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ARTICLE INFO ABSTRACT

Words activate cortical regions in accordance with their modality of presentation (i.e., written vs. spoken), yet
there is a long-standing debate about whether patterns of activity in any specific brain region capture modality-
invariant conceptual information. Deficits in patients with semantic dementia highlight the anterior temporal

Keywords:
Anterior temporal lobe (ATL)
Multi voxel pattern analysis (MVPA)

IS_Ie“tl)antiC lobe (ATL) as an amodal store of semantic knowledge but these studies do not permit precise localisation of this
s;;loke function. The current investigation used multiple imaging methods in healthy participants to examine

functional dissociations within ATL. Multi-voxel pattern analysis identified spatially segregated regions: a
response to input modality in anterior superior temporal gyrus (aSTG) and a response to meaning in more
ventral anterior temporal lobe (vATL). This functional dissociation was supported by resting-state connectivity
that found greater coupling for aSTG with primary auditory cortex and vATL with the default mode network. A
meta-analytic decoding of these connectivity patterns implicated aSTG in processes closely tied to auditory
processing (such as phonology and language) and vATL in meaning-based tasks (such as comprehension or
social cognition). Thus we provide converging evidence for the segregation of meaning and input modality in the

Resting-state connectivity

ATL.

1. Introduction

Current neurocognitive models propose that concepts are repre-
sented in a large-scale distributed network comprising (1) sensory and
motor ‘spoke’ regions that store knowledge of physical features and (2)
convergence zones that integrate across multiple modalities (e.g., visual
vs. auditory) to form abstract amodal representations (Damasio, 1989;
Patterson et al., 2007). For example, the hub and spoke model of
Patterson et al. (2007) proposes that information from modality-
specific spoke regions is integrated in an amodal ‘hub’ region within
the anterior temporal lobes (ATL), allowing the conceptual similarity of
items that are semantically similar yet share few surface features, such
as ‘flute’ and ‘violin’, to be represented, and making it possible to map
between modalities so that we can picture a flute and imagine the
sound that it makes from only its name (e.g., Damasio, 1989; Lambon
et al., 2010; Patterson et al., 2007; Rogers et al., 2004). This hub and
spoke model proposes that both the ATL and modality-specific spokes
make a crucial contribution to conceptual representation, and these
elements are mutually-constraining through a pattern of interactive-
activation.

The spokes are hypothesized to represent the contributions of

* Correspondence to: Department of Psychology, University of York, YO10 5DD, UK.
E-mail address: cem552@york.ac.uk (C. Murphy).
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sensory and motor cortex to conceptual knowledge, as words associated
with specific sensorimotor attributes activate corresponding sensor-
imotor cortex. For example, words denoting actions (e.g., kick) activate
the motor system (Postle et al., 2008; Rueschemeyer et al., 2007;
Rueschemeyer et al., 2010), while words associated with specific smells
(e.g., cinnamon) elicit activation in olfactory cortex (Cerf-ducastel and
Murphy, 2004; Gonzalez et al., 2006). Although these neural regions
are important for perception and action, they are also recruited during
semantic processing to provide meaning to words (Barsalou, 1999;
2008; Martin, 2007; Patterson, et al., 2007; Kiefer and Pulvermuller,
2012).

The proposal that the ATL forms a key semantic “hub” capturing
knowledge across different input modalities was initially put forward to
account for the pattern of impairment in semantic dementia (SD), in
which relatively focal atrophy centered on ATL leads to progressive
conceptual degradation across modalities and tasks (e.g., Patterson
et al., 2007; Rogers et al., 2015). SD patients are highly consistent in
the knowledge they can demonstrate when the same concepts are
probed in different ways, suggesting central semantic representations
degrade in this condition. Patients with SD have atrophy which
increasingly affects inferior frontal and posterior temporal areas, as
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well as ATL, making it difficult to draw strong conclusions about the
location of the “hub” from neuropsychology alone; however, the
severity of the semantic impairment correlates most strongly with the
degree of hypometabolism in inferior ATL (Mion et al. 2010). The
crucial role of ATL is also supported by functional neuroimaging
studies of healthy participants that show amodal conceptual processing
in ATL (Rice et al., 2015; Visser et al., 2010). For example, Visser and
Ralph (2011) characterized the degree of modality convergence in STG,
MTG, ITG and fusiform cortex comparing posterior and anterior parts
of the temporal lobe. Both STG and fusiform were modality-sensitive
along the temporal lobe, showing stronger activation for spoken words
and pictures respectively. MTG showed a multimodal response in both
anterior and posterior regions. ITG uniquely showed a pattern con-
sistent with the increasing integration of information from different
inputs, namely sensitivity to modality in posterior but not anterior
regions. Moreover, Spitsyna et al. (2006) showed that, despite originat-
ing from different sensory inputs, there is considerable activation
overlap for spoken and written processing in ATL regions. Thus,
emerging evidence from both patients with SD and healthy participants
suggests that the semantic hub may be located in ventral ATL.

These observations raise the possibility of functional dissociations
with ATL. Jackson et al. (2016) recently observed different patterns of
functional connectivity within superior and ventral regions of the ATL,
with anterior STG showing stronger connectivity to language, auditory
and motor regions, while ventral ATL showed connectivity to other
multimodal semantic regions including inferior frontal gyrus, angular
gyrus and posterior middle temporal gyrus. These parallel the pattern
of white-matter connections found by Binney et al., (2012) and Jung
et al., (2016). Consistent with these findings it has been proposed that
superior regions of the ATL are important in lexical and auditory
processing, while ventral regions support conceptual processing across
all sensory modalities (Rice et al., 2015; Visser et al., 2010; Visser and
Ralph, 2011). Ventral and ventrolateral ATL regions have been found
to respond to meaningful inputs across multiple modalities by studies
employing convergent methods; including fMRI and transcranial
magnetic stimulation (Binney et al., 2010; Visser et al., 2011; 2012;
Hoffman et al., 2015) and representational similarity analysis (RSA) of
ECoG data (Chen et al., 2016).

The current study used multiple imaging methodologies to simul-
taneously investigate the organization of knowledge in the ATL (hub)
and auditory and visual regions (as potential spokes). In a functional
experiment we manipulated the format in which words were presented
(i.e., spoken, written) and the modality-specific features associated
with the word's meaning (e.g., auditory features: “loud” vs. visual
features: “shiny”). We used Multi Voxel Pattern Analysis (MVPA) to
decode how these different features (modality of presentation and
underlying meaning) are represented. Based on the hub and spoke
model, we expected this analysis to reveal regions that are distributed
across the cortex that responded to the meaning of the stimulus
regardless of the input modality. In this experiment we were particu-
larly interested in identifying regions in ATL where the meaning of
words is represented that are independent of input modality. The
amodal hub regions should be able to code the meaning of a stimulus
regardless of the presentation format (e.g., auditory feature words
should elicit similar patterns of activation even when spoken and
written words are compared). In addition, this region should represent
the meaning of words tied to different sensory modalities (i.e., it should
represent words with auditory meanings like ‘loud’ and words with
visual meanings like ‘shiny’). In contrast, the spokes should represent
particular semantic features in regions of sensory cortex (i.e., words
with an auditory meaning, such as loud, should be represented in
auditory cortex regardless of how they are presented (written or
spoken). However, spoke regions are not expected to represent mean-
ing that is tied to a different sensory modality (i.e., auditory cortex may
not contribute to semantic representation for words with a visual
meaning, such as shiny).
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Next we used the regions identified in our MVPA analysis as regions
of interest in a seed based resting state connectivity analysis to
understand the neural networks in which these different regions of
the ATL are embedded. We expected the amodal region of ATL to show
functional connectivity with regions of cortex that are important in
more abstract forms of cognition, e.g., the default mode network,
rather than regions important in unimodal sensory processing, such as
the auditory and visual cortex. Finally, we used the search tool
Neurosynth to decode the most common interpretations of this pattern
of functional connectivity in the broader neuroimaging literature.

2. Materials and methods
2.1. Functional experiment

2.1.1. Participants

Twenty participants were recruited from the University of York.
One participant's data was excluded due to excessive motion artifacts,
leaving nineteen subjects in the final analysis (10 female; mean age
24.55, range 18—36 years). Participants were native British speakers,
right handed and had normal or corrected-to-normal vision.
Participants gave written informed consent to take part and were
reimbursed for their time. The study was approved by the York
Neuroimaging Centre Ethics Committee at the University of York.

2.1.2. Stimuli

Participants were presented with blocks of spoken and written
items from three conditions: AUD words denoted auditory features
(e.g., loud), VIS words denoted visual features (e.g., shiny) and NON
stimuli were meaningless nonwords (e.g., brodic). A block consisted of
a sequence of items; participants were asked to pay attention to the
meaning of each item, and respond with their left index finger when an
out-of-category item was presented (see Fig. 1). For VIS and AUD
blocks, half of the out-of-category items were taken from the non-
presented feature condition, while the other half were taken from a

Run1 Run 2 Run3 Run 4

w H sa H SN L sV = { WA

Auditory

(written)

Fig. 1. Experimental design. (A) Four runs across the fMRI session. Each run lasted no
longer than 6 min 19s. (B) Block organization across each run. WA=written-Aud,
WV=written-VIS, =~ WN=written-NON,  SA=spoken-AUD, SV=spoken-VIS and
SN=spoken-NON. Only 6 are depicted for illustration (from a total of 12 blocks). Each
of the 6 conditions were randomly presented twice, with no immediate repetition.
Written blocks lasted 22.7 seconds, spoken blocks lasted no longer than 23.2 seconds. (C)
Each block began with written instructions stating the semantic feature type and
presentation format, for 3500ms (followed by 500 ms fixation). The 8 items from the
condition were then presented twice in a random order, with no immediate repetition.
Only 5 are depicted for illustration (from a total of 16 items). The arrow represents an
out-of-category item (e.g., visual feature ‘glossy’ in a block of auditory features). In total,
17 words were presented within each block (16 targets and 1 catch trial).
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separate list of taste words (e.g., spicy). Participants could not predict
the category of the out-of-category item and therefore had to focus on
the AUD or VIS feature specified in the instructions. In the NON
condition, participants were asked to respond to any item that was a
word. All stimuli were presented in both spoken and a written format.
Spoken words were recorded digitally and then normalized for volume
and power. Written words were presented centrally as white letters on
a black background. The combination of item meaning (AUD, VIS,
NON) and presentation format (Spoken, Written) yielded 6 experi-
mental conditions (Spoken-AUD, Spoken-VIS, Spoken-NON, Written-
AUD, Written-VIS, Written-NON).

The selection of AUD and VIS words was validated in a behavioural
study with twelve participants who did not take part in the fMRI
session. Participants were asked to rate a subset of modality-specific
words (n=220), according to how much each one related to four
sensory categories; auditory, visual, haptic and taste. Participants also
provided ratings of familiarity and emotional valence. All ratings were
given on a 5-point likert-scale. We selected adjectives with strong
auditory or visual associations. Each set contained 8 items which were
matched for key psycholingusitic variables such as frequency and
length (see Table 1; Wilcoxon signed rank tests revealed all p >.05).
AUD words (such as ‘loud’) were selected if they scored significantly
higher on the auditory than visual, haptic or taste modalities (all p
<.001). Likewise VIS words (such as ‘shiny’) were selected if they
scored significantly higher on the visual than the auditory, haptic or
taste modalities (all p <.001).

A set of 8 taste features were used in out-of-category catch trials.
These items scored significantly higher on the taste modality than
auditory, visual and haptic (p <.001). These items were also matched
to AUD or VIS words on the variables in Table 1 (all p >.05). Finally,
NON words were made by recombining the phonemes from the AUD
and VIS conditions to create 8 pseudo-words. The non-word condition
matched AUD and VIS conditions on number of letters, syllable and
Levenshtein distance (Levenshtein, 1965), which quantifies the num-
ber of phoneme insertions, deletions and/or substitutions required to

Table 1
Mean psycholinguistic properties of stimuli (SD in parentheses).

Property Auditory feature Visual Non-words
words feature
words
Example “loud” “shiny” “brodic”
Log frequency 2.27 (1.05) 2.54 (.82) N/A
Length 5.25 (.76) 5.50 (.80) 5.88 (1.17)
Syllables 1.88 (.45) 1.63 (.49) 2.00 (.50)
Age of acquisition 7.17 (2.70) 6.85 (2.76) N/A
Familiarity 4.43 (.63) 4.40 (.51) N/A
Emotional Valence 3.18 (.70) 3.3 (.67) N/A
Levehnstein distance 5.11 (.94) 6.00 (1.25) 5.89 (.86)
Behavioural feature- 4.45 (.61)" 1.15 (.04) N/A
rating (auditory)
Behavioural feature- 1.65 (.32) 4.77 (.19) N/A
rating (visual)
Behavioural feature- 1.5 (.39) 1.76 (.72) N/A
rating (haptic)
Behavioural feature- 1.19 (.07) 1.21 (.09) N/A

rating (taste)

Footnote: Log frequency=log-transformed lemma frequencies from the SUBTLEX
database (Brysbaert, New and Keuleers, 2012;
http://expsy.ugent.be/subtlexus). Length=number of letters. Age of acquisition (AoA
norms; Kuperman et al., 2012). Part of
speech also taken from SUBTLEX database. Familiarity, emotional valence and
behavioural feature rating (auditory; visual;
haptic; taste) were obtained from a behavioural experiment with a separate cohort of
participants from the fMRI study.
These were scored on a Likert-scale (1-5).

“ Wilcoxon signed rank tests revealed a significant difference between auditory-feature
and visual-feature conditions (p <.001).
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change one word into another, (all p > .05). The use of a small number
of items is consistent with other MVPA studies into semantic repre-
sentation (Correia et al., 2014; Peelen and Caramazza, 2012).

Stimulus presentation was controlled by a PC running
Neurobehavioural System Presentation® software (Version 0.07,
www.neurobs.com). Stimuli were projected onto a screen viewed
though a mirror mounted on the head coil. Spoken stimuli were
presented binaurally using MR-compatible headphones.

2.1.3. Task procedure

Prior to being scanned, participants were shown a printed copy of all
stimuli (8 AUD, 8 VIS, 8 NON) to familiarize them with the items. They
also performed a practice session consisting of 12 blocks, identical to one
scanning run.

In the scanner there were 4 runs of 12 blocks. The choice of 4
functional runs is consistent with many MVPA studies that also
presented trials within 4 runs that were each 5-10 min long
(Coutanche and Thompson-Schill, 2012; Fairhall and Caramazza,
2013; Peelen and Caramzza, 2012). Within each run, there were two
blocks related to each of the 6 experimental conditions (spoken and
written words combined with three meaning conditions: AUD, VIS and
NON). These were presented in a pseudo-random order, with no
immediate repetition of conditions. Blocks were separated by a jittered
gap (4-8 s) during which a red fixation cross was presented. A block
consisted of 17 stimuli: eight stimuli related to that experimental
condition presented twice in a pseudo-random order, with no immedi-
ate repetition, plus one out-of-category catch trial. Written stimuli were
presented for 600ms; spoken stimuli were presented on average for
633.57 ms (SD=71.57 ms). Words within each block were separated by
a 500 ms inter-stimulus interval.

Block transitions were marked with a written task instruction,
which indicated (i) the aspect of meaning that participants needed to
focus on and (ii) the presentation format presented in parentheses. The
task instructions were presented for 3500 ms (followed by 500ms
fixation). A grey fixation cross against a black background was used to
minimize eye movements during the duration of a block. Each block
(including task instruction and jittered rest period) lasted on average
28.7 s.

2.1.4. Acquisition

Data were acquired using a GE 3 T HD Excite MRI scanner at the
York Neuroimaging Centre, University of York. A Magnex head-
dedicated gradient insert coil was used in conjunction with a birdcage,
radio-frequency coil tuned to 127.4 MHz. A gradient-echo EPI se-
quence was used to collect data from 38 bottom-up axial slices aligned
with the temporal lobe (TR=2s, TE=18 ms, FOV=192x192 mm,
matrix size=64x64, slice thickness=3 mm, slice-gap 1mm, flip-an-
gle=90°). Voxel size was 3x3x3 mm. Functional images were co-
registered onto a T1-weighted anatomical image from each participant
(TR=7.8s, TE=3 ms, FOV=290 mmx290 mm, matrix si-
ze=256 mmx256 mm, voxel size=1.13 mmx1.13 mmx1 mm) using lin-
ear registration (FLIRT, FSL).

2.1.5. Preprocessing

Imaging data were preprocessed using the FSL toolbox (http://www.
fmrib.ox.ac.uk/fsl). Images were skull-stripped using a brain extraction
tool (BET, Smith, 2002) to remove non-brain tissue from the image. The
first five volumes (10 s) of each scan were removed to minimize the effects
of magnetic saturation, and slice-timing correction was applied. Motion
correction (MCFLIRT, Jenkinson et al., 2002) was followed by temporal
high-pass filtering (cutoff=0.01 Hz). Individual participant data were first
registered to their high-resolution T1-anatomical image, and then into a
standard space (Montreal Neurological Institute (MNI152); this process
included tri-linear interpolation of voxel sizes to 2x2x2 mm. For
univariate analyses, data were additionally smoothed (Gaussian full
width half maximum 6 mm).
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2.1.6. Univariate analysis

The condition onset and duration were taken from the first item in
each block (after the initial instructions) to the end of the last item. The
response to each of the 6 conditions was contrasted against rest. Box-
car regressors for each condition, for each run, in the general linear
model were convolved with a double gamma hemodynamic response
function (FEAT, FSL). Regressors of no interest were also included to
account for head motion within scans. A fixed effect design (FLAME,
http://www.fmrib.ox.ac.uk/fsl) was then conducted to average across
the four runs, within each individual. Finally, individual participant
data were entered into a higher-level group analysis using a mixed
effects design (FLAME, http://www.fmrib.ox.ac.uk/fsl) whole-brain
analysis.

2.1.7. Multivariate pattern analysis

Parameter estimates were calculated in the same manner as for
univariate analyses, for each condition and for each run: in this way,
the spatial pattern information entered into the classifier from each
condition represented the average response to the 8 exemplars. This
method is consistent with previous literature investigating semantic
representations (Coutanche & Thompson-Schill, 2012; Fairhall and
Caramazza, 2013; Peelen and Caramagzza, 2012): it allows us to make
inferences that a particular region is able to discriminate between
words referring to auditory and visual features, for example, but not the
meanings of these individual words. MVPA was conducted on spatially
unsmoothed data to preserve local voxel information.

As we had a priori knowledge of strong selectivity for the classes in
particular brain regions (ATL, primary auditory cortex and primary
visual cortex), we opted for a ROI-based MVPA method rather than
whole-brain analysis. This reduced the number of voxels used for
classification (and therefore the number of free parameters which can
lead to over-fitting; for similar approaches see Kamitani and Tong
(2005) and Kuhl, Rissman, Chun and Wagner, (2011). The following
masks were used; primary visual cortex (taken from FSL Juelich Atlas;
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases), primary auditory cortex
(taken from FSL Juelich Atlas; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
Atlases) and ATL (anterior to Y=-22; Hoffman et al., 2015). The size of
these masks are as follows; primary visual cortex, 12662 voxels;
primary auditory cortex, 2372 voxels; ATL, 18523 voxels.

To ensure that our ROIs had sufficient signal to detect reliable fMRI
activation, the temporal signal-to-noise ratio (tSNR) for each partici-
pant was calculated for the first run of the experiment by dividing the
mean signal in each voxel by the standard deviation of the residual
error time series in that voxel (Friedman et al., 2006). tSNR values
were averaged across the voxels of each ROI. Mean tSNR values,
averaged across participants, were as follows: ATL, 76.74; primary
auditory cortex (PAC), 93.61; primary visual cortex (PVC), 102.96. The
percentage of voxels in each ROI that had “good” tSNR values ( > 20;
Binder et al., 2011) was above 85% for all ROIs: ATL, 86.17%; PAC,
99.87%; PVC, 94.58%. These values indicate that, although mean tSNR
was lower in anterior temporal cortex than in sensory regions, the
tSNR was sufficient to detect reliable fMRI activation in all ROIs
(Binder et al., 2011). Moreover, to determine whether tSNR was
sufficient in each sub-region of the ATL (as signal drop out is most
prominent in ventral anterior regions), the tSNR was calculated for the
following regions: aSTG, 85.97; aMTG, 89.00; aITG, 69.79; anterior
fusiform gyrus, 69.74; anterior parahippocampal gyrus, 67.13; tem-
poral pole, 63.27. These values suggest that, again, although mean
tSNR was lower in more ventral anterior regions, it was still sufficient
to detect reliable fMRI activation (Binder et al., 2011).

For each voxel in our three ROI masks, we computed a linear
support vector machine (LIBSVM; with fixed regularization hyper-
parameter C=1) and a 4-fold cross-validation (leave-one-run-out)
classification, implemented in custom python scripts using the
PYMVPA software package (Hanke et al., 2009). A support vector
machine was chosen as this aims to combat over-fitting by limiting the
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complexity of the classifier (Lewis-Peacock and Norman, 2013). The
classifier was trained on three runs and tested on the independent
fourth run; the testing set was then alternated for each of four
iterations. Classifiers were trained and tested on individual subject
data transformed into MNI standard space. The functional data were
first z-scored per voxel within each run. The searchlight analysis was
implemented by extracting the z-scored p-values from spheres (6bmm
radius) centered on each voxel in the masks. This sized sphere
included~1233 mm voxels (Kriegeskorte et al., 2006). Classification
accuracy (proportion of correctly classified trials) for each sphere was
assigned to the sphere's central voxel, in order to produce accuracy
maps. The resulting accuracy maps were then smoothed with a
Gaussian kernel (6mm FWHM). To determine whether accuracy maps
were above chance-levels (50%), individual accuracy maps were
entered into a higher-level group analysis (mixed effects, FLAME;
http://www.fmrib.ox.ac.uk/fsl), testing the accuracy values across
subjects against chance for each voxel. Voxel inclusion was set at
z=2.3 with a cluster significance threshold at FWE p < .05.

The following classification tests were performed: (1) Semantic
feature classifier: this examined whether patterns of activity conveyed
information regarding the meanings of words, by training a classifier to
discriminate between words referring to auditory features (e.g. loud)
and visual features (e.g., shiny). This classifier was truly format-
independent in the sense that it was trained on this semantic
distinction using spoken words and tested using written words (and
vice versa). The advantage of performing the classification in this
manner is only semantic information common to both presentation
formats was informative to the classifier (see Fig. 2A). The results from
the two classifications were averaged to produce a single estimate of
classification accuracy. (2) Perceptual classifier: here a classifier was
trained to discriminate between spoken and written non-words and
was tested on these two presentation formats for words. In this way
only the presentation format that was general to both non-words and
words was informative to the classifier (see Fig. 2B).

2.2. Resting state fMRI

2.2.1. Participants

This analysis was performed ona separate cohort of 42 healthy
participants at York Neuroimaging Centre (13 male; mean age 20.31,
range 18-25 years). Subjects completed a 9 minute functional con-
nectivity MRI scan during which they were asked to rest in the scanner
with their eyes open. Using these data we examined the resting-state
fMRI (rs-fMRI) connectivity of ATL regions that were informative to
the semantic feature (aITG) and perceptual classifiers (aSTG) to
investigate whether these regions fell within similar or distinct
networks. In addition, we investigated the rs-fMRI connectivity of
semantic regions within primary sensory cortices that showed signifi-
cant decoding by the semantic classifiers to examine whether these
regions overlap with the connectivity maps of the ATL seeds.

2.2.2. Acquisition

As with the functional experiment, a Magnex head-dedicated
gradient insert coil was used in conjunction with a birdcage, radio-
frequency coil tuned to 127.4 MHz. For the resting-state data, a
gradient-echo EPI sequence was used to collect data from 60 axial
slices with an interleaved (bottom-up) acquisition order with the
following parameters: TR=3 s, TE=minimum full, volumes=180, flip
angle=90°, matrix size=64x64, FOV=192x192 mm, voxel si-
ze=3x3x3 mm. A minimum full TE was selected to optimise image
quality (as opposed to selecting a value less than minimum full which,
for instance, would be beneficial for obtaining more slices per TR).
Functional images were co-registered onto a T1-weighted anatomical
image from each participant (TR=7.8s, TE=3 ms,
FOV=290 mmx290 mm, matrix size=256 mm x256 mm, voxel si-
ze=1 mmx1 mmx1 mm).
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Train Test .

A. Semantic classifier
Train on the distinction between AUD & VIS in one
presentation modality

Test on the distinction between AUD & VIS in the other
presentation modality (and vice versa)

Written - AUD i1 spoken - AUD
Written - VIS Spoken - VIS
Spoken — NON Written — NON Spoken — NON Written — NON

B. Presentation format

Train on the distinction between SPOKEN & WRITTEN NONs Test on the distinction between SPOKEN & WRITTEN words

i| Spoken - AUD Written - AUD

Spoken - VIS Written - VIS

Spoken — NON Written — NON

Fig. 2. Schematic illustration of the MVPA searchlight classifiers performed. Each box includes the six experimental conditions. Classifiers were trained to distinguish between two
conditions (red and blue). The classifiers were then tested on independent trials that differed in the same way. (A) Classifiers were trained and tested based on semantic content (trained
on Spoken-AUD vs. Spoken-VIS, tested on Written-AUD vs. Written-VIS — and vice versa). The results from both comparisons were then averaged. (B) Classifiers were trained and tested
based on presentation format (trained on Spoken-NON vs. Written-NON, tested on Spoken words vs. Written words). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article).

2.2.3. Pre-processing primary sensory regions.

Data were preprocessed using the FSL toolbox (http://www.fmrib. The time series of these regions were extracted and used as
ox.ac.uk/fsl). Prior to conducting the functional connectivity analysis, explanatory variables in a separate subject level functional connectivity
the following pre-statistics processing was applied to the resting state analysis for each seed. Subject specific nuisance regressors were
data; motion correction using MCFLIRT to safeguard against motion- determined using a component based noise correction (CompCor)
related spurious correlations (Baker et al., 2015; Smallwood et al., approach (Behzadi et al., 2007). This method applies principal
2016; Krieger-Redwood et al. 2016; Davey et al., 2016); slice-timing component analysis (PCA) to the fMRI signal from subject specific
correction using Fourier-space time-series phase-shifting; non-brain white matter and CSF ROIS. In total there were 11 nuisance regressors,
removal using BET; spatial smoothing using a Gaussian kernel of five regressors from the CompCorr and a further 6 nuisance regressors
FWHM 6 mm; grand-mean intensity normalisation of the entire 4D were identified using the motion correction MCFLIRT. These principle
dataset by a single multiplicative factor; high-passtemporalfiltering components are then removed from the fMRI data through linear
(Gaussian-weighted least-squares straight line fitting, with regression. The WM and CSF covariates were generated by segmenting
sigma=100 s); Gaussian lowpass temporal filtering, with sigma=2.8 s. each individual's high-resolution structural image (using FAST in FSL;

Zhang et al., 2001). The default tissue probability maps, referred to as
Prior Probability Maps (PPM), were registered to each individual's
high-resolution structural image (T1 space) and the overlap between
these PPM and the corresponding CSF and WM maps was identified.
These maps were then thresholded (40% for the SCF and 66% for the
WM), binarized and combined. The six motion parameters were
calculated in the motion-correction step during pre-processing.
Movement in each of the three Cartesian directions (x, y, z) and
rotational movement around three axes (pitch, yaw, roll) were included
for each individual.

2.2.4. Low level analysis

For our ATL sites we created two spherical seed ROIs, 6 mm in
diameter,centered on the co-ordinates of the central voxel in the
highest performing spheres in our presentation and semantic search-
light analyses; left aSTG [-54 2 -10] and aITG [-50 -10 -26] respectively
(see Table 2). For our sensory semantic regions we created two
spherical seed ROIS centered on intracalcarine cortex [-18 -84 4]
and planum polare [-48 -12 -4] from the best performing spheres in
our semantic searchlight analysis; as these regions showed high
performance accuracy on the semantic classifier and fall within

Table 2
Centre Voxel Coordinates of Highest Decoding Sphere in the Searchlight Analyses.

Condition Mask Cluster Peak Extended Cluster Regions Cluster Z-score Acc (%) x y z
Extent

Semantic Feature

ATL L Anterior ITG/MTG L Heschls gyrus, L putamen 478 491 61.22 -50 -10 -26
ATL R Temporal pole R Anterior parahippocampal gyrus, R Anterior MTG, R 416 4.58 61.05 42 12 -24
Anterior STG.
Auditory L Planum polare L Heschls gyrus, L Planum temporale 88 3.92 59.53 -48 -12 -4
Visual L Intracalcarine cortex L Lingual gyrus 81 4.26 61.18 -18 -84 4
Presentation format
Visual L Occipital pole L Occipital fusiform gyrus, L Inferior lateral occipital cortex. 607 4.3 58.57 -16 92 0
Auditory L Planum temporale L Heschl's gyrus, R Planum Temporale, R Heschl's gyrus, 581 4.97 59.85 -58 -24 8
ATL L Anterior STG L Temporal pole, R Anterior STG 66 2.8 58.36 -58 -10 -2

Footnote: Highest decoding accuracy clusters for semantic feature (AUD vs. VIS) and presentation format (spoken vs. written words) analysed separately. Semantic feature classifier was
trained on the distinction between spoken AUD vs. spoken VIS and tested on written AUD vs. written VIS (and vice versa). Presentation format classifier was trained on the distinction
between written non-words vs. spoken non-words and tested on spoken words vs. written words. Results are thresholded at p < .05 (cluster corrected). L=left, R=right. As well as peak
accuracy (reported under the ‘Cluster Peak’ column), the ‘Extended Cluster Regions’ includes all significant regions within each ROI. In addition to the searchlight analyses reported in
the table, a further searchlight analysis was run on the distinction between all spoken vs. all written items. This revealed accuracies as high as 99.6% in primary sensory regions and
93.2% in ATL. The unthresholded MVPA maps for each searchlight have been uploaded to the Neurovault database and can be found here http://neurovault.org/collections/1970/.
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Fig. 3. Coronal slices taken at Y=5, Y=-5 and Y=—15. Anterior temporal lobe mask shows all regions of the temporal lobe anterior to Y=—22 in line with Hoffman et al., (2015) projected
in blue. Results of the group-level searchlight analysis for semantic feature classification (AUD vs. VIS) projected in magenta (cluster-corrected p < .01). Results for perceptual classifier
(spoken vs. written) projected in cyan (cluster-corrected p < .01). Overlap of the two searchlight analyses in white. In total 47 voxels overlapped across the two searchlight analyses in
aSTG (right hemisphere, 38 voxels; left hemisphere, 9 voxels). aSTG=anterior superior temporal gyrus; aMTG/alTG=anterior middle temporal gyrus/inferior temporal gyrus. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

2.2.5. High level analysis

At the group-level the data were processed using FEAT version 5.98
part of FSL (FMRIB's Software Library,www.fmrib.ox.ac.uk/fsl) and
the analyses were carried out using FMRIB's Local Analysis of Mixed
Effects (FLAME) stage 1 with automatic outlier detection. The z
statistic images were then thresholded using clusters determined by
z > 2.3 and a (corrected) cluster significance threshold of p = 0.05
(Worsley, 2001). No global signal regression was performed.

To investigate the differences between the connectivity maps a fixed
effect design (FLAME, http://www.fmrib.ox.ac.uk/fsl) was conducted
for each participant to investigate four contrasts; (i) aSTG > aITG seed,
(ii) aITG > aSTG seed, (iii) auditory semantic > visual semantic seed
and (iv) visual semantic>auditory semantic seed. Individual
participant data were then entered into a higher-level group analysis
using a mixed effects design (FLAME, http://www.fmrib.ox.ac.uk/fsl)
whole-brain analysis. Finally, to determine whether our ATL seeds
connectivity maps overlap with the connectivity maps of the sensory
semantic seeds we calculated the number of overlapping voxels for our
two ATL sites and the sensory semantic connectivity maps.

2.3. Resting state decoder

To allow quantitative inferences to be drawn on the functional
neural activity identified through our seed based correlational analyses
we performed an automated meta-analysis using NeuroSynth (http://
neurosynth.org/decode; Yarkoni et al., 2011). This software computed
the spatial correlation between each ATL component mask and every
other meta-analytic map (n=11406) for each term/concept stored in
the database (e.g., semantic, language, memory, sensory). The 15 meta-
analytic maps exhibiting the highest positive correlation and negative
correlation for each sub-system mask were extracted, and the term
corresponding to each of these meta-analyses is shown in Fig. 4. The
font size reflects the size of the correlation (ranging from r=0.10 to 0.45
for positive correlations and r=-0.05 to —0.2 for negative correlations,
in increments of 0.05). This allows us to quantify the most likely
reverse inferences that would be drawn from these functional maps by
the larger neuroimaging community.
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3. Results
3.1. Behavioural results

Accuracy and reaction times (RT) were calculated for each partici-
pant (n=19) for the catch trials in each experimental condition. Results
showed that all participants paid attention to the words as indicated by
a mean accuracy above 80% for all experimental conditions (spoken
AUD = 80.63% =+ 15.33, spoken VIS = 88.12% =+ 4.86, spoken
NON=85.62% + 11.47, written = AUD=83.12% +19.01, written
VIS=86.25% + 13.52, written NON=88.75% + 5.45). A chi-square test
of independence revealed that accuracy did not significantly differ
across the six experimental conditions (x2(5)=6.09, p=.303) or across
spoken and written input (x2(1)=.301, ns). RTs differed significantly
between modality-input (#(59)=7.36, p <.001), but not semantic-
category within each modality (spoken: F(2,38)=.92, ns; written:
F(2,38)=0.074, ns). In line with previous findings (Booth et al., 2002;
Cohen et al., 2004), participants were significantly faster at responding
to written than spoken stimuli. Furthermore, there was no difference in
RT between AUD, VIS and NON items within each presentation
modality, suggesting that the experimental conditions were well
matched at the behavioural level within our stimuli subset.

3.2. Searchlight analysis

3.2.1. Semantic feature classifier

The format-independent searchlight classifier, trained on the dis-
tinction between visual and auditory features in one presentation
modality and tested on this distinction in the other modality, was
run in three separate masks (ATL; primary auditory cortex and primary
visual cortex). All results reported are above chance levels (50%, cluster
corrected p <.05). The searchlight analysis within the ATL mask
revealed a left hemisphere cluster that could decode semantic informa-
tion across modalities in aMTG and aITG (see Fig. 3, Table 2).
Additionally, right hemisphere clusters were revealed in anterior
parahippocampal gyrus and temporal pole (TP). The searchlight
analysis within the primary auditory mask revealed a cluster in planum
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Fig. 4. Left hemisphere sagittal slices taken at X=-55 and X=-50. Primary auditory ROI taken from Juelich histological atlases projected in blue. Results of the group-level searchlight
analysis for semantic feature classification (AUD vs. VIS) projected in magenta (cluster-corrected p <.01). Results for perceptual classifier (spoken vs. written) projected in cyan
(cluster-corrected p < .01). Overlap of the two searchlight analyses in white. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.).
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Fig. 5. Left hemisphere sagittal slices taken at X=-20, X=-15 and X=-10. Primary visual ROI taken from Juelich histological atlases projected in blue. Results of the group-level
searchlight analysis for semantic feature classification (AUD vs. VIS) projected in magenta (cluster-corrected p <.01). Results for perceptual classifier (spoken vs. written) projected in
cyan (cluster-corrected p < .01). Overlap of the two searchlight analyses in white. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.).

polare (see Fig. 4, Table 2). Finally, the primary visual cortex mask
revealed a cluster in intracalcarine cortex that could decode semantic
content (see Fig. 5, Table 2).

3.2.2. Perceptual classifier

The classifier that was trained on the distinction between spoken
and written non-words and tested on the distinction between these
presentation modalities for words, was also run in three separate
masks (ATL; primary auditory cortex and primary visual cortex). All
results reported are above chance levels (50%, cluster corrected p
<.05). Within the ATL, anterior portions of STG, extending into
temporal pole, were able to decode between presentation formats
(see Fig. 3; Table 2). The classifier results for the primary auditory
cortex mask revealed an extensive cluster of voxels that could classify
perceptual information in Heschl's Gyrus, planum temporale and
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superior temporal gyrus (see Fig. 4; Table 2). The classifier results
for the primary visual cortex mask revealed an extensive cluster of
voxels in occipital pole (see Fig. 5; Table 2).

To explicitly determine whether the aITG and aSTG were differen-
tially able to classify the modality of presentation and the meaning of
the stimulus, we conducted a 2x2 repeated-measures ANOVA in which
we compared the prediction accuracies for each classifier output for
each significant cluster. This revealed three significant effects. First, a
main effect for classifier type (presentation format vs. semantic
classifier; F(1,18)=36.76, p <.001). Second, a significant main effect
of region (aSTG vs. alTG; F(1,18)=79.71, p <.001). Critically, we also
found a significant interaction between classifier type and ATL region
(F(1,18)=1087.51, p<.001). Post-hoc tests revealed a significant
difference between aSTG and aITG for the presentation format
classifier, with aSTG performing significantly better than aITG (t(18)



C. Murphy et al.

=29.04, p <.001). There was also a significant difference between aITG
and aSTG for the semantic feature classifier, with aITG performing
significantly better than aSTG (#(18)=28.30, p <.001). Collectively,
these analyses show a dissociation between ATL regions: aSTG
classification accuracy was higher for presentation modality than word
meaning, while the reverse pattern was obtained for aITG.

In addition to our ROI-based MVPA results, a whole-brain search-
light analysis was computed for both the semantic feature classifier and
perceptual classifier, using the same analysis pipeline outlined for our
ROI analysis. Results from the whole-brain searchlight reveal similar
clusters across primary auditory cortex, primary visual cortex and
anterior temporal lobe. In addition, the whole-brain analysis revealed
clusters in occipital-parietal cortex and clusters extending along the
temporal lobe. The unthresholded maps from the whole-brain search-
light analysis have been uploaded to the neurovault database and can
be found here http://neurovault.org/collections/1970/.”

3.3. Univariate analysis

The searchlight results revealed that in ATL, primary auditory
cortex and visual cortex, distinct regions were able to decode semantic
feature type and presentation modality. As an additional complemen-
tary analysis, the percentage signal change was extracted for each
condition from the pairs of clusters that were able to decode semantic
feature type and modality of presentation in ATL, visual cortex and
auditory cortex (generating six analyses; see Fig. 6). A 6mm sphere was
centered at the peak MVPA accuracy in each of these sites (see Table 2).
The ventral ATL region (encompassing alTG and aMTG, decoding
feature type) showed deactivation across all four conditions, and the
degree of deactivation was sensitive to meaning (auditory > visual
features) but not input modality (spoken=written words). In contrast,
aSTG (which decoded presentation modality) was sensitive to modality
(spoken > written) but not meaning (auditory=visual features). Thus,
univariate analyses also revealed a functional dissociation within ATL.
We also examined regions that could decode modality of presentation
and semantic feature type within primary auditory cortex (planum
temporale and planum polare respectively) and primary visual cortex
(occipital pole and intracalcarine cortex). All four sites showed strong
effects of input modality in univariate analyses across both feature
types. In addition, the intracalcarine cortex showed greater activity to
words that denoted a visual property (e.g., bright) whereas planum
polare showed greater activation to words that denoted an auditory
property (e.g., loud). This effect of meaning in primary visual and
auditory areas was only seen when the words were presented in the
complementary input modality: primary visual cortex responded more
to visual features when written words were presented, while primary
auditory cortex responded more to auditory features when spoken
words were presented. Thus, aITG was unique in showing a pattern
across both multivariate and univariate analyses consistent with the
predictions for an amodal ‘hub’ i.e., sensitivity to meaning and
insensitivity to presentation modality.

3.4. Resting state fMRI

To provide a better understanding of the neural architecture that
supported the functional distinction between aSTG (effect of input
modality) and aITG (effect of semantic feature type), we explored the
connectivity of these regions in resting state fMRI (see Fig. 7) by
placing spherical ROIs at peaks in the MVPA analysis. The aSTG seed
showed significant positive connectivity across the entire length of STG
through primary auditory cortex and into supramarginal gyrus (SMG).
It coupled with posterior and anterior regions of MTG, pre- and
postcentral gyrus, supplementary motor cortex and anterior cingulate
gyrus and deactivation with visual regions, including lateral occipital
cortex, intracalcarine cortex, occipital fusiform gyrus (OFG) and
temporal occipital fusiform gyrus, as well as posterior cingulate and
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precuneous. In contrast, the aITG site showed connectivity with core
parts of the default mode network and multimodal semantic regions,
including angular gyrus, posterior parts of MTG and ITG, temporal
pole extending medially to include hippocampus and anterior para-
hippocampal gyrus, and anterior and inferior prefrontal regions,
including orbital cortex and left inferior frontal gyrus (LIFG). This
seed also coupled with lateral visual regions (e.g., LOC and occipital
fusiform gyrus). Table 3 presents location and size of each of these
clusters.

To investigate the differences between these two ATL maps a
difference analysis was performed (Fig. 7B). The contrast of aSTG >
alTG identified bilateral superior temporal and frontal polar regions.
The contrast aITG > aSTG revealed bilateral inferior and middle
portions of the temporal lobe and multimodal semantic sites including
angular gyrus, pMTG and LIFG. These differences resemble resting
state differences for aSTG and vATL reported by Jackson et al. (2016),
helping to validate the functional dissociation we observed using
MVPA.

To further interrogate the assumption that aITG exhibits a con-
nectivity profile consistent with an amodal region, whereas aSTG is
connected to sensory regions, we looked at the similarity between our
two ATL difference maps (see Fig. 7B and C) and that of four core
networks taken from Yeo. et al. (2014). These included two networks
sensitive to sensory input (visual, somatosensory) and two networks
thought to be crucial in the generation of cognitive states that do not
rely on sensory inputs for their mental content (limbic and default
mode network) (for a review see Andrews-Hanna et al. (2014)). The
results, outlined in Figs. 7B and 7C, indicated substantial overlap
between the sensory networks (namely somatosensory) and aSTG. In
contrast, aITG showed substantial overlap with limbic and DMN
networks.

4. Discussion

The current study used multiple imaging methods to identify
regions in the anterior temporal lobe (ATL) and primary sensory
regions that showed the pattern expected for the semantic hub of the
hub and spokes model (Patterson et al., 2007). In an fMRI study,
participants listened to or viewed words that referred to either visual or
auditory features (e.g., BRIGHT or LouD). Multivoxel pattern analysis
(MVPA) revealed a dissociation between (i) anterior inferior temporal
gyrus (aITG), which could classify semantic categories relating to
feature type (e.g., auditory features like “loud” as being different from
visual features like “bright”) across auditory and visual inputs and (ii)
anterior superior temporal gyrus (aSTG), which was sensitive to input
modality across meaningful and meaningless items. This dissociation
within ATL was further supported by univariate contrasts and patterns
of resting state connectivity: aSTG showed a stronger response to
spoken than written inputs and was functionally coupled to an
auditory-motor network (somatosensory network; Yeo et al., 2014),
while aITG was insensitive to input modality and showed substantial
connectivity with regions in the default mode network and limbic
network, plus some overlap with visual regions (see Jackson et al.
(2016), for similar findings).

Our findings make an important contribution to our understanding
of the neural basis of semantic cognition in three ways: (1) We provide
evidence that conceptual knowledge, extracted from different modal-
ities of input across many learning experiences, is represented within
ventral portions of ATL which act as a ‘hub’ (Patterson et al., 2007;
Rogers et al., 2004). (2) Across converging methods, we observe a
functional dissociation between ventral and superior portions of ATL
and provide evidence that these regions are situated within distinct
large-scale cortical networks. (3) Responses in primary visual and
auditory cortex confirm the contribution of these ‘spoke’ regions to
semantic processing.

According to the hub and spoke model (Patterson et al., 2007),
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Fig. 6. The first column shows 6 mm ROIs centered on the peak MVPA results from the searchlight analyses (shown in Figs. 3-5) for semantic classifier in magenta and modality
classifier in cyan, for each of our three masks (anterior temporal lobe, primary auditory cortex and primary visual cortex) projected in blue. The centre for these ROIs are as follows; aITG
seed [-50 -10 -26], aSTG seed [-58 -10 -2], planum polare [-48 -12 -4], planum temporale [-58 -24 8], intracalcarine cortex [-16 -84 4] and occipital pole [-16 -92 0]. The second column
shows the univariate percent signal change for each of our four conditions within the semantic (magenta) ROI. The third column shows the univariate percent signal change for each of
our four conditions with the modality (cyan) ROI. Grey bars show the results for auditory-feature words (e.g., loud’) and white bars show the results for visual-feature words (e.g.,
‘bright). * indicates a significant difference between auditory-features and visual-features within a modality (i.e., spoken auditory-features and spoken visual-features; p <.05). **
indicates a significant difference between spoken and written presentation format (p <.001). The unthresholded univariate maps for each condition have been uploaded to the
Neurovault database and can be found here http://neurovault.org/collections/1970/. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.).

conceptual knowledge depends on the co-activation of spoke regions
that convey information about specific unimodal and multimodal
features of concepts, and an ATL hub which integrates these features
to form amodal conceptual representations that are independent of
specific sensory input. Studies of patients with semantic dementia (SD)
provided the original motivation for this proposal yet neuropsycholo-
gical methods are not especially well-suited to the precise localization
of amodal conceptual representations given the widespread atrophy in
this condition. Nevertheless, the degree of semantic impairment
correlates with hypometabolism in ventral rather than superior por-
tions of ATL across patients (Mion et al., 2010), suggesting that ventral
ATL could be the critical substrate for amodal knowledge. Relevant
evidence is also provided by univariate fMRI analyses of the ATL
response to verbal comprehension tasks in healthy participants, which
show multiple peak responses in both ventral ATL and aSTG, often to
the same contrasts (Binney et al., 2010; Hoffman et al., 2015; Visser
and Ralph, 2011). Semantic matching and naming tasks have also
shown multiple peak responses in the ATL with the more superior ATL
region being involved in object naming and the more ventral region in
semantic matching (Sanjuén et al., 2015). Furthermore, the differential
patterns of functional connectivity across ATL regions have been
observed by both Jackson et al., (2016) and Pascual et al., (2015).
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Our findings therefore add to existing knowledge by showing a
dissociable response in these two regions: only the ventral ATL site
showed a pattern consistent with the representation of conceptual
information, since it was able to classify responses according to
semantic category (i.e., feature type, not input modality). In univariate
analyses, this aITG site also showed deactivation (arguably due to the
use of rest rather than an active baseline; Visser et al., 2010;
Humphreys et al., 2015) for both auditory and visual feature types,
irrespective of whether these words were spoken or written — and the
magnitude of this deactivation was greater for visual than auditory
features. Finally, this site showed stronger functional connectivity at
rest with the default mode and limbic systems, as expected for a region
implicated in amodal conceptual processing. Therefore, our combina-
tion of functional and resting state methods provides novel converging
evidence that anterior ventral temporal areas allow different sensory
representations to be integrated to form ‘amodal’ conceptual repre-
sentations (particularly for auditory features, see limitations below).

Previous studies have used MVPA to explore the neural basis of
semantic processing, and have identified a conceptual response in ATL
using classification of stimuli within a single presentation modality
(Coutanche and Thompson-Schill, 2014; Peelen and Caramazza, 2012).
Other studies, examining semantic cognition across modalities of
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Fig. 7. Resting state connectivity maps projected on rendered brain, displaying (from left-to-right) left hemisphere, right hemisphere, medial view. Maps thresholded at z=2.3, cluster
corrected p < .01. (A) Resting state connectivity from two ATL regions connectivity maps; green seed=aSTG (taken from peak accuracy for modality classifier within anterior temporal
lobe) and red seed=alTG (taken from peak accuracy for semantic classifier within anterior temporal lobe) - the seed locations are highlighted on the right. (B) Subtraction analysis from
two ATL connectivity maps; red=alTG > aSTG. Pie chart on the right shows proportion of overlapping voxels for this difference map with core networks taken from Yeo et al. (2011).
These four networks include two sensory maps (Visual, Somatosensory), Limbic and Default Mode Network. (C) Subtraction analysis from two ATL connectivity maps; green=aSTG >
alTG. Pie chart on the right shows proportion of overlapping voxels for this difference map with core networks taken from Yeo et al. (2011). (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.).

presentation (Devereux et al., 2013; Fairhall and Caramazza, 2013;
Man et al., 2015), have largely not observed effects in ATL. An
exception is a recent crossmodal MVPA study, investigating Dutch-
English bilinguals (Correia et al., 2014). The research tested whether
patterns of activity related to the distinction between spoken nouns in
one language (e.g., “horse” vs. “duck” in English) could accurately
predict the same distinction in the other language (e.g., “paard” vs.
“eend” in Dutch). Consistent with our findings, the cross-language
classifier revealed a significant cluster in the left ATL. This largely fell
within mid-superior temporal pole rather than the more ventral region
we identified in our analysis, perhaps because aSTG is an important
interface between semantic processing and other aspects of language.

Analyses of resting state connectivity from the ATL regions that
were able to classify input modality (aSTG) and semantic feature type
(aITG) revealed that these two sites lie within distinct large-scale
functional networks. A similar dissociation between the resting state
connectivity of ventral ATL and anterior STG was recently reported by
Jackson et al., (2016), providing further evidence for the validity of the
functional dissociation in ATL that we observed using MVPA. To
quantify the interpretation of the functional connectivity of the aSTG
and aITG connectivity maps, we performed a decoding analysis using
automated fMRI meta-analytic software NeuroSynth (see Fig. 8). Meta-
analytic decoding of these spatial maps revealed that our aSTG
connectivity map correlated with terms related to language (e.g.,
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sentence, comprehension) and auditory processing (e.g., speech,
sound) whilst anti-correlating with other modality information (e.g.,
visual, spatial) and memory (e.g., working memory, episodic). In
contrast, the aITG connectivity map correlated with terms related to
memory (e.g., semantic, autobiographical) and social processes (e.g.,
theory of mind, social cognition) terms, whilst anti-correlating with
modality-specific (e.g., ventral visual, motor, spatial) and executive
terms (e.g., maintenance, demands). This is consistent with previous
findings that relate aSTG to speech comprehension, language and
sensory processing (Patterson and Ralph, 1999; Jobard et al., 2007;
Scott and Johnsrude, 2003; Scott et al., 2003; Scott et al., 2000;
Spitsyna et al., 2006) and aITG to semantic processing but not sensory
experience (Patterson et al., 2007; Visser et al., 2010). Furthermore,
the differences in function across temporal areas as revealed by the
Neurosynth database seem to align with differences in the white-matter
terminations (see Bajada et al., 2016). These findings confirmed
associations between (i) the network anchored in the aSTG and
auditory processing and speech perception, plus (ii) the aITG network
and more abstract domains (such as social cognition, theory of mind, or
mental states).

Thus, the putative semantic ‘hub’ in ventral ATL was functionally
coupled to aspects of cortex that specialize in forms of stimulus-
independent higher order cognition, including angular gyrus (AG) and
posterior and anterior areas on the medial surface that correspond to
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Table 3
Coordinates of peak clusters in the resting-state connectivity analyses.

Seed Cluster Cluster Z-score Xx y z

Region Extent

aSTG Increased Correlation
L. aSTG 15745 12.3 -54 2 -10
R. Temporal pole 12970 9.24 52 8 -14
Cingulate Gyrus 7618 7.02 -4 12 32
Reduced Correlation
L. Cuneal cortex 26667 6.19 -20 -74 32
R. Superior frontal 4128 4.69 20 12 52
gyrus
L. Middle frontal 2259 4.53 -32 10 50
gyrus
L. Lateral occipital 1457 5.46 -46  -70 -12
cortex, inferior

alTG Increased Correlation
L. aITG/MTG 20324 13.1 -50 -10 -26
L. Frontal pole 2899 7.22 -10 50 32
L. Occipital fusiform 1981 4.49 -26 -82 -8
gyrus
Reduced Correlation
Postcentral gyrus 3725 4.44 0 -54 74
R. Frontal pole 2717 5.07 42 54 12
L. IFG, pars 2118 5.17 -46 35 16
triangularis
R. Cingulate gyrus 1276 4.44 12 32 16
L. Angular gyrus 783 4.39 -40 -50 42
L. Superior parietal 769 3.94 -30 -48 -56
lobule
L. Middle frontal 724 4.72 -28 8 60
gyrus
R. Middle frontal 626 4.16 30 12 56
gyrus

Footnote: The table shows peak clusters in the resting-state connectivity analysis from
two seed regions; aSTG and alITG. Results are thresholded at p < .01 (cluster corrected).
L=left, R=right.

the midline core of the so-called default mode network (DMN)(see also
Hurley et al., 2015). This network is known to be deactivated by input
(Raichle et al., 2001) and is thought to be crucial in the generation of
cognitive states that do not rely on sensory information for their mental
content (for a review see Andrews-Hanna et al., 2014). Tasks which are
associated with the default mode network include those that depend on
episodic memory, semantic processing, mental state attribution as well
as states of spontaneous thought studied under the rubric of mind-
wandering / daydreaming (Spreng et al., 2009; Raichle, 2015).
Although previous literature has shown that connectivity to the AG
may not be due to shared semantic processing (Humphreys et al.,
2015). Therefore, as many cognitive states that involve the DMN are
stimulus-independent in nature, their association with ventral ATL
both in terms of functional connectivity and their meta-analytic
decoding is consistent with the view that this region supports semantic
processing across different input modalities and may form conceptual
representations that are not tied to a specific input modality (see
Margulies et al., 2016). In contrast, aSTG showed greater functional
connectivity with auditory and motor regions and this spatial map was
associated with auditory processing and language tasks, as opposed to
amodal tasks, in the meta-analytic decoding. Therefore, our combina-
tion of functional and resting state methods provides novel converging
evidence that anterior ventral temporal areas allow different sensory
representations to be integrated to form ‘amodal’ conceptual repre-
sentations.

As discussed, the hub and spoke model (Ralph et al., 2010;
Patterson et al., 2007; Rogers et al., 2004) makes novel predictions
about the contribution of the ATL to amodal conceptual knowledge, but
it also anticipates an important role for modality-specific ‘spoke’
regions in visual and auditory cortex, in line with many influential
accounts of semantic processing (Damasio, 1989; Martin, 2007;
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Fig. 8. Decoding the functions of two ATL components (aSTG and alTG) using
automated fMRI meta-analyses (NeuroSynth, Yarkoni et al., 2011). This software
computed the spatial correlation between each ATL component unthresholded zstat
mask (shown on the left; red = positive correlation and blue=negative correlation) and
every other meta-analytic map (n=11406) for each term/concept stored in the database
(e.g., semantic, language, memory and sensory). The 15 meta-analytic maps exhibiting
the highest positive correlation (red words) and negative correlation (blue words) for
each sub-system mask were extracted, and the term corresponding to each of these meta-
analyses is shown in the respective box (shown on the right). The font size reflects the
size of the correlation (ranging from r=0.10 to 0.45 for positive correlations (red) and
r=-0.05 to —0.2 for negative correlations (blue), in increments of 0.05). This allows us to
quantify the most likely reverse inferences that would be drawn from these functional
maps by the larger neuroimaging community. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.).

Meteyard et al., 2012; Pulvermiiller, 2013). Furthermore, the involve-
ment of both hub and spoke regions in semantic representations has
been shown using TMS (Pobric et al., 2010). In line with this view,
MVPA revealed regions that responded to meaning in both ventral
parts of ATL (putative ‘hub’) and in primary visual and auditory regions
(putative ‘spokes’). In addition, even though the putative ‘spoke’
regions (i.e., voxels sensitive to meaning) were adjacent to areas that
coded for input modality, the specific voxels that could classify meaning
and input modality were largely different. These findings do not readily
support traditional ‘strong’ embodied accounts that equate semantic
representations with traces of perceptual/motor experience (for a
review, see Meteyard et al. (2012)) since this would suggest a greater
degree of overlap between the results of these two classifiers. While our
data suggests that sensory systems appear to play a critical role in the
representation of meaning, they also suggest that perceptual experience
and imagery generated as part of semantic retrieval may be distin-
guishable on the basis of differences in the patterns of activity in
sensory cortex.

One potential limitation of our study is that we did not observe
evidence that aITG responds to both auditory and visual semantic
features in the univariate contrasts: this site showed deactivation for
both feature types that was greater for visual features. Thus, the
strongest evidence for the aITG as an amodal hub is provided by the
MVPA results and our meta-analytic decoding of this region's pattern
of distinct functional connectivity, and not the univariate analyses. Our
design was optimized for decoding rather than univariate effects — as
we focused on obtaining the maximum number of blocks for MVPA and
did not employ a high-level non-semantic baseline which would have
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allowed us to recover semantic activation in ATL for both auditory and
visual features from a contrast (Humphreys et al., 2015). Since we
found that aITG responds more to auditory features (words such as
“loud”) than visual features (words such as “bright”), it remains unclear
whether aITG reflects the meanings of auditory features alone, or both
feature types equally. Future studies might allow these possibilities to
be disentangled using a high-level baseline with which both feature
types can be compared (e.g. Jackson et al., 2015).

5. Conclusion

Collectively, our findings from both pattern classification and
resting-state connectivity provide converging evidence that sub-regions
of the ATL support different aspects of semantic processing. Anterior
ITG and MTG capture meaning independent of input modality,
consistent with the fact that semantic dementia patients (who have
multimodal semantic impairment) have considerable atrophy in this
same region of ATL (Binney et al., 2010; Galton et al., 2001). In
contrast, aSTG exhibited a degree of modality specificity: this structure,
which is known to be important for understanding speech and
environmental sounds, does not fulfil the criteria for an amodal
semantic hub. Finally, the current results provide evidence for mod-
ality-specific spokes regions within the vicinity of primary auditory and
visual cortex (intracalcarine cortex and planum polare respectively).
However, the specific voxels that could classify between each condition
(presentation format and semantic feature) were largely different.
These findings challenge traditional embodied accounts
(Pulvermuller, 2005) that attempt to equate semantic representations
with traces of perceptual/motor experience, and instead support the
view that the richness of semantic cognition arises at least in part from
abstraction away from specific input modalities in ventral regions of
the anterior temporal lobe.
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