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2)Bangladesh University of Engineering and Technology
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(Dated: July 6, 2016)

We have developed a comprehensive model of gain recovery due to unipolar electron transport after a short
optical pulse in quantum cascade lasers (QCLs) that takes into account all participating energy levels, in-
cluding the continuum, in a device. This work takes into account the incoherent scattering of electrons from
one energy level to another and quantum coherent tunneling from an injector level to an active region level
or vice versa. In contrast to prior work that only considered transitions to and from a limited number of
bound levels, this work include transitions between all bound levels and between the bound energy levels
and the continuum. We simulated an experiment of S. Liu et al. in which 438-pJ femtosecond optical pulses
at the device’s lasing wavelength were injected into an In0.653Ga0.348As/In0.310Al0.690As QCL structure; we
found that approximately 1% of the electrons in the bound energy levels will be excited into the continuum
by a pulse and that the probability that these electrons will be scattered back into bound energy levels is
negligible, ∼10−4. The gain recovery that is predicted is not consistent with experiments, indicating that one
or more phenomena besides unipolar electron transport in response to a short optical pulse play an important
role in the observed gain recovery.

I. INTRODUCTION

The concept of a superlattice was proposed by Esaki
and Tsu in 1970,1 and in 1994 the first realization
of a quantum cascade laser (QCL) based on electron
subbands in superlattices was reported by Faist et

al.
2 In QCLs, the electron transitions occur between

conduction-band subbands rather than between conduc-
tion and valence bands, so that QCLs are considered to
be unipolar devices.3 Electrons in these devices radia-
tively transfer between upper and lower subband levels
in an active region and subsequently tunnel through an
injector region into the upper level of the downstream
active region. The tunneling rate, as well as many
other performance-related parameters, can be engineered
through quantum design.4

Light injected into a QCL can change the degree of
population inversion and therefore the gain of the de-
vice; the device returns to its original equilibrium value
with a characteristic gain recovery time.5 The gain recov-
ery time is an important parameter for many laser appli-
cations, such as creating short pulses by modelocking6

and modulating laser light at high speeds for optical
communications.7

Because carrier transport in QCLs is dominated
by ultrafast electron-longitudinal optical (LO) phonon
interactions,8 it is usually assumed that the gain recov-
ery of QCLs is very fast, on the order of a few picosec-
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onds. The fast gain recovery of QCLs makes it difficult to
achieve mode-locking using conventional techniques,9,10

but it allows QCLs to follow changes in the injection cur-
rent nearly immediately without relaxation oscillations,
which is desirable for a number of applications, including
high speed free-space optical communications.7 However
S. Liu et al.

11 found experimentally that there is a long-
term component in the gain recovery of QCLs that at
large light intensities is at least 50 ps long. They specu-
lated that this long-term component was due to electron
transitions to and from the continuum.
The theoretical study of the gain recovery is impor-

tant for understanding the physics of QCLs, as well as
their behavior in mode-locking or high-speed modula-
tion applications. In this work, we theoretically inves-
tigate unipolar electron transport and gain recovery in
an In0.653Ga0.348As/In0.310Al0.690As QCL structure that
was fabricated by P. Q. Liu et al.

4 Prior work5,12,13 only
considered the interaction of the incoming pulse with a
limited set of levels—the lasing levels. However, incom-
ing pulses can induce transitions between any two bound
levels as well as between the bound levels and the contin-
uum. We have created a model that is comprehensive in
the sense that it takes into account all these transitions.
This model also includes the electron dynamics in the
continuum, which must be taken into account in order to
properly account for the contribution of the continuum
electrons to the gain recovery. The dynamics are compli-
cated because of electron-phonon interactions that lead
to rapid thermalization in the electric field that is due to
the electrostatic potential. This field is somewhat larger
than the field in other quantum well devices such as quan-
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tum well infrared photodetectors (QWIPs); however, the
processes that govern the continuum electron dynamics
are expected to be similar. Electrons that make a transi-
tion from bound states to the continuum are originally in
the Γ valley, but they will rapidly scatter into the X or
L valleys due to collisions with phonons, which greatly
increases their effective masses.14–22 Shortly thereafter,
within approximately one period of the QCL, the elec-
trons reach their terminal drift velocity. The wavefunc-
tions of these electrons are poorly phase-matched to the
bound states and only a small fraction of the electrons
return to the bound states before they are collected at
the cathode.
Our model does not include effects that would lengthen

the optical pulse such as facet reflections, temperature
changes due to the optical pulse, creation of electron-
hole pairs due to high-harmonic generation, and parasitic
effects.
We compare our carrier transport and gain recovery

results to experiments that have been carried out on this
structure by S. Liu et al.

11 We obtain agreement with
the short-term gain recovery, which is due to transitions
to and from the bound energy levels; its duration is on
the order of 2 ps and is consistent with the earlier results
of Talukder.5 We found that transitions to and from the
continuum contribute a longer-term component to the
gain recovery with a duration on the order of 10 ps. How-
ever, this component contributes on the order of 1% to
the gain recovery and is too small to be observable.
Our model does not predict a component to the gain

recovery on the order of 50 ps or longer, as is observed
in the experiments.11 Since our model includes all known
contributions to the gain recovery from unipolar electron
transport after a short optical pulse, these results suggest
that one or more phenomena other than unipolar electron
transport are responsible for the slow gain recovery that
is observed. Some possibilities were mentioned earlier.

II. THEORETICAL MODEL

In pump-probe experiments with QCLs, an ultra-
short laser pulse is split into two portions: a stronger
beam (pump) is used to excite the sample, generat-
ing a nonequilibrium carrier distribution, and a time-
delayed weaker beam (probe) is used to monitor the
pump-induced changes in the optical parameters, such
as reflectivity or transmission, of the sample. Measuring
these parameters as a function of the time delay yields in-
formation about the relaxation of electronic levels in the
sample. Figure 1 illustrates schematically the excitation
of electrons to the continuum by the pump pulse and the
redistribution of their energy to a Maxwell-Boltzmann
distribution. We will show that this redistribution oc-
curs on a time scale that is similar to the time scale
for an electron to move through one period of the de-
vice. The thick green line illustrates the finite linewidth
of the pump pulse, and the brown inset on the right il-
lustrates the Maxwell-Boltzmann distribution of the elec-

trons in the continuum. The blue curves illustrate wave
functions that are primarily in the injector region, and
the red curve illustrates a wave function that is primar-
ily in the active region. To find the energy levels, we
solve Schrödinger’s equation based on the barrier and
well heights and widths for the QCL structure. In our
model, all the energy levels are excited by an incoming
pump pulse with a wavelength equal to the lasing wave-
length of the QCL and a duration that is nearly instan-
taneous. We then calculate the interaction between the
incoming pulse and the carrier densities in all the energy
levels, and we calculate the subsequent gain recovery. We
do not need to include a probe pulse in the model since
we directly calculate the recovery of the carrier densities.
We write the density matrix equations, which include
the incoherent scattering of electrons from one energy
level to other energy levels and the coherent tunneling
of electrons from an injector region level to an active re-
gion level or vice versa. We have extended a previous
model5,12,13 in which only the interaction of the pump
pulse with lasing levels was taken into account. Our new
model includes the interaction of the incoming pulse not
only with the lasing levels, but with all the bound state
levels. It also includes transitions to and from the contin-
uum, taking into account the dynamics of the continuum
electrons.

Figure 1. Illustration of the excitation of electrons to the
continuum by an incoming pump pulse and the redistribution
of the electron energy to a Maxwell-Boltzmann distribution
in the continuum.

We used a finite difference method for 1–D discretiza-
tion of the QCL in the z-direction, which is the growth
direction of the QCL, and we used a mid-point method
to solve the density matrix equations in time. We for-
mulated and solved the density matrix equations for one
active region and two injector regions preceding and fol-
lowing the active region, assuming translational symme-
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try. The density matrix equations are23

dnx

dt
=

∑
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where n is the carrier density in the bound levels, n′ is
the carrier density in the continuum, x denotes an en-
ergy level, and Cxx′ denotes the coherence between the
energy levels x and x′ and has a nonzero value only be-
tween an injector level and an active region level. The
quantity ∆0,xx′ is the energy splitting at resonance be-
tween levels x and x′ that are involved in coherent tun-
neling and is the minimum energy spacing between the
injector and active region levels at the injection and ex-
traction barriers; E and η are the envelope of the electric
field and its polarization; µ is the dipole moment between
the resonant levels; Wx and W ′

x are the transition rate
of electrons from level x to the continuum and from the
continuum to the level x, respectively; sxx′ and T2,xx′ are
the scattering and coherence times between levels x and
x′, respectively. We may write:

1

sxx′

=
1

se-exx′

+
1

s
e-ph
xx′

,

(2)

1

T2,xx′

=
1

T e-e
2,xx′

+
1

T
e-ph
2,xx′

+
1

T e-ir
2,xx′

,

where se-exx′ and se-phxx′ are carrier lifetimes for the transi-
tions due to electron-electron and electron-LO phonon
scattering, respectively. The parameters 1/T e-e

2,xx′ ,

1/T e-ph
2,xx′ , and 1/T e-ir

2,xx′ are the rates of the decay of
the phase coherence due to electron-electron scattering,
electron-LO phonon scattering, and electron-interface
roughness scattering, respectively.5,13 We also define

Exx′ = ||Ex − Ex′ | −∆0,xx′ | ,

∆xx′ = ||Ex − Ex′ | − Elight| , (3)

Elight = |Eul − Eul| ,

where Ex and Ex′ are the energies of levels x and x′,
respectively, while Elight, Eul, and Ell are the energy of
the incoming light, the energy of upper-lasing level, and
the energy of the lower-lasing level, respectively. Hence,
Ex−Ex′ is the energy difference between levels x and x′,

Exx′ is the detuning of this energy difference from reso-
nance, and ∆xx′ is the detuning of this energy difference
from the incident photons.
We computationally excite all the electrons in the sub-

bands of the QCL with an incoming 120-femtosecond,
438-pJ, 4.5-µm optical pulse, which is equal to the de-
vice’s lasing wavelength. These parameters correspond
to the set of experimental parameters at which the pump
pulse has the lowest energy.11 We use Fermi’s golden
rule24 to calculate electron transition rates Wif to and
from the continuum, so that

Wif =
( e

mc

)2

〈|E|2〉

∫ +∞

−∞

|µif |
2 2γ

|ωl − ωif |2 + γ2
g(ω)dω,

(4)
µif =

∫ +∞

−∞

ψ∗
f (z)

∂

∂z
ψi(z)dz,

where Wif is the transition rate between the initial level
i and the final level f , µif is the dipole moment between
the initial level and final levels, ωif is the angular fre-
quency difference between the initial level and final lev-
els, ωl is the angular frequency of incoming pulse, γ is the
linewidth of the incoming pulse, g(ω) is density of states,
and ψi(z) and ψf (z) are the wave functions in the initial
and final levels, respectively. We solved Schrödinger’s
equation for the QCL structure to calculate the bound
energy levels and wave functions. To calculate wave func-
tions in the continuum, we averaged the potential barrier
and well height, and we approximated them with a slope
potential. We validated this approach a posteriori using
the actual potential and time-independent perturbation
theory. With this approximation, Schrödinger’s equation
in the continuum region becomes

(

−
~
2

2m∗

d2

dz2
− eFz

)

ψn(z) = Enψn(z), (5)

where e is the electron charge, F is the applied electric
field across the QCL, ~ is Planck’s constant, m∗ is the
electron effective mass, and ψn(z) is the wave function
corresponding to the eigenenergy En. The solution to
Eq. 5 can be expressed in terms of Airy functions. Equa-
tions 6a and 6b show respectively the wave functions
and eigenenergies:

ψn(z) = CAi

[

(

2m∗

~2e2F 2

)1/3

(eFz − En)

]

(6a)

En =

(

~
2

2m∗

)1/3 [
3πeF

2

(

n−
1

4

)]2/3

, (6b)

with n = 1, 2, ...,

where C is a normalization factor and Ai(x) is the Airy
function.
For calculating the transition rate between any bound

energy level and the continuum, we sum all the transition
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Table I. Simulation parameters from11

Simulation parameter Parameter value

Pulse width (τp) 120 fs
Pulse wavelength 4.5 µm
Pulse energy 438 pJ
Temperature 300 K
Electric field 98 KV/cm

rates between that bound energy level and a Lorentzian
distribution of energy levels in the continuum. When
electrons are excited to the continuum, they will be ther-
malized. In a moderately doped semiconductor sam-
ple, the thermal equilibrium energy distribution of the
carriers is well-approximated by a Maxwell-Boltzmann
distribution.14 So, to calculate the transition rate from
the continuum to bound levels, we assume that the elec-
trons in the continuum obey a Maxwell-Boltzmann dis-
tribution. The electrons in the bound levels are excited
to the continuum by the incoming optical pulse. Once
the electrons make a transition to the continuum, they
rapidly accelerate in a field of 98 kV/cm, and their veloc-
ities saturate. Due to phonon interactions, the electrons
rapidly scatter into the X and L valleys with scattering
rates on the order of 1013 s−1.25 The maximum veloc-
ity of electrons in the device is less than 2 × 107 cm/s
and one period in the device is 35 nm, implying that a
continuum electron transits through one period in about
2× 10−13 s and is likely to make a transition to the X or
L valley in that time. Electrons in the X and L valleys
have higher effective masses, and their wavefunctions are
poorly phase-matched to the bound energy levels.

III. SIMULATION RESULTS

Figure 2 shows the conduction band diagram and the
moduli-squared wave functions for bound state energy
levels in one period of the QCL structure that was stud-
ied by S. Liu et al.

11 that we are modeling. In this figure,
we show one period of the QCL structure that comprises
an injector region and an active region. There are four
energy levels that are primarily in the injector region
(shown in blue), and there are three levels that are pri-
marily in the active region (shown in red).
Figure 3(a) shows the transition rates of electrons from

bound levels to the continuum for 43 periods of the QCL
structure. Each small circle shows the transition rate for
a specific energy level in a specific period. In our cal-
culations, the first period is the period that is closest to
the collector, and we number them successively until we
reach the transmitter. The density of states in the con-
tinuum above the periods increases as the period number
increases, while the cross–section for a transition from a
confined state to any particular state in the continuum
decreases. We take these two competing effects into ac-
count when calculating the transition rate from the con-
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Figure 2. Moduli-squared wave functions for the bound
energy levels for the QCL structure that was fabricated
by P. Q. Liu et al.4 The thickness of each layer starting
from the first active well is as follows (in nanometers):
4.2/1.2/3.9/1.4/3.3/2.3/2.8/2.6/2.2/2.1/1.8/1.8/1.5/1.3/
1.2/1.0. InGaAs quantum wells are in bold and InAlAs
quantum barriers are in roman text. The blue curves are
wave functions that are primarily in the injector region, and
the red curves are wave functions that are primarily in the
active region.

fined states in each period into the continuum. We find
that for period 20 and higher, these two effects compen-
sate and the transition rate from the same confined state
into the continuum becomes the same in each period with
a period number greater than 20. Figure 3(a) shows the
sum of transition rates from all 43 periods. The variable
Wi is the transition rate from energy level i in the bound
levels to the continuum. As shown in this figure, level 7
has the highest transition rate to the continuum of all the
levels. However, the electron density in level 7 is small
compared to the densities in other levels. Transitions
from the bound levels to the continuum levels lead to a
decrease in the gain. Our simulations show that approxi-
mately 1% of the electrons in all the bound levels will be
excited to the continuum by an incoming optical pulse
whose specifications are given in Table I. All simulation
parameters are the same as those used in the pump-probe
experiments that we are modeling.11 Figure 3(b) shows
the transition rates of electrons from the continuum to
the bound levels. The variable wi is the transition rate
to energy level i in the bound levels from the continuum.
We used first-order time-independent perturbation

theory to check the accuracy of approximating the ac-
tual potential with a slope potential. We perturbed the
slope potential with a correction to take into account the
actual barrier potentials that we show in Fig. 2 and we
calculated the actual wavefunctions. Figure 4 shows the
transition rates of electrons from bound levels to the con-
tinuum for the 43 periods of the QCL structure when we
took the perturbation of the potential into account and
used the actual wavefunctions. As was the case in our
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Figure 3. The transition rates of electrons (a) from energy
levels 1–7 (W1 – W7) to the continuum summed over 43 peri-
ods and (b) to energy levels 1–7 (w1 – w7) from the continuum
summed over 43 periods.
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Figure 4. Transition rates of electrons from energy levels 1–7
(W1 – W7) to the continuum summed over 43 periods after
perturbing the system.

calculation of Fig. 3(a) we take into account that the
same state in different periods may have a different tran-

sition rate. Comparing Fig. 3(a) to 4 we observe that
there are quantitative differences between the transition
rates, once we take into account the actual barrier poten-
tials. However, when the density in each level is taken
into account and we calculate the total transition rate,
we still find that only 1% of the electrons make the tran-
sition to the continuum. The additional computational
complexity in using the actual barrier potential makes
little difference in the final result. We note that we use
the transition rates corresponding to the actual barrier
potentials when calculating the carrier densities, but the
difference in the final result when we use a slope poten-
tial is negligible due to the rapid thermalization of the
continuum electrons.

0 2 4 6 8 10
0

1

2

3

4

5

Time (ps)

D
en

si
ty

(×
1
0
1
0
cm

−
2
) n

1
n

4

n
5

n
2

n
6

n
3

n
7

n
1

n
4

n
5

n
2

n
6

n
3

n
7

Figure 5. Carrier densities for energy levels 1–3 in active
region and energy levels 4–7 in injector region.

Similarly, calculations show that the probability of
scattering of the continuum electrons back into the bound
levels prior to being collected at the end of the device is
negligible (∼10−4).
Figure 5 shows the time-resolved solutions of Eq. 1, the

time evolution of the carrier densities for energy levels 1–
3 in the active region and energy levels 4–7 in the injector
region. The oscillations in the evolution of carrier den-
sities at the start and during the recovery indicate the
presence of significant coherent tunneling in the gain re-
covery and hence the importance of taking into account
the quantum coherence. All the energy levels have ini-
tial carrier densities of 4×1010 cm−2. After the carrier
density in each quantum level reaches a steady state, we
initialize the time, setting t = 0, and we excite all the
energy levels with the pump pulse. As can be seen, the
carrier density in the upper lasing level (level 4) decreases
sharply, while the carrier density in the lower lasing level
(level 3) increases sharply. The scattering and coherence
times are given in Table II.
Figure 6 shows the carrier density in the continuum as

a function of time, which we calculated by solving the
drift–diffusion equation26 with an electron drift velocity
υn = 1.5×107 cm/s and an electron diffusion coefficient
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Table II. Key parameter values for gain recovery

Key parameter Parameter value

s32 0.60 ps
s31 1.61 ps
s21 0.88 ps
s54 1.13 ps
s64 1.44 ps
s74 6.86 ps
T 2,43 0.16 ps

Dn = 200 cm2/s. These are average values for InGaAs
and InAlAs,27 which is sufficient for our purposes since
the fraction of electrons in the continuum is small.
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Figure 6. Carrier density in the continuum as a function of
time.

Figure 7(a) shows the incoming pump pulse and the in-
version profile [n4(t)–n3(t)]/(n4,eq–n3,eq), where the sub-
script “eq” denotes equilibrium, and the gain recovery
in the pump-probe experiment for the lowest intensity
pump pulse in the experiment.11 The inversion profile
directly represents the gain recovery dynamics. The gain
has a constant value before the pump pulse, but it de-
creases sharply when the pump pulse interacts with the
lasing levels. The recovery of the gain begins as the pump
pulse leaves the medium.
In Fig. 7(a), the strong gain depletion near t = 0 is

mainly due to the depletion of electrons in upper lasing
subbands by stimulated emission down to the lower las-
ing level and the excitation of electrons up to a higher
subband or continuum region. This process mainly con-
tributes to the gain depletion observed in Fig. 7(a) in
agreement with experimental results.11 Figure 7(b) is an
expanded view of Fig. 7(a) near t = 0 and shows the ul-
trafast gain recovery, which is due to the depopulation of
lower lasing level by LO phonon scattering and electrons
filling the upper lasing level by resonantly tunneling from
the ground state of the injector region to the active region
in the next period through the injector barrier. As can be
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Figure 7. (a) Inversion (gain) recovery of the QCL with the
incoming pump pulse and (b) an expanded view showing the
gain recovery in the first picosecond.

observed, the simulations reproduce the short-time inver-
sion dip that is observed in the experiments.11 However,
there is a significant discrepancy between experimental
and simulation results in Fig. 7(a). The experiments ex-
hibit a long-term gain recovery between 1 ps and 6 ps
that is not present in the simulations.
There are 43 periods in the QCL structure; each period

is 34.6 nm long, and the total length of the structure is
1.49 µm. The saturation drift velocity in the continuum
region in this structure is on the order of 1.5×107 cm/s.
The maximum time for electrons to transit through the
continuum to the end collector in the 1.49-µm-long de-
vice is on the order of 10 ps, and only 1% of electrons
make this transition. Therefore their contribution to the
gain recovery is negligible. S. Liu et al.

11 also report that
at higher optical pump powers, the long-term gain recov-
ery can occur over a time greater than 50 ps, and they
suggest that this long-term recovery might be due to elec-
tron transitions into and out of the continuum. Since our
model includes all electron transport processes that af-
fect the gain recovery of which we are aware, our results
indicate that one or more phenomena besides unipolar
electron transport after a short optical pulse are respon-
sible.
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IV. CONCLUSIONS

We have developed a comprehensive model of gain re-
covery in QCLs due to unipolar electron transport after
a short optical pulse. This model takes into account all
participating energy levels, including the continuum, in
a device. We calculated the transition rates of electrons
from bound energy levels to other bound levels and to
the continuum after excitation by a short optical pump
pulse. We then calculated the effects of these transitions
on gain recovery in the QCL that was studied experimen-
tally by S. Liu et al.

11 In agreement with experimental
results, we show that the incoming pulse depletes the las-
ing levels and reduces the gain. In agreement with these
results, we also find that there is a short-term component
to the gain recovery that is on the order of 2 ps. This
short-term gain recovery is primarily due to e-e and e-
phonon scattering to the lasing levels in agreement with
prior theoretical work.5 We also show that the gain de-
crease due to transitions to the continuum is only 1% of
the total gain, which is too small to be observable, and
the gain recovery from this decrease occurs over 10 ps. In
contrast to the experiments, we did not observe a compo-
nent of the gain recovery on the order of 50 ps or longer.
Since our model is comprehensive, in the sense that it
includes all electron transitions, this result suggests that
one or more phenomena besides unipolar electron trans-
port after a short optical pulse are contributing to the
gain recovery.
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