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Abstract. This paper presents a novel modification to an existing al-
gorithm for spatial anomaly detection in binary labeled point data sets,
using the Bernoulli version of the Spatial Scan Statistic. We identify a po-
tential ambiguity in p-values produced by Monte Carlo testing, which (by
the selection of the most conservative p-value) can lead to sub-optimal
power. When such ambiguity occurs, the modification uses a very in-
expensive secondary test to suggest a less conservative p-value. Using
benchmark tests, we show that this appears to restore power to the ex-
pected level, whilst having similarly retest variance to the original. The
modification also appears to produce a small but significant improvement
in overall detection performance when multiple anomalies are present.

1 Introduction

The detection of spatial anomalies (a.k.a. ‘spatial cluster detection’) in binary
labeled point data has important applications in analyzing the geographic dis-
tribution of health events (e.g. [1]) and other fields such as forestry (e.g. [2]).
Since 1997, the freely available SaTScanTMsoftware package (www.satscan.org)
has provided a means of detecting such anomalies using the Spatial Scan Statis-
tic [3] and has been used in well over a hundred published scholarly studies [4].
Section 2 gives more details of the research context.

Combined with a moving scan window procedure, the statistic identifies the
location, size and statistical significance (p-value) of potential anomalies within
a given study region. Due to the nature of the Spatial Scan Statistic as it is
currently applied to binary labeled point data (see primer in Section 3), it is
sometimes not possible to establish an exact p-value for the most likely poten-
tial anomaly. This ambiguity can occur in various places on the unit interval,
including the most useful part of the range, 0 ≤ p-value ≤ 0.1. This issue is
explained in Section 4. When ambiguity occurs, SaTScanTMselects the most
conservative p-value, resulting in a sometimes lower-than-expected false positive
rate (FPR), and a corresponding reduction in true positive rate (TPR, a.k.a.
statistical power or sensitivity).

The principal contribution of this paper is to describe a means by which,
when p-value ambiguity occurs, otherwise redundant information can be used
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to meaningfully (and consistently) suggest a less conservative p-value. This is
described in Section 5. Using benchmark tests (Section 6) we show this produces
a false positive rate very close to the nominal significance level, and correspond-
ingly increases the power in the circumstances outlined above. The proposed
algorithm also delivers a p-value consistency (i.e. mean retest variance) compa-
rable to SaTScanTM

The secondary contribution is that, when applied to data sets where several
anomalies are present, the modification appears to produce a small improvement
in the ratio of true and false positive rates, as measured using area under curve
(AUC) as applied to ROC curves. We use a ‘within datasets’ Monte Carlo method
to show this improvement to be statistically significant, as described in Section
6. A discussion of the results, and future research directions, is given in Section
7.

2 Research Context

Spatial anomaly detection has three broad categories: global (identifying if any
anomaly is present in the study region, but not specifying a location); localised
(as global, but specifying location) and focused (testing for the presence of an
anomaly at a location specified a priori). The Spatial Scan Statistic [3] is a
widely use method of localised anomaly detection. Localised is the most flexible,
as it can perform the function of the other two, albeit possibly with sub-optimum
power. Following on from [3] many frequentist versions of the statistic have been
developed and compared, (see list in [4]) as well a Bayesian version [5]. Mostly
these are for use with areal data, e.g. disease counts in postal districts. The
Bernoulli version (hereafter SSSB), is for use with binary labeled point data.
Despite being introduced in [3] and used in various studies since (e.g. [1], [2]),
there has been little research into the benchmark performance of the SSSB .
Recently [6] used the SSSB when considering a alternative circular scan window
selection method (scan windows, termed here Zj , are defined in Section 3), and
[7] have developed a risk-adjusted SSSB variant. Although the latter is of some
interest, it appears to have lower-than-expected FPR and TPR, so in this paper
we only consider the original SSSB . It is also worth noting that many studies
have been published into the effect of using different shaped scan windows, of
which a useful summary is given in [8]. The results of this study should be
applicable to all types of scan window, provided they can be applied to point
data.

3 Primer: Spatial Scan Statistic (Bernoulli version)

The Spatial Scan Statistic has several versions. The Bernoulli (hereafter SSSB)
is suitable to binary labeled point data. For the benefit of readers unfamiliar
with the Spatial Scan Statistic, this section formally defines3 the SSSB , its ac-

3 Regarding notation: italic lower-case = scalar; italic upper-case = set (or multiset),
bold upper-case = set (or multiset) of sets (or multisets).
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companying data structures and method of application 4. For a derivation of the
statistic see [3].

Consider a spatial region R , with r any point location therein. Consider a
data set P = {p1,p2...pN} where each pi is associated a single point location
loci ∈ R, and a binary label si. Let P0 = {pi : si = 0} and P1 = {pi : si = 1},
such that P0 ∪ P1 = P and P0 ∩ P1 = �. Let N and the position of each loci be
taken as given, but assume each si value to be the outcome of an independent
Bernoulli trial with probability p(si = 1) = ρ(r), where ρ(r) is some arbitrary
value (on the unit interval) associated with point r. Let H0 represent the (null)
hypothesis that ρ(r) is constant for all r ∈ R. That is, the distribution of the
elements of P1 amongst P is uniformly random. Let HA represent the (alternate)
hypothesis that a spatial anomaly is present, i.e. there is a subset of R where
ρ(r) is higher (or lower) than the rest of R. Put formally, HA ⇔ (∃A ⊂ R, hence
∃B = R − A) such that ρ(a ∈ A) = βρ(b ∈ B), where β is a constant5 6= 1. In
this study we only consider β > 1, but the results will apply equally to β < 1.
This Bernoulli model is useful for representing point occurrences in many real-
world applications, as it controls for a inhomogeneous underlying distribution of
events.

In real data sets, A (if it exists) can only be estimated by guessing which
loci lie inside or outside it. Let us call any particular estimate Z. Furthermore,
let us assume we have some predefined scheme (typically a moving scan window
of variable size) for generating a set of estimates, Z = {Z1, Z2, Z3 . . .}, where
each Zj ⊂ P . The purpose of the SSSB is to determine which Zj (let us call this
Zprime) is most likely to represent6 A, if indeed A exists. We then associate a
p-value with Zprime, which represents the probability that H0 is true (in which
case Zprime is a random artefact). To use the SSSB , we split all Zj such that
Zj0 = {pi : pi ∈ Zj and si = 0} and Zj1 = {pi : pi ∈ Zj and si = 1}. For
each Zj the SSSB takes four integer inputs (N = |P |, C = |P1|, n = |Zj | and
c = |Zj1|) and produces one quasi-continuous output, the log likelihood ratio or
LLR. The formula is given in three parts: Equation 17 gives the likelihood of
HA if Zj represents A; Equation 2 gives the likelihood of H0, identical of all
choices of Zj . Equation 38 brings the two values together to produce the LLR.
Testing all Zj ∈ Z using the SSSB gives a multiset L of LLR values, where
L = {llr1, llr2, llr3, . . .}. Zprime is then Zj for which llrj ≥ llrk∀k 6= j (let us
call this llrprime). In the case of multiple maximum LLR values, an arbitrary
choice for Zprime is made.

4 SSSB can also be applied to spatio-temporal data, not discussed here.
5 Note an assumption of uniform probability inside and outside the anomaly is required

by the Spatial Scan Statistic.
6 By represent, we mean pi ∈ Zprime ⇒ loci ∈ A and pi /∈ Zprime ⇒ loci /∈ A
7 Note I represents the indicator function.
8 Note any log base can be used, provided it is consistent throughout the study.
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The p-value of Zprime is obtained by randomisation testing. For step m (of
M Monte Carlo steps) the si values of all points are pooled and randomly
re-allocated. The above procedure is repeated, generating a new multiset Lm

of LLR values. For each Lm the maximum LLR (llrprime−m) is recorded and
stored in multiset D where D = {llrprime−1, llrprime−2, . . . llrprime−M}. If H0

is true, the ‘real’ value llrprime should fall comfortably within the distribution
of llrprime−m values9. To calculate the p-value10 of Zprime using the established
SaTScanTMprocedure, we count the number of llrprime−m ≥ llrprime (let’s call
this v) and set the p-value to (v + 1)/(M + 1). This Monte Carlo procedure is
compatible with most versions of the Spatial Scan Statistic, but it sometimes
creates a particular problem when used with the SSSB , discussed in Section 4.

4 Problem Identification

All versions of the Spatial Scan Statistic share a common characteristic of being
the individually most powerful test for a localised anomaly [3]. This means if
a particular HA is true (see Section 3), then for a given Z and a given FPR
(i.e. probability of Type I error), no test can have a greater chance of correctly
rejecting H0. Of course, this assumes one is in control of the FPR. In benchmark
tests conducted by the author using some other versions of the Spatial Scan
Statistic (not presented here), the FPR the Spatial Scan Statistic is generally
very close to the nominal significance level (hereafter α). However, for the SSSB

the FPR is sometimes markedly lower than α, which correspondingly reduces
the TPR (a.k.a power). An explanation is given below.

As described in Section 3, the SSSB has four integer input parameters (N , C,
n, c), and one quasi-continuous output parameter, the LLR. Within any given
data set, N and C are constant, leaving only two free integer parameters. Thus
many scan windows (Zj ∈ Z) share duplicate LLR values, which also produces
duplicate llrprime−m values in D. The problem arises when multiple values in
D match the ‘real’ llrprime, as one then has a range of equally valid p-values
to choose from. SaTScanTMdefers to the most conservative p-value, by setting v
to the count of all llrprime−m ≥ llrprime. This is not in any way incorrect, but
it does lead unavoidably to the drop in FPR and TPR mentioned above. One
can instead set v to the count of all llrprime−m > llrprime; this leads to higher

9 Under H0 ρ(r) is uniform, so randomising si has little affect on llrprime
10 Other Zj with high llrj may also be of interest, but this is not our concern here.
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TPR but also a FPR significantly higher than α, which may not be acceptable to
users. Of course this is only a problem when these multiple p-values straddle α.
Unfortunately, in both sets of benchmark tests presented in this paper, a range
of equally likely p-values frequently occurs that includes the popular α values
such as 0.05. Increasing the number of Monte Carlo repetitions does not help,
as the number of duplicates increases also.

If we are only concerned about the veracity of outcomes when averaged over
many datasets, we could simply select a uniformly randomly p-value somewhere
between the highest and lowest p-value (inclusive) in the ambiguous range. How-
ever, such a speculative p-value is clearly unacceptable in a real-world testing
situation. The user could look for an alternative source of information about the
data points instead, but an internal solution would clearly be preferable. As-
suming the point locations and status are all we have, the only way of obtaining
additional information is perform a different type of anomaly test, ideally one
unlikely to produce duplicate values. Then we can then associate a secondary
value with each LLR, enabling us to rank the llrprime value amongst many iden-
tical llrprime−m values. The problem then chiefly becomes one of computation
time, as one must multiply the cost of the secondary test by M+1. The following
section outlines a potential, time-efficient, solution.

5 Proposed Solution

As a secondary anomaly test (to help resolve p-value ambiguity) one can make
use of the values in L and Lm (the sets of all LLR values obtained from both
the ‘real’ data and each Monte Carlo step). These are a reservoir of information,
most of which is discarded. Most of these LLR values are close to zero, as they
correspond to Zj in which |Zj0| and |Zj1| are wholly compatible with H0. How-
ever, when an anomaly is present, many Zj (aside from Zprime) may partially
overlap or wholly include the anomaly A. Thus we may have many unusually
high llrj values, even if only one anomaly is present. Therefore the mean llrj
value (hereafter llr) should generally be higher when an anomaly is present11.

Of course, we would not ordinarily use llr as a test statistic when many
well established global anomaly tests exist. However, llr is very inexpensive to
calculate, making it attractive as a secondary test (for reasons outlined in Section
4). Using the original procedure, we must calculate every llrj to find Zprime. So,
these values must all be present within the processor at some point, and we can
use cache memory (perhaps even a spare register) to hold the running total.
The cost of each addition, compared to the exponential/logarithmic operations
require to find the LLR, is minuscule. An algorithm to implement this, shown
alongside the original algorithm, is given below. The line marked * is the step
that accounts for the majority of the total computation time. The creation of
D′ is provided here only for illustrative purposes; if the elements of D are stored
in a suitably ordered way, v can be calculated directly from D.

11 llr is therefore a ‘global’ anomaly detection statistic, as defined in Section 2.

5
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Original Algorithm Proposed Algorithm

Load P0 and P1 from file Load P0 and P1 from file
Generate Z and L Generate Z and L, note running total of llrj
llrprime = max(L) llrprime = max(L)
Note Zprime Note Zprime

Create empty set D llr =
∑
llrj/|L|

For m = 1 to M { Create empty set D
Shuffle all si values For m = 1 to M {
* Generate Lm Shuffle all si values
llrprime−m = max(Lm) * Generate Lm, note running total of llrmj

Insert llrprime−m into D llrprime−m = max(Lm)

} llrm =
∑
llrmj/|L|

D′(⊆ D) = {llrprime−m : Insert pairing { llrprime−m, llrm } into D
llrprime−m ≥ llrprime} }

v = |D′| D′(⊆ D) = { {llrprime−m, llrm} :
p-value = (v + 1)/(M + 1) ( llrprime−m > llrprime ) or

Report Zprime and p-value ( llrprime−m = llrprime and llrm ≥ llr ) }
v = |D′|
p-value = (v + 1)/(M + 1)
Report Zprime and p-value

6 Benchmark Results

The proposed algorithm shown above was coded in C++ and compared to the
original SaTScanTMsoftware using two batches of synthetic benchmark ‘case/
control’ data. This section briefly describes the technical implementation, and
presents the results.

So that a direct comparison could be made, the generation of Z (and L) was
performed using the same concentric circular method used by SaTScanTM. This
involves generating a set of concentric circles centred on each loci, selecting only
those circles with radii just sufficient to include loci′ (i 6= i′, and pi′ ∈ P1). For
each circle, a scan window (Zj) is created containing all members of P whose
location loci lies within this circle. A graphic example is given in [6]. Two batches
of synthetic data sets (BCSR and BTRENT ) were generated using a separate
program. Both contain 6000 data sets: 3000 representing H0; 3000 representing
a selected HA. Each data set contains the loci (two integer co-ordinates on a
500×500 grid) of 300 points: 200 ‘controls’ (si = 0) and 100 ‘cases’ (si = 1).
Regarding the control loci: for BCSR these were generated under complete spatial
randomness; for BTRENT they were generated using a Poisson process, with
a p.d.f. in proportion to the 2001 population density of the Trent region of
the UK, mounted onto the same 500×500 grid (full details given in [6]). This
offers comparison between homogeneous and inhomogeneous background point
density. Regarding the case loci: under H0 these follow the same distribution as
the control loci. For BCSR under HA, we chose to insert into each data set three

6
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randomly located, isotropic, Gaussian shaped anomalies, each with a maximum
relative risk12 (hereafter MRR) of 15. For a fully illustrated description, see [6].
To give comparison with a tougher test, for BTRENT (under HA), we inserted
only one such randomly placed Gaussian anomaly, also with MRR of 15.

To assess performance, we obtained the p-value of both Zprime values (one
generated by SaTScanTMand one by the proposed algorithm) for all data sets,
using (M =)999 Monte Carlo steps. For each value of α in the range {0.001,
0.002, . . . , 1} the count of p-values ≤ α was recorded for BCSR and BTRENT ,
split into counts for H0 and HA. Dividing the H0 count by 3000 gives us the
FPR (false positive rate, a.k.a. 1-specificity), and similarly for HA we have TPR
(true positive rate, a.k.a. power or sensitivity). These are shown in Figure 1. It
can be seen the FPR of the proposed algorithm is closer to parity across most
α values. As expected, the TPR of the proposed algorithm is also higher than
that of SaTScanTMwhen the FPR of the latter dips below parity (due to p-value
ambiguity in those ranges of α).

Although the proposed algorithm appears to rectify the overall drop in FRP
and TPR, as mentioned in Section 4 we could have achieved this by simply
randomising the p-value for each data set within its ambiguity range. Users
need assurance the p-value suggested by a modified test is consistent, at least
similarly consistent to SaTScanTM. Table 1 shows the mean retest variance for
both tests, plus the randomised version just described. Here we selected 50 data
sets at random from each of the 3000 H0 and HA data sets used for BCSR

and BTRENT . We then retested each data set 50 times, calculating the p-value
variance. We then took the mean of this variance across the 50 data sets in each
batch, shown in Table 1. The results show clearly the p-value consistency of the
proposed algorithm is very close to that of SaTScanTM, and considerably better
than the randomised version.

Data sets source — SaTScanTM— Proposed algorithm — Randomised algorithm

BCSR : H0 0.160 0.177 1.486

BCSR : HA 0.042 0.043 0.199

BTRENT : H0 0.140 0.159 1.291

BTRENT : HA 0.065 0.080 0.721

Table 1. Table showing mean retest variance (×10−3) of the different algorithms

Although the rectification of the FPR (and corresponding increase in TPR) is
our main aim, it is also useful to test if the proposed algorithm has any noticeable
effect on overall detection performance (i.e. the ratio of TPR to FPR). Plotting
the pairings of FPR and TPR for each α value gives us the standard ROC
(Receiver Operator Characteristic) curve for both SaTScanTMand the proposed

12 This is the amount of the relative increase in the probability of a case location
occurring at the very centre of the anomaly, with the increase smoothly decreasing
(following a Gaussian curve) as distance from the anomaly centre increases.

7
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algorithm, as applied to BCSR and BTRENT . It has been proved [9] the area
under a ROC curve (hereafter AUC) is equal to the probability that the test,
when presented with one H0 and one HA data set, will correctly distinguish
which is which. However, AUC is calculated using 0 <FPR≤ 1, and high FPR
values (say above 0.1) are of little interest in most applications. We therefore
choose to calculate only the area under the curves in the range 0 <FPR≤ 0.1.
Let’s call this AUC0.1.

Figure 2 shows both ROC curves in the range 0 <FPR≤ 0.1. It can be seen
the overall performance is very similar, especially for BTRENT (shown right).
However, for BCSR (shown left) the ROC curve for the proposed algorithm
shows slight improvement. For BCSR, the increase in AUC0.1 for the proposed
algorithm (over and above the AUC0.1 of SaTScanTM) is 1.44%, where as for
BTRENT it is slightly negative at -0.62%. We used a ‘within data sets’ Monte
Carlo procedure, developed by the author13, to establish a significance of<0.0001
for the figure of 1.44% and 0.7929 for the figure of -0.62%. This indicates the con-
fidence with which we may reject a null hypothesis that the increase in AUC0.1

(or decrease in the case of the -0.62% figure) is due solely to random variations in
test performance. The significance levels suggest we can be confident that some
performance improvement occured in the BCSR data sets, whereas no significant
difference in performance occured in BTRENT data sets. The reason for this is
likely to be the multiple anomalies present in the BCSR sets, an issue which is
discussed further in Section 7.

7 Conclusion

In this paper we have identified a potential ambiguity in p-values produced by
the Bernoulli version of the Spatial Scan Statistic (SSSB), when used within
the Monte Carlo algorithm with which it is normally associated. We proposed
and tested a modified Monte Carlo algorithm which uses a very inexpensive
secondary test to produce a more precise p-value, with a retest consistency simi-
lar to the p-value produced by the SaTScanTMsoftware. The proposed algorithm
appears to restore false positive rate (FPR) to approximate parity with the nom-
inal significance level of the test, and correspondingly increases the true positive
rate (TPR), a.k.a. power. Two batches of 6000 data sets were used for bench-
mark testing: one with three anomalies set against a homogeneous background
point density; one with a single anomaly set against a inhomogeneous back-
ground point density. A similar rectification of FPR and TPR rates was seen
across both, and in the former a small (but statistically significant) increase
in overall detection performance was also observed, as measured by area under
ROC curve in the critical area 0 <FPR< 0.1. The Spatial Scan Statistic has the

13 This involves randomly selecting 50% of data sets and swapping the p-values of the
two tests, then recalculating the ratio of AUC0.1 for both tests. This swapping is
permissible under a null hypothesis that the underlying performance of the two tests
is idenitcal. Repeating this (say 10,000 times) produces a distribution for the ratio
of the two AUC0.1 values, against which the ‘real’ ratio can be measured.

8
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Fig. 1. FPR/TPR curves for benchmark data sets: BCSR (left) BTRENT (right)

Fig. 2. ROC curves (in range 0 < FPR < 0.1) for: BCSR (left) BTRENT (right)

9
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proven quality of being the individually most powerful test for localised anomaly
detection [3], so this the latter claim may seem surprising. It is probably because
of the definition of this characteristic is based on the test’s use of an alternate
hypothesis containing only a single anomaly; the batch that witnessed the im-
provement contains data sets with three anomalies. Due to its global nature, our
secondary test statistic (i.e. the mean LLR) may be sensitive to the presence of
multiple anomalies in a way that the Spatial Scan Statistic (i.e. the maximum
LLR) is not. This raises the question, even when there is no p-value ambiguity
in the Spatial Scan Statistic, whether it might be useful to take the mean LLR
into account in some way.

We hope these results are of interest to the research community, and may
in future investigate the properties of other non-maximum LLR values with a
view to gaining improvements in anomaly detection. It is expected any such
improvements will apply equally to spatio-temporal point data, and this may be
the subject of future benchmark testing.
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