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Predictive control layer design on a known output-feedback
compensator for wind turbine blade-pitch preview control

W. H. Lio, B. Ll. Jones and J. A. Rossiter

Department of Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, S1 3JD, U.K.

ABSTRACT

The use of upstream wind measurements has motivated the development of blade-pitch preview controllers to improve

rotor speed tracking and structural load reduction beyond that achievable via conventional feedback control. Such preview

controllers, typically based upon model predictive control (MPC) for its constraint handling properties, alter the closed-

loop dynamics of the existing blade-pitch feedback control system. This can result in a deterioration of the robustness

properties and performance of the existing feedback control system. Furthermore, performance gains from utilising

the upcoming real-time measurements cannot be easily distinguished from the feedback control, making it difficult to

formulate a clear business case for the use of preview control. Therefore, the aim of this work is to formulate a modular

MPC layer on top of a given output feedback blade-pitch controller, with a view to retaining the closed-loop robustness

and frequency-domain performance of the latter. We derive a key result that proves that the proposed modular MPC layer

handles real-time advance measurements and impacts the existing closed-loop system if and only if constraints are violated.

The separate nature of the proposed controller structure enables clear and transparent quantification of the benefits gained

by using preview control, beyond that of the underlying feedback controller. This is illustrated by results obtained from

high-fidelity closed-loop turbine simulations, showing the performance comparison between a nominal feedback controller

and an additional MPC-based preview controller. The proposed control scheme incorporating knowledge of the oncoming

wind and constraints achieved significant 43% and 30% reductions in the rotor speed and flap-wise blade moment standard

deviations, respectively. Additionally, the chance of constraint violations on the rotor speed decreased remarkably from

2.15% to 0.01%, compared to the nominal controller. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The rotors and structural components of large wind turbines are subjected to unsteady and intermittent aerodynamic

loads from the wind. Such loads can cause the rotational speed of the rotors and power generation to exceed the design

specifications and also lead to fatigue damage to key turbine structural components, resulting in a reduction in turbine

lifetime. Most modern megawatt wind turbines are equipped with blade-pitch controllers for achieving turbine speed

regulation. In addition, an increasing number of large wind turbines are beginning to exploit the adjustment of blade

pitch angle to attenuate unbalanced loads on the rotors. These two strategies are commonly known as: (i) collective

pitch control (CPC), whose role is to regulate rotor speed by adjusting the pitch angle of each blade by an identical

amount, and (ii) individual pitch control (IPC), which provides an additional pitch angle demand signal, typically in

response to measurements of flap-wise blade root bending moment, to mitigate the effect of unsteady loads on the rotor

(e.g. [1–3]). Typical CPC and IPC control methods rely on feedback measurements, and given the large inertia of the

rotor, the effectiveness of feedback compensation is inherently limited. Consequently, this motivates the potential uses of

real-time advance measurement of the wind conditions for feed-forward control design in wind turbines.

Copyright c© 2010 John Wiley & Sons, Ltd. 1
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In recent years, a growing body of research has emerged, seeking to utilise real-time measurement of the approaching

wind field from sensing devices for feed-forward design to further improve the performance of blade pitch control systems.

Early adoption of feed-forward control in wind turbines that focused on turbine speed regulation was reported by Kodama

et al. [4], in which the feed-forward control strategy was based on the hub-height wind measurement taken 40 metres in

front of the rotor by an anemometer on a free standing tower. Light detection and ranging (LIDAR) devices, employed by

Harris et al. [5] and numerous subsequent authors (e.g. [6–8]), demonstrated the impact on the performance of the CPC in

regulating rotor speed and mitigating tower load by exploiting preview information of the approaching wind field. Lately,

a number of authors (e.g. [9–12]) investigated the use of upcoming wind measurements with IPC, aiming to attenuate

unbalanced loads on the rotor and blade loads. Some studies (e.g. [10]) suggested that the use of feed-forward IPC to

attenuate blade loads could increase the pitch rate activities, thus, the control design needed to take into account the pitch

actuator constraints carefully. As a consequence, this motivates the use of model predictive control (MPC) for its constraint

handling feature.

In general, model predictive control selects the predicted future control inputs based on the optimisation of a

performance criteria subject to the need for system predictions to satisfy constraint requirements. System predictions

are obtained using a mathematical model of the system as well measurements of the outputs at each sample. Many studies

have adopted MPC design in wind turbines (e.g. [13–16]) and their results demonstrated the effectiveness of the MPC for

handling constraints on the rotor speed and blade pitch actuators. In addition, apart from the constraint handling feature,

MPC can also incorporate preview information into the control design systematically. Thus, many authors [17–21]exploited

this advantage by employing MPC for preview CPC and IPC design and demonstrated the performance of preview MPC

designs for turbine speed regulation and flap-wise blade load reduction. More studies regarding MPC designs in wind

turbines can be found in [22, 23].

Nonetheless, the majority of preview MPC studies in wind turbines use a standard MPC approach where its

shortcomings are that the robustness and closed-loop frequency-domain properties are usually not well considered in the

time-domain design. As the loads on turbine blades predominately exist at the harmonics of the blade rotational frequency,

thus, it is more intuitive to design a robust closed-loop feedback controller in the frequency-domain to attenuate such loads.

Consequently, this work aims to bridge this gap by formulating an MPC layer based on a known robust output-feedback

controller where the MPC layer handles constraints and upcoming wind measurements whilst retaining the robustness

properties of the existing closed-loop. Given that the constraint handling features depend upon the predictions of the

closed-loop dynamics, optimising such predictions could potentially introduce an additional feedback loop as illustrated

in this work. As a consequence, the desired robustness and performance of the original closed-loop dynamics can no

longer remain unchanged. Therefore, a further key focus of this paper is to investigate the conditions under which the

additional layer design is separated from the original closed-loop. The separate nature of this MPC layer is important

from an industry perspective, since the feed-forward control can be implemented without replacing the existing feedback

controller. Furthermore, it provides a clear framework to quantify the benefits of the use of advance real-time measurements

over the nominal output-feedback strategy.

The remainder of this paper is structured as follows. In Section 2, the modelling aspect of the blade pitch control

problem, including model disturbance, and the detail of the nominal output feedback controller are discussed. This is

followed in Section 3 by a formulation of a predictive control layer. In Section 4, the potential influence of the additional

control layer design on the original feedback closed-loop dynamics is explained, and the conditions are proposed to ensure

the original closed-loop dynamics are retained from the extra layer design. In Section 5, details of simulation environments

and tuning of the MPC layer will be discussed. Subsequently, simulation results on a high-fidelity wind turbine under

various wind cases are demonstrated, showing the benefits of deploying the proposed control layer on top of the output-

feedback controller. Section 6 concludes this paper with a summary and an overview of future work.

Notation

Let R, C and Z denote the real and complex fields and set of integers, respectively, and let s ∈ C denote a complex variable.

The space R denotes the space of proper real-rational transfer function matrices and k ∈ Z denotes a sample variable of a

discrete-time signal. Let vT ∈ R
1×nv denote the transpose of a vector v ∈ R

nv and V T ∈ R
ny×nz is the transpose of a

matrix V ∈ R
nz×ny . The notation v

→k
∈ R

nvnp denotes the future prediction sequence [v0|k, v1|k..., vnp−1|k]
T ∈ R

nvnp .

2. WIND TURBINE MODELING AND NOMINAL ROBUST FEEDBACK COMPENSATOR

This section gives a brief background of wind turbine modelling including model disturbances and details of the chosen

robust feedback controllers that are later employed by the proposed MPC layer formulation.

2 Wind Energ. 2010; 00:1–19 c© 2010 John Wiley & Sons, Ltd.
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θ1(t) = θ̄(t) + θ̃1(t)

θ2(t) = θ̄(t) + θ̃2(t)
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Figure 1. System architecture of a wind turbine blade-pitch control system, combining collective pitch control (CPC) and individual

pitch control (IPC). The CPC regulates rotor speed while the IPC attenuates perturbations in the flap-wise root bending moments on

each blade. Additional inputs to the turbine, such as wind loading and generator torque, are accounted for in the term f(t).

2.1. Wind turbine modelling

A typical wind turbine blade-pitch control system architecture for above-rated conditions is shown in Figure 1. The CPC

regulates the rotor speed ω(t) by adjusting the collective pitch angle signal, whilst the IPC attenuates loads by providing

additional pitch signals to the collective pitch angle in response to flap-wise blade root bending moment signals. To isolate

the action of the IPC from that of the CPC, it is convenient to define the pitch angles and blade moments as follows:





θc1(t)
θc2(t)
θc3(t)



 :=





θ̄c(t) + θ̃c1(t)

θ̄c(t) + θ̃c2(t)

θ̄c(t) + θ̃c3(t)



 ,





M1(t)
M2(t)
M3(t)



 :=





M̄(t) + M̃1(t)

M̄(t) + M̃2(t)

M̄(t) + M̃3(t)



 , (1)

where θ̃ci (t), for i ∈ {1, 2, 3}, represent the perturbations in blade pitch demand from collective pitch angle signal θ̄c(t).
Similarly, M̃i(t), for i ∈ {1, 2, 3}, are the perturbations in flap-wise blade root bending moments, obtained by filtering out

the average moment M̄(t) from the measurements M1,2,3(t). This structure is commonly used to separate the action of

the IPC from that of the CPC (e.g. [1,2,24, 25]). The relationship between collective pitch input θ̄c and rotor speed output

ω can be modelled by a transfer function Gωθ ∈ R obtained by linearising the turbine dynamics around the operating

conditions. In a similar fashion, the transfer function GMθ ∈ R relating each flap-wise blade bending moment output M̃i

to additional pitch inputs θ̃ci for i ∈ {1, 2, 3} can also be found. For simplicity, it is assumed that there is no coupling

between the CPC and IPC loops from the tower dynamics. These transfer functions are defined as follows:

Gωθ(s) := Ga(s)Gr(s), (2a)

GMθ(s) := Ga(s)Gb(s)Gbp(s), (2b)

where Gr, Gb, Ga ∈ R describe the dynamics of rotor, blade and actuator, respectively, whilst Gbp ∈ R is a band-

pass filter that is included in order to remove the low and high frequency contents of the blade root bending moment

Wind Energ. 2010; 00:1–19 c© 2010 John Wiley & Sons, Ltd. 3
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measurement signals, obtained from strain-gauge sensors. These transfer functions are defined as follows:

Gr(s) :=
dω

dθ

1

τrs+ 1
, (3a)

Gb(s) :=
dMflap

dθ

(2πfb)
2

s2 + 4πfbDbs+ (2πfb)2
, (3b)

Ga(s) :=
1

τas+ 1
, (3c)

Gbp(s) :=
2πfhs

s2 + 2π(fh + fl)s+ 4π2fhfl
, (3d)

where dω
dθ

, τr ∈ R denote the variation of aerodynamic torque to pitch angle and the time constant of the rotor dynamics,

respectively, whilst
dMflap

dθ
, Db, fb ∈ R represent the variation of flap-wise blade root bending moment to pitch angle,

blade damping ratio and natural frequency of first blade mode, respectively. τa ∈ R denotes the time constant of the pitch

actuator whilst fh, fl ∈ R represent the upper and lower cut-off frequencies of the band-pass filter, respectively. The values

of those parameters are listed in Table III in Appendix A. The dynamics of rotor speed (3a) and pitch actuator (3c) are

approximated as first-order systems respectively whilst the blade dynamics (3b) and band-pass filter (3d) are modelled as

second-order systems. Note that the high-fidelity wind turbine employed for simulation purposes in this study operates

across above-rated wind conditions and the parameters dω
dθ

and
dMflap

dθ
vary based on operating wind conditions. For the

linear models (3), a fixed set of parameters were obtained from linearisation of the simulation turbine model operating at

18 ms−1, chosen since this value is close to the centre of the range of wind speeds covering above-rated wind conditions.

2.2. Disturbance modelling

The rotor and blade are subjected to a temporally varying and spatially distributed wind field and in many studies, the

feed-forward control assumes only a few points of wind measurement across the rotor disk to estimate the effective wind

speed at the rotor and blade. Given the fact that the blade and rotor loads vary along the span of the blades, owing to

the wind conditions and blade geometry, more wind measurements across the entire rotor plane will inevitably provide

improved estimation of such loads. A number of studies demonstrated the feasibility of estimating the wind-field from

a few point measurements taken upstream of the turbine (e.g. [26, 27]). Since this is a non-trivial problem, the issue of

wind-field estimation is not considered in the present work. Instead, this work assumes the approaching stream-wise wind

speeds are known apriori perfectly, and the focus of this work is to design a control algorithm that utilises such preview

information.

The disturbance trajectories of rotor speed ωd, and flap-wise blade bending moment M̃di , for i ∈ {1, 2, 3}, caused by

the approaching wind at sample time k, are defined as follows:

ωd(k) :=
∑

l,φ

dω

dv
(v̄, l)v(l, φ, k), (4a)

M̃di(k) :=
∑

l,φ

dMflap

dv
(v̄, l)v(l, φ, k), (4b)

where v(l, φ, k) ∈ R denote the stream-wise wind speed measurements where l, φ ∈ R represent the radial and angular

co-ordinates across the rotor disk whilst v̄ ∈ R denote the averaged wind speed of the measurements. The variations in

rotor speed and blade bending moment with respect to the wind are denoted as
dωd

dv
,
dMd

dv
∈ R. The rotor speed response ω

to wind-induced disturbance ωd is modelled as a first-order transfer function Gωωd
∈ R, whilst the response of flap-wise

blade root bending moment M̃i to wind-induced disturbance M̃di , for i ∈ {1, 2, 3}, is modelled as GMMd
∈ R:

Gωωd
(s) :=

1

τrs+ 1
, (5a)

GMMd
(s) :=

(2πfb)
2

s2 + 4πfbDbs+ (2πfb)2
Gbp(s), (5b)

4 Wind Energ. 2010; 00:1–19 c© 2010 John Wiley & Sons, Ltd.
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where the parameters are listed in Table III. Combining (2) and (5), the overall transfer function models G ∈ R4×4 and

Gd ∈ R4×4 can be represented as follows:







ω(s)

M̃1(s)

M̃2(s)

M̃3(s)






=







Gωθ(s) 0 0 0
0 GMθ(s) 0 0
0 0 GMθ(s) 0
0 0 0 GMθ(s)







︸ ︷︷ ︸

G(s)







θ̄c(s)

θ̃c1(s)

θ̃c2(s)

θ̃c3(s)







+







Gωωd
(s) 0 0 0

0 GMMd
(s) 0 0

0 0 GMMd
(s) 0

0 0 0 GMMd
(s)







︸ ︷︷ ︸

Gd(s)







ωd(s)

M̃d1(s)

M̃d2(s)

M̃d3(s)






.

(6)

Equivalently, the model can be described in a discrete-time state-space form since the discrete-time model is more

convenient in the MPC framework:

xp(k + 1) = Apxp(k) +Bpu(k) +Bdpd(k),

y(k) = Cpxp(k),
(7a)

where

u(k) = [θ̄c(k), θ̃c1(k), θ̃
c
2(k), θ̃

c
3(k)]

T
, (7b)

y(k) = [ω(k), M̃1(k), M̃2(k), M̃3(k)]
T
, (7c)

d(k) = [ωd(k), M̃d1(k), M̃d2(k), M̃d3(k)]
T
, (7d)

and the state vector xp ∈ R
nxp of the model is a collection of variables that characterises the dynamics of the transfer

functions G and Gd that map the input vector u ∈ R
nu and disturbance vector d ∈ R

nd into the output vector y ∈ R
ny .

The subscript p denotes the plant.

2.3. Nominal robust feedback controller

The focus of this work is to design the MPC layer algorithm on top of a nominal output-feedback controller. The chosen

feedback controller K ∈ R4×4, consisting of CPC Kθω ∈ R and IPC KθM ∈ R is defined as follows:







θ̄c(s)

θ̃c1(s)

θ̃c2(s)

θ̃c3(s)






=







Kθω(s) 0 0 0
0 KθM (s) 0 0
0 0 KθM (s) 0
0 0 0 KθM (s)







︸ ︷︷ ︸

K(s)







ω(s)

M̃1(s)

M̃2(s)

M̃3(s)






, (8)

where Kθω,KθM ∈ R are stabilising controllers for the system model G in (6) and these controllers are listed in

Appendix A. With respect to KθM , a variety of IPC strategies exists in the literature, for example, Coleman transform-

based control [24, 25], Clarke transform-based control [28] and single-blade control [3]. The transform-based IPC

techniques involve coordinate mappings on the pitch inputs which complicate the constraint formulation in MPC, where

the constraint inequalities need to be updated on-line at every sample, based on the prediction of azimuth angle. In addition,

as proved in [29], the performance differences between the various types of IPCs are negligible. Consequently, single-blade

control IPC is employed in this work, where each blade is equipped with its own controller (KθM ) in response to a local

blade load measurement. The diagonal structure of the controller (8) mirrors that of the plant model (6). Implicit in this

structure is an assumption of no dynamic coupling between the fixed and rotating turbine structures. The simulation results

in [29] showed that a controller of the form (8) could be designed to be insensitive to such coupling by shaping the open-

loop frequency response to have low gain at the tower frequency. Similar to the plant model, the feedback controller (8)

has a discrete-time state-space realisation:

xκ(k + 1) = Aκxκ(k)−Bκy(k),

u(k) = Cκxκ(k)−Dκy(k),
(9)

where the state vector xκ ∈ R
nxκ is a collection of variables that characterises the dynamics of the controller K and the

subscript κ denotes controller.
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Figure 2. Schematic of model predictive control layer on top of an existing output-feedback controller.

3. DESIGN OF THE MODEL PREDICTIVE CONTROL LAYER

This section describes the design of the MPC layer to compliment the output-feedback blade-pitch controller (8) derived

in the previous section. The architecture combining the predictive control layer and the separate feedback controller is

shown in Figure 2, where the shaded area depicts the existing closed-loop system. A constrained optimisation based on the

closed-loop system model predictions, which are dependent upon the plant output y, feedback action κ(y) and upcoming

disturbance measurement d
→

, is computed by the MPC layer at every sample and the optimal solution will be added into

the closed-loop system, denoted as perturbation c in Figure 2. The closed-loop system model employed by the MPC layer

will be discussed in the subsequent section.

3.1. State-space representation of the closed-loop system model

The closed-loop dynamic system model employed in the proposed MPC algorithm can be described by combining the

linear wind turbine model (7) and controller (9), and the model is defined as follows:

[
xpk+1

xκk+1

]

=

[
Ap 0

−BκCp Aκ

]

︸ ︷︷ ︸

A

[
xpk

xκk

]

︸ ︷︷ ︸

xk

+

[
Bp

0

]

︸ ︷︷ ︸

B

uk +

[
Bdp

0

]

︸ ︷︷ ︸

Bd

dk, (10a)

uk =
[
−DκCp Cκ

]
xk = Kxk, (10b)

yk =
[
Cp 0

]
xk = Cxk. (10c)

Notice that the (A,B) and (A,C) in this work are stabilizable and detectable, respectively. The states of the turbine model

xpk ∈ R
nxp cannot be measured directly and the separate nature of the feedback controller prohibits direct access to the

states of the controller xκk ∈ R
nxκ , thus, observers employed to estimate these states are described by the following

expressions:

x̂pk+1|k
= Apx̂pk|k−1

+Bpuk +Bdpdk + Lp(yk − ŷk|k−1), ŷk|k−1 = Cpx̂pk|k−1
, (11a)

x̂κk+1|k
= Aκx̂κk|k−1

−Bκyk + Lκ(uk − ûk|k−1), ûk|k−1 = Cκx̂κk|k−1
−Dκyk, (11b)

where x̂p ∈ R
nxp and x̂κ ∈ R

nxκ denote the estimates of the state of wind turbine model and controller, respectively, and

Lp ∈ R
nxp×ny and Lκ ∈ R

nxκ×nu are the observer gains. It is noted that due to the mismatch between the wind turbine

linear model and the high-fidelity turbine model, a difference exists between y ∈ R
ny and ŷ ∈ R

ny , whilst in contrast,

û ∈ R
nu converges to u ∈ R

nu assuming no noise on the inputs.

3.2. Augmentation of the perturbations into the underlying feedback control law

This section describes the formulations of the predictions of state, input and disturbance with the degrees-of-freedom that

are optimised by the MPC algorithm. The MPC layer formulation in this work adopts a dual-mode closed-loop paradigm

(e.g. [30, 31]), whereby the perturbation ck ∈ R
nu is defined around a stabilising feedback control law uk = Kxk such

that the input can be parametrised as uk = Kxk + ck. The premise behind this approach is that the MPC perturbation

ck 6= 0 if and only if constraints are active or feed-forward knowledge is available. Such a feature is particularly useful

6 Wind Energ. 2010; 00:1–19 c© 2010 John Wiley & Sons, Ltd.
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in formulating an MPC layer on top of an embedded closed-loop controller. Notice that the perturbation sequence

c
→k

= [c0|k, c1|k, ..., cnc−1|k]
T ∈ R

nunc is optimised over the control horizon nc, whist beyond nc, the closed-loop

dynamics are governed by the existing feedback pitch controller. Considering (10), the predictions of input and state

can be described as follows:

ui|k =

{

Kxi|k + ci|k, ∀i < nc,

Kxi|k, ∀i ≥ nc,
(12a)

xi+1|k =

{

Φxi|k +Bci|k +Bddi|k, ∀i < nc,

Φxi|k +Bddi|k, ∀i ≥ nc,
(12b)

where Φ = A+BK is strictly Hurwitz, whilst ui|k ∈ R
nu and xi|k ∈ R

nx denote, respectively, the predicted values of

the model input and state at sample k + i based on the measurement available at sample k. Note that x0|k = xk. The

disturbance prediction sequence d
→k

= [d0|k, d1|k, ..., dna−1|k]
T ∈ R

ndna is defined as follows:

di|k =

{

dk+i, ∀i < na,

0, ∀i ≥ na.
(12c)

The upcoming disturbance measurements are assumed to be zero beyond the preview horizon na. The predictions of

states(12b), perturbations (12a) and disturbance (12c) can be expressed in a more convenient and compact autonomous

form, where its state zi|k ∈ R
nz consists of the state xi|k, perturbations c

→k
and disturbance d

→k
, defined as follows:

zi+1|k = Ψzi|k, (13a)

where the initial state z0|k = [x0|k, c
→k

, d
→k

]T ∈ R
nz and Ψ is defined as:

Ψ =





Φ BE BdE

0 Mc 0
0 0 Md



 , (13b)

E c
→k

= c0|k, E d
→k

= d0|k, (13c)

Mc c
→k

= [c1|k, . . . , cnc−1|k, 0]
T
, (13d)

Md d
→k

= [d1|k, . . . , dna−1|k, 0]
T
, (13e)

where the details of the matrices Mc ∈ R
nunc×nunc , Md ∈ R

ndna×ndna and E ∈ R
nx×nunc are provided in

Appendix B. Consequently, the predictions of inputs (12a) and states (12b) can be expressed in terms of the autonomous

form as follows:

ui|k =
[
K E 0

]
zi|k, ∀i ≥ 0, (14a)

xi|k =
[
I 0 0

]
zi|k, ∀i ≥ 0. (14b)

This autonomous form of predictions (14) will be used in conjunction with a cost function to compute the perturbation

sequence c
→k

in the following section.

3.3. Formulation of the cost function

The perturbation sequence c
→k

can be computed by solving a constrained minimisation of the predicted cost on-line where

the predicted cost function quantifying the balance between performance and input effort is defined as follows:

J :=
∞∑

i=0

x
T
i|kQxi|k + u

T
i|kRui|k, (15a)

where Q ∈ R
nx×nx and R ∈ R

nu×nu denote the weights that specify the penalties on state and input, respectively. For

practical reasons, the infinite-horizon cost index (15a) needs to be compacted into a finite-horizon form such that the cost

function can be solved on-line rapidly using quadratic programming. By expressing the predictions of the state and input

into the autonomous form as (14b) and (14a), the infinite-horizon cost function (15a) can be simplified as follows:

J =
∞∑

i=0

z
T
i|k(Γ

T
xQΓx + ΓT

uRΓu)zi|k, (15b)
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where Γx =
[
I 0 0

]
∈ R

nx×nz and Γu =
[
K E 0

]
∈ R

nu×nz . Consequently, the cost function (15b) can be

further simplified, using the Lyapunov equation ΨTSΨ = S −W and zi|k = Ψiz0|k, as:

J = z
T
0|k

∞∑

i=0

(

ΨiT ΓT
xQΓx + ΓT

uRΓu
︸ ︷︷ ︸

W

Ψi
)

︸ ︷︷ ︸

S

z0|k

=






x0|k

c
→k

d
→k






T

S






x0|k

c
→k

d
→k




 =






x0|k

c
→k

d
→k






T 



Sx Sxc Sxd

ST
xc Sc Scd

ST
xd ST

cd Sd










x0|k

c
→k

d
→k




 ,

= c
→

T

k
Sc c

→k
+ 2 c

→

T

k
S

T
xcx0|k + 2 c

→

T

k
Scd d

→k
+ ǫ,

(15c)

where ǫ denotes the terms that are independent of c
→

and x0|k = xk. To complete the formulation of the constrained

minimisation, the following section will demonstrate how to construct the constraint linear inequalities in terms of the

perturbation sequence c
→k

.

3.4. Constraint formulation in terms of the perturbations

The constraints considered in this work are the angles and rates of the blade-pitch actuators and the rotor speed as follows:

θmin − ε
θ
i|k ≤θi|k ≤ θmax + ε

θ
i|k, ∀i ≥ 0, (16a)

θ̇min − ε
θ̇
i|k ≤θ̇i|k ≤ θ̇max + ε

θ̇
i|k, ∀i ≥ 0, (16b)

ωi|k ≤ ωmax + ε
ω
i|k, ∀i ≥ 0, (16c)

where θ = [θ1, θ2, θ3]
T ∈ R

3, whereas θmin, θmax, θ̇min, θ̇max ∈ R
3 denote the minimum and maximum of the angle and

rate of the pitch actuators, respectively, whilst ωmax ∈ R represents the maximum rotor speed. Since the constraints on

pitch actuators and rotor speed are state-constraints, thus, the slack variables εi|k = [εθi|k, ε
θ̇
i|k, ε

ω
i|k]

T ≥ 0 ∈ R
nε were

employed to soften the constraints to ensure the feasibility of the optimisation if necessary. To minimise the predictions

of the slack variables ε
→k

= [ε0|k, ..., εnc−1|k]
T ∈ R

nεnc , a quadratic penalty together with l1-norm penalty is added into

the cost (15c), as follows:

J = c
→

T

k
Sc c

→k
+ 2 c

→

T

k
S

T
xcx0|k + 2 c

→

T

k
Scd d

→k
+ ε

→

T

k
Sε ε

→k
+ L

T
ε ε
→k

. (17)

The weights of the quadratic penalty Sε ∈ R
nεnc×nεnc , that is a diagonal matrix, penalises the peak of constraint

violations, whilst the weights of the l1-norm penalty Lε ∈ R
nεnc penalises the total sum of violations [32]. Details of

tunings are provided in Section 5.1.3.

Subsequently, the inequalities (16) can be written in terms of the autonomous form (13), with zi|k = Ψiz0|k, as follows:

HΨi
z0|k ≤ h+ h

ε
i|k, ∀i ≥ 0, (18)

where the matrices are chosen as Hzi|k = [θi|k,−θi|k, θ̇i|k,−θ̇i|k, ωi|k]
T , h = [θmax,−θmin, θ̇max,−θ̇min, ωmax]

T and

hε
i|k = [εθi|k,−εθi|k, ε

θ̇
i|k,−εθ̇i|k, ε

ω
i|k]

T . Notice that to ensure no constraint violations, possible violations in (18) must be

checked over an infinite prediction horizon, which would appear to be computationally impractical. However, it is well

known [33] that there exists a sufficiently large horizon where any additional linear equalities of (18) for i ≥ n∞ become

redundant, since Φ is strictly Hurwitz, ci|k = 0 for i ≥ nc and di|k = 0 for i ≥ na. Consequently, for a practical approach,

to compromise between the computational speed and constraint satisfaction, this study formulates the inequalities by

checking the constraints over twice the control horizon. The inequalities can be described by a set of suitable matrices

(M,N ,V , T and b) as follows:

Mx0|k +N c
→k

+ V d
→k

− T ε
→k

≤ b, (19)

The matrices M,N ,V, T and b can be computed off-line and hence only the variables x0|k, c
→k

, d
→k

and ε
→k

need to be

updated on-line.

To sum up Section 3, the proposed MPC layer, at each sample k, employs the states xk = x0|k of the closed-loop system

and subsequently determines the optimal perturbation sequence c
→k

that takes into account both upcoming measurements

and constraints, by solving a constrained minimisation of the predicted cost (17) subject to constraints (19). This is

summarised in Algorithm 1.
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Algorithm 1

At each sampling instant perform the constrained optimisation below. The first block element ck = c0|k of the perturbation

sequence is applied within the embedded control law, where uk = Kxk + ck:

min
c
→k

, ε
→k

c
→

T

k
Sc c

→k
+ 2 c

→

T

k
(Scd d

→k
+ S

T
xcx0|k) + ε

→

T

k
Sε ε

→k
+ L

T
ε ε
→k

, (20a)

s.t. Mx0|k +N c
→k

+ V d
→k

− T ε
→k

≤ b. (20b)

4. ANALYSIS OF THE PREDICTIVE CONTROL LAYER DESIGN

In the following sections, we will investigate in what conditions the original feedback closed-loop dynamics remain

unchanged by the additional control layer design.

4.1. A motivating example

The aim of this motivating example is to illustrate that the perturbations from the MPC layer could introduce an additional

feedback loop into the given closed-loop system. The original feedback control input is given by (10b) as follows:

uk = Kxk. (21a)

The additional perturbation ck computed from the control layer will be added into (21a), thus, the new control law becomes:

uk = Kxk + ck. (21b)

Considering an unconstrained minimisation of the cost function in Algorithm 1, the perturbation ck is as follows:

ck = E c
→k

= −ES
−1
c S

T
xc

︸ ︷︷ ︸

Kc

x0|k − ES
−1
c Scd

︸ ︷︷ ︸

Pd

d
→k

, (22)

where x0|k = xk. Consequently, substituting (22) into (21b), the new control law becomes:

uk = (K −Kc)xk − Pd d
→k

. (23)

Compared to the original control input (21a), the feedback gain of the new control law (23) is altered by the additional

feedback loop introduced by the control layer design, thus, the original closed-loop dynamics are not preserved. This mixed

nature of control layer design has several disadvantages:

1. The performance and robustness properties of the nominal feedback controller are no longer guaranteed to be

retained. In practice, existing blade-pitch feedback controllers are carefully tuned so as not to excite tower dynamics,

and so any additional control law that interfered in this could be disastrous.

2. Tuning of the additional control layer becomes difficult since the perturbation ck from the mixed structure introduces

an additional feedback loop that needs to satisfy the robustness concerns.

3. The performance benefit from using real-time measurement of the approaching wind field can not be clearly

distinguished from the feedback control because of the additional feedback loop from the extra control layer.

Thus, in the next section, we will investigate the conditions that enables the separate structure design where the additional

control layer provides solely the feed-forward input and constraint handling capability, with the dynamics of the nominal

closed-loop system remaining unaffected whilst constraints are not violated.

4.2. Conditions for separating the original closed-loop dynamics from the additional layer design

Close inspection of the unconstrained optimal perturbation sequence (22) suggests that, to retain the closed-loop robust

properties, the perturbation sequence ck must be independent of the state x0|k (i.e. ST
xc = 0 in the cost). Thus, the key result

of this paper is as follows:

Theorem 1

The unconstrained perturbation sequence c
→

from the additional control layer (Algorithm 1) has no impact on the original

closed-loop dynamics if and only if ST
xc = 0. For ST

xc = 0, the cost function in Algorithm 1 needs to embed some

knowledge of the nominal output-feedback control law (10b) such that the weights Q, R and Sx satisfy the following

conditions:

ΦT
SxΦ− Sx +Q+K

T
RK = 0, (24a)

B
T
SxΦ+RK = 0. (24b)
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Proof

See Appendix C.

Corollary 1

Theorem 1 demonstrates that the extra control layer that satisfies the conditions (24) will not impact on the underlying

robust output-feedback control law unless constraints are predicted to be active. Consequently, in normal operation, the

properties of the original closed-loop dynamics are retained and the additional control layer solely handles the real-time

upcoming wind information.

The underlying output-feedback controllers (9) employed in this work were designed using frequency-shaping

techniques. Thus, with the pre-determined stabilising controller K, weights Q > 0 could be chosen and subsequently, the

remaining weights Sx and R that satisfy (24) can be determined by solving a linear matrix inequality (LMI) problem [34].

For most of the time, the constraints employed in this work are not expected to be violated. Nevertheless, when

constraints are active, the robustness of the feedback closed-loop dynamics cannot be retained as the perturbation ck
impacts the closed-loop and it becomes non-trivial to prove robust stability. The proof requires the constraints tightened by

the possible uncertainties and solving an optimisation based on the tightened constraints might result in a conservative and

computationally demanding control law [31]. In contrast, the proposed methods of designing the MPC layer upon a given

robust feedback controller might offer an alternative and practical solution since the guarantee of constraint fulfilment

is less crucial to the wind turbine blade-pitch problem. Furthermore, given that the closed-loop prediction structures

employed in the MPC layer are robust to uncertainties, one would expect such robust properties are likely to carry over to

cases where constraints are predicted to be active.

5. NUMERICAL RESULTS AND DISCUSSIONS

The aims of this section are to demonstrate the benefits gained by deploying the proposed MPC layer on top of the nominal

robust feedback controller. The separate nature of the proposed design offers a transparent framework to distinguish

the marginal improvement by deploying various features, for example, the capability of handling upcoming disturbance

information or constraint violations, into the nominal controller. This provides insights for wind turbine manufacturers to

evaluate the benefits against the associated cost of each feature. The results were obtained from closed-loop simulations

upon a high-fidelity wind turbine.

5.1. Simulation environment and settings

In this section, the details of the turbine simulation are presented and also the estimation methods of the upcoming

disturbance trajectories of the rotor speed and blade moments are discussed. Furthermore, it is followed by the selections

of control and preview horizon and constraints for the MPC layer.

5.1.1. Simulation environment

The turbine model employed in this study is the NREL 5MW baseline turbine [35] based on the FAST code [36]. This

model is of much greater complexity than the model (6) employed for control design and includes flap-wise and edge-

wise blade modes, in addition to the tower and drive train dynamics. Also, a baseline generator torque controller [35] is

employed in this study; in above-rated conditions the torque command is inversely proportional to the rotor speed with the

purpose to prevent overloading the generator. Closed-loop simulations were performed under a set of representative and

turbulent wind fields generated by the TurbSim code [37]. These full-field three-dimensional wind data were characterised

by mean wind speeds, turbulence settings and wind shear exponent. The TurbSim code simulated a time series of wind

data at points in a two-dimensional 17-by-17 grid such that the sequence of grids march towards the rotor at a constant

speed specified by the mean wind speed and under the assumption of Taylor’s frozen turbulence hypothesis.

5.1.2. Future measurements of rotor speed and blade disturbance

As discussed in Section 2.2, the issue of wind-field estimation is a non-trivial problem, this work assumes the disturbance

trajectories of rotor speed and flap-wise blade bending moments are estimated based on the prefect stream-wise wind speed

measurements in front of the turbine. To examine the accuracy of the estimated disturbance trajectories generated from (4),

comparisons were made against the actual trajectories obtained from the non-linear turbine simulation, shown in Figure 3.

The time series of the disturbance trajectories of rotor speed deviation ∆ω and flap-wise bending moment of blade 1

M̃1 are illustrated in Figure 3(a) and 3(b) and it reveals that the disturbance trajectories obtained from the linear model

and non-linear turbine are almost identical. Figure 3(c) and 3(d) reveal the frequency spectra of the time series of both

trajectories, which confirms that both trajectories are alike, as demonstrated by the similarity in the magnitudes at the

dominant frequencies that is below 0.1 Hz for rotor speed and at 0.2 Hz for blade moment.
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Figure 3. Comparison between the disturbance trajectories obtained from the linear model (dash line) and non-linear turbine (solid

line). Simulation data was obtained under a turbulent wind field characterised by the mean speed of 18 ms−1 and turbulence intensity

of 14%. Similar results were observed for the remaining blades.

5.1.3. Choice of the MPC horizons, constraints and weights

The predictive controller should anticipate the upcoming disturbance far ahead enough to allow beneficial feed-forward

compensation. A preview horizon of na = 15 samples was found a reasonable choice in the present simulation setting. The

operating frequency of the MPC controller was 5 Hz which provided a satisfactory compromise between performance and

computational burden; hence the preview horizon period was of duration three seconds. A similar idea also holds true for

the control horizon nc. The control horizon should be at least as large as the preview horizon, for the reason that the MPC

controller can then plan an effective contemporaneous control sequences to compensate for the upcoming disturbance [38].

The pitch actuators employed in this study is bounded between 0 and 90 degrees and ±8 degrees per second. In addition,

constraint is also placed on the maximum rotor speed to avoid excessive loads on the generator, which is chosen as 0.725

rpm (6%) above the rated rotor speed.

Tuning of the weights of the MPC layer Q and R in the cost (15a) is intuitive, where such a choice rests largely with

the preference for output performance compared to the control effort of the perturbation c
→

. In addition, the weights also

need to satisfy the conditions (24) in Theorem 1.Ttuning of the weights of the quadratic penalty Sε and l1-norm penalty

Lε in the cost (17) is dependent on the trade-off between the duration and peak of the constraint violations. To illustrate,

Figure 4 shows simulation results of constraint violations on the rotor speed deviation, where the diagonal entries of Sε are

sε > 0 ∈ R and the elements of Lε are lε > 0 ∈ R. It is clearly seen in Figure 4 that increasing the relative importance of

the quadratic penalty sε compared to the l1-norm penalty lε results in prolonging the duration of the constraint violation

but a reduction in the peak violation. Given that over speeding the rotor beyond a certain threshold could potentially cause

the turbine to trigger a temporary shut down, there is a good argument that it is more favourable to minimise the size of

violation. Nonetheless, the lε need to be chosen large enough to ensure the soft constraint to be exact, which implies the

slack variables are enforced to zero whenever a feasible solution of the optimisation is possible [32].
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Figure 4. Soft constraint on rotor speed deviation with different quadratic and linear weights, sε and lε, respectively, on the slack

variables. Dash-dot line denotes the maximal speed deviation of 0.725 rpm.

Controllers Availability of of ωd Availability of M̃d Constraint handling

FB (baseline)

FB/FFωd
X

FB/FFωdMd
X X

FB/MPCωd
X X

FB/MPCωdMd
X X X

Table I. Various control configurations employed in this study. With the nominal feedback controller as the baseline, additional features

such as feed-forward knowledge and constraint handling are incrementally augmented into the feedback controller.

5.2. Simulation results

In section 5.2.1, time history samples were extracted from simulation results to investigate the performance gained by

utilising upwind measurements of disturbance and constraint handling. This is followed by analysis of full results obtained

from simulations under various wind conditions in Section 5.2.2.

5.2.1. Case studies: Benefits of utilising upcoming measurments and constraint handling

This section examines the improvement from deploying the MPC layer in cases when constraint violations are expected.

Three controllers, detailed in Table I, were compared: (i) the baseline nominal feedback-only controller (9), denoted as

FB; (ii) a preview controller that utilises the advance measurements of rotor speed and blade disturbance but no constraint

handling capability, denoted as FB/FFωdMd
; and (iii) the final controller is a preview and constraint-aware controller and

its control law obtained by solving Algorithm 1 on-line, denoted FB/MPCωdMd
. Three types of constraints were employed

in this work, thus, comparisons were made for three classes of constraint violations.

Figure 5, 6 and 7 show, respectively, the performance comparisons in cases when the rotor speed, actuator pitch angle

and rate constraints are expected. It can be clearly seen in Figure 5 that both controllers, FB/FFωdMd
and FB/MPCωdMd

,

outperform the baseline controller FB since they use advance measurements. Furthermore, the time history of rotor speed

in Figure 5(a) indicates that the constraint-aware controller FB/MPCωdMd
anticipated and avoided violating the maximum

rotor speed constraint. Similar blade loads and pitch activities are observed in Figure 5(b), 5(c) and 5(d).

Figure 6 presents results where the blade pitch actuators steer near the lower limit. Owing to advance knowledge of

the disturbance, it is not surprising that the preview controllers, FB/FFωdMd
and FB/MPCωdMd

, perform better on rotor

speed tracking and blade load reduction than the baseline controller FB as shown in 6(a) and 6(b). In addition, Figure 6(a)

and 6(b) reveal that significant reductions in the rotor speed deviation and flap-wise blade bending moments were achieved

by the controller FB/MPCωdMd
which is aware of the actuator constraints, as evident in Figure 6(c).

The situation where the pitch actuators operate close to its maximum rate is illustrated in Figure 7. As shown in

Figure 7(b), better reductions in the flap-wise blade bending moment were yielded by the constraint-aware preview

controller, FB/MPCωdMd
, that foresees the pitch rate violations, as indicated in Figure 7(d). In general, it is apparent

that constraint anticipations of pitch rates provide the least benefit contrary to pitch angle and rotor speed constraints.

Nevertheless. this seems plausible because pitch actuators operate at the maximum rate for a relatively short period,

typically less than one second. Thus, the controller that foresee the rate constraint might only achieve limited benefits

given the fast blade dynamics.
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(a) Time history of the rotor speed deviation. Dash-dot line
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(c) Time history of the pitch angle of blade 1.
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(d) Time history of the pitch rate of blade 1. Dash-dot lines

represent the pitch rate constraints.

Figure 5. Simulation results upon the NREL 5MW turbine operating in a wind case with the mean speed of 19 ms−1 and turbulence

intensity of 14%, showing the performance of the various controllers studied in this paper. Similar behaviours are obtained for the

remaining blades. (i) Thin grey line: FB. (ii) Thick dash line: FB/FFωdMd
. (iii) Thick solid line: FB/MPCωdMd

.

5.2.2. Simulation results under various wind cases

This section presents results obtained from closed-loop simulations under numerous wind cases. These wind cases are

characterised by a mean speed between 13ms−1 and 23ms−1, spanning a large range of above-rated wind conditions, and

turbulence intensity ranging from 14% to 18%. Two more preview controllers, summarised in Table I, were considered:

FB/FFωd
and FB/MPCωd

and such controllers are the same as FB/FFωdMd
and FB/MPCωdMd

, respectively, except that

the upcoming measurements of blade disturbance are not available. The performance box plots of the result data generated

from 180 sets of 20-minute simulations are shown in Figure 8. Each box represents the first and third quartiles whilst the

band within the box represents the median of the dataset. The whiskers denote 5% and 95% quantiles. The data beyond

the whiskers are considered as outliers, indicated by dots.

Figure 8(a) presents the box plot of the rotor speed performance. It can be clearly seen that the preview controllers

achieved better reductions in rotor speed deviation compared to the baseline feedback-only controller, owing to the

upcoming measurements of rotor speed disturbance trajectories. Moreover, the constraint-aware controllers manage to

retain the rotor speed within the limit for most of the time despite the fact that the constraints on rotor speed were

occasionally relaxed to ensure feasibility of the constrained optimisation of the MPC layer. These results indicate that

proper management of constraint violations can lead to significant reductions in rotor speed.

Referring to Figure 8(b), the box plot shows the blade flap-wise root bending moment. Performance achieved by the

controllers without the upcoming measurements of blade loads Md was almost identical. In contrast, better reductions

in the flap-wise blade moments were yielded by both preview controllers with knowledge of future blade loads. Close

inspection between these two controllers reveals that the constraint-aware controller FB/MPCωdMd
performed slightly

better than the preview-only controller FB/FFωdMd
, which is consistent with the previous findings in Section 5.2.1.

The pitch angle and pitch rate command of blade 1 are illustrated by box plots in Figure 8(c) and 8(d), respectively. Note

that the pitch angle command θc1 and pitch rate command θ̇c1 are considered instead of the pitch actuator activities because

such activities are almost identical for five controllers and investigation of pitch command signals reveals how constraints

were handled by each controller. Results in Figure 8(c) and 8(d) are as expected, that the MPC-based controllers were well
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Figure 6. Simulation results upon the NREL 5MW turbine operating in a wind case with the mean speed of 13 ms−1 and turbulence

intensity of 14%, showing the performance of the various controllers studied in this paper. Similar behaviours are obtained for the

remaining blades. (i) Thin grey line: FB. (ii) Thick dash line: FB/FFωdMd
. (iii) Thick solid line: FB/MPCωdMd

.

FB (Baseline) FB/FFωd
FB/FFωdMd

FB/MPCωd
FB/MPCωdMd

std(∆ω) [rpm] 0.37 (100.00%) 0.22 (59.46%) 0.22 (59.46%) 0.21 (56.76%) 0.21 (56.76%)

std(M̃1) [MNm] 1.03 (100.00%) 1.01 (99.03%) 0.77 (74.76%) 1.01 (98.06%) 0.72 (69.90%)

std(θ̇1) [degs−1] 2.53 (100.00%) 2.48 (98.02%) 2.50(98.81%) 2.58 (101.98%) 2.58 (101.98%)

max(∆ω) [rpm] 1.45 (100.00%) 1.05 (72.41%) 1.05 (72.41%) 0.76 (52.41%) 0.77 (53.10%)

max(M̃1) [MNm] 5.79 (100.00%) 5.70 (98.45%) 3.96 (67.36%) 5.70 (98.45%) 3.73 (64.42%)

Pr(∆ω ≥ ωmax ) [%] 2.15% 0.18% 0.20% 0.01% 0.01%

Pr(θc1 ≥ ±θ̄1) [%] 0.55% 1.82% 1.82% 0.07% 0.07%

Pr(θ̇c1 ≥ ±θ̇1 ) [%] 0.21% 0.22% 0.23% 0.10% 0.08%

Table II. Summary of simulation results upon the NREL 5MW turbine. Noted that std and max denote the standard deviation and

maximum value, respectively. Pr represents the possibility of constraint violations. Differences in percentage to the baseline controller

are represented in brackets.

aware of the constraints and managed most the commands to avoid operating beyond those constraints. Few outliers beyond

the pitch angle and rate constraints can be observed in Figure 8(c) and 8(d).This is conceivable since soft constraints are

imposed on those variables.

The results from this section are summarised in Table II. In general, the results suggested that controllers with more

features performed better than those without them. Nevertheless, the cost and technical complexity associated with each

layer are different, for example, in practice, the preview measurement of rotor disturbance could be estimated based on an

averaged wind speed of few point measurements across the rotor disk whereas accurate estimations of the upcoming blade
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Figure 7. Simulation results upon the NREL 5MW turbine operating in a wind case with the mean speed of 23 ms−1 and turbulence

intensity of 18%, showing the performance of the various controllers studied in this paper. Similar behaviours are obtained for the

remaining blades. (i) Thin grey line: FB. (ii) Thick dash line: FB/FFωdMd
. (iii) Thick solid line: FB/MPCωdMd

.

disturbance are less trivial. As a whole, these results could be used as a representative guide on the potential performance

benefits achievable by additional control features.

6. CONCLUSION

In this paper, the formulation of a modular predictive feed-forward layer on top of a robust output-feedback blade-

pitch compensator is presented, together with the conditions to ensure the former does not interfere with the closed-

loop dynamics provided by the latter. These conditions ensure that the additional predictive control layers only handles

upcoming real-time measurements and impacts the closed-loop properties if and only if there are constraint violations. The

separate nature of the proposed structure enables clear and transparent performance comparisons and this was demonstrated

by a comprehensive set of results obtained from closed-loop high fidelity turbine simulations upon a variety of different

controller. The proposed control scheme incorporating the knowledge of the upcoming wind and constraints achieved

remarkable 43% and 30% reductions in the rotor speed and flap-wise blade moment standard deviations. Additionally, the

chance of constraint violations on the rotor speed were significantly down from 2.15% to 0.01%, compared to the baseline

controller.

Nonetheless, the performances of the proposed controller were evaluated under assumptions of perfect knowledge of

the upcoming wind. Thus, realistic wind measurements with errors and uncertainties could be considered in future work. In

addition, the proposed MPC layer design could extend to gain-scheduling feedback controllers addressing the non-linearity

of the blade-pitch problem. Furthermore, control designs in below-rated wind conditions were not included in this work,

and remain topics of future research.
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Figure 8. Simulation results upon the NREL 5MW turbine under various wind cases with mean wind speed ranging from 13 ms−1 to

23 ms−1 and turbulence intensity of 14% to 18%, showing the performance comparison between the various controller configurations

studied in this paper. Similar results are obtained for the remaining blades.

A. MODEL PARAMETERS AND NOMINAL FEEDBACK CONTROLLERS

The parameters of G(s) and Gd(s) (6) are detailed in Table III and the closed-loop robust controllers (8) are described as

follows:

Kθω(s) = −
10.74s+ 3.85

3.14s
, (25a)

KθM (s) = −10−4 ×
2.28s4 + 1.93s3 + 5.87s2 + 8.79s− 2.51

s4 + 0.16s3 + 7.97s2 + 0.38s+ 10.22
. (25b)

Parameters Values Units Parameters Values Units
dω
dθ

−0.84 rpmdeg−1 dMflap

dθ
−1.50× 106 Nmdeg−1

τr 4.00 s fb 0.70 Hz
Db 0.47 - τa 0.11 s
fh 0.80 Hz fl 0.014 Hz

Table III. Model parameter of G(s) and Gd(s) (6)
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B. DETAILS OF THE MATRICES Mc, Md AND E

The shift matrices Mc ∈ R
nunc×nunc and Md ∈ R

ndna×ndna are defined as follows:

Mc =










0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

0 0 0 · · · 0










, Md =










0 I 0 · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

0 0 0 · · · 0










, (26a)

and E ∈ R
nx×nunc are described as follows:

E =
[
I 0 0 · · · 0

]
(26b)

C. PROOF OF THEOREM 1

The proof is based on inspection of (15c). By investigating the cost function (15c), the Lyapunov equation ΨTSΨ =
S −W for (15c) can be used and expressed as follows:





ΦT 0 0
ETBT MT

c 0
ETBT

d 0 MT
d









Sx Sxc Sxd

ST
xc Sc Scd

ST
xd ST

cd Sd









Φ BE BdE

0 Mc 0
0 0 Md





−





Sx Sxc Sxd

ST
xc Sc Scd

ST
xd ST

cd Sd



+





Q+KTRK KTRE 0
ETRK ETRE 0

0 0 0



 = 0.

(27)

To find the conditions where ST
xc = 0, begin from the top-left equality of (27):

ΦT
SxΦ− Sx +Q+K

T
RK = 0, (28)

which forms the first condition of Theorem 1. Note that this is the Lyapunov equation for the pre-determined feedback

control law and since xk+1 = Φxk where the closed-loop dynamics Φ is asymptotically stable, given any Q > 0, there

exist a unique Sx > 0 satisfying (28). Subsequently, considering the middle-left equality of (27):

E
T
B

T
SxΦ+M

T
c S

T
xcΦ− S

T
xc + E

T
RK = 0, (29a)

and since Sx > 0, the condition for ST
xc = 0 is if and only if :

E
T
B

T
SxΦ+ E

T
RK = 0, (29b)

and (29b) can be further simplified:

B
T
SxΦ+RK = 0. (29c)

To show BTSxΦ+RK = 0 is a necessary and sufficient condition for ST
xc = 0, proofs of sufficiency and necessity are

provided.

Proof of sufficiency: Suppose BTSxΦ+RK = 0 and rewrite 29a as follows:










BTSxΦ
0
...

0
0










+










0 0 · · · 0 0
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0




















ST
xc{1,:}

Φ

ST
xc{2,:}

Φ

. . .

ST
xc{nc−1,:}

Φ

ST
xc{nc,:}

Φ











︸ ︷︷ ︸

ST
xcΦ

−











ST
xc{1,:}

ST
xc{2,:}

. . .

ST
xc{nc−1,:}

ST
xc{nc,:}











︸ ︷︷ ︸

ST
xc

+










RK

0
...

0
0










= 0, (30a)
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where ST
xc ∈ R

nunc×nx is expressed in terms of ST
xc{i,:}

∈ R
nu×nx for i ∈ {1, · · · , nc}. Considering the first equality

of (30a):

B
T
SxΦ− S

T
xc{1,:}

+RK = 0. (30b)

Substituting BTSxΦ+RK = 0 into (30b) yields ST
xc{1,:}

= 0. Subsequently, the second equality of (30a) is as follows:

S
T
xc{1,:}

Φ = S
T
xc{2,:}

. (30c)

Inserting ST
xc{1,:}

= 0 into (30c) yields ST
xc{2,:}

= 0, irrespective of Φ ∈ R
nx×nx being full rank or not. Similarly,

examining the subsequent equality of (30a):

S
T
xc{i,:}

Φ = S
T
xc{i+1,:}

, i ∈ {2, · · · , nc − 1}. (30d)

By induction, substituting ST
xc{i,:}

= 0 into (30d) yields ST
xc{i+1,:}

= 0 for i ∈ {2, · · · , nc − 1}. Consequently, all

entries of ST
xc are zeros which implies ST

xc = 0, that proves BTSxΦ+RK = 0 is a sufficient condition.

Proof of necessity: To demonstrate BTSxΦ+RK = 0 is a necessary condition for ST
xc = 0, a contradiction

argument is used. Suppose BTSxΦ+RK 6= 0, based on the equality of (30b), ST
xc{1,:}

becomes as follows:

S
T
xc{1,:}

= B
T
SxΦ+RK 6= 0. (31)

If ST
xc{1,:}

6= 0, then ST
xc 6= 0. Thus, this proves BTSxΦ+RK = 0 is a necessary condition for ST

xc = 0, which forms

the second condition of Theorem 1.
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