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Abstract Earth’s atmospheric CO2 concentration (ca) for the Phanerozoic Eon is estimated from proxies and

geochemical carbon cycle models. Most estimates come with large, sometimes unbounded uncertainty. Here,

we calculate tightly constrained estimates of ca using a universal equation for leaf gas exchange, with key

variables obtained directly from the carbon isotope composition and stomatal anatomy of fossil leaves. Our

new estimates, validated against ice cores and direct measurements of ca, are less than 1000 ppm for most

of the Phanerozoic, from the Devonian to the present, coincident with the appearance and global

proliferation of forests. Uncertainties, obtained from Monte Carlo simulations, are typically less than

for ca estimates from other approaches. These results provide critical new empirical support for the

emerging view that large (~2000–3000ppm), long-term swings in ca do not characterize the post-Devonian and

that Earth’s long-term climate sensitivity to ca is greater than originally thought.

1. Introduction

Many basic features of Earth’s pre-Quaternary paleoclimate history remain poorly characterized and

understood, despite decades of research effort. Proxy methods and long-term carbon cycle models have

identified periods of high atmospheric CO2 concentration (ca) that likely forced increases in global surface

temperature and sea level [Berner, 2008; Beerling and Royer, 2011], but quantitative discrepancies and large or

unbounded uncertainties surrounding these ca estimates preclude confident assessment of Earth’s climate

sensitivity to ca [Royer et al., 2007; Park and Royer, 2011; Royer et al., 2012]. Historically, reconstructions of ca for

the late Paleozoic, Mesozoic, and early Cenozoic greenhouse climates have been high (>2000 ppm) [Royer

et al., 2001; Montanez et al., 2007; Berner, 2008], but re-evaluations of these records suggest more modest

values (500–1000 ppm) [Breecker et al., 2010; Royer et al., 2012]. This revised ca history implies a higher climate

sensitivity to CO2 [Royer et al., 2012; Hansen et al., 2013], but nearly all proxy-based ca estimates for the pre-

Cretaceous come from a single method based on carbonates in fossil soils (paleosols) that relies crucially on

largely unknown soil respiration rates [Ekart et al., 1999; Breecker et al., 2010; Cotton and Sheldon, 2012]. New,

independent, and well-constrained estimates of pre-Cretaceous ca are urgently needed to better define

Earth’s long-term climate sensitivity to CO2 [Hansen et al., 2013].

The stomatal proxy method for estimating ca in paleo-atmospheres exploits the negative correlation between

stomatal density (D, number of stomata per unit leaf area) and the atmospheric CO2 at which a plant grows,

as observed in plant growth chamber experiments [Woodward, 1987]. The correlation has also been shownwith

D from herbaria material [Woodward, 1987] and fossil leaves, including Pleistocene and Holocene fossils, where

ca is known from ice cores [Van de Water et al., 1994]. However, the shape of the relationship between D and ca

is specific to each “test” species, so using it quantitatively to reconstruct ancient ca from the stomatal density

of fossil leaves (or from the normalized equivalent of density, stomatal index [Royer et al., 2001]) relies upon

calibration using extant conspecifics. Therefore, estimates from this method are mostly limited to a few species

that grew during the Late Cretaceous and Cenozoic and that persist to the present day. A further limitation is

that the strong nonlinearity of the empirical calibrations propagates to unbounded upper error limits above ca
estimates of ~500–1000ppm [Royer et al., 2001], although the threshold for this effect is higher for some species

[Haworth et al., 2011]. A modified method based on the ratio of fossil stomatal density or index to nearest
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ecological equivalent broadens the range of candidate taxa [McElwain, 1998], but estimates are considered

semi-quantitative at best because the assumed linear scaling between stomatal ratio and the ratio of paleo- to

present-day ca is untested [Royer et al., 2001].

Mechanistic models of leaf gas exchange are an increasingly viable alternative to traditional empirical

methods in paleoclimate and paleoecology reconstructions [Konrad et al., 2008; Grein et al., 2011; Roth-Nebelsick

et al., 2014]. Here we estimate ca across the Phanerozoic directly from fossil leaves with a new mechanistic

approach that is largely free from the above restrictions and uncertainties.

2. Methods

2.1. Model Summary

We assume that photosynthetic gas exchange in past forests functioned under the same constraints as current

forests, with the exception that ca varied. Changes in ca affect the rate of diffusion of CO2 from the atmosphere

to the sites of its fixationwithin the leaf, and this in turn affects the rate of biochemical fixation of CO2. Extensive

experimental investigations into leaf gas exchange have established the following fundamental biophysical

model equating the concentration of CO2 in the atmosphere, ca (in μmolmol�1), with the rate of CO2

assimilation by leaves, An (in μmolm�2 s�1) [Farquhar and Sharkey, 1982; von Caemmerer, 2000]:

ca ¼
An

gc totð Þ� 1� ci=cað Þ
; (1)

where gc(tot) is the total operational conductance to CO2 diffusion from the atmosphere to sites of photosynthesis

within the leaf (in molm�2 s�1) and ci/ca is the ratio of leaf internal CO2 concentration (ci) to ca. An important

physiological quality of the system described by equation (1) is that An, gc(tot), and ci/ca are interdependent, i.e., a

change in one affects the others via feedback interactions that operate over short and long timescales [Farquhar

et al., 1978; Buckley et al., 2003; Franks et al., 2013].

2.2. Determining gc(tot)

The total conductance to CO2 from the atmosphere to sites of carboxylation within the leaf, gc(tot), comprises

three main components in series: the leaf boundary layer conductance to CO2, gcb, the operational stomatal

conductance, gc(op), and the mesophyll conductance, gm. Operational stomatal conductance gc(op) is

controlled by the plant at some point between approximately zero (closed stomata) and the maximum,

gc(max), according to prevailing environmental conditions, and can be expressed conveniently as a fraction ζ of

gc(max), i.e., gc(op)= ζgc(max). For trees growing naturally under field conditions the mean ζ is typically around

0.2 [Franks et al., 2009] (Table S1). The same ratio has also been found for a range of Arabidopsis genotypes with

different stomatal patterning [Dow et al., 2014]. The total conductance to CO2 is therefore

gc totð Þ ¼
1

gcb
þ

1

ζgc maxð Þ

þ
1

gm

 !�1

: (2)

Equation (2) is the standard form for hypostomatous leaves. For amphistomatous leaves the term

((1/gcb) + (1/ζgc(max)))
�1 must be calculated separately for the upper (adaxial) and lower (abaxial) leaf

surfaces, added together in parallel, and this then added in series with gm to obtain gc(tot).

The number and size of stomata on leaves, including fossils, were measured to calculate gc(max). Stomatal size

determines both the maximum stomatal aperture (amax) and the depth (l) of the stomatal pore (Figure S2),

with gc(max) given by the basic diffusion equation [Franks and Beerling, 2009]:

gc maxð Þ ¼
d

v
:D:amax= l þ

π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

amax=π
p

� �

; (3)

where constants d and v are, respectively, the diffusivity of CO2 in air and the molar volume of air, D is

stomatal density, and amax is approximated as a fraction β of a circle with diameter equal to the

stomatal pore length p, i.e., amax= β(πp2/4). Approximate values for β in broad groups of plants are given

in Table S2, along with other useful geometric relationships. Over the long term (developmental to
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evolutionary timescales) leaves alter gc(max) by changing the density and/or size of stomata [Franks and

Beerling, 2009; Franks et al., 2012]. These anatomical alterations increase or decrease gc(max), allowing gc(op)
to be optimized for the new ca [Franks et al., 2012].

2.3. Determining ci/ca

An estimate of the relative drawdown of CO2 between the atmosphere and the sites of fixation (ci/ca)

(see equation (1) and Figure 1) can be obtained by measurement of the relative carbon isotope composition,

δ13C, of fossil leaves. The difference between the δ13C of leaf carbon and that of its source in the atmosphere,

δ
13Cair, provides a measure of the carbon isotope discrimination by the plant, Δleaf (in parts per thousand,‰)

[Farquhar et al., 1989], and a theoretical relationship was used to relate this to the average ci/ca, weighted

by the photosynthetic rate, over the time that the leaf grew [Farquhar et al., 1982]:

ci=ca ¼
Δleaf � a

b� a

� �

(4)

where a is the carbon isotope fractionation due to diffusion of CO2 in air (4.4‰) [Farquhar et al., 1982], b is the

fractionation associated with RuBP carboxylase (taken here as 30‰) [Roeske and O’Leary, 1984], and Δleaf (‰)

is given by [Farquhar and Richards, 1984]:

Δleaf ¼
δ13Cair � δ13Cleaf

1þ δ13Cleaf=1000
(5)

with δ13Cair and δ13Cleaf in units of ‰. The short-term feedback regulation of gc(op) tends to maintain ci/ca
close to a relatively constant mean value [Wong et al., 1979; Polley et al., 1993; Ehleringer and Cerling, 1995].

This mechanism appears to hold also over long timescales [Franks et al., 2013].

2.4. Determining An

To estimate how An would have changed with long-term changes in ca we apply the theory and rationale

developed in Franks et al. [2013]. Briefly, in the Farquhar-von Caemmerer-Berry biochemical model for

photosynthesis [Farquhar et al., 1980], An=min [We, Wc] where We is the light-limited rate and Wc is the

Rubisco capacity-limited rate. The use of limiting protein resources is optimal when the protein is distributed

in the chloroplast such that Wc=We at the average light intensity that the leaf experiences during growth.

Under typical conditions plants tend to operate near this point of transition [Von Caemmerer and Farquhar,

1981]. Assuming that adaptation over developmental to evolutionary timescales tends toward this optimal

Figure 1. Plants as paleo-CO2 sensors. During photosynthesis, CO2 assimilation rate (An) is determined by the difference

between atmospheric CO2 concentration (ca) and leaf internal CO2 concentration (ci) as well as the total stomatal conduc-

tance to CO2, gc(tot) (see Methods). A physiological model equating cawith An, gc(tot), and the ratio ci/ca (equation (1)) can be

used to derive ca at the time of photosynthesis. Central to this approach is the preservation in leaf fossils of the isotopic signal

of carbon fixed during photosynthesis, Δ
13
C, fromwhich an assimilation-weighted average value for ci/ca is easily derived (see

equations (4) and (5)). Because An adapts to ca (equation (6)), ca is obtained by solving equations (1) and (6) simultaneously.

Geophysical Research Letters 10.1002/2014GL060457
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condition, and that the average incident sunlight has not changed appreciably, we can use the expression for

We alone (i.e., independently ofWc) to express how An will change as a function of ca over long timescales. In

the original biochemical model [Farquhar et al., 1980] the expression for We was given in terms of ci, but

acknowledging that An vs ci and An vs ca follow essentially the same curve, the same function can be used to

describe the relationship between An and ca relative to a given reference ca (see Franks et al. [2013]). With this,

and taking reference values for An and ca under current ambient conditions as A0 and ca0 respectively, then An

for any given ca was obtained from the expression [Franks et al., 2013]:

An ≈ A0

ca � Γ�ð Þ ca0 þ 2Γ�ð Þ

ca � 2Γ�ð Þ ca0 þ Γ�ð Þ

� �

(6)

where Γ* is the CO2 compensation point in the absence of dark respiration. Although the CO2 compensation

point is influenced by leaf temperature [Farquhar et al., 1980] there is evidence to suggest that despite widely

varying seasonal and latitudinal temperatures, much of the photosynthetic productivity of plants occurs

within a relatively narrow band of leaf temperature ranging from about 19°C in boreal systems through

to 26°C in tropical systems [Helliker and Richter, 2008; Song et al., 2011]. Applying this assumption, and

acknowledging that plant fossil records are weighted toward temperate to tropical systems, we assume a

mean leaf temperature during photosynthesis of 25°C, giving Γ* a mean value of 40μmolmol�1 as a first

approximation for the Phanerozoic Eon.

2.5. Determining ca

Assuming that over long geological time periods mean An is influenced by ca (equation (6)), the calculation

of ca must address this interdependence. Our approach was to solve equations (1) and (6) simultaneously

by iteration, giving ca and An, after determining gc(tot) and ci/ca and all other physiological input variables

independently from information in the fossil record and physiological data. Although long-term CO2

manipulation experiments are not a perfect representation of geologic-scale processes, analysis of data

from these experiments shows that plants generally adapt to CO2 according to the trend predicted

by equations (1) and (6) [Franks et al., 2013]. A computer program, written in “R,” performed the iterative

procedure and a full error propagation analysis via Monte Carlo simulations to obtain mean ca with 16–84

percentile error. A fully interactive, user-friendly version of this program is available in the supporting

information online. Further details on the parameterization of physiological input variables are given in the

supporting information.

3. Results and Discussion

3.1. Model Boundaries and Sensitivity

We utilize the robust mathematical relationship between ca, net CO2 assimilation rate (An), total conductance

to CO2 (gc(tot)), and leaf intercellular CO2 concentration (ci) (Figure 1, equation (1); see also Methods) [Farquhar

and Sharkey, 1982]. Information preserved in the fossil record is used to derive ci/ca and gc(tot). The

fractionation of carbon isotopes during photosynthesis causes the carbon products used to synthesize leaf

tissue to be relatively depleted in the heavier 13C isotope [Farquhar et al., 1989]. The assimilation-weighted

average of this discrimination against 13C, quantified as Δ13C [Farquhar et al., 1989], is routinely measured in

the carbon-based remains of plants preserved as fossils, such as the highly durable leaf cuticle [Beerling et al.,

2002]. A correlation between Δ13C and the ratio ci/ca during photosynthesis is described by a well-validated

fractionation model (see Methods) [Farquhar et al., 1982], and this was used to determine ci/ca for fossil leaves.

Additionally, to enable incorporation of stomatal data from extensive archives of published anatomical

studies in which isotopes were not measured, we developed a regression model for ci/ca through the

Phanerozoic from a compilation of Phanerozoic fossil plant δ13C (Figure S1; ci/ca= 0.6� (6.4 × 10�4)

t+ (8.9 × 10�6)t2� (2.0 × 10�8)t3, with t in Myr). The second of the fossil-derived terms, gc(tot), integrates the

major diffusive conductances on each side of the leaf (see equation (2)).

We determined An based on the assumption that, over the very long term, plants optimize ribulose-1,5

bisphosphate (RuBP)-regeneration-limited photosynthesis for the prevailing incident light conditions

[Medlyn et al., 2011; Franks et al., 2013], which we assume to be predominantly full sunlight [Kürschner, 1997].

The expression for RuBP-regeneration-limited photosynthesis as a function of ca [Farquhar et al., 1980; Franks

Geophysical Research Letters 10.1002/2014GL060457
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et al., 2013] (see Methods) may

therefore be used to describe the

relative change in An with ca over the

long term. We emphasize that this is

not a dynamic stomatal model that

predicts instantaneous values; rather

it uses the basic gas exchange

equation and integrated mean typical

values of its components, ci/ca, gc(tot),

and An, to determine a mean typical ca
for those conditions. Because of the

interdependence of An and ca
(Figure 1), equations (1)–(3) are solved

simultaneously by iteration to yield ca

(see Methods). The limits of ca
estimated with our model are well

bounded by the natural operating

ranges of the key physiological

variables An, gc(tot) and ci/ca (Figure 2).

We undertook a thorough analysis of

errors in the ca calculations by

simultaneously propagating

uncertainties in all input terms using

Monte Carlo simulations (10,000 random samples) to characterize uncertainty in model behavior when

applied to modern and fossil data sets. Standard errors of the mean (s.e.m.) were measured directly for

stomatal dimensions (from which gc(max) is calculated), the ratio gc(op)/gc(max), and the δ
13C of atmosphere

and plant tissue (from which ci/ca is calculated). For the other variables and scaling factors we assigned

mean values based on published data and assumed ±10% of the mean typically represented ±2 standard

deviation [s.d.; Schulze et al., 1994; Franks and Farquhar, 1999]. Uncertainties in all input terms were modeled

to behave in a Gaussian manner.

In comparison to other leading paleo-CO2 proxies (see supporting information), our new approach is at least

as accurate, with the advantage of being free from unbounded errors at high [Royer et al., 2001] or low

[Breecker et al., 2010] ca. Nonlinearity of the relationship between An and ca (see Methods) results in larger

absolute errors at higher ca compared to lower ca for any given error in the model input term gc(tot). However,

these errors remain well constrained and are relatively consistent as a percentage of the mean ca. To test the

effects of additional error in the baseline values for A0 and gc(op)/gc(max), we ran the Monte Carlo simulations

with ±20% as 2 standard deviations in these terms, and this resulted in little change (<3%) in the overall

confidence interval of the model outputs.

3.2. Validation Against Modern CO2 Measurements and Ice Cores

The method for calculating ca was validated against independent measurements from three recent time

periods. For comparison against current day ca, Δ
13C, stomatal anatomy, and A0 were measured on living

plants (Figure 3). In this case four extant species were chosen to represent a broad cross section of fossil

plants: an angiosperm tree (Quercus robur) and four gymnosperms (Sequoia sempervirens, Ginkgo biloba and

Cycas revoluta). The mean error in calculated current day cawas within 2.6% (Figure 3, compare blue symbols

with respect to blue reference line), which is comparable to three other leading CO2 proxies (mean error

rate = 8%, 12%, and 67% for the boron, alkenone, and paleosol carbonate methods; see supporting

information). This is improved significantly when the data for all species are pooled, suggesting that CO2

estimates may be more robust when multiple taxa are used for a given geological time. Model tests with an

additional gymnosperm, Wollemia nobilis, grown in controlled environment chambers for 8months at 480

and 1270 ppm atmospheric CO2 yielded estimates of ca that were within 7% of actual (Figure 3, compare

yellow and red symbols from model output with yellow and red reference lines, respectively).

Figure 2. Model boundaries. Atmospheric CO2 concentration (ca) is shown for

realistic combinations of ci/ca (ratio of leaf intercellular to ambient CO2 con-

centration) and CO2 drawdown from atmosphere to leaf interior (as deter-

mined by assimilation rate, An, divided by total conductance to CO2, gc(tot)).

Geophysical Research Letters 10.1002/2014GL060457
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For comparison against the

Anthropocene rise in ca measured

between 1958 and 1992 at the

Mauna Loa observatory (Figure 4a)

and in ice cores representing the ca

spanning the Pleistocene-Holocene

transition approximately 2–27 kyr

before present (Figure 4b), we used

measurements of Δ13C and stomatal

anatomy in naturally preserved leaf

material [Wagner et al., 1996; Van de

Water et al., 1994]. Calculated ca for

the period 1958–1992 closely tracks

the steady rise in ca measured at

Mauna Loa (Figure 4a). For the

Pleistocene-Holocene transition,

modeled ca reproduces the sudden

rise at ~15–12 kyr before present

(Figure 4b). The slight positive offset

in the modeled Pleistocene mean ca

(12–27 kyr before present, Figure 4b)

is removed by applying a �10%

correction to A0 to account for the

~1°C lower July growing season

temperature in the Great Basin area at this time [Reinemann et al., 2009]. However, this effect is

sufficiently accommodated in the ±10% error assigned to A0, noting that in Figure 4b the ice core ca

values are mostly within the errors for modeled ca. For individual taxa, when input terms are based on

well-replicated measurements (s.e.m ~5–10% of mean), the 95% confidence interval obtained by

Monte Carlo simulations of error propagation is generally within �25% to +35% of the median CO2

estimate (see also Figures 4a–4c).

To further test the model beyond the limits of verification by ice core records, we used δ13C and

stomatal dimensions from [Kürschner et al., 1996] to calculate ca for the late Neogene to early Pleistocene

(~10–2Myr ago; Figure 4c). In terms of accuracy, the calculated mean ca values are remarkably similar to

those in [Kürschner et al., 1996], where stomatal index was used as a proxy for ca. Note that in this

case the errors are not comparable due to different error calculation methodologies. The results show ca

to be relatively stable between ~280 and 370 ppm, with low values at approximately 6.4 and 4.4Myr

ago. These estimates are consistent also with those from other proxy methods [Beerling and Royer, 2011],

except that marine alkenone and boron proxies show ca peaking close to 500 ppm from about 3 to 6Myr

ago [Seki et al., 2010].

3.3. Phanerozoic CO2

Calculated ca is below 1000 ppm for most of the Phanerozoic, from the Devonian onwards (Figure 4d, red

symbols). Overall, the trend in Phanerozoic ca follows that of the GEOCARBSULFvolc long-term carbon cycle

model (Figure 4d, black line), except for the late Mesozoic (~140Myr ago) where the fossil model yields

somewhat lower ca. The highest ca since the Devonian occurs during the Mesozoic greenhouse interval

(~240–60Myr ago) while ca is at its lowest, near current day values, during the glacial intervals of the late

Paleozoic (~300Myr ago) and late Cenozoic (last 34Myr). Fluctuations in atmospheric O2 throughout the

Phanerozoic would have had a small influence on CO2 assimilation rate, but the effect of this on the ca

estimates, including the biggest excursion in O2 around the Carboniferous-Permian transition [Berner et al.,

2007], is accounted for both through its effects on leaf ci/ca ratios [Beerling et al., 2002] and in the model

through the ±10% error assigned to A0. Moreover, elevated O2 lowers the estimates of CO2, reinforcing our

general conclusion of <1000 ppm CO2.

Figure 3. Model validation with extant species. Modeled ca (symbols;

error bars span 16–84 percentiles) closely matches the value of ca in

which the sample leaves grew (colored lines). Blue line represent current

ambient atmospheric CO2 concentration in which Quercus robur, Cycas

revoluta, Sequoia sempervirens, and Ginkgo biloba were growing under

natural conditions outdoors; yellow and red lines represent, respectively,

480 and 1270 ppm atmospheric CO2 concentration inside controlled

environment chambers where Wollemia nobilis was grown.

Geophysical Research Letters 10.1002/2014GL060457
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Overall, errors are better constrained across the Phanerozoic in the fossil model than in GEOCARBSULFvolc

and the revised (downward-corrected soil respiration term S(z) [Breecker et al., 2010]) paleosol carbonate

proxy (Figure 4d; compare height of the blue and yellow bands with hash marks on red symbols) and—

especially at high ca— traditional stomatal approaches [Royer et al., 2007]. These errors will improve in future

applications of the fossil model where ci/ca is calculated from direct measurements of plant δ13C rather than

using the regression model, reducing the standard error of estimated ci/ca.

Our results highlight a fundamental transition in Earth’s atmosphere following the evolution of forests in the

mid Devonian (~390Myr ago) [Stein et al., 2012]. Up until this point, according to both the GEOCARBSULFvolc

and fossil models, ca exceeded 1000 ppm. However, for the remainder of the Phanerozoic ca was less than

1000 ppm, consistent with the emergence of global forests that captured and sequestered vast amounts

of carbon from the atmosphere [Berner, 2003]. Forests also enhanced silicate mineral weathering, further

removing CO2 from the atmosphere via the deposition of carbonates in deep ocean sediments [Berner, 2003].

We emphasize that our low-resolution record bears most directly on long-term fluctuations in atmospheric CO2;

Figure 4. Atmospheric CO2 concentration, ca, calculated for different geological timescales. All red symbols are ca values

calculated from fossil leaves (or, for panel a, leaves preserved in peat). Error bars on red symbols span 16–84 percentiles

(similar to ±1 σ), unless noted otherwise. (a) Validation against direct measurements of ca (blue line) at Mauna Loa obser-

vatory, Hawaii, from 1958 to 1994 [Tans and Keeling, 2012], using leaf information for Betula pendula from Wagner et al.

[1996]; (b) validation against measurements of ca from ice cores [Smith et al., 1999; Monnin et al., 2004) (blue line) for

27–2 kyr before present, showing the Pleistocene-Holocene transition, using fossil information for Pinus flexilis from Van de

Water et al. [1994]; (c) comparison with stomatal index-based estimates [Kürschner et al., 1996] (blue symbols; associated

bars represent s.e.m.) for ~10– 2Myr before present, using fossil information for Quercus petraea in Kürschner et al. [1996];

error bars represent 18 and 84 percentiles to allow better comparison with the stomatal index-based estimates; (d) ca
modeled using fossil information for multiple species from published studies (see Table S7), compared with estimates

from GEOCARBSULFvolc (black line; 10–90 percentile error in blue; [Berner, 2008; Royer et al., 2007]) and paleosol

carbonate (updated from Park and Royer [2011]; error envelope in yellow). Paleosol estimates are revised with

downward-corrected soil respiration term S(z) following Breecker et al. [2010]. For paleosol estimates under 500 ppm,

only the error ranges are plotted, in keeping with the general loss of precision of this method at low CO2.
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we cannot exclude the possibility for short-term CO2 excursions exceeding 1000 ppm, for example

during the mass extinction at the Triassic-Jurassic (T-J) transition ~201Myr ago [McElwain et al., 1999;

Steinthorsdottir et al., 2011].

Our new Phanerozoic CO2 record provides critical empirical support for the view that ca has largely remained

under 1000 ppm since the Devonian (the last ~350Myr) [Breecker et al., 2010]. Until now, this view was based

mainly on reanalysis of ca estimates from the isotopic composition of carbonates in paleosols, the only

extensive proxy record to span most of the Phanerozoic. Compared with the revised paleosol record

(Figure 4d, yellow envelope) our calculations of Phanerozoic ca produce similar mean values but with less

uncertainty, although adjusting the S(z) correction to account for different soil orders could improve the

uncertainty in the paleosol record (see supporting information).

It emerges that long-term atmospheric CO2 concentration since the Devonian is constrained between the

lower and upper limits of ~200 to 1000 ppm, possibly via strong negative feedbacks in the geochemical

carbon cycle. Terrestrial plants may play a central role in this process. Stabilization of ca at the lower limit of

200–250 ppm during the past 24Myr appears to result from a strong negative feedback in the form of

attenuation of silicate rock weathering as terrestrial vegetation approaches CO2 starvation [Pagani et al.,

2009]. Conversely, accelerated silicate weathering at elevated atmospheric CO2 may be a dominant negative

feedback helping to keep ca below 1000 ppm.

These new constraints on Phanerozoic ca will greatly assist in establishing benchmarks for Earth system

sensitivity to CO2 (also known as “slow-feedback” or “long-term” climate sensitivity). If peak Phanerozoic ca is

of the order of 1000 ppm then either slow-feedback climate sensitivity is greater than the canonical fast-

feedback value of 3°C for 2 × CO2 [Solomon et al., 2007], or global temperatures have been no warmer than

~6°C above preindustrial conditions. The latter possibility is at odds with most paleotemperature records

[Schouten et al., 2003; Tripati et al., 2003; Pearson et al., 2007; Littler et al., 2011; Royer et al., 2012]. As we face a

potential doubling or tripling of ca from its preindustrial value by the end of this century [Solomon et al.,

2007], a long-term climate sensitivity exceeding 3°C for CO2 doubling has important ramifications for a range

of critical global economic, social, and political issues [Hansen et al., 2013]. The possibility of higher climate

sensitivity to CO2 in the face of inevitable increases in atmospheric CO2 concentration should be considered

within the framework of climate adaptation policy.
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