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Abstract
Summary Observational (epidemiological) studies suggest
the positive association between dietary silicon intake and
bone mineral density may be mediated by circulating estradiol
level. Here, we report the results of a silicon supplementation
study in rats that strongly support these observations and
suggest an interaction between silicon and estradiol.
Introduction Epidemiological studies report strong positive
associations between dietary silicon (Si) intake and bone
mineral density (BMD) in premenopausal women and indi-
cate that the association may be mediated by estradiol. We
have tested this possibility in a mixed-gender rodent interven-
tion study.
Methods Tissue samples were obtained from three
groups of 20-week-old Sprague Dawley rats (five males
and five females per group) that had been supplemented
ad libitum for 90 days in their drinking water with (i)
<0.1 mg Si/L (vehicle control), (ii) 115 mg Si/L (mod-
erate dose) or (iii) 575 mg Si/L (high dose). All rats
received conventional laboratory feed, whilst supple-
mental Si was in the form of monomethylsilanetriol,

increasing dietary Si intakes by 18 and 99 %, for the
moderate- and high-dose groups, respectively.
Results Fasting serum and tissue Si concentrations were in-
creased with Si supplementation (p<0.05), regardless of gen-
der. However, only for female rats was there (i) a trend for a
dose-responsive increase in serum osteocalcin concentration
with Si intervention and (ii) strong significant associations
between serum Si concentrations and measures of bone qual-
ity (p<0.01). Correlations were weaker or insignificant for
tibia Si levels and absent for other serum or tibia elemental
concentrations and bone quality measures.
Conclusions Our findings support the epidemiological
observations that dietary Si positively impacts BMD in
younger females, and this may be due to a Si-estradiol
interaction. Moreover, these data suggest that the Si
effect is mediated systemically, rather than through its
incorporation into bone.

Keywords Animal study . BoneμCT . Estradiol . Matrix
mineralisation . Nutrition . Silicon

Introduction

Silicon, a major component of the mammalian diet via the
consumption of plant-based foods, is present in all mammali-
an tissues and especially the connective tissues [1, 2].
However, it is not clear whether it has a biological/
biochemical role in higher animals, including mammals.
Evidence amassed over the past 40 years suggests that Si
may be important for normal bone and connective tissue
health [1]. We have previously reported, in the Framingham
Offspring cohort, that higher intakes of dietary Si are associ-
ated with higher bone mineral density (BMD) at the hip sites
in premenopausal women and to some extent in men but not at
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all in postmenopausal women [3]. These findings suggested
that there may be an interaction between Si intake and estro-
gen status, and this was investigated further in a female-only
cohort (the Aberdeen Prospective Osteoporosis Screening
Study) where postmenopausal use of hormone replacement
therapy (HRT) was documented in detail. We confirmed the
Si–BMD relationship in premenopausal women and the lack
of association in postmenopausal womenwho had never taken
HRT [4]. However, for postmenopausal women, the Si–BMD
relationship was regained in past users of HRT and especially
so in current users of HRT [4]. These findings, from observa-
tion studies, imply a possible interaction between Si intake
and estrogen status.

Others have also suggested a possible interaction
between silicon and estrogen. Charnot and Peres [5, 6]
reported that endogenous sex and endocrine hormones
affect the absorption and metabolism of Si in rats,
whilst Nielsen and Poellot [7] reported that dietary Si
(or Si status) affects the response to a change in estro-
gen status (i.e. ovariectomy/estrogen deficiency). Here,
we have taken advantage of rat tissue samples that were
collected from a 12-week (90 days) oral intervention
study with the Si supplement ‘monomethylsilanetriol’
(MMST, CH3Si(OH)3) to directly investigate the inter-
action between Si intake and estrogen status with re-
spect to bone health. The effect of Si supplementation
on body Si pools (Si status) was investigated by mea-
suring fasting Si levels in serum, ear (non-calcified
collagenous tissue and potential Si pool) and bone (cal-
cified collagenous tissue and Si pool). The study was
carried out by a commercial clinical research organisa-
tion for separate, regulatory purposes (i.e. a safety
study), but it provided an opportunity for us to investi-
gate the effects of 3-month Si supplementation on bone
quality (bone microarchitecture and bone mineralisation)
in male and female rats, where there is natural separa-
tion of circulating estradiol levels [8, 9]. Silicon sup-
plementation was given on a normal dietary Si back-
ground; i.e. this was not a deficiency study, the rats
received a maintenance diet with its normal high Si
content.

Previous human studies have shown, over a 1-month inter-
vention period, that MMST (CH3Si(OH)3) is a safe Si supple-
ment and that it undergoes metabolism to orthosilicic acid
(OSA, Si(OH)4) which is considered the bioactive form of
Si [10, 11]. Unlike OSA, however, thisMMST precursor form
has the advantage of remaining soluble and bioavailable at the
supplemental levels used in this study [10–13]. The overall
purpose of this study was to investigate the effect of MMST
(Si) supplementation on connective tissue Si concentrations
and bone quality measures. The data, however, also allowed
us to investigate the interaction between Si and estrogen
status.

Methods

Animal study and tissue collection

Rat tissue samples were collected at the end of a 90-day
supplementation study with MMST, which was performed
at a Good Laboratory Practice-accredited commercial clin-
ical research organisation (CRO; Charles River
Laboratories Pre-Clinical Services, Ireland). The study
consisted of three groups each of ten rats: group 1 =
vehicle control (reverse osmosis-treated drinking water
with <0.1 mg Si/L), group 2 = 115 mg Si/L drinking
water (‘moderate Si dose’) and group 3 = 575 mg Si/L
drinking water (‘high Si dose’). The drinking waters were
prepared and provided by LLR-G5 Ltd (Castlebar,
Ireland), with Si supplemented in the form of MMST
(CH3Si(OH)3), and Si contents were confirmed in our
laboratory by ICP-OES analysis. The supplemental dosing
undertaken in this study was, primarily, for regulatory
safety assessment purposes, and therefore, the doses were
high. Each group consisted of five male (8 weeks old at
start) and five female (8 weeks old at start and nulliparous
and non-pregnant) Sprague Dawley rats (Charles River
Laboratories, Margate, UK). All rats were individually
housed in polypropylene cages with stainless steel lids
(with dust-free sawdust as bedding) at 22 °C with a 12/
12-h light/dark cycle. The drinking water, with and with-
out the Si supplementation, was provided ad libitum in
individual (dedicated) plastic drinking units. All rats also
received ad libitum the same maintenance feed (2018
Teklad 18 % Protein Rodent diet).

Body weight and the consumption of the drinking
waters were monitored on a daily basis, but feed intakes
were not monitored. On day 89, the animals were fasted
except for de-ionised water with no added Si. Fifteen to
16 h later, on day 90, animals were anesthetised, termi-
nal blood samples were collected, animals euthanised
and necropsy performed. Fasting blood, sera, plasma
and tissue samples were generated for clinical biochem-
istry analysis, haematological analysis and histopatholo-
gy at the CRO and were not available to the authors for
the below analyses. In addition, sera (obtained without
use of anticoagulants), ears and tibias were also collect-
ed and stored at −80 °C prior to being couriered frozen
on dry ice to the authors’ laboratory for analysis. This
study was approved by the animal ethics committee of
the CRO.

Analyses

A brief summary of the analyses is given below with more
details in Online Supplementary Materials. All samples were
analysed in a blinded fashion.
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Serum 17β-estradiol

Fasting serum samples were analysed for 17β-estradiol using
a commercially available high-sensitivity ELISA kit (Enzo
Life Sciences UK Ltd, Exeter, UK) to confirm the higher
circulating serum levels in female rats compared to male rats
and to investigate potential changes in circulating levels with
Si treatment.

Serum osteocalcin

Aliquots of fasting serum samples were also analysed for
osteocalcin, a marker of bone formation/bone turnover, using
the commercially available Rat N-Mid Osteocalcin kit
(MyBioSource Inc, Sand Diego, USA).

Total elemental analysis

Total elemental analyses of the rodent feed, fasting serum
samples and one of the pairs of ear and tibia samples were
carried out by inductively coupled plasma optical emission
spectrometry (ICP-OES), Jobin Yvon 2000-2 (Instrument SA,
Longjumeau, France), using peak profiles [12, 14] and
sample-based standards for Si and other elements. Prior to
analyses, tissue samples (ear, tibia) and rodent feed were
digested by microwave-assisted (nitric) acid digestion, whilst
the serum samples were diluted in 0.2 % nitric acid (see
Online Supporting Materials for further details). Serum iron
and phosphorus were not measured, the latter due to possible
haemolysis [15].

Bone quality measurements

The second of the pair of tibias collected from each animal at
necropsy was cleaned as previously described [16] at the
authors’ laboratory and couriered, frozen on dry ice, from
the au t ho r s ’ l a bo r a t o r y t o t h e Labo r a t o r y o f
Pathophysiology, University of Antwerp, Belgium, for
micro-CT analysis (Skyscan 1076 in vivo X-ray micro-CT
scanner, Aartselaar, Belgium). The following bone quality
parameters (measures) were obtained: trabecular BMD
(tBMD), tissue volume (TV), bone volume (BV), bone vol-
ume fraction (BV/TV), total surface (TS), bone surface (BS),
bone surface/volume ratio (BS/BV), bone surface density
(BS/TV), trabecular thickness (Tb.Th), trabecular separation
(Tb.Sp), trabecular number (Tb.N) and total porosity (Po(T)).

Biomechanical testing

Following bone quality measures, the tibias were subjected to
three-point bending test at room temperature in a custom-
made loading device, integrated in a materials testing machine
(Bose ElectroForce Test Bench LM1, Bose Corp, USA). The

following parameters were obtained from the data collected:
stiffness (k; N/mm), yield strength (Fy; N) and fracture load
(Fmax; N).

X-ray diffraction

One tibia from each of the three groups of the female rats that
had undergone micro-CT analysis underwent powder X-ray
diffraction (XRD) analysis at the Institute for Materials
Research, University of Leeds (UK) to determine changes in
the mineral phase with Si supplementation. Prior to analysis,
the bones were processed [17] to remove organic components
from the bone matrix that could interfere with the XRD
analysis.

Statistical analyses

Results are reported as means±SD unless otherwise stated.
Grubbs’ test for outliers was carried out (in GraphPad Prism 6;
GraphPad Software Inc, La Jolla, USA) on all the datasets
collected. One of the serum Si values (1120 μg/L), in a female
rat from the ‘high’ Si dose group, was identified as a signif-
icant outlier (at p<0.05) and is omitted from the data shown.
Test for linearity was used to test for a dose-responsive in-
crease in bone, serum and ear Si concentrations and serum
osteocalcin concentration with Si supplementation and signif-
icance was taken as p≤0.05. In the absence of a significant
trend, individual group differences between Si treatments and
diluent control were then assessed by independent (unpaired)
samples two-tailed t test and, because there was comparison
for two groups (moderate and high Si dosing), a Bonferroni
correction was applied to the p value (i.e. p/n), and signifi-
cance was taken as p≤0.025. Pearson correlation (with two-
tailed t test) was used to test for correlations between fasting
serum and tibia element concentrations with bone quality
measures. All statistical analysis was conducted in IBM
SPSS version 21 (IBM Corporation).

Results

Serum 17β-estradiol concentrations

Fasting serum levels of 17β-estradiol, in the samples collected
at necropsy, were, on average, 1.7-fold higher in female rats
compared to male rats (94.8±20.6 vs. 57.9±12.6 pg/mL; p=
0.0002; Supplementary Figure 1).

Silicon intakes and body weights

The feed (chow pellets) consumed by all groups contained, on
average, 610 μg Si/g feed (Supplementary Table 1), and
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assuming typical average feed intakes of 23 g feed/day in
adult female rats and 32 g feed/day in adult male rats of the
same strain [18], this would contribute ~14 and 19 mg Si to
daily Si intakes, respectively. Mean daily intake of Si from
drinking waters (supplemented with and without Si) is shown
in Table 1, separately for male and female rats, and did not
differ between genders: overall mean Si intakes from the
moderate and high Si-supplemented drinking waters added a
further 18 and 99 % Si to that from the feed.

Weight gain of the animals was unaffected by Si supple-
mentation (Supplemental Figure 2; p>0.2 for female rats and
p>0.4 for male rats). There was also no association between
serum Si and body weight or body weight gain (r=−0.2,
p>0.5). Moreover, no adverse effects (clinically, biochemical-
ly or pathologically) were associated with 3 months’ MMST
supplementation at either the moderate or high doses investi-
gated (data not shown), consistent with previous findings in a
lower-dose, 4-week human supplementation study [10].

Tissue silicon measurements

A dose-responsive increase in Si concentrations of the serum
and collagen-rich ear tissue was apparent with Si supplemen-
tation (p<0.05, test for linearity; Fig. 1a, b). However, for the
tibia, there was not a dose response: whilst the moderate dose
of supplemental Si led to a significant increase in bone Si
levels (p=0.03), the high dose had no effect (Fig. 1c). Similar
patterns were observed for male and female rats (data not
shown).

Bone-associated elements

Serum Cu and Zn concentrations were significantly increased
in female rats on moderate dose Si supplementation and a
similar, but non-significant, trend was seen for tibia Cu and Zn
levels (Supplemental Tables 2 & 3). Male rats showed a
similar trend for serum and tibia Cu levels (Supplemental

Tables 2 & 3). Moreover, in the female rats, tibia Ca and tibia
Ca/P ratios were increased with the high dose of Si compared
to controls (p=0.025 and 0.016, respectively; Fig. 2), whilst in
male rats, no statistically significant differences in tibia con-
centrations of Ca, P or Ca/P were found with Si supplemen-
tation (p>0.1 compared to controls; data not shown).

Serum osteocalcin

Serum osteocalcin concentrations were similar in female and
male rats (p=0.45), but in female rats, there was a trend for a
dose-dependent increase in osteocalcin concentration with Si
supplementation (Fig. 3). Moreover, although serum
osteocalcin concentrations showed no correlation with serum
Si concentrations in female rats (p=0.3), strong negative
correlation was seen in male rats (r=−0.72, p=0.008).

Bone quality measures

Silicon supplementation had no effect on tBMD in male rats
(Fig. 2d and Supplemental Table 4), and although mean
tBMD increased for female rats, it was not significant either
(Fig. 2d and Supplemental Table 4). Nonetheless, given the
relatively low group numbers and the variance around serum
and bone Si levels, we considered that an association between
Si levels and tBMD could have been masked by categorical
analysis. To this end, direct correlations showed a strong
relationship between fasting serum Si levels (a recognised
proxy for Si status (10)) and tBMD in female rats but not in
male rats (Fig. 4a vs. b). Bone Si levels also correlated with
tBMD for female rats only (Fig. 4c vs. d), albeit not as
strongly as between serum Si and BMD and perhaps ex-
plained by the association between serum Si and bone Si
levels (Fig. 4e, f).

Moreover, fasting serum Si concentrations were found to
correlate strongly with other bone quality measures and,
again, only for the female rats. Associations were positive

Table 1 Mean daily silicon intakes from drinking waters

Female rats Male rats

Group 1:
control (n=5)

Group 2: 115 mg
Si/L (n=5)

Group 3: 575 mg
Si/L (n=5)

Group 1:
control (n=5)

Group 2: 115 mg
Si/L (n=5)

Group 3: 575 mg
Si/L (n=5)

Drinking water (mL/day)a 21.5 (2.2) 22.9 (3.9) 26.5 (3.1)c 29.9 (3.0) 29.0 (5.4) 29.4 (4.7)

Si intake from water (mg/day)b < 0.002 2.64 (0.45) 15.21 (1.77) < 0.002 3.33 (0.62) 16.86 (2.71)

Means (±SD) calculated from daily measurements between days 40 and 50. Feed intake was not measured but was estimated to be 23 g/day in female rats
and 32 g/day in male rats, contributing ~14 and 19 mg Si/day, respectively, in female and male rats
a A vehicle control (reverse osmosis-treated drinking water with <0.1 mg Si/L) or Si-supplemented drinking water (115 or 575 mg Si/L) was consumed
by the animals ad libitum as a substitute for normal drinking water
b There was no significant difference in Si intake between female and male rats
c Intake was significantly greater than control (p=0.02, unpaired t test)
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with BV/TV, BS/TV and with Tb.N and negative with Tb.Sp
and Po(T) (Fig. 5a–e). Strong positive correlations were also
obtained for fasting serum Si levels and, individually, BV (r=
0.79, p=0.0008) and BS (r=0.72, p=0.004) but not TV (r=
−0.06, p=0.835) or TS (r=0.02, p=0.934). So, serum Si in
female rats was associated with the amount of bone, but not
the size of bone. Aweaker (positive) correlation was obtained
with Tb.Th (r=0.64, p=0.014).

The above correlations were also generally found with tibia
Si levels but, again, were not as significant as for the fasting
serum Si levels (data not shown). In the single indicator tibia

samples taken from each group for ex vivo X-ray diffraction
analyses, there was no suggestion that Si supplementation
altered bone mineral phase (Supplemental Figure 3). Si inter-
vention did not significantly alter bone strength based upon
categorical analysis (Supplemental Table 5) whilst, unlike for
tBMD, the positive correlation with serum Si was not signif-
icant (Fig. 5f–h).

Finally, to address the specificity of Si’s association with
bone quality, we next assessed correlations of other serum (n=
5) and tibia (n=8) elemental concentrations with tBMD (see
‘Methods’ section). Of these, only serumMg yielded a (weak)
correlation with tBMD (r=0.64, p=0.015 in female rats and
r=0.61, p=0.016 in male rats), but this did not carry through
with any other bone quality measures (data not shown).

It should be noted that in female rats, serum estradiol
showed no correlations with serum Si, tibia Si, serum
osteocalcin or tBMD (Supplemental Table 6). A significant
correlation was obtained with TbTh (r=−0.67, p=0.05; data
not shown), but this was in the opposing direction to serum Si.
In male rats, serum estradiol showed no association with bone
quality measures, although significant association with serum
osteocalcin (r=0.71, p=0.033) and Fy (r=−0.88, p=0.004)
was obtained (Supplemental Table 6).

Discussion

As noted above, we have previously reported, in human
epidemiological studies, a strong positive association between
dietary Si intake and BMD in premenopausal women [3, 4],
whilst the lack of association in postmenopausal women was
restored for those taking hormone replacement therapy [4].
We thus proposed that the dietary Si-BMD effect is estradiol
mediated [3]. Assuming that Si has some active beneficial role
in human and other mammalian connective tissues, then these
prior studies [3, 4], and other data [1], indicate that the
chemical species responsible is almost certainly orthosilicic
acid (Si(OH)4). Dietary Si appears to be absorbed only in
monomeric form from the gastrointestinal tract [12, 19], either
directly so from fluids such as drinking water or following
digestion of plant-based foods. For these reasons, the CRO-
based 3-month supplementation study that is described herein
provided an excellent opportunity to test the hypothesis that
dietary Si positively impacts BMD in estradiol-replete mam-
mals. Firstly, unlike orthosilicic acid which starts to form
insoluble silicates much above 56 mg Si/L (2 mM Si),
MMST (CH3Si(OH)3) may be added to drinking water at up
to 588 mg Si/L (21 mM Si) without irreversible polymerisa-
tion and precipitation. Moreover, MMST appears entirely
non-toxic, again as confirmed herein, and is metabolised to
orthosilicic acid in vivo [10]. Secondly, in murine models, a 3-
month time period should be sufficient time to see the impact
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on BMD of effective intervention [20]. Thirdly, male and
female rats differ in their circulating estradiol levels by 1.7-
fold in this study and by even greater amounts in prior studies
[8, 9].

Fasting serum concentrations of Si provide the best known
measure of Si status because recently ingested and absorbed Si
is rapidly cleared from the circulation, and hence, fasting
levels provide a steady state measure of Si that is presumed
to be in equilibrium with body stores [10]. The finding that,
following intervention, fasting serum Si levels were strongly
positively correlated with trabecular BMD in female rats but
not male rats supports the hypothesis that estradiol is required
for the in vivo beneficial utilisation of Si. Of course other
hormonal differences between male and female rats (i.e. other
than estradiol) may explain or contribute to these findings.
However, a previous study that looked at the effects/
contribution of the different sex and endocrine hormones on
the absorption of Si and tissue Si levels in adult rats found that
estrogen deficiency in female and male rats produced the most
pronounced effects [5], suggesting that estradiol may be the
main or most potent mediator of Si metabolism. Similarly,
with regard to bone, estrogen deficiency has the most marked
effect on bone growth in male and female rats [21]. Nielsen
and Poellot [7] reported that the effect of Si on bone growth/
turnover depended on estrogen status, since the effect of Si
was only seen in intact (non-ovariectomised) rats, but
reduced/eliminated in ovariectomised rats. Replication of our
findings in intact (sham-operated) and estradiol-supplemented
ovariectomised rats but not in ovariectomised rats would
provide the best proof for this, because, as mentioned above,
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in our previous observational study, the Si-BMD relationship
was regained in postmenopausal women who were taking
HRT [4].

Whether there is a small effect of oral Si on tBMD in male
rats, as is observed for dietary Si–BMD associations in male
humans [3], would probably require greater study numbers for
intervention than we had access to in this work. It is also
possible that in male rats, Si supplementation affects a differ-
ent bone compartment, i.e. cortical bone rather than (or more
than) trabecular bone. Cortical bone thickness was not mea-
sured in this study, and biomechanical data (which mainly
evaluates cortical bone properties; see below) was incomplete
for male rats (Supplemental Table 5). To our knowledge, the
effects of Si supplementation on cortical and trabecular bone
compartments have not been directly evaluated in the

literature even though our previous epidemiological study
showed similar Si–BMD associations at the different hip sites
and the lumbar spine in men [3], implying that Si may affect
both bone compartments equally.

How dietary Si could promote BMD in ‘estradiol-replete’
mammals is presently unclear, although additional observa-
tions herein may provide some clues. For example, tibia Si
levels showed some correlation with tBMD and other bone
quality measures but these were either not significant or weak
compared to the serum Si correlations with BMD. This sug-
gests that the Si effect is not due to and/or sensed from direct
incorporation of Si into bone but, rather, is a peripherally
generated signal as previously argued [16]. Indeed, although
only three bone samples were analysed by XRD, there was
certainly no obvious change to bone mineral with Si
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Fig. 4 a, b Associations between
fasting serum silicon
concentrations and trabecular
bone mineral density (tBMD) of
the tibias of female (a) and male
(b) rats at necropsy (12-week
intervention) (r=0.90, p<0.0001
for the female rats; Pearson cor-
relation with two-tailed t test). c, d
Associations between tibia Si
concentrations and tBMD in fe-
male (c) and male (d) rats at nec-
ropsy (r=0.47, p=0.074 for the
female rats; Pearson correlation
with two-tailed t test). e, f Asso-
ciations between fasting serum Si
concentrations and tibia Si con-
tents of the female (e) and male (f)
rats at necropsy (r=0.47 and p=
0.093 for the female rats; Pearson
correlation with two-tailed t test).
Note, the correlation reported in a
was not dependent upon the se-
rum Si value at 532 μg/L as its
removal from the dataset only
marginally affected the correla-
tion reported, i.e. was still highly
correlated
(r=0.8, p=0.002)
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supplementation. This is not surprising, as the highest increase
in bone Si content, with Si supplementation, was <0.01 atomic
mole percent and thus unlikely to directly affect the mineral
phase or its properties. In fact, tibia Si levels did not increase
linearly with Si supplementation (Fig. 1). This was not a result

of the higher dose being less bioavailable, as indicated by the
increase in fasting serum and ear tissue Si levels compared to
the moderate Si dose groups. It is more likely that it indicates a
safety mechanism: a negative feedback to protect against
marked changes in bone composition and/or over
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Fig. 5 Associations between
fasting serum silicon
concentrations and bone
microarchitecture/quality of fe-
male rat tibias collected at nec-
ropsy (12-week intervention).
Positive correlations were obtain-
ed for a bone volume fraction
BV/TV (r=0.90, p<0.0001;
Pearson correlation with two-
tailed t test), b bone surface den-
sity BS/TV (r=0.91, p<0.0001;
Pearson correlation with two-
tailed t test), c trabecular number
Tb.N (r=0.90, p<0.0001; Pear-
son correlation with two-tailed t
test), whilst negative correlations
were with d trabecular separation
Tb.Sp
(r=−0.80, p=0.001; Pearson cor-
relation with two-tailed t test) and
e total porosity Po(T)
(r=−0.90, p<0.0001; Pearson
correlation with two-tailed t test).
Correlations between fasting se-
rum Si concentrations and bone
stiffness (f), yield strength (g) and
fracture load (h) were not signifi-
cant; r=0.15, 0.27 and 0.41 and
p=0.6, 0.4 and 0.1, respectively.
The correlations reported are not
dependent upon the serum Si val-
ue at 532 μg/L, as its removal
from the dataset only marginally
affected the correlations reported;
i.e. all were still highly correlated
(r=0.8, p<0.004)
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mineralisation, which could affect bone quality and bone
strength, as suggested by Reffitt et al. [22] and consistent with
our more recent data [16, 23]. Together, these findings suggest
that different tissues could have differing Si tolerances/
requirements and, in bone, this may have been surpassed with
the high Si dose albeit not for the collagenous ear tissue.
However, to confirm this, additional doses of Si/MMST
should be tested.

The specific strong correlations between serum Si concen-
trations and bone quality measures, and the lack of similar
correlations between serum estradiol with either bone quality
measures or with serum Si concentrations, suggest that the
effect of Si is not directly through estradiol or changes in
estradiol concentrations. As such, the findings suggest that
estradiol mediates the effect of Si rather than vice versa.

The positive association between fasting serum Si concen-
tration and tBMD in female rats was backed up by strong
correlations with other bone quality measures (Fig. 5) and the
trend for a dose-dependent increase in serum osteocalcin
concentration. Overall serum Si in the female rats correlated
positively with the amount of bone tissue (BV, BS, BV/TV,
BS/TV, Tb.Th and Tb.N) and negatively with the amount of
non-bone tissue/space (Tb.Sp and Po(T)), i.e. suggesting that
Si supplementation is associated with increased bone tissue
within the volumemeasured. These findings did not, however,
proceed to a correspondingly significant increase in bone
strength. There are two possible explanations. Firstly, it is
possible for BMD to be increased without an increase in bone
strength/bone stiffness. For example, the addition of bone to
the endocortical surface of female rats does not lead to an
increase in bone strength [21]. Female rats have higher BMD
compared to male rats, but this is not associated with higher
bone stiffness/bone strength and is in fact associated with
lower bone stiffness/bone strength than male rats ([21];
Supplementary Tables 4 & 5). The second possibility is that
Si affects trabecular bone (and therefore tBMD) but not cor-
tical bone in female rats. The three-point bending test evalu-
ates the shaft of the bone, i.e. cortical bone properties (e.g.
cortical thickness and cross-sectional area). Hence, it is pos-
sible that Si could change bone microarchitecture without
effects on bone stiffness as assessed by three-point bending.
The lack of correlation between tBMD and bone strength
measures here supports this statement (data not shown).
Furthermore, Nielsen and Poellot [7] also reported no effect
of Si on long bone bending test measures, despite increases in
bone thickness with Si.

Finally, these data also show specificity in the association
with tBMD to Si as the other serum and tibia elements inves-
tigated (including Cu, Zn, Mg, Ca and Ca/P ratio), either
showed no correlation with bone quality measures or were
markedly weaker (data not presented), regardless of gender. In
female rats, the weak correlations observed for serum Mg
concentrations with tBMD (r=0.64, p=0.015), BS/TV (r=

0.53, p=0.051), TbN (r=0.53, p=0.053) and Po(T) (r=−0.55,
p=0.044) are most likely driven by its association with serum
Si concentrations (r=0.63, p=0.016). Silicon supplementation
increased serum and tibia Cu concentrations in both male and
female rats and serum and tibia Zn concentrations in female
rats. Similar findings have previously been reported. Emerick
& Kayongo-Male [24] reported that Si supplementation in-
creased the Cu status (plasma Cu concentrations) of both Cu-
deplete and Cu-replete rats, whilst, more recently, Seaborn and
Nielsen [25] reported that Si deprivation reduced femoral and
vertebral rat bone Cu and Zn concentrations. Emerick and
Kayongo-Male [24] went further to suggest that some of the
reported effects of Si (on connective tissues) may be attributed
to an increase in Cu utilisation. However, as noted above, we
did not find any correlations between serum or tibia Cu
concentrations with bone quality measures, but we did with
serum Si, suggesting that, at least here, the Si effect on bone
quality was not driven by the increase in Cu utilisation.

Previous studies have shown that when the bone steady-
state (equilibrium) is challenged, such as with ovariectomy,
osteopenia or reproduction, oral or intravenous Si intervention
can help maintain BMD [26–31] (see also reviews by
Jugdaohsingh [1] and Price et al. [32]). In the work presented
here, however, the rats were healthy. Moreover, the rats were
not Si deficient so the effects seen are not the correction of a
state of stress but, rather, are offering insights into ‘optimal
nutrition’. The supplemental dosing undertaken in this study
was, primarily, for regulatory safety assessment purposes, and
therefore, the doses were high. In the ‘moderate’ dose group,
115 mg Si/L (4.1 mMMMST) was the sole source of fluid. In
adult human supplementation, it would be just 90 mL/day out
of, typically, 2 L total fluid intake per day [10]. The ‘high’
dose group was the same except the Si concentration was
575 mg Si/L (20.5 mM MMST) instead of 115 mg/L.
Translating these findings to human intakes of Si is not easy.
On the one hand, as noted above, supplementation in the rats
was disproportionately high compared to human dosing. On
the other hand, nutrient intakes are always disproportionately
high for rats versus humans [33] and the Si supplementation of
this study only increased the rats’ naturally high dietary Si
intake by 18 and 99 % with moderate and high dosing,
respectively. Interestingly, by analogy, the correlation between
dietary Si intake and BMD in premenopausal women of the
Framingham cohort [3] shows no tail-off in the relationship at
the upper quintile of Si intake (30–63 mg/day), so perhaps
optimal dietary Si intakes in premenopausal women could
indeed be higher.

Conclusion

In conclusion, this paper reports that Si supplementation in-
creases fasting serum and connective tissue Si concentrations
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in rats. In female rats, concentrations of serum Si, but not other
bone or serum elements, correlated strongly with trabecular
BMD and other bone quality measures. These relationships
were not seen in male rats and were not seen with measures of
soft tissue quality for either gender, supporting the hypothesis
that estradiol is required for the optimal utilisation of dietary
Si in bone/connective tissues. However, additional animal
models (e.g. estrogen receptor knockouts (ER-null) or ovari-
ectomy with and without estradiol) are required to confirm
this. The effect appears to be related to systemic signalling,
governed by steady state circulating Si levels, rather than
direct incorporation of Si into bone. Further work should also
aim to identify the mechanism.
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