that

V π∗

(µ0, n0) = sup
π∈Π

V π(µ0, n0). (5)

It will be useful to analyze three distinct stages of the trial in order to characterise the op-

timal policy. These are illustrated in Figure 1. During stage I (t ∈ {0, 1, . . . , τ − 1}) pairwise

allocations are made sequentially and no outcomes are observed, owing to the delay. During

stage II (t ∈ {τ, τ + 1, . . . , T − 1}) pairwise allocations are made, realisations xt+1−τ for

pipeline subjects arrive sequentially and are used to carry out Bayesian updating. During stage III

(t ∈ {T, T + 1, . . . , T + τ}) no pairwise allocations are made, observations on pipeline subjects

arrive sequentially and are used to carry out Bayesian updating.
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P ∈ R>0 Number of patients to receive technology once adoption decision made

I ∈ R≥0 Fixed cost of switching to the new technology from standard technology

X ∈ R (random variable) Incremental effectiveness/net monetary benefit of new over standard

σ2
X ∈ R>0 Variance of X

W ∈ R Expected value of X
µ0 ∈ R, σ2

0 ∈ R>0 Mean and variance of prior distribution for W
n0 = σ2

X/σ2
0 Effective sample size of prior distribution

τ ∈ Z≥0, τ < Tmax Delay in observing realisation of pairwise allocation (in pairwise allocations)

Tmax ∈ Z>0 Maximum number of pairwise allocations which can be made

T ≡ {0, 1, . . . , Tmax} Set of potential patient pairs to be allocated

TI ≡ {0, 1, . . . , τ − 1} Recruitment of trial participants only

TII ≡ {τ, . . . , Tmax − 1} Parallel recruitment and Bayes updating possible

T̄ ≡ {0, 1, . . . , Tmax + τ} Set of times when pairwise allocations and/or treatment choice may be made

at ∈ A ≡ {1, 0} Action to make a pairwise allocation (at = 1) or not (at = 0), t ∈ TI ∪ TII

T ∈ T Time at which pairwise allocations cease to be made (stopping time)

D ∈ {N, S} Decision to adopt new or standard, having observed all realisations

π Sequence of sampling decisions and an adoption decision

Π Set of policies where T ≤ Tmax

F = (Ft)t∈T̄ Natural filtration defined by the observations seen through time t
Eπ;E Expectations: with respect to filtration induced by π; independent of π
nt = n0 + (t− τ)+ Effective sample size of posterior distribution as tth pairwise allocation is made

Yt = µ0n0 +
∑(t−τ)+

i=1 Xi Cumulative sum for posterior mean

µt = Yt/nt Posterior mean of W when t pairwise allocations have been made

Zt,u Posterior mean to be obtained, given Ft and u ‘pipeline’ observations to arrive

c ∈ R>0 Recruitment cost of making one more pairwise allocation

R ∈ R>0 Annual rate of recruitment to the trial

ρ̃ ≥ 0 Discrete time discount rate at level of one pairwise allocation

λ Monetary value of one unit of effectiveness (e.g., £30,000 / QALY)

δon 1 = ‘online learning’; 0 = ‘offline learning’

Table 1: Table of principal notation.

In sections 2.1.1–2.1.3 we formulate a dynamic program (Bertsekas and Shreve, 1978) by

developing Bellman’s equation for the expected reward in reverse time from stage III to stage I.

Section 2.2 justifies how an optimal policy π∗ ∈ Π can be determined from Bellman’s equation

and provides further results for two special cases. Section 2.3 introduces the method that we use

to solve the problem.

2.1.1 Optimal rewards in stage III

Stage III is entered when recruitment to the trial stops at time T . The optimal expected reward

upon entering stage III depends on the u = min(T, τ) pairwise allocations in the pipeline: u = T
if stopping takes place during stage I, and u = τ if it takes place during stage II. Let Zt,u be the

posterior expected INMB at the patient level, given the information to time t and that u outcomes

are still to be observed. Then in our setting:

Zt,u ≡ E[W | Ft, Xt−u+1, Xt−u+2, . . . , Xt] ∼ N
(

µt,
σ2
X

nt

u

(nt + u)

)

. (6)
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0 t T

Stage I

(recruitment  only)

Stage II

(recruitment  and updat ing)

Stage III

(updat ing only)

T+t

Figure 1: Stages of the problem with stopping time T and delay τ .

An adoption decision can be made immediately if T = 0 because no trial takes place. If

T > 0, the last of the observations on pipeline subjects will be observed τ time units after

stopping. Once all outcomes on pipeline subjects are observed, it will be optimal to adopt the

new technology (D = N) if PZT,min(T,τ)−I > 0 and the standard one (D = S) otherwise. Define

G : R×N0 → R as the optimal discounted expected reward following a decision to stop at time

T = t and wait for the observations on pipeline subjects before making an adoption decision:

G(yt, t) = (1 + ρ̃)−1t>0τE[ (PZT,min(T,τ) − I)+ | YT = yt, T = t ]. (7)

2.1.2 Bellman’s equation for stage II

For stage II, let TII ≡ {τ, . . . , Tmax − 1} be the set of times at which pairwise allocations can

be made, outcomes are being observed and Bayes updating is taking place. The decision about

whether to make the next pairwise allocation is based on a comparison of G in Eq. (7) with the

expected reward of making that allocation, observing the outcome of the next pairwise allocation

in the pipeline, and continuing to behave optimally on the basis of that outcome. Define B(yt, t) :
R × (TII ∪ {Tmax}) → R as having the maximum value of the expected reward for the next

allocation decision, given that t pairwise allocations have been made and (t − τ) have been

observed, resulting in a posterior mean of yt/nt. Then Bellman’s equation in stage II is:

B(yt, t) =max
{

G(yt, t), −c+ δon(yt/nt) (8a)

+ (1 + ρ̃)−1
Eπ[B(yt +Xt+1−τ , t+ 1) | yt, t ]

}

, t ∈ TII,

B(yTmax
, Tmax) =G(yTmax

, Tmax). (8b)

If the second term in the maximand of Eq. (8a) exceeds the first, at = 1 and stage II continues

with an additional pairwise allocation so that T > t. For the first occurrence at which the first

term exceeds the second, at = 0 and the stopping time is T = t. If the first term never exceeds

the second, the trial runs to the maximum sample size (T = Tmax).

2.1.3 Bellman’s equation for stage I

Bellman’s equation for stage I is similar to that in Eq. (8a) for stage II, except that some simpli-

fications can be made due to the structure of delayed sampling information when τ > 0. The

existence of delay implies that no observations are available during stage I, so that yt = y0 and
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nt = n0 for t ∈ TI ≡ {0, 1, . . . , τ − 1}. Thus,

B(yt, t) = max
{

G(yt, t),−c+ δon(y0/n0) + (1 + ρ̃)−1B(y0, t+ 1)
}

, t ∈ TI. (9)

The special case of τ = 0 is modeled by letting TI be the empty set, letting stage II commence

at time t = 0, and noting the simplification G(yt, t) = (Pyt/nt − I)+ in Eq. (7).

2.2 Characterization of the optimal policy

This section shows that a policy π ∈ Π is optimal for the sequential sampling problem in Eq. (5)

if it selects (almost surely) the argmax of Bellman’s equation in Eqs. (8) and (9). It provides

additional structural results which characterise the optimal solution for some special cases.

We first observe that, for the special case of free, undiscounted sampling (c = 0, ρ̃ = 0) with

offline learning (δon = 0), the following policy is optimal: sample as much as possible (T =
Tmax) and select the new technology if the posterior mean net reward is positive (PµT+τ−I > 0)

once all outcomes have been observed, and the standard otherwise. This result is trivial from the

observation that information, in expectation, has a nonnegative value.

The special case of offline learning (δon = 0), positive discounting (ρ̃ > 0), no sampling

costs (c = 0) and no time delay (τ = 0) reduces to the special case of Chick and Gans (2009)

for comparing a known alternative (standard) with known mean reward 0 with an unknown al-

ternative (new technology) with unknown mean reward PW − I . The special case of offline

learning (δon = 0), positive sampling costs (c > 0), no discounting (ρ̃ = 0) and no time delay

(τ = 0) reduces to the special case of Chick and Frazier (2012) for the same comparison. We

now draw upon, and extend, those results to account for general costs (that is, at least one of c and

ρ̃ positive), delayed responses (τ ≥ 0), as well as both offline and online learning (δon ∈ {0, 1}).

It will be useful to define V̄ as the expected reward of an oracle who adopts the prior dis-

tribution for W and who will become aware of the true value of W immediately before start-

ing the trial. The oracle then has the option to adopt one of the two technologies immedi-

ately, based on that information, and still run patients through the trial if there exists online

learning and the expected reward for those patients exceeds the cost of sampling them. Let

Tmax,ρ̃ =
∑Tmax−1

t=0 (1 + ρ̃)−t be the discounted maximum number of pairwise allocations in the

trial. Then, given µ0 and n0 and prior to knowing W , define:

V̄ (µ0, n0) = E[(PW − I)+ + δon(W − c)+Tmax,ρ̃|µ0, n0]. (10)

The term E[(PW − I)+|µ0, n0] is the oracle’s expected reward from selecting the best tech-

nology immediately before executing the trial (that is, assuming no penalties for discounting).

The term E[δon(W − c)+Tmax,ρ̃|µ0, n0] is the oracle’s expected reward from sampling all patient

pairs if online learning is permitted and such sampling has positive net reward.

The first proposition links V̄ (µ0, n0) with the expected reward of any given policy. It will

be useful for characterizing the optimal policies in Propositions 2.2 and 2.3 below. Proofs of

mathematical claims in the paper can be found in Appendix A.
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Proposition 2.1 For policies π ∈ Π:

V π(µ0, n0) = V̄ (µ0, n0)− Ṽ π(µ0, n0), (11)

where Ṽ π(µ0, n0) ≡ Eπ[Kπ + Sπ + Lπ|µ0, n0] and the following terms are each non-negative:

Kπ ≡
T−1
∑

t=0

Kπ,t, where Kπ,t = (c− δon(W − (W − c)+))/(1 + ρ̃)t, (12a)

Sπ ≡
Tmax−1
∑

t=T

δon(W − c)+/(1 + ρ̃)t, (12b)

and Lπ ≡ (PW − I)+ − 1D=N(PW − I)/(1 + ρ̃)1T>0(T+τ). (12c)

By Eq. (11), a policy π maximises V π if and only if it minimises Ṽ π. Minimisation of Ṽ π

is itself a sequential optimal stopping problem, in which Kπ is an opportunity cost of sampling,

Sπ is a residual penalty in the presence of online learning if the stopping time is not equal to

the oracle’s stopping time and Lπ is the opportunity cost of selecting a potentially suboptimal

technology D after all outcomes are observed, accounting for any discounting owing to the delay.

This observation, together with the nonnegativity of Kπ, Sπ, and Lπ, allows us to use Bertsekas

(2005) and Bertsekas and Shreve (1978) to characterise the optimal policy with Bellman’s equa-

tion.

Proposition 2.2 If all decisions of a policy π ∈ Π attain the maximum in Bellman’s equation in

Eq. (9) for stage I decisions and in Eq. (8) for stage II decisions, and make technology adoption

decisions as described in section 2.1.1 (π-almost surely), then that policy is optimal, i.e.,

V π(µ0, n0) = V π∗

(µ0, n0) = B(µ0n0, 0). (13)

Proposition 2.3 If ρ̃ > 0 then the conclusions of Prop. 2.2 are also true when Tmax = ∞.

The optimal policy might not be unique. The continuity of the values of the terms in Bell-

man’s equation implies that there may be ties for certain parameter combinations. In applications

one might choose to break such ties by picking the action which samples more rather than less.

Such a choice offers no loss of expected reward, nor quality of inference.

The preceding propositions do not depend on properties of the normal distribution or the

assumption of known sampling variance. Their proofs use the a priori integrability of W , the

Markovian nature of Bayes’ rule, and a finite state vector to describe the posterior distribution

(e.g., as for sampling in the regular exponential family with a conjugate prior distribution for

unknown parameters), assuming that vector replaces (yt, t) as the state vector.

The next two results use properties of the normal distribution in their proofs. Prop. 2.4

uses the symmetrical nature of the normal distribution to derive a symmetry result for the value

function when there is no discounting and no online learning. Prop. 2.5 makes explicit use of

properties of the normal distribution and the assumption that σ2
X is known to provide an upper

bound on the total number of pairwise allocations required by the optimal policy.
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Proposition 2.4 If ρ̃ = 0 and δon = 0 then (i) V π∗

(I/P+∆µ, n0)−P∆µ = V π∗

(I/P−∆µ, n0),
for all real valued ∆µ; (ii) B((I/P + ∆µ)nt, t) − P∆µ = B((I/P − ∆µ)nt, t), for all real

valued ∆µ and t = 0, 1, . . . , Tmax; and (iii) the set of states (µt, t) for which it is optimal to

continue sampling is symmetric above and below the line µ = I/P .

Proposition 2.5 If ρ̃ = 0, δon = 0 and c > 0 then the optimal stopping time satisfies T ≤
1 + (P 2σ2

X)/(2πc
2) + τ − n0 almost surely, even if Tmax is larger than that upper bound.

2.3 Approximation of the optimal policy

Solving for the optimal discrete time policy in Eq. (5) is challenging even with its characterisa-

tion in section 2.2 with Bellman’s equation. We approximate the optimal solution using a related

continuous time model in the spirit of the work of Chernoff (1961). Appendix S provides math-

ematical formalism and an overview of computational methods for doing so. In summary, the

continuous time analog of Bellman’s equation is a free boundary problem for a heat equation,

the solution of which determines a continuation set C, such that it is optimal at time t to continue

sampling if (µt, t) ∈ C and to stop sampling if (µt, t) is not in the closure of C.

3 Illustration of features of the optimal policy

This section illustrates the main features of the optimal policy and assesses some of its charac-

teristics. We call the optimal policy π∗ of Eq. (5) the ‘Optimal Bayes Sequential’ policy. It is

computed using techniques described in Appendix S. The stopping boundaries of the optimal

policy are then used in Monte Carlo simulations of the discrete time problem. Parameter values

are chosen for convenience and are not based on any real-life application. The material in this

section is preparatory for the application of section 5, where data from a clinical trial are used to

populate the model and to assess statistical and economic performance.

We compare the Optimal Bayes Sequential policy with two alternative policies. One, called

the ‘Fixed’ policy, always makes a fixed number of pairwise allocations (in this section we set

T = Tmax) and selects the new technology in preference to the existing one if PµT+τ − I >
0. The ‘Optimal Bayes One Stage’ policy chooses a sample size u∗(µ0) in the set T which

maximises the net benefit of sampling in expectation,

u∗(µ0) = argmax
u∈T

{(

u−1
∑

t=0

−c+ δonµ0

(1 + ρ̃)t

)

+
E[(PZ ′

0,u − I)+ | µ0, n0]

(1 + ρ̃)1u>0(u+τ)

}

, (14)

where Z ′
0,u ≡ E[W | F0, X1, X2, . . . , Xu] ∼ N (µ0, (σ

2
X/n0)(u/(n0 + u))).

The time delay for observing the primary end point is set equal to one year and the rate of

recruitment to the trial is set to R = 1000 pairwise allocations per year. The discount rate and

the fixed cost of switching technologies are set to zero (ρ̃ = 0, I = 0). The marginal cost of

sampling is c = 500. P = 20000 patients benefit from the technology adoption decision. The

sampling standard deviation is σX = 20000 and σ0 = 2000. The effective sample size of the

prior distribution is therefore n0 = (σX/σ0)
2 = 100. There is no online learning (δon = 0).
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Figure 2: Optimal Bayes Sequential policy, together with four stage II/III paths of the posterior mean with

prior mean µ0 ≈ 17. KEY: ‘*’ value of the sampling mean wi for each path i; ‘—-’ path of posterior

mean when in stage II; ‘· · ·’ path of posterior mean when in stage III. ‘+’ thresholds A, B, C, D delineate

the ranges for ‘no trial’/‘fixed trial’/‘sequential trial recruitment’; ‘◦’ optimal stage I sample sizes.

Figure 2 plots the optimal stopping boundaries in (n0 + t)× prior/posterior mean space,

together with some stage I optimal sample sizes and four stage II/III paths of the posterior mean.

The boundaries between the ‘no trial’/‘fixed trial’/‘sequential trial recruitment’ ranges for the

prior mean are marked with a ‘+’ and labelled A, B, C and D. If the prior mean is above A or

below B, it is optimal not to carry out any trial and instead base the technology adoption decision

on the value of µ0 alone. If the prior mean is between A and C or D and B, it is optimal to carry

out a fixed sample trial (do stage I sampling and continue to stage III, with no stage II sampling).

The optimal fixed sample sizes for such trials for some values of the prior mean are indicated by

‘◦’ in these two regions. If µ0 lies between C and D, it is optimal to carry out a sequential trial,

with stage II sampling. The stage II free boundaries are shown as dashed lines.

Figure 2 shows that stage II starts at an effective sample size of n0 + τ = 1100 pairwise

allocations. Because there is no discounting, there is symmetry above and below µ = I/P = 0

in the stage II stopping boundary and the stage I fixed sample sizes (recall Prop. 2.4).

We ran Monte Carlo simulations to study the behavior of sample paths and to explore other

operating characteristics of the Optimal Bayes Sequential policy. Each sample path is generated

by making an independent draw for the drift W using Eq. (3a) with t = 0, followed by generation
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of the Xi for i = 1, 2, . . . given that draw, to generate the sample path µt using Eqs. (2) and (3b).

Figure 2 shows four sample paths for a prior mean of µ0 ≈ 17 lying in the ‘sequential trial

recruitment’ region, meaning that it is optimal to proceed to stage II. The realised values of Wi,

i = 1,. . . ,4 are indicted by ‘*’s. Stage II sections of the paths are marked as continuous lines.

When a stage II path first touches the upper or lower stage II stopping boundary (dashed line), it

is optimal to proceed to stage III, at which point the paths are shown as dotted lines. For path 1,

w1 > 0 and the path crosses the upper stopping boundary soon after entering stage II. The new

technology is selected upon the conclusion of stage III, because the posterior mean is positive.

This is the correct decision, given that w1 > 0. The same applies for path 2, with the posterior

mean hitting the upper boundary a little later than for path 1. For path 3, w3 < 0 and the new

technology is rejected once all pipeline subjects have been observed (again the correct decision).

Path 4 results in an incorrect decision: w4 > 0, but the path exits stage II close to Tmax (on the

lower free boundary) and, upon conclusion of stage III, the new technology is rejected because

the posterior mean is negative after all pipeline subjects have been observed.

Figure 3(a) plots the difference between the averages of the realised rewards obtained from

the Optimal Bayes Sequential policy and those from the two alternative policies: the ‘Fixed’

policy, which always makes Tmax = 2000 pairwise allocations, and the Optimal Bayes One Stage

policy of Eq. (14). Thick lines represent the averages, dotted lines 95% confidence intervals. For

convenience, we call this difference the ‘net gain’. Figure 3(b) shows the proportion of iterations

which make the correct adoption decision. To derive each graph, we chose 400 equally-spaced

values of µ0 in the range [-6000, 6000] and, for each value of µ0, the results from 15,000 sample

paths were averaged.1

Figure 3(a) shows that, as expected, the Optimal Bayes Sequential policy outperforms the

other two policies when judged according to net gain. Compared with the ‘Fixed’ policy, the

greatest gains for the Optimal Bayes Sequential policy may be seen at extreme values of the

prior mean, which is unsurprising: there is little point running a trial with a large fixed sample

size when the prior mean is far from zero. The net gain is lowest around µ0 = I/P (= 0). These

findings are reversed for the Optimal Bayes One Stage policy, which yields an optimal sample

size equal to that of the Optimal Bayes Sequential policy to the left of D and to the right of C, so

that there is no difference between the expected rewards. Between D and C, the Optimal Bayes

Sequential policy benefits from the arrival of observations on the pipeline subjects to update the

prior distribution and offers the flexibility to stop stage II according to the value of the posterior

mean and variance. No such luxury is available for the other policies, which commit to sampling

and observing a predetermined number of observations regardless of the information that arrives.

Figure 3(b) plots the estimate of the probability that each of the three sampling policies

correctly selects the best technology. The probabilities for the Optimal Bayes Sequential policy

and the Optimal Bayes One Stage policy coincide to the left of D and the right of C for the

reasons just stated. Between D and C, the Optimal Bayes Sequential policy is superior because

its decision rule sequentially updates the information after each observation. The Fixed policy

performs best for the probability of correct selection because it guarantees the highest amount of

1Smooth curves in the paper are obtained from the partial differential equation methods of Appendix S. The

jaggedness in the sample averages is approximately the size of the confidence intervals for the plotted averages.
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Figure 3: Operating characteristics for the illustration of section 3.

information. This is obtained at an economic cost, however (refer to Figure 3(a)).

In section S.6.1 we illustrate the effect of reducing the delay from τ = 1000 to 500 pairwise

allocations. Stage II boundaries change shape slightly but are shifted left (τ is smaller). There

are no stage I optimal sample sizes (point D moves to point B, and point C moves to point A).

4 Unknown sampling variance

The analysis to date has assumed that the sampling variance, σ2
X , is known, but in practice this

will not be the case. This section extends the analysis to the case when σ2
X is unknown, adopting

and developing the framework proposed by Chick et al. (2015).

Define Tν as a standard Student t random variable with ν degrees of freedom (dof) and define

φν and Φν as, respectively, its pdf and cdf. Denote the distribution of the three parameter Student

t random variable, µ+ Tν/
√
κ, as St (µ, κ, ν), with precision κ. If ν > 2, Var[Tν ] = ν/(ν − 2).

As before, assume that Xi are normally distributed and conditionally independent, given the

unknown expected value, W , and unknown σ2
X . Let ς be the random variable whose realization

is σ2
X . We choose a prior distribution in the conjugate family for normally distributed samples

with unknown mean, W , and variance, ς (DeGroot, 1970, § 9.6). Then:

Xi | W, ς
iid∼ N (W, ς),

ς ∼ InvGamma (ξ0, χ0), (15)

W | ς ∼ N (µ0, ς/η0),

where ξ0 > 1 and χ0 are shape and scale parameters of an inverse-gamma distribution with mode

χ0/(ξ0 + 1), expected value E[ς] = χ0/(ξ0 − 1), E[1/ς] = ξ0/χ0 and Var[1/ς] = ξ0/χ
2
0 and µ0
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and η0 determine the a priori mean and variance of the unknown sampling mean. It follows that

W is a St (µ0, ξ0η0/χ0, 2ξ0) random variable and Var[W ] = χ0/[(ξ0 − 1)η0] when ξ0 > 1.

For t = 0, 1, . . . , τ − 1, no observations arrive owing to the delay, so ξt+1 = ξt, χt+1 = χt,

ηt+1 = ηt, and µt+1 = µt. For t = τ, τ + 1, . . ., the posterior distribution can be updated by

adapting DeGroot (1970) to account for observations on the pipeline subjects as follows:

ς |Xt+1−τ ,Ft ∼ InvGamma (ξt+1, χt+1),

W | ς,Xt+1−τ ,Ft ∼ N (µt+1, ς/ηt+1),

W | Ft ∼ St (µt, ηtξt/χt, 2ξt),

where ξt+1 = ξt + 1/2, χt+1 = χt +
ηt

2(ηt+1)
(µt − Xt+1−τ )

2, ηt+1 = ηt + 1, and µt+1 =

(ηtµt + Xt+1−τ )/ηt+1. We note that ξt and ηt are deterministic functions of t, given ξ0 and η0.
The posterior precision, ξtηt/χt, is the Bayesian analog of the frequentist observed information

I(t−τ)+ given (t− τ)+ observations (Hampson and Jennison, 2013, § 6 on unknown variance).

The predictive distribution for the posterior mean given that sampling stops at time T = t,
with state (µt, χt, t), and with u = min(T, τ) pipeline subjects to arrive, is (DeGroot, 1970):

Zt,u ∼ St

(

µt,
ξtηt
χt

(ηt + u)

u
, 2ξt

)

(16)

(compare with Eq. (6) for the case of known variance).

Just as for the case of known σ2
X , the optimal solution involves solving stages I, II and III as

illustrated in Figure 1. In contrast to the case of known σ2
X , the state vector (µt, χt, t), and not

(µt, t), is sufficient to summarize Ft for the purposes of inference about W . Stages I and III are

straightforward to modify: the stage III terminal reward function in Eq. (7) is modified by taking

the expectation in its RHS with respect to the Student t distribution for Zt,u in Eq. (16), rather

than the normal distribution of Eq. (6). A similar change is sufficient to modify the expectation

in the RHS of Eq. (14) for stage I, to determine the Optimal Bayes One Stage policy.

Chick et al. (2015) proposed three approaches to solving stage II for the case of unknown σ2
X .

Here we extend the so-called KG∗ variant of the knowledge gradient (Chick and Frazier, 2009;

Frazier and Powell, 2010) which, given information to hand, continues sampling if and only if

there exists a feasible one-stage sampling policy giving a greater expected reward than would be

gained from stopping.

Define B̂β(µt, χt, t) to be the expected value of making β ≥ 0 more pairwise allocations at

time t, observing the remaining β+min(t, τ) outcomes, accruing online rewards (if applicable),

and selecting the better technology:

B̂β(µt, χt, t) = E

[{ β−1
∑

i=0

−c+ δonXt+i+1

(1 + ρ̃)i

}

+
(PZ ′

t,β+min(t,τ) − I)+

(1 + ρ̃)1β+t>0(β+τ)

∣

∣

∣
Ft

]

. (17)

where Z ′
t,u ∼ St (µt, ((ξtηt)/χt)((ηt + u)/u), 2ξt) adapts Z ′

0,u from Eq. (14) to the case of un-

known sampling variance given Ft. We note that B̂0(µt, χt, t), with β = 0 additional samples,

is precisely the expected value of stopping, G(yt, t) in Eq. (7), extended to handle unknown

variances, for t ∈ TI ∪ TII.
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To adapt stage II to the case of unknown sampling variance, we replace the value of continu-

ing over all nonanticipative policies (the second term in the maximand of Eq. (8a)) with a set of

one-step lookahead policies, Bt. Thus, Eq. (8a) is approximated by

B̂∗(µt, χt, t) = max

{

B̂0(µt, χt, t),max
β∈Bt

B̂β(µt, χt, t)

}

, t ∈ TII. (18)

The set Bt = {1, 2, . . . , Tmax − t} contains the nonzero pairwise allocations which remain. The

choice Bt = {2−1/2, 1, 21/2, . . . ,min(128, Tmax − t)} proved useful as an approximation and is

used in numerical results here. Let β∗ = argmaxβ∈Bt
B̂β(µt, χt, t).

We define the KG∗ continuation set CKG∗
here to be the set of (µt, χt, t) such that one con-

tinues to allocate if and only if B̂β∗(µt, χt, t) > B̂0(µt, χt, t) (i.e., there is a non-zero, feasible

one stage sampling plan whose expected reward exceeds that of stopping immediately and acting

optimally once the observations on the pipeline subjects are observed).

A second approach to solving stage II that was proposed by Chick et al. (2015) is based on the

numerical solution of the PDE free boundary problem. This adjusts the variance of the diffusion

process to account for the uncertainty on σ2
X and is briefly described in Appendix S.6.3. The

following application considers the operating characteristics of both approaches to dealing with

an unknown sampling variance.

5 Application: drug-eluting stents

Moses et al. (2003) and Cohen et al. (2004) compared the performance of drug-eluting stents

(DES, the new technology) with bare metal stents (BMS, the standard) for the treatment of com-

plex coronary stenoses using percutaneous coronary intervention (PCI) in the ‘SIRIUS’ trial.

The authors randomised 1058 patients to either DES or BMS and measured clinical outcomes,

resource use and costs over a one year follow-up period. The trial’s recruitment phase lasted

approximately seven months, so it did not include a period during which observations on the

primary end points were being made while recruitment was taking place.

We consider the performance of the Optimal Bayes Sequential policy of section 2 (known

sampling variance) and the policy of section 4 (unknown sampling variance) with what is a

Fixed policy with the same sample size as the SIRIUS study (529 patient pairs in 7 months) and

the Optimal Bayes One Stage policy. For the purposes of this section, we set δCE = 1 in Eq. (1)

to concentrate on the cost and QALY results at one year of follow-up that are reported in Cohen

et al. (2004). This section is intended to illustrate how our model may be populated with data

from a health technology assessment; it is not intended to represent a comment on the health

technology itself.

5.1 Known sampling variance

Where possible, parameter values are derived from Moses et al. (2003) and Cohen et al. (2004).

Otherwise they are based on assumptions. The value of σX = $17358 is derived from point

estimates in Cohen et al. (2004) and the assumption λ = $50000/QALY. We set Tmax = 2000,
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Figure 4: Optimal Bayes Sequential policy and operating characteristics for the stents application of sec-

tion 5 (known variance).

which is higher than the annual rate of recruitment to the study (calculated to be R = 529 ×
12/7 = 907 patient pairs per year). The delay in response is one year, so τ = 907. A zero

switching cost is assumed (I = 0) and the effective sample size in the prior distribution is

assumed to be n0 = 20. We assume c = $200 and P = 2 × 106. In contrast to the illustration

of section 3, the discount rate is chosen to be 1% per annum (ρ̃ = (1 + 0.01)−R − 1). Benefits

accruing to trial participants are not valued (δon = 0).

Figure 4(a) shows the optimal stopping boundaries. The ‘◦’s in Figure 4(a) indicate that, for

a prior mean lying within the ranges AC and DB, the Optimal Bayes Sequential policy fixes a
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sample size that is neither too close to 0, nor too close to τ . This is because, at points A and B, the

expected value of taking a small, fixed, sample size is more than offset by the cost of postponing

the adoption decision that is implied by starting to experiment (by experimenting, one must wait

for at least a year before making the adoption decision, and rewards are discounted). For a prior

mean lying between points C and D it is optimal to proceed to stage II.

In the absence of discounting, Prop. 2.4 implies that there is a greater expected reward when

the posterior mean is above I/P = 0 than when it is below that value by the same absolute

amount. With a positive discount rate, the expected benefit of continued sampling is penalized

more for values of the posterior mean above I/P than for values below it by the same absolute

amount. Consequently, the upper stage II boundary in Figure 4(a) is shifted down relative to the

upper stage II boundary for the case of zero discounting (latter not shown). The change is greater

in magnitude than the corresponding change for the lower boundary, resulting in asymmetric

stopping boundaries for a positive discount rate.

This asymmetry is reflected in the plots of the ‘net gains’ (the differences between the ex-

pected reward of the Optimal Bayes Sequential policy and the two comparators) in Figure 4(b)

and the expected sample sizes in Figure 4(c). In Figure 4(b), the negative values (indicating that

the Optimal Bayes Sequential policy performs less well than its comparator) close to point C

are due to the noise in the Monte Carlo estimates and the fact that the expected sample sizes

of the three comparators are quite close to each other in the vicinity of point C (Figure 4(c)).

Figure 4(c) also illustrates the ‘jumps’ in the expected sample sizes for the different trial designs

at points A–D (see the discussion of Figure 4(a) above).

For a value of the prior mean close to zero, Figure 4(b) shows that the expected net gain of

the Optimal Bayes Sequential policy over the Fixed policy is approximately $20m and over the

Optimal Bayes One Stage policy it is $10m. Not apparent from Figure 4(b), due to the scaling,

is that fact that, for extremely low values of the prior mean, the difference in rewards between

the Optimal Bayes Sequential policy and the Fixed policy converges to a positive value equal to

the discounted cost of sampling patients under the Fixed policy. This is because, if the value of

the prior mean is low enough, it will be optimal not to start the trial under the Optimal Bayes

Sequential policy, whereas the Fixed policy will always make 529 pairwise allocations and then

reject the new technology with very high probability. As µ0 → ∞, the net gain of the Optimal

Bayes Sequential policy over the Fixed policy grows without bound: with a very optimistic prior

mean, it is optimal to adopt immediately under the Optimal Bayes Sequential policy, whereas the

Fixed policy is committed to incurring trial costs and discounting rewards.

Importantly, Figures 4(b) and 4(c) show that the range of the prior mean over which the

Optimal Bayes Sequential policy performs best in terms of the net gain is also the range over

which its expected sample size is close to, or greater than, the expected sample sizes of the

Optimal Bayes One Stage and Fixed policies. This highlights the Optimal Bayes Sequential

policy’s maximisation of the expected reward of the trial as defined in Eq. (5), an objective which

requires achieving the sample size which appropriately balances the benefits to patients with the

costs of learning. With this objective in mind, given µ0, the Optimal Bayes Sequential policy

may sample more, the same as, or less than the Optimal Bayes One Stage and the Fixed policies

according to the filtration defined by the observations seen through time t, which depends on wi.

An estimate of the probability of correct selection after all outcomes have been observed is
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Figure 5: Effect of changing τ by changing the recruitment rate.

shown in Figure 4(d). This shows that the Optimal Bayes Sequential policy is superior to both

the Fixed and the Optimal Bayes One Stage policies in the region DC, where the probability of

selecting correctly is no lower than 0.96. It is similar to the comparators to the left of D. Over

the majority of the range CA, the Fixed policy performs best because it tends to sample more

(Figure 4(c)). Figure 4(d) shows that the proportion of correct decisions for the Optimal Bayes

Sequential policy drops at points C and A. These drops mirror the jumps in the expected sample

sizes that occur at those points (Figure 4(c)).

The estimate of the probability of a ‘decision reversal’ (the probability that the adoption

decision that would have been made at the time of stopping to sample sequentially is overturned

once all realisations on pipeline subjects have arrived) did not exceed 0.03 in this application.

Assessing the sensitivity of these results to changes in parameter values is straightforward.

Here we consider changing τ by changing the recruitment rate, R. Such a change can be caused

by a change in the recruitment rate at a single facility or a change in the number of facilities which

participate in the trial. Figure 5(a) shows the net gain of the Optimal Bayes Sequential policy

over the Optimal Bayes One Stage policy, assuming a time delay of one year and recruitment

rates of 907 (the baseline case), 680 and 453 patient pairs per year (reductions of 25% and 50%,

respectively). The net gain increases as the recruitment rate (and hence τ ) decreases. We also

found a higher net gain at lower recruitment rates when comparing the expected reward of the

Optimal Bayes Sequential policy with that of the Fixed policy. These findings are consistent

with results in Hampson and Jennison (2013), albeit for a different objective function, in that

fewer observations in the pipeline were associated with a greater benefit of sequential sampling.
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Figure 5(b) focuses on the Optimal Bayes Sequential policy showing that, for this application,

the higher is the recruitment rate, the higher is the expected reward.

Figure 8 of Appendix S.6.2 shows the impact of changing the recruitment rate on the expected

sample size. Figure 9 shows the stopping boundaries for different values of the sampling cost c.

5.2 Unknown sampling variance

When the sampling variance is unknown, the following additional parameters are required to

implement the model of section 4. For the prior distributions, we set η0 = n0 (η0 and n0 both

represent the sample size in the prior distribution for the unknown mean), ξ0 = 2n0 − 1 and

χ0 = 173582(ξ0 − 1), so that E[ς] equals the point estimate of the sampling variance (σ2
X =

173582) from the study. The KG∗ continuation set isestablished for the value of χt such that

χt/ξt equals 173582. The continuation set for other χt can be found by rescaling states (namely,

(µt, χt, t) ∈ CKG∗
if and only if (aµt, a

2χt, t) ∈ CKG∗
).

Figure 6 replicates Figure 4 for the case of unknown variance, solved using KG∗. A compar-

ison of Figure 6(a) with Figure 4(a) shows that the continuation set of Stage I is slightly wider

when the variance is unknown, owing to the additional dimension of uncertainty. The opposite

effect is seen in Stage II, because the KG∗ approach is one stage and so the value of continuing

is lower than the fully sequential approach adopted for the case of known variance. As a result,

the expected sample size is smaller for KG∗ (Figures 6(c) and 4(c)) owing to earlier stopping,

on average, and there is a smaller advantage in terms of the proportion of correct decisions (Fig-

ures 6(d) and 4(d)). This, in turn, implies that the net gain in comparison with alternative policies

is slightly reduced (Figures 6(b) and 4(b)).

Section S.6 of the OSM discusses the results obtained by replacing the KG∗ approach with

one based on the numerical solution of the PDE free boundary problem and plug-in estimates of

the sampling variance (Chick et al., 2015). The net gain (Figure 10) is very similar to the case of

known variance.

The results of additional simulations (data not shown) suggest that the advantage of the Op-

timal Bayes Sequential Policy over a Fixed Policy remains when ρ̃ is smaller. Those results also

show that the benefit of the Optimal Bayes Sequential Policy over the Optimal Bayes One Stage

policy decreases as ρ̃ decreases.

6 Discussion

We have solved a Bayesian decision-theoretic model of sequential experimentation with delay

and applied it to the field of medical statistics. The model maximises the expected benefits of the

technology adoption decision, minus the cost of the sequential experiment itself, and it can value

benefits accruing to study participants as well as to those who benefit from the adoption decision.

Explicit measurement of these costs and benefits meets a growing demand for a ‘value-based’

approach to health care decision making at policy level (NICE, 2012; Porter, 2010). At the level

of Phase III trial design and health technology assessment, the model helps answer the following

questions: is it worth carrying out any trial at all? If it is, should the trial be sequential or of a

fixed sample size? If a sequential trial is chosen, how should stopping boundaries be defined in
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Figure 6: Operating characteristics for the stents application of section 5 with KG∗ approach in section 5.2

to approximate Optimal Bayes Sequential policy with unknown sampling variance.

the presence of delay in observing the primary end point? How do parameters such as the rate of

patient recruitment and the cost of sampling influence optimal design?

Monte Carlo simulations which compare the performance of the model with alternative de-

signs show that it is superior in terms of the net gain and that it performs well with regards to the

probability of correctly selecting the best alternative, even though the optimal stopping bound-

aries are derived from a continuous time approximation. In addition, the applications show that

the Optimal Bayes Sequential policy results in the highest net gain over competing policies when
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the expected sample size is close to, or greater than, the expected sample sizes of those policies.

Further, the higher is the delay, the less attractive is the sequential design over the Fixed and the

Optimal Bayes One Stage policies. Clearly, the precise performance of the model will depend

on the particular application of interest.

Directions for future research are numerous. The model assumes that only two health tech-

nologies are being considered, it does not incorporate intermediate outcomes that are correlated

with the primary end point and it is assumed that all pipeline data must be observed before

an adoption decision is made. Future work includes relaxing these assumptions and exploring

further the issues of unknown sampling variance and sensitivity of the policy to the choice of

sampling distribution.

A Mathematical proofs for the discrete time model

Proof of Prop. 2.1. Condition on W and T in Eq. (4) and use the tower property of conditional

expectation:

V π(µ0, n0) = Eπ

[

E

[{

T−1
∑

t=0

−c+ δonXt+1

(1 + ρ̃)t

}

+
1D=N(PW − I)

(1 + ρ̃)1T>0(T+τ)

∣

∣

∣
W,T

]

∣

∣

∣

∣

µ0, n0

]

= Eπ

[

{

T−1
∑

t=0

−c+ δonW

(1 + ρ̃)t

}

+
1D=N(PW − I)

(1 + ρ̃)1T>0(T+τ)

∣

∣

∣

∣

µ0, n0

]

. (19)

Substituting Eq. (12) into the RHS of Eq. (11) and simplifying gives Eq. (19). Kπ ≥ 0 when

δon = 0 because c ≥ 0. When δon = 1 it is strictly positive for W < c and 0 otherwise. Sπ ≥ 0
because (W − c)+ ≥ 0. ρ̃ ≥ 0, τ ≥ 0, T ≥ 0 imply that (1 + ρ̃)1T>0(T+τ) ≥ 1. Further,

(PW − I)+ ≥ 0 and (PW − I)+ ≥ 1D=N(PW − I). Hence, (PW − I)+ ≥ 1D=N(PW −
I)/(1 + ρ̃)1T>0(T+τ) independent of the sign of 1D=N(PW − I). Thus, Lπ ≥ 0. �

Proof of Prop. 2.2. From Eq. (11), a policy π in a given set of policies maximises V π if

and only if it minimises Ṽ π. This reformulation is useful, because the non-negativity of Kπ,t,

Sπ and Lπ for all (yt, t,W ) satisfies the (F+) property of Bertsekas and Shreve (1978, Chap. 8,

p. 192). However, Bertsekas and Shreve (1978, Chap. 8) require rewards which depend on a

known state vector, whereas Kπ,t, Sπ, and Lπ depend on the unknown W . Following Bertsekas

(2005, p. 218-222), we augment the state to be (yt, t,W ), define the information vector It with

I0 = (0, y0) and It = (t, y0, y1, . . . , yt, a0, . . . , at−1) for t = T\{Tmax}, and must now allow a

broader set of policies π̃ whose actions at may depend on It, not just (yt, t).
Call the problem of finding a policy π̃ to minimize Ṽ π̃, the ‘regret problem.’ Its Bellman

equation, B̃(yt, t,W ), consists of minimizing the expected cost of stopping (the first time at

which at = 0),

E

[

−G(yt, t) + (PW − I)+ +
Tmax−t−1
∑

t=0

δon(W − c)+/(1 + ρ̃)t | It
]

, (20)

Page 21 of 25



Chick, Forster, Pertile

and of making an additional pairwise allocation and proceeding optimally thereafter (at = 1),

E[c− δon(W − (W − c)+) + (1− (1 + ρ̃)−1)(PW − I)+

+ (1 + ρ̃)−1B̃(yt + 1t≥τXt+1−τ , t+ 1,W ) | It], (21)

for t = T\{Tmax}. Its terminal cost is B̃(yTmax
, Tmax,W ) = G(yTmax

, Tmax).
Because the (F+) property holds for this problem, Prop 8.1 and Cor. 8.1.1 of Bertsekas and

Shreve (1978) justify that it suffices to consider nonrandomised Markovian policies within the

set of all policies when solving inf π̃ Ṽ
π̃. Let π̃B̃ be determined by B̃ for the regret problem.

Although π̃B̃ may depend on It for decisions at, note that (yt, t) is sufficient for W : π̃B̃ is

Markovian in (yt, t). Props. 8.2 and 8.5 of Bertsekas and Shreve (1978) show that π̃B̃ is optimal,

that is, Ṽ π̃
B̃(µ0, n0) = B̃(µ0n0, 0,W ) = inf π̃ Ṽ

π̃(µ0, n0).
The expectations in B̃ depend on It only through (yt, t), and π̃B̃ is therefore feasible for

the original problem. By Prop. 2.1, π̃B̃ is optimal for the original problem, and V π̃
B̃(µ0, n0) =

V π∗

(µ0, n0) = V̄ (µ0, n0)− B̃(µ0n0, 0,W ).
To complete the proof, we show that π̃B̃ also satisfies Bellman’s equation of the original

problem. By definition, π̃B̃ chooses the smaller of Eq. (20) and Eq. (21). It therefore makes

the same choices if one subtracts the same quantity from both equations. In particular, π̃B̃ is

still optimal if one subtracts E[(PW − I)+ +
∑Tmax−t−1

t=0 δon(W − c)+/(1 + ρ̃)t | It] from both

Eq. (20) and Eq. (21). With a bit of algebra, one confirms that these subtractions result in terms

which, in expectation, are -1 times the maximands in Bellman’s equation, Eq. (8) and Eq. (9), for

the original problem. Because −min(−a,−b) = max(a, b), π̃B̃ also satisfies Bellman’s equation

of the original problem. Setting t = 0 in the subtracted terms allows us to show B(µ0n0, 0) =
V̄ (µ0, n0)− B̃(µ0n0, 0,W ). Thus B(µ0n0, 0) = V π∗

(µ0, n0). �
Proof of Prop. 2.3. The proof is like that of Prop. 2.2, except that the infinite horizon re-

sults of Bertsekas and Shreve (1978, Chapter 9) are employed. Because Kπ, Sπ, and Lπ are all

nonnegative, the (P) assumption of Bertsekas and Shreve (1978, page 214) is satisfied for the

minimisation of the expectation of Kπ + Sπ + Lπ. The (P) assumption is the infinite horizon

analog of the (F+) property for the finite horizon. Because of the Markovian nature of Bayes’

rule, Bertsekas and Shreve (1978, Prop. 9.1) show that an additional dependence of the state evo-

lution on the past can not bring additional expected reward. Bertsekas and Shreve (1978, Prop.

9.8) justify the claim that the value function in Eq. (5) satisfies Bellman’s equation for the regret

problem, Ṽ π̃
B̃(µ0, n0) = B̄(µ0n0, 0), and Ṽ π̃

B̃(µ0, n0) = Ṽ π∗

(µ0, n0) follows from Bertsekas

and Shreve (1978, Prop. 9.12). The link from Ṽ back to V is as for Prop. 2.2. �

Proof of Prop. 2.4. We first prove claim (ii), that B((I/P + ∆µ)nt, t) = B((I/P −
∆µ)nt, t) − P∆µ for t = 0, 1, . . . , Tmax, in two steps: we show that the first term in the max-

imand of Eq. (8a), G(·), satisfies a similar relation involving ∆µ for all t, so that B(·) satisfies

the claimed relationship when t = Tmax. Then an induction argument in −t will prove the result

for t = 0, 1, . . . , Tmax − 1. Claims (i) and (iii) will follow from the proof of claim (ii).

The expectation in Eq. (7), which defines G(·), simplifies due to the Gaussian inference

process: if Z ∼ N (ξ, σ2) then E[Z+] = σ[φ(ξ′) + ξ′Φ(ξ′)], where ξ′ = ξ/σ and φ and Φ are,

respectively, the probability density function (pdf) and the cumulative distribution function (cdf)
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of a standard normal random variable (DeGroot, 1970). Moreover,

E[(−Z)+] = σ[φ(−ξ′)− ξ′Φ(−ξ′)] = σ[φ(ξ′) + ξ′Φ(ξ′)]− ξ. (22)

Consider an arbitrary state, (µt, t), and pick ∆µ so that µt = I/P + ∆µ. Then Pµt =
I + P∆µ and yt = (I/P + ∆µ)nt. We define some additional notation to help us proceed.

Define µ̃t = I/P − ∆µ, so that Pµ̃t = I − P∆µ and ỹt = (I/P − ∆µ)nt. Recall that,

given information to time t, ZT,min(T,τ) has mean µt = yt/nt. Let Z̃T,min(T,τ) be the predictive

distribution for the posterior mean given stopping at time t with Yt = ỹt. Then:

E[PZT,min(T,τ) − I | YT = yt, T = t] = P∆µ, (23a)

E[PZ̃T,min(T,τ) − I | YT = yt, T = t] = −P∆µ. (23b)

Define σ2 = Var[(PZT,min(T,τ) − I) | YT , T = t], which depends on t but not on YT .

Given the assumption ρ̃ = 0, we may simplify Eq. (7) using Eqs. (23a) and (23b):

G(yt, t) = E[(PZT,min(T,τ) − I)+ | YT = yt, T = t]

= σ[φ(P∆µ/σ) + (P∆µ/σ)Φ(P∆µ/σ)]

= σ[φ(−P∆µ/σ) + (−P∆µ/σ)Φ(−P∆µ/σ)]− (−P∆µ)

= E[P (Z̃T,min(T,τ) − I/P )+ | YT = ỹt, T = t] + P∆µ

= G(ỹt, t) + P∆µ. (24)

Thus, given Eq. (8b), B(yt, t)− P∆µ = B(ỹt, t) for t = Tmax.

Suppose now that B(yt+1, t+1)−P∆µ = B(ỹt+1, t+1) for some t ∈ {τ, τ+1, . . . , Tmax−1},

so that the claimed relation holds at time t+1. We now show that this relation holds at time t by

proving a similar relation for each maximand which determines B(·).
By Eq. (24), the first maximand on the right hand side of Eq. (8a) differs by P∆µ when

evaluated at yt = (I/P + ∆µ)nt and ỹt = (I/P − ∆µ)nt, as desired. Let B2 be the second

maximand in the right hand side of Eq. (8a). If t ≥ τ , let X̂ be a normal random variable with

mean 0 and variance σ2
X . If δon = 0 and ρ̃ = 0 then

B2(yt, t)− B2(ỹt, t) = Eπ[B(yt + yt/nt + (Xt+1−τ − yt/nt), t+ 1) | YT = yt, T = t]

−Eπ[B(ỹt + ỹt/nt + (Xt+1−τ − ỹt/nt), t+ 1) | YT = ỹt, T = t]

= E[B(yt + yt/nt + X̂, t+ 1) | YT = yt, T = t]

−E[B(ỹt + ỹt/nt − X̂), t+ 1) | YT = ỹt, T = t] (25)

= E[P (∆µ+ X̂/nt+1) | YT = yt, T = t] = P∆µ. (26)

The first line follows by the definition of B(·). The second line follows by the symmetry of the

distribution of X̂ about 0. The third line follows because both yt+yt/nt+ X̂ and ỹt+ ỹt/nt− X̂
differ from nt+1I/P by the same amount, nt+1∆µ+ X̂ . This ‘coupling’ of expectations implies

the posterior means in the two expectations of Eq. (25) change by ∆µ + X̂/nt+1 in going from

time t to time t + 1, given X̂ . The fact that B(·) satisfies the claimed relation at time t + 1, by

the induction assumption, then implies Eq. (26).
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If t < τ , then it is straightforward to show that B2(yt, t)− B2(ỹt, t) = P∆µ from Eq. (9).

By mathematical induction, B(yt, t)−P∆µ = B(ỹt, t) for t = Tmax, Tmax−1, . . . , 1, 0. This

justifies claim (ii). By setting t = 0 and by recalling Eq. (13), we obtain V π∗

(I/P +∆µ, n0)−
P∆µ = V π∗

(I/P −∆µ, n0). This justifies claim (i).

We have shown (a) that the first maximand differs by the same amount (by −P∆µ) when

evaluated at (yt, t) and (ỹt, t), and (b) that the second maximand in Eq. (8a) differs by the same

amount (by −P∆µ) when evaluated at (yt, t) and (ỹt, t). Thus, either the first maximand is

larger for both (yt, t) and (ỹt, t) or the second maximand is not smaller for both (yt, t) and (ỹt, t).
Recall that (yt, t) and (ỹt, t) correspond to the points (µt, t) and (µ̃t, t), respectively. This relation

among the maximands implies that (µt, t) is in the interior of the continuation set when (µ̃t, t) is

in the continuation set, and vice versa. This proves claim (iii). �

Proof of Prop. 2.5. Follows directly from Chick and Frazier (2012, Prop. 3). See Ap-

pendix S.1 in the OSM for further detail.
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This document provides supplementary material for the paper “A Bayesian Decision-Theoretic
Model of Sequential Experimentation with Delayed Response”, by Stephen Chick, Martin Forster
and Paolo Pertile. References to sections and equations not found in this supplement may be
found in that paper.

Appendix S.1 provides the proof of Prop. 2.5.
Solving for π∗ numerically for the model of section 2 is challenging. An approximate solu-

tion may be obtained by exploiting continuous time methods which are in the spirit of the work
of Chernoff (1961) and other papers cited below. The numerical solution of the associated op-
timal stopping problem is useful for the numerical results of sections 3 and 5. Informally, we
construct a diffusion whose joint statistics, when sampled at a set of integer times, match those
of the original discrete process. We then allow stopping times to be continuous on this diffusion,
thereby constructing a continuous time (CT) optimal stopping problem. Appendix S.2 defines
the diffusion and writes the continuous time analog of the discrete time optimal stopping prob-
lem in Eq. (5). It also derives the continuous time analog of Bellman’s equation using a Taylor
expansion of that equation and Ito’s lemma. That analog turns out to be a free boundary problem
for a heat equation.

Appendix S.3 justifies why the solution to the free boundary problem determines the optimal
stopping boundaries and continuation set of the continuous time analog of our stopping problem.

Appendix S.4 describes computational techniques for approximating the stopping boundaries
of the optimal policy π∗

CT
and value function for the CT problem with general τ . Numerical results

in the main paper use π∗
CT

to approximate the optimal policy π∗ for the discrete time problem. The
Matlab code used to compute the optimal stopping boundaries for stage I and stage II sampling
is available at https://github.com/sechick/htadelay.

Appendix S.5 presents connections of the modelling approach in the main paper to the multi-
armed bandit (MAB) literature.

Appendix S.6 provides additional analysis for section 3, further results for the application of
section 5, as well as an additional application.

S.1 Additional analysis for the discrete time problem

Proof of Prop. 2.5. The special case of ρ̃ = 0, c > 0, δon = 0 and τ = 0 corresponds
exactly to a special case of the undiscounted sampling selection problem of Eq. (4) in Chick
and Frazier (2012) for comparing k = 1 alternatives with unknown mean with an alternative
whose mean reward is known to be 0. Prop. 3 of Chick and Frazier (2012) shows that T ≤ Υ ≡
1 + (P 2σ2

X)/(2πc
2)− n0 almost surely, when τ = 0 under the stated conditions.

The proof of that result is based on properties of the effective sample size in the posterior
distribution for the unknown mean at a given time t, and shows that sampling beyond the stated
bound does not give sufficient additional expected reward. Because the number of outcomes
observed when there is delay is not more than τ fewer than when there is no delay (formally,
t− (nt − n0) ≤ τ ), then (nT − n0) ≤ Υ implies that T ≤ Υ+ τ , as desired. �

S.2 Continuous time analog of discrete time problem

In order to approximate the optimal delayed sequential sampling problem specified by Eq. (5) in
continuous time, the definitions of the time t, the sum Yt defined in Eq. (2), the induced filtration
Ft, a policy π and the discount rate must be suitably modified. Given such a modification, the
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definitions of nt, µt and Zt,u are naturally extended to be real valued for real valued t and u, as
is the definition of the terminal reward function G of the discrete time problem. The continuous
time discount rate is ρ = ln(1 + ρ̃).

Assume that t ∈ [0, Tmax + τ ], that t = 0 is the time when the decision maker posits a prior
distribution for W , and that sequential sampling commences in the instant immediately following

t = 0. Let the cumulative sum Yt =
∑(t−τ)+

i=1 Xi accumulate as a diffusion, that is, a shifted and
scaled Brownian motion which has the appropriate joint marginal distribution when sampled at
integer times:

dYt = Wdt+ σXdVt−τ , τ ≤ t ≤ Tmax + τ, (27)

where Vu for u ≥ 0 is a standard Brownian motion and the drift W is inferred with Bayes’ rule
as the process Y is observed. The delay implies that Yt = Y0 = µ0n0 for t ∈ [0, τ ] and that V⌊u⌋

is a diffusion approximation for the first ⌊u⌋ observations.
Define FCT = (FCT,t)t∈[0,Tmax+τ ] as the natural filtration of the process {Yt}t∈[0,Tmax+τ ]. By

construction, it has the same joint distribution as the discrete time process above at sets of integer
valued times in [0, Tmax + τ ], as desired.

Define the CT policy πCT as a continuous-valued sample size, TCT (a stopping time with respect
to the filtration FCT taking values in [0, Tmax]), and a decision DCT ∈ {N, S} for a technology to
select after all outcomes on pipeline subjects are observed. Define ΠCT as the set of all policies
πCT = (TCT,DCT) such that TCT is measurable with respect to FCT and DCT is measurable with
respect to FCT,1TCT>0(TCT+τ). The expected reward of a policy πCT ∈ ΠCT is

V π
CT
(µ0, n0) = EπCT

[
∫ TCT

0

−c

etρ
dt+

∫ TCT

0

δon
etρ

dYt+τ +
1DCT=N(PW − I)

e1TCT>0(TCT+τ)ρ

∣

∣

∣
µ0, n0

]

. (28)

The apparent asymmetry between dYt+τ in Eq. (28) and the summand Xt in Eq. (4) is explained
because increments in Y at time t+ τ are due to decisions made at time t.

The optimal delayed sequential sampling problem in continuous time is defined formally as
that of finding a policy π∗

CT
∈ ΠCT such that

V
π∗

CT
CT (µ0, n0) = sup

πCT∈ΠCT

V πCT
CT

(µ0, n0). (29)

In what follows, we show that the optimal solution to this problem is characterised by a
continuation set, C ⊆ R × [0, Tmax) such that, when (yt, t) ∈ C on a realisation, sampling
should continue, and otherwise sampling should stop and stage III entered. On the boundary of
C, one is indifferent between continuing and stopping. We propose using C for the continuous
time problem to approximate the optimal continuation set for the discrete time problem when
evaluating whether or not to continue sampling at integer t.

S.2.1 Continuous time approximation during stage III

The expected reward upon stopping is extended to continuous time by rewriting G in Eq. (7) as:

G(yt, t) = e−1t>0τρE[(PZTCT,min(TCT,τ) − I)+ | FCT,t]. (30)

It is optimal to choose DCT = N if PZTCT,min(TCT,τ) − I > 0 and DCT = S otherwise.
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S.2.2 Continuous time approximation during stage II

We turn to the problem of solving for the CT approximation in stage II. The problem will reduce
to one of establishing a ‘free boundary’ in (yt, t) space, which determines C for t ∈ [τ, Tmax].
The key to doing so is to rewrite Eq. (8) in continuous time. Following Chernoff (1961), a CT
diffusion model approximation of Bellman’s equation in Eq. (8) is:

BCT(yt, t) = max
{

G(yt, t), lim
h↓0

[

− c+ δon(yt/nt)
]

h (31a)

+ e−hρ
EπCT

[BCT(Yt+h, t+ h) | FCT,t ]
}

, t ∈ [τ, Tmax),

BCT(ymax, Tmax) = G(ymax, Tmax), (31b)

where h > 0 is a small time step and BCT is the continuous time equivalent of B.
States (yt, t) ∈ R× [τ, Tmax) such that the second term in the maximand of Eq. (31a) exceeds

the first are in C. States where the first term in the maximand strictly exceeds the second are in
the complement of C. Given the assumptions of the model (refer to Eq. (2)), the increment Ut =
Yt+h − yt has a N (hyt/nt, σ

2
X [h+ h2/nt]) distribution. Equating the left hand side of Eq. (31a)

and the second maximand, expanding the second maximand in a Taylor series expansion, and
applying Ito’s Lemma gives

BCT(yt, t) = −c+ δon (yt/nt)h+ (1− hρ) (32)

×E[BCT(yt, t) + UtBCT,y(yt, t) + hBCT,t(yt, t) + U2
t BCT,yy(yt, t)/2] + o(h)

for (yt, t) in C, and where the second index in the subscript for BCT refers to derivatives. Collect-
ing terms and simplifying gives the following partial differential equation describing the change
in BCT for stage II of the problem:

0 = −c− ρBCT +BCT,t + (BCT,y + δon)(yt/nt) + σ2
XBCT,yy/2. (33)

The boundary of the optimal continuation set, ∂C, is characterised by a free boundary con-
dition and a so-called smooth pasting condition where the two terms in the maximisation in
Eq. (31a) are equal and are smoothly matched (Chernoff, 1961). Here, these conditions are:

BCT(y, t) = G(y, t) on ∂C (free boundary); (34a)

BCT,y(y, t) = Gy(y, t) on ∂C (smooth pasting). (34b)

Equations (33) and (34) are similar to the partial differential equation (PDE) in Pertile et al.
(2014) and Chick and Gans (2009), with three notable exceptions:

1. the posterior mean is now multiplied by BCT,y + δon instead of BCT,y, to reflect the potential
inclusion of online learning;

2. the independent variable in the PDE, t ∈ [τ, Tmax], is the cumulative number of pairwise al-
locations made, which no longer coincides with the number of outcomes observed because
of the delay.

3. the reward for stopping, G, is defined to include the expected reward from observing the
outcomes for the pipeline subjects and acting optimally.
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S.2.3 Continuous time approximation during stage I

The first term in the maximand of Bellman’s equation in Eq. (9) for discrete time is extended to
continuous time by using Eq. (30). The other term can be handled by observing that if T = u ∈
(0, τ ], then the expected reward of sampling is naturally modeled in continuous time by

H(u) ≡
∫ u

0

e−tρ(−c+ δonµ0)dt =

{

(−c+ δonµ0)u if ρ = 0
(−c+ δonµ0)(1− e−uρ)/ρ if ρ > 0.

The reward function at time t = 0 is:

BCT(y0, 0) = max
{

sup
u∈[0,τ ]

{

H(u) + e−uρG(y0, u)
}

, H(τ) + e−τρBCT(y0, τ)
}

. (35)

This determines the continuation set on R× [0, τ): let uy be the smallest u which maximises the
supremum in Eq. (35) when y0 = y. Such a u exists: [0, τ ] is compact and the maximands are
continuous in u. Then (y, t) ∈ C for all t ∈ [0, uy).

S.2.4 Analysis and computation of the PDE for stage II

The analysis for the discrete time stopping problem in Eq. (5) consisted of proving that the
solution to the discrete time Bellman’s equation determines an optimal policy π∗. In a similar
way, the crux of the optimal solution to the CT problem in Eq. (29) can be reduced to the solution
of the continuous time version of Bellman’s equation, the free boundary problem in Eq. (33)
subject to the implicit boundary conditions in Eq. (34), for t ∈ [τ, Tmax]. The optimal solution of
the CT problem for t ∈ [0, τ ] in stage I and for stage III are more straightforward to analyze.

S.3 Analysis for optimal stopping and the free boundary problem

The link between optimal stopping times of a continuous time Markovian process and the free
boundary problem has been formalized in two different ways. First, Bather (1970) characterized
the solution of a broad class optimal stopping problems for Brownian motion. He showed that,
under certain conditions, it is optimal to continue sampling for continuous time stopping prob-
lems for Brownian motion when the state is in the interior of the continuation set of a suitably
defined free boundary problem for a heat equation, and to stop sampling otherwise. Our stage
II and stage III analysis constitutes an optimal stopping and free boundary problem which falls
into the class of problems considered by Bather (1970). For example, the conditions for which
Bather’s results hold can be verified for the special case ρ = 0, c > 0, δon = 0 by noting that
(a) this special case corresponds to a finite horizon version of the example in Chernoff (1961)
which provided motivation for Bather (1970), and (b) our terminal reward G(y, t) ≥ 0 and its
derivatives are continuous (except near t = 0 when τ > 0, which may cause a discontinuity for
stage I analysis).

The above arguments justify that Bellman’s equation for the continuous time problem gives
the optimal expected reward, given T ≥ τ . To handle T ∈ [0, τ), observe that sampling costs
and online learning benefits in Eq. (35) and Eq. (28) are equal for all T = u ∈ [0, τ ], and that
terminal rewards are identical because Yt = y0 on that interval. Moreover, the relevant costs
through time τ and the expected reward to go given T > τ are also equal, if DCT is as defined in

section S.2.1. Thus, V
π∗

CT
CT (µ0, n0) in Eq. (29) equals BCT(µ0n0, 0) in Eq. (35) for the special case
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ρ = 0, c > 0, δon = 0. Moreover, the optimal stopping time is TCT ≤ τ if the first term in the
maximand in Eq. (35) exceeds the second, and T > τ if the opposite is true. In that second case,
the solution to the free boundary problem determines the boundaries of the optimal continuation
set for stage II.

A second approach can be used to show continuity of the solution to the free boundary prob-
lem and a form of uniqueness to handle the remaining case of ρ > 0: general dynamic pro-
gramming principles for continuous time stochastic control, such as the analysis of Pham (2009,

Section 5.2.1). For this case too, then, V
π∗

CT
CT (µ0, n0) = BCT(µ0n0, 0).

The above arguments justify situations when the free boundary problem defines the opti-
mal stopping boundary but do not describe its shape. The next section describes how the free
boundary PDE problem in Eqs. (33) and (34) may be solved using numerical methods.

S.4 Numerical solution of the PDE free boundary problem

The solution to the free boundary PDE problem which describes the continuation set and its
boundary, ∂C, have been studied for some interesting special cases which do not have sampling
delays. We use those principles here for computing the solution to the free boundary problem
which solves Eq. (29).

For stage II, we solve the PDE with a trinomial tree in (µt, t) coordinates by recursing back-
ward from time n0 + Tmax, the point at which stage III must be entered, to time n0 + τ in steps
of size ∆t that are specified by the analyst. For a more detailed description of the principles
for doing so, see Arlotto et al. (2010), who did so for a project on employment decisions which
had Bayesian learning, sampling costs, and online learning, but not the other variations of the
model in section 2. See also Chernoff and Petkau (1986), Brezzi and Lai (2002) and Chick and
Gans (2009) for discussions of computing solutions to related problems in a reverse time scaling
(with reverse time proportional to 1/nt) which take advantage of some standardizations which
are more difficult in our context due to the generality (and number of parameters) in our model.

It may seem odd to approximate a discrete time optimal stopping problem with a PDE in
continuous time, and to solve that PDE with the time discretization of a trinomial tree. The
reason is that time discretization of the trinomial tree is typically different from the integer time
step of the original stopping problem. Increasing the number of steps in the trinomial tree per
patient pair sampled improves the normal approximation to the observations of the patient pairs.
Numerical error can be controlled by refining the grid of the trinomial tree.

Easily computed numerical approximations are available for some special cases with τ = 0.
We validated our code to verify that the relevant bounds from those methods correspond well to
the solutions found for the code in this paper when τ is small (data not shown).

For the special case τ = 0, Tmax arbitrarily large, c = 0, ρ > 0 and online learning (δon = 1),
Brezzi and Lai (2002) show the relationship of this problem to the multi-armed bandit problem
with normally distributed rewards and mean reward which is inferred through time. They present
theory to characterize ∂C asymptotically as t → ∞ and as t → 0, and give an easy-to-compute
approximation for the upper boundary of ∂C.

For the special case τ = 0, Tmax arbitrarily large, c = 0, ρ > 0, Chick and Gans (2009)
show a close structural relationship between the boundary of the continuation sets for the offline
stoppable bandit and the optimal continuation set and Gittins index for the online bandit of Brezzi
and Lai (2002). Chick and Gans (2009, Online Companion) also give a numerically useful
approximation to the upper boundary of ∂C for this special case.
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For the case τ = 0, Tmax arbitrarily large, c > 0, ρ = 0, and offline learning, Chick and
Frazier (2012) provide a numerical approximation for the upper and lower boundaries of C.

The Matlab code used to compute the optimal stopping boundaries for stage I and stage II sam-
pling is available at https://github.com/sechick/htadelay.

S.5 Related multi-armed bandit (MAB) literature

We also note several connections to the MAB literature, which also addresses questions which
are related to the current work. A central theme is the exploration-exploitation tradeoff between
learning about alternatives with unknown mean performance and exploiting the performance of
alternatives with better-known performance, when the goal is to maximise expected discounted
rewards. Bellman (1956) studied this with backward induction techniques. Gittins and Jones
(1974) proposed an index policy for bandit problems of a particular structure and showed op-
timality. Glazebrook (1979) extended this framework to allow for “stoppable” bandits. The
optimal stopping problem in Eq. (5) can be considered to be a one-armed stoppable bandit.

The MAB framing has also been useful in adaptive trial design. Berry and Eick (1995) use
adaptive assignment rules to balance the goal of treating patients within a trial effectively with
the goal of correctly identifying the relative efficacy of the treatments. Ahuja and Birge (2016)
explore this further by assessing the role of group size in adaptive group sequential designs for
each of these objectives for Bernoulli end points. Those works model how to assign patients
to different treatments (which we do not) but do not study for how long the trial should run or
explore the economics of the trial plus adoption decision. Related non-clinical applications in-
clude assortment planning in retail (Caro and Gallien, 2007), employee performance assessment
for hiring and retention decisions (Arlotto et al., 2014) and interactive marketing (Bertsimas and
Mersereau, 2007). Much of that work does not account explicitly for delays. Hardwick et al.
(2006) account for Poisson arrivals and exponential delays, and develop heuristics to minimise
patient loss. Caro and Yoo (2010) show that certain bandit problems with stationary random
delays satisfy an indexability criterion as long as the delayed responses are observed in the same
order as they are allocated (as is the case here) and compute indices for a beta-binomial model.

S.6 Further simulation results

We present additional analysis of the illustration of section 3, extensions of the sensitivity anal-
ysis for the application of section 5, as well as an additional application.

S.6.1 Changing the delay τ for the illustrative simulation of section 3

Figure 2 of the illustrative simulation is plotted assuming that the delay τ (1000 patient pairs), is
relatively high compared with Tmax (2000 patient pairs). Figure 7 shows the result of halving τ to
500 patient pairs by halving the rate of recruitment, R, leaving all other parameters unchanged.

Comparing Figure 7 with Figure 2, halving the delay means that stage III starts earlier, at
an effective sample size of 600. Further, the stage I regions between A and C and D and B that
characterise Figure 2 are eliminated, implying that there are no values of µ0 such that a fixed
sample u ∈ (0, τ) is an optimal policy. Points A and B remain similar in Figure 7 to their
positions in Figure 2, whereas C shifts up to A and D shifts down to B in Figure 7 as compared
to their positions in Figure 2. The reason is that, for t < τ , the expected value of information is
smaller with fewer pipeline subjects, so that entering Stage II is more advantageous. Above A
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Figure 7: Comparator scenario to that of Figure 2, showing the impact of a smaller τ relative to Tmax.

KEY: ‘*’ value of the sampling mean wi for each path i; ‘—-’ path of posterior mean when in stage II;

‘· · ·’ path of posterior mean when in stage III.

and below B in Figure 7 the number of samples for the Optimal Bayes Sequential and Optimal
Bayes One Stage policies coincide at 0.

S.6.2 Further sensitivity analysis for the application of section 5 (known sampling vari-
ance)

Figure 8 completes the analysis of the impact of changes in the recruitment rate carried out in
section 5.1, by showing how this parameter affects the expected sample size of the trial. In
particular, it shows that the greater expected reward of the trial with the largest recruitment rate
among those considered (R = 907, see Figure 5) is associated with a larger expected sample size
over most of the range of µ0 considered. This is due to the greater value of information implied
by a larger number of subjects in the pipeline.

Figure 9 shows the result of increasing c from $200 to $5000: a higher sampling cost is shown
to shrink the stage II continuation set. Furthermore, it increases the range of values of the prior
mean over which it is optimal not to enter stage II. The opposite effect may be seen by increasing
the size of the population to benefit, P (figure not shown). In simulations, the higher is P , the
wider is the stage II continuation set and the more attractive is the sequential trial.
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S.6.3 Further results for the application of section 5 (PDE approach adapted for unknown
sampling variance)

This subsection provides some additional illustrations for section 5.2. Figure 10 replicates Fig-
ure 6 in the main paper for a different approach to the computation of the value of continuing
during Stage II, among those proposed in Chick et al. (2015). Unlike for KG∗, which is based
on a one-stage lookahead estimate of the value of continuation, the solution is based on the PDE
approach to Stage II that was described in Appendix S.4. The probabilities associated with the
trinomial tree are rescaled according to Eq. (16) to account for the fact that σ2

X is unknown.
Thus, the trinomial tree allows for greater variation when sampling variances are unknown as
compared to when they are known.

We observe that the Stage I stopping boundaries are relatively similar for the KG∗ approxi-
mation and the PDE approach (compare Figure 6(a) with Figure 10(a)). The upper boundary for
stage II sampling is also similar. The PDE approach estimates the value of continuing to sample
differently to the KG∗ approach, and this leads to a near-vertical line for the optimal stopping
boundary upon entering Stage II in this example. This can be seen from the vertical estimated
optimal stopping boundary in Figure 10(a) at n0 + τ on the horizontal axis, and for prior means
in the range µ0 ∈ [−14000,−7000]. In that range, one samples τ samples, stops sampling, and
selects an alternative after all pipeline data have been observed. The expected number of samples
for that range of values of µ0 may be seen in Figure 10(c). The performance metrics (‘net gain’
and ‘proportion of correct adoption decisions’) of the PDE approach are slightly better than those
of the KG∗ approach for some values of the prior mean, but are otherwise very similar (compare
Figure 10(b) and (d) with Figure 6(b) and (d)).

Plug-in estimates for the unknown sampling variance can be used to rescale sample paths of
data as in section 5.2. This rescaling is illustrated in Figure 11. The stopping boundaries delimit
the KG∗ continuation set when computed such that χt/ξt equals 173582, the value of the variance
reported in the relevant medical studies, and assuming ρ̃ = 0 so as to illustrate the effect of zero
discounting in this application. The solid lines plot sample means for several sample paths. They
were generated assuming that the unknown means and variances were sampled according to
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Figure 10: Operating characteristics for the stents application of section 5 with PDE approach in sec-

tion S.6.3 adapted to approximate the Optimal Bayes Sequential policy with unknown sampling variance.

the prior distribution described in section 4. Observations for patient pairs were then generated
according to the statistics for each of the 5 sample paths plotted. The circles represent the actual
sample means for the 5 simulated studies. The dashed lines represent sample paths scaled by

17358
√

ξηt/χηt . Figure 11 demonstrates that the rescaling of sample paths does not have a huge
effect. The larger the shape parameter of the unknown variances, the more certain is the value of
the unknown sampling variance and hence the smaller is the rescaling effect on the sample paths.
Similarly, the earlier the stopping time, the greater the potential rescaling effect on the sample
paths.
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and rescaling of those paths to account for unknown variance.

Parameter Value Source

n0 2 Assumption

c £2000 Assumption

λ £20000/QALY Assumption

σX £7420.00 Derived from Edlin et al. (2012)

Annual discount rate 0.01 Assumption

P 135000 Assumption

I £0 Assumption

Tmax 300 Assumption

End point QALY Edlin et al. (2012)

Delay in observing the primary end point 1 year Costa et al. (2012)

δon 0 Assumption

Study size (number of pairs) 62 Costa et al. (2012)

Duration of recruitment period 33 months Costa et al. (2012)

Equivalent annual rate of recruitment R 23 Derived from Costa et al. (2012)

τ 23 Derived from Costa et al. (2012)

Table 2: Parameter values used for the hip arthroplasty application of section S.6.4.

S.6.4 Additional application: hip arthroplasty

This additional application is based on data from a trial for the comparison of two surgical pro-
cedures for hip arthroplasty. The existing technology is total hip anthroplasty (THA), the new
technology is resurfacing anthroplasty (RSA). Trial design and clinical outcomes are described
in Costa et al. (2012); Edlin et al. (2012) present a cost-effectiveness analysis based on the same
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(b) ‘Net gain’ in expected reward of Optimal Bayes

Sequential over comparator policies.
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(d) Proportion of simulations which make the cor-

rect adoption decision.

Figure 12: Optimal Bayes Sequential policy and operating characteristics for the hip arthroplasty applica-

tion of section S.6.4.

data. The estimated parameters are summarised in Table 2. The cost-effectiveness study was
based on data from 58 patients in the treatment group and 64 in the control group. We approx-
imate the number of pairs to 62. The recruitment period was between May 2007 and February
2010, which implies a recruitment rate of 23 pairs per year. The primary outcome was observed
after 1 year. Hence, although the delay, in terms of calendar time, is the same for this application
as for the one in section 5, the recruitment rate, and hence the delay in terms of the number of
observations, τ , are substantially smaller.

Table 4 of Edlin et al. (2012) reports the mean and 95% confidence interval for incremental
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net monetary benefit, which we use to estimate σX = £7420. The value of P is estimated as-
suming a European perspective and is obtained using the following data reported in Edlin et al.
(2012): the annual number of hip arthroplasty interventions in the UK is around 45000, of which
6% are RSA. Assuming that an adoption decision today implies that the new technology will be
used for the next 5 years, and taking into account that the UK population is about 10% of the
European population, we come to the estimate of P = 45000 · 0.06 · 5 · 10 = 135000 for the
total European market. The sampling cost is assumed equal to £2000. The parameter values are
summarised in Table 2.

Results are presented in Figure 12. Figure 12(a) shows that the comparatively small recruit-
ment rate has a large impact on the optimal stopping policy. Since only 23 patients are recruited
before the first outcome is observed, the range of values for µ0 such that the Optimal Bayes One
Stage policy is optimal is very narrow in the positive region of the prior mean (distance AC on
the vertical axis of Figure 12(a)) and absent in the negative region.

For a value of the prior mean close to zero, Figure 12(b) shows that the expected net gain
of the Optimal Bayes Sequential policy over the two alternative policies is approximately £6m.
This is a smaller gain, in absolute terms, in comparison with the application of section 5, but
it is larger in terms of gain per patient, due to the smaller value of P . This is consistent with
what is shown in Figure 5(a), that is, keeping the other parameters fixed, a comparatively small
recruitment rate leads to larger gains of the Optimal Bayes Sequential policy over the Optimal
Bayes One Stage policy. In terms of the proportion of correct decisions, Figure 12(d) shows that
the results are very similar to those of the stents application.
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