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Abstract—Directional modulation (DM) can be achieved based
on uniform linear arrays (ULAs), where the maximum half
wavelength spacing is needed to avoid spatial aliasing. To exploit
the degrees of freedom (DOFs) in the spatial domain, sparse
arrays can be employed for more effective DM design. In this
paper, the problem of antenna location optimisation for sparse
arrays in the context of DM is addressed for the first time, where
compressive sensing based formulations are proposed employing
the group sparsity concept. Design examples are provided to
verify the effectiveness of the proposed designs.
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I. INTRODUCTION

In conventional wireless communication systems, since the

same constellation mappings are used in all directions of the

transmit antennas, it is possible for the signals to be captured

and demodulated by highly sensitive eavesdroppers even if

they are located in sidelobe regions of the antennas. To avoid

this, the directional modulation (DM) technique has been

developed to improve security by keeping known constellation

mappings in a desired direction or directions, while scrambling

them for the remaining ones [1, 2].

In [3], a reconfigurable array is designed by switching

elements for each symbol to make their constellation points

not scrambled in desired directions, but distorted in other

directions. A method named dual beam DM was introduced

in [4], where the I and Q signals are transmitted by different

antennas. In [5], phased arrays are employed to show that DM

can be implemented by phase shifting the transmitted antenna

signals properly. The bit error rate (BER) performance of a

system based on a two-antenna array was studied using the

DM technique for eight phase shift keying modulation in [6].

A more systematic pattern synthesis approach was presented in

[7], followed by an energy-constrained design in [8]. Recently,

in [9], the time modulation technique was introduced to DM

to form a four-dimensional (4-D) antenna array.

However, most existing research in DM is based on uniform

linear arrays (ULAs) with a maximum half wavelength spacing

to avoid grating lobes. To have a larger aperture and a

higher spatial resolution given a fixed number of antennas,

sparse arrays are normally employed in traditional array signal

processing [10, 11]. The increased degrees of freedom (DOFs)

in the spatial domain allow the system to incorporate more

constraints into the design of various beamformers. Many

methods have been proposed to design such a sparse array,

including the genetic algorithm (GA) [12–14], simulated an-

nealing (SA) [15], and compressive sensing (CS) [16–21].

In this work, we extend the CS-based sparse array design to

the area of DM and try to optimise the antenna locations for

a given set of modulation symbols and desired transmission

directions. The key is to realise that we can not perform

this optimsation individually for each symbol; otherwise we

would end up with different antenna locations for different

transmission symbols. Instead we need to find a common set

of optimised antenna locations for all required transmission

symbols with the desired directions. As a result, the traditional

CS-based narrowband sparse array design methods will not

work and group sparsity based approach has to be adopted,

and a class of CS-based design methods is proposed for the

design of sparse arrays for direction modulation.

The remaining part of this paper is structured as follows. A

review of the DM technique based on phased arrays is given

in Sec. II. The class of CS-based design methods is presented

in Sec. III, including l1 norm minimisation and reweighted l1
norm minimisation. In Sec. IV, design examples are provided,

with conclusions drawn in Sec. V.

II. REVIEW OF DIRECTIONAL MODULATION

A. Narrowband beamforming based on ULAs

A narrowband linear array for transmit beamforming is

shown in Fig. 1, consisting of N equally spaced omni-

directional antennas with the spacing from the first antenna to

its subsequent antennas represented by dn for n = 1, . . . , N−
1, where the transmission angle θ ∈ [0◦, 180◦]. The output

signal and weight coefficient for each antenna are respectively

denoted by xn and wn for n = 1, . . . , N . The steering

vector of the array is a function of angular frequency ω and

transmission angle θ, given by

s(ω, θ) = [1, ejωd1 cos θ/c, . . . , ejωdN−1 cos θ/c]T , (1)

where {·}T is the transpose operation, and c is the speed of

propagation. For a ULA with a half-wavelength spacing (dn−
dn−1 = λ/2), the steering vector is simplified to

s(ω, θ) = [1, ejπ cos θ, . . . , ejπ(N−1) cos θ]T . (2)

Then the beam response of the array is given by

p(θ) = wHs(ω, θ), (3)



Fig. 1. A narrowband transmit beamforming structure.

where {·}H represents the Hermitian transpose, and w is the

weight vector including all corresponding coefficients

w = [w1, w2, . . . , wN ]T . (4)

B. DM design for a given array geometry

The objective of DM design for a given array geometry is to

find the set of weight coefficients giving the desired constel-

lation values in the directions of interest while scrambling the

values and simultaneously maintaining a magnitude response

as low as possible in other directions. For M -ary signaling,

such as multiple phase shift keying (MPSK), there are M
sets of desired array responses pm(θ), with a corresponding

weight vector wm = [wm,1, . . . , wm,N ]T , m = 1, , . . . ,M .

Each desired response pm(θ) as a function of θ is split into

two regions: the mainlobe and the sidelobe. We sample each

region and put the sampled desired responses into two vectors

pm,ML and pm,SL, respectively. Without loss of generality,

we consider only one point θML in the mainlobe and R − 1
points θ1, θ2, . . . , θR−1 in the sidelobe region. Therefore, we

have

pm,SL = [pm(θ1), pm(θ2), . . . , pm(θR−1)]

pm,ML = pm(θML) .
(5)

All constellation points for a fixed θ share the same steering

vector and we put all the R−1 steering vectors at the sidelobe

region into an N×(R−1) matrix SSL, and the steering vector

at the mainlobe direction θML is denoted by s(θML). For the

m-th constellation point, its corresponding weight coefficients

can be found by

min ||pm,SL − wH
mSSL||2

subject to wH
ms(θML) = pm,ML,

(6)

where || · ||2 denotes the l2 norm. The objective function

and constraint in (6) ensure a minimum difference between

desired and designed responses in the sidelobe, and a desired

constellation value to the mainlobe or the direction of interest.

To ensure that constellation is scrambled in the sidelobe

regions, the phase of the desired response wH
mSSL at different

sidelobe directions can be randomly generated.

III. PROPOSED DESIGN METHOD

A. Group sparsity based design

For a standard sparse array design method [21], a given

aperture is densely sampled with a large number of potential

antennas. First, consider Fig. 1 as being a grid of potential

active antenna locations. Then dN−1 is the aperture of the

array and the values of dn, for n = 1, 2, . . . , N − 1, are

selected to give a uniform grid, with N being a very large

number. Through selecting the minimum number of non-zero

valued weight coefficients to generate a response close to the

desired one, sparseness is introduced. In other words, if a

weight coefficient is zero-valued, the corresponding antenna

will be inactive and therefore can be removed, leading to

a sparse result. Assume p is the vector holding the desired

responses at the R sampled angles (one point in the mainlobe

and R−1 points in the sidelobe as described earlier), and S is

the N × R matrix composed of the R steering vectors. Then

the design can be formulated as follows

min ||w||1 subject to ||p − wHS||2 ≤ α, (7)

where the l1 norm || · ||1 is used as an approximation to the

l0 norm || · ||0, and α is the allowed difference between the

desired and designed responses.
Now, in the context of sparse array design for DM, we could

modify (6) and find the sparse set of weight coefficients wm

through the following formulation

min ||wm||1 subject to ||pm,SL − wH
mSSL||2 ≤ α

wH
ms(θML) = pm,ML.

(8)

However, the solution to (8) cannot guarantee the same set

of active antenna positions for all constellation points. If

a weight coefficient is zero in an antenna position for one

constellation point, but non-zero for others, the antenna still

cannot be removed. To solve the problem, similar to [22],

group sparsity is introduced here, which imposes zero-valued

coefficients at the same antenna locations for all constellation

points simultaneously. To achieve this, we first construct the

following matrices

W = [w1,w2, . . . ,wM ] (9)

PSL = [p1,SL,p2,SL, . . . , pM,SL]
T , (10)

and the vector

pML = [p1,ML, p2,ML, . . . , pM,ML]
T . (11)

Each row of the N × M weight matrix W holds the weight

coefficients at the same antenna location for different constel-

lation points and it is denoted by w̃n = [wn,1, . . . , wn,M ] for

n = 1, . . . , N . Now define ŵ as a vector of l2 norm of w̃n,

given by

ŵ = [||w̃1||2, ||w̃2||2, . . . , ||w̃N ||2]
T . (12)

Then the group sparsity based sparse array design for DM can

be formulated as

min ||ŵ||1 subject to ||PSL − WHSSL||2 ≤ α

WHsML = pML .
(13)



The problem in (13) can be solved using cvx, a package for

specifying and solving convex problems [23, 24].

B. Reweighted l1 norm minimisation

Different from l0 norm which uniformly penalises all non-

zero valued coefficients, the l1 norm penalises larger weight

coefficients more heavily than smaller ones. To make the l1
norm a closer approximation to the l0 norm, a reweighted

l1 norm minimisation method can be adopted here [25–

27], where a larger weighting term is introduced to those

coefficients with smaller non-zero values and a smaller weight-

ing term to those coefficients with larger non-zero values.

This weighting term will change according to the resultant

coefficients at each iteration. Applying this idea to the group

sparsity problem in (13), for the i-th iteration, it is formulated

as follows

min

N∑

n=1

δin||w̃
i
n||2

subject to ||PSL − (Wi)HSSL||2 ≤ α

(Wi)HsML = pML ,

(14)

where the superscript i indicates the value of the corresponding

parameters at the i-th iteration, and δn is the reweighting term

for the n-th row of coefficients, given by δin = (||w̃i−1
n ||2 +

γ)−1. The iteration processes are described as follows:

1) For the first iteration (i = 1), calculate the initial value

||w̃n||2 by solving (13).

2) Set i = i + 1. Use the value of the last ||w̃i−1
n ||2 to

calculate δin, and then find Wi and ||w̃i
n||2 by solving

the problem in (14).

3) Repeat step 2 until the positions of non-zero values of

the weight coefficients do not change any more for some

number of iterations.

Here γ > 0 is required to provide numerical stability to prevent

δin becoming infinity at the current iteration if the value of a

weight coefficient is zero at the previous iteration, and it is

chosen to be slightly less than the minimum weight coefficient

that will be implemented in the final design (i.e. the value

below which the associated antenna will be considered inactive

and therefore removed from the obtained design result), where

δin||w̃
i
n||2 =

||w̃i

n
||2

||w̃i

n
||2+γ

.

IV. DESIGN EXAMPLES

In this section, we provide several representative design

examples to show the performance of the proposed formu-

lations in comparison with a standard ULA. The mainlobe

direction is θML = 90◦ and the sidelobe regions are θSL ∈
[0◦, 85◦]∪[95◦, 180◦], sampled every 1◦. The desired response

is a value of one (magnitude) with 90◦ phase shift at the

mainlobe (QPSK) and a value of 0.1 (magnitude) with random

phase shifts over the sidelobe regions.

To have a fair comparison, we first obtain the DM result

using the method in (6) based on a 26-element ULA with

half-wavelength spacing. Based on the design result, we then

calculate the error norm between the designed and the desired
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Fig. 2. Resultant beam responses based on the design in (6).
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Fig. 3. Resultant phase patterns based on the design in (6).

responses of this ULA and this value is used as α in the sparse

array design formulations in (13) and (14).

A. ULA design example

By using (6), the resultant beam pattern for each constella-

tion point is shown in Fig. 2, where all main beams are exactly

pointed to 90◦ with a reasonable sidelobe level. Moreover, the

phase at the main beam direction is 90◦ spaced and random

in the sidelobe directions, as shown in Fig. 3.

B. Sparse array design examples

With the above ULA design, we obtain α = 2.5017. Since

the resultant sparse array may have a larger aperture than

the ULA, we have set the maximum aperture to be 17.5λ,

consisting of 500 equally spaced potential antennas.

By the standard group-sparsity based formulation in (13),

29 active antennas are obtained, with an average spacing of

0.625λ. The resultant beam pattern for each constellation point

is shown in Fig. 4, where all main beams are exactly pointed

to 90◦ with a reasonable sidelobe level. The phase at the

main beam direction is 90◦ spaced and random in the sidelobe

directions, as shown in Fig. 5. As shown in Table I, although

its resultant value for ||p − wHS||2 is a little better than the

ULA, the number of antennas is larger than the ULA, which

is not desirable.
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Fig. 4. Resultant beam responses based on the design in (13).
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Fig. 5. Resultant phase patterns based on the design in (13).

Now we examine the performance of the reweighted method

in (14). In this design, there is an additional parameter γ,

and we have chosen γ = 0.001, which means that antennas

associated with a weight value smaller than 0.001 will be

considered inactive. With the other parameters same as in

previous examples, it results in 20 active antennas with an

average spacing of 0.653λ. So as expected, a sparser solution

has been obtained compared to the design in (13). The array
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Fig. 6. Resultant beam responses based on the reweighted design in (14).
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Fig. 7. Resultant phase patterns based on the reweighted design. (14).

TABLE I
SUMMARY OF THE DESIGN RESULTS.

ULA Usual l1 Reweighted l1

Antenna number 26 29 20

Aperture/λ 12.5 17.5 12.4

Average spacing/λ 0.5 0.625 0.653

||p − wHS||2 2.5017 2.3381 2.4925

response for each constellation point is shown in Fig. 6 and

the phase pattern in Fig. 7, all indicating a satisfactory design.

Their array responses are also closer to the desired ones than

the ULA according to the value of ||p−wHS||2, as shown in

Table I.

More importantly, this reweighted design is achieved with

6 less antennas compared to the ULA case, highlighting the

advantage of employing sparse array instead of a standard

ULA in directional modulation applications.

V. CONCLUSIONS

The antenna location optimisation problem for directional

modulation based on sparse antenna arrays has been studied

and compressive sensing based design methods were proposed

exploiting the group sparsity concept, including the usual l1
norm minimisation and the reweighted l1 norm minimisation.

As shown in the provided design examples, all sparse designs

have achieved a main lobe pointing to the desired direction

with scrambled phases in other directions. In particular, the

reweighted l1 norm minimisation method can provide a sparser

solution as expected, achieving a similar performance as the

ULA but with less number of antennas. One note about the

the directional modulation technique is that it is based on

the assumption that there is no multipath effect between the

transmitter and the receiver; in the presence of multipath, this

technique will struggle and further research is needed in this

field.
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