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Dynamical model for spindown of solar-type stars

Aditi Sood1, Eun-jin Kim1

and

Rainer Hollerbach2

ABSTRACT

Since their formation, stars slow down their rotation rates by the removal of angular

momentum from their surfaces, e.g. via stellar winds. Explaining how this rotation of

solar-type stars evolves in time is an interesting but difficult problem in astrophysics in

present times. Despite the complexity of the processes involved, a traditional model,

where the removal of angular momentum loss by magnetic fields is prescribed, has

provided a useful framework to understand observational relations between stellar ro-

tation and age and magnetic field strength. Here, for the first time, a spindown model is

proposed where loss of angular momentum by magnetic fields is evolved dynamically,

instead of being kinematically prescribed. To this end, we evolve the stellar rotation

and magnetic field simultaneously over stellar evolution time by extending our previ-

ous work on a dynamo model which incorporates the nonlinear feedback mechanisms

on rotation and magnetic fields. We show that our extended model reproduces key

observations and is capable of explaining the presence of the two branches of (fast and

slow rotating) stars which have different relations between rotation rate Ω vs. time

(age), magnetic field strength |B| vs. rotation rate, and frequency of magnetic field

ωcyc vs. rotation rate. For fast rotating stars we find: (i) there is an exponential spin-

down Ω ∝ e−1.35t, with t measured in Gyrs, (ii) magnetic activity saturates for higher

rotation rate, (iii) ωcyc ∝ Ω
0.83. For slow rotating stars we obtain: (i) a power law

spindown Ω ∝ t−0.52, (ii) magnetic activity scales roughly linearly with rotation rate,

(iii) ωcyc ∝ Ω
1.16. The results obtained from our investigations are in good agreement

with observations. The Vaughan-Preston gap is consistently explained in our model

by the shortest spindown timescale in this transition from fast to slow rotators. Our

results highlight the importance of self-regulation of magnetic fields and rotation by

direct and indirect interactions involving nonlinear feedback in stellar evolution.

Subject headings: Magnetic activity, Differential rotation, Stars, Dynamo

1School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, United Kingdom

2Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

ar
X

iv
:1

60
5.

07
12

5v
2 

 [
as

tr
o-

ph
.S

R
] 

 1
8 

Se
p 

20
16



1. Introduction

Spindown of stars is one of the most debated and interesting issues in astrophysics. Stellar

rotation rate is the key parameter which is believed to affect the spindown process. Spindown

is not only influenced by stellar properties such as mass, radius and age, but also depends upon

the evolution of stellar magnetic fields and their interaction with the stellar atmosphere (Scholz,

2008). Since their formation from interstellar clouds, which involves various internal changes,

stars undergo rotational evolution in different stages (Keppens et al. 1995, Tassoul 2000), briefly

summarized in the following. During early pre-main sequence evolution, the contraction that oc-

curs in the star along with other various internal structural changes lead it to spin-up. Also, owing

to diverse internal changes a radiative core develops which rotates faster than the convective en-

velope. Coupling between radiative core and convective envelope should be strong enough for the

angular momentum to be constantly transferred from core to envelope. This persistent supply of

angular momentum from core to envelope reduces the amount of differential rotation produced in

the star. By the time the star reaches late pre-main sequence or early main sequence, rotational

evolution is modified by the stellar wind. Angular momentum loss via stellar wind gradually de-

celerates and stops the spin-up of convective envelope towards the end of late pre-main sequence

phase and causes a fast spindown of convective envelope on the main sequence. Timescale at

which decoupling of core and envelope occurs is observed to be very rapid (Keppens et al. 1995).

With increasing rotation, timescale for angular momentum loss through stellar wind decreases and

affects the magnetic field strength. Consequently, for rapidly rotating stars, the magnetic field

strength does not increase beyond a critical value at a certain rotation rate and instead becomes

independent of rotation no matter how fast the star is rotating. When convection zone spins down

towards the end of pre-main sequence, magnetic field strength is believed to scale linearly with

rotation rate in case of slow rotating stars.

Based upon the whole spindown process stars are often classified into two groups: fast and

slow rotating (Saar & Brandenburg 1998, Brandenburg et al. 1999, Barnes 2003, Pizzolato et al.

2003, Mamajek & Hillenbrand 2008, Wright et al. 2011, Vidotto et al. 2014). The existence of

two branches of stars, exhibiting different dependence of cyclic variation of stellar magnetic ac-

tivity known as cycle period Pcyc on rotation period Prot, was confirmed by Saar and Brandenburg

(1998) and later by Brandenburg et al. (1999). We note that a relationship between cycle period

and rotation period was first established by Noyes et al. (1984) as Pcyc ∝ Pn
rot with n = 1.25 ± 0.5.

Brandenburg et al. showed all young, active and fast rotating stars lie on one branch namely ac-

tive branch (A) with scaling exponent n = 0.80, while all old, inactive and slow rotating stars lie

on other branch namely inactive branch (I) with scaling exponent n = 1.15 (Saar & Brandenburg

2001, Charbonneau & Saar 2001). Furthermore, stars on A branch experience rapid spindown for

which rotation rate Ω is related to time/age with an exponential law given as Ω ∝ emt, where m is
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a negative constant, and in this case magnetic activity is found to be saturated, that is, magnetic

activity becomes independent of rotation rate for rapidly rotating stars. Stars on I branch undergo

a very slow spindown with a power law dependence as Ω ∝ t−1/2, known as power law spindown

(Skumanich 1972), and in this case magnetic activity is thought to scale linearly with rotation

rate. The relationship between magnetic activity and rotation rate is important to understanding

the physical process responsible for spindown of a star and was first determined by Pallavicini et

al. (1981), while Micela et al. (1985) observed that this relationship does not hold for rapidly ro-

tating stars. We note that the regime where magnetic activity increases linearly with rotation rate is

termed as ‘unsaturated (non-saturated) regime’ while the regime where magnetic activity becomes

independent of rotation rate is termed as ‘saturated regime’ in observational studies (e.g. Pizzolato

et al. 2003, Mamajek & Hillenbrand 2008, Wright et al. 2011, Vidotto et al. 2014).

One of the challenging problems in explaining spindown is the existence of a gap between the

two branches of stars. During the spindown, the star suddenly jumps from A to I branch, creating

a gap between the two branches where stars are sparsely populated. This gap was first observed

by Vaughan and Preston (1980) and is now known as the V-P gap. Various mechanisms have so

far been proposed for this gap, but the underlying physics is still an open question. Some of the

previous suggestions are as follows. Durney et al. (1981) advocated a change in magnetic field

morphology from complex to simple at the time when rotation decreases to a certain value. Saar

(2002) proposed that the existence of two distinct branches of stars could be due to the changes in

differential rotation, α-effect and meridional flow speed (which is proportional to Ω in case of flux

transport models, e.g. see Dikpati & Charbonneau 1999) with stellar rotation rate. Barnes (2003)

studied period-color-diagrams of open clusters and mentioned that the transition from convective

(fast rotators) to interface sequence (slow rotators) is due to the shear produced during decoupling

of core and envelope. This shear gives rise to large-scale magnetic fields, and recoupling of the

core and convection zone shifts the star from convective sequence to interface sequence. Structural

changes in large-scale magnetic fields (Donati et al. 2006), change in dynamo action (Böhm-

Vitense 2007) and manifestation of different dynamos for different stars (Wright et al. 2011) were

also proposed as possible reasons for the V-P gap.

Given the complexity of the spindown problem, which depends upon various parameters such

as rotation rate, evolution of magnetic fields and differential rotation, it is not possible to study a

full magnetohydrodynamic model over the entire spindown timescales (e.g. from 107 − 109 yrs).

Therefore, various simplified models have been utilized to understand stellar evolution (e.g. We-

ber & Davis 1967, Mestel 1968, Mestel & Spruit 1987, Kawaler 1988, Matt et al 2012, Matt et

al 2015, Johnson et al 2015, Cranmer & Saar 2011, Cohen et al 2009, Garraffo et al 2015). One

such model is double zone model (DZM) which is based upon the stellar wind torque law (We-

ber & Davis 1967; Mestel 1968; Belcher & MacGregor 1976; Kawaler 1988). The main feature
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of this model is the bifurcated expression considered for the torque acting on the star (depending

on the critical rotation rate) due to its magnetised stellar wind. MacGregor and Brenner (1991)

used this DZM model for coupled (ordinary differential) equations for the rotation rates of the

stellar envelope and radiative core, where the angular momentum loss is prescribed according to

the relation between rotation and magnetic field strength. To understand the distribution of stellar

rotation at different ages, Keppens et al. (1995) extended this parameterized model to describe the

evolution of a single star by taking into account angular momentum exchange, moment of iner-

tia evolution and torque exerted on core and envelope due to which angular momentum changes.

Since then, this model was extended by considering different initial conditions and tested against

various observations in the spindown process (Krishnamurthi et al. 1997; Irwin & Bouvier 2009;

Denissenkov et al. 2010; Kim & Leprovost 2010; Epstein & Pinsonneault 2014; Reiners & Mo-

hanty 2012; Spada et al. 2011; Gallet & Bouvier 2013). Apart from DZM there are other models

such as symmetrical empirical model (SEM) (Barnes 2010; Barnes & Kim 2010) and metastable

dynamo model (MDM) (Brown 2014). Both SEM and MDM utilise observational data of two

different sequences of stars to fine-tune their models and thus are descriptive rather than explana-

tory models. Specifically, SEM uses different period-evolution of the two sequences (for active

and inactive stars) depending on whether the rotation rate is above/below the critical value and fits

the parameters from period-color diagrams by obtaining a best fit to the observational data. Un-

like SEM, MDM uses one function for all rotation rates but two different coupling constants. By

fine-tuning the values of these two coupling constants and the probability for the transition from

small to large couplings, MDM improves the agreement with observations over SEM. Although

it is yet empirical, MDM is remarkable in introducing into a spin-down model a threshold-like

behaviour with different coupling constants and their probabilistic nature. Possible mechanisms

for these different coupling constants was later provided, e.g. by evoking the change in magnetic

complexity (Reville et al 2015, Garraffo et al 2015). Recently, Matt et al. (2015) proposed a stellar

wind torque model (SWTM) which reproduces the shape of upper envelope and lower envelope

that corresponds to the transition region between saturated and unsaturated regimes by explaining

the mass-dependence of stellar magnetic and wind properties.

In this paper, we for the first time propose a dynamical model of spindown where the loss

of angular momentum by magnetic field is dynamically treated, instead of being kinematically

prescribed. To this end, we evolve the stellar rotation and magnetic field simultaneously over the

stellar evolution time by extending our previous work (Sood & Kim 2013, 2014) which incor-

porates the nonlinear feedback mechanisms on rotation and magnetic fields via α-quenching and

magnetic flux losses as well as mean and fluctuating rotation. We note that Sood & Kim (2013,

2014) have demonstrated that nonlinear feedback plays a vital role in the generation and destruc-

tion of magnetic fields as well as self-regulation of the dynamo. In particular, it was found that a

dynamic balance is required not only in the generation and destruction of magnetic fields, but also
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in the fluctuating and mean differential rotation for the working of dynamo near marginal stability;

their results were consistent with observations such as linear increase in cycle frequency of mag-

netic field with moderate rotation rates, levelling off of magnetic field strength with sufficiently

large rotation rates, and quenching of shear. We extend this model to simultaneously evolve ro-

tation and magnetic fields over the spindown timescale of a star, since their dynamics are closely

linked through angular momentum loss and dynamo. That is, the angular momentum loss respon-

sible for the spindown of a star depends upon magnetic fields while magnetic fields are affected

by rotation rates. We show that this model has the capability of explaining the existence of the

two branches of stars, different rotation rate dependence of cycle frequency of magnetic fields for

these two branches, and the gap between the two branches, reproducing the main observations. By

extending our previous work, our model is designed in such a way that it has essential ingredients

mentioned above to explain the complex process of spindown of solar-type stars and highlight the

importance of nonlinear feedback in this process.

2. Model

We propose a dynamical model for the evolution of rotation rate and magnetic field in spin-

down by extending a previous nonlinear dynamo model (Sood & Kim, 2013, 2014; Weiss et al.

1984). In particular, Sood & Kim (2013, 2014) incorporated various nonlinear transport coeffi-

cients such as α-quenching and flux losses and took the control parameter D known as the dynamo

number to scale with rotation rate as D ∝ Ω2. The model equations in dimensionless form are

given as

Ȧ =
2DB

1 + κ(|B|2)
− [1 + λ1(|B|2)]A, (1)

Ḃ = i(1 + w0)A −
1

2
iA∗w − [1 + λ2(|B|2)]B, (2)

ẇ0 =
1

2
i(A∗B − AB∗) − ν0w0. (3)

ẇ = −iAB − νw. (4)

Here, poloidal magnetic field is represented by A, toroidal magnetic field is given by B, w0 is the

mean differential rotation, and w is the fluctuating differential rotation; A, B and w are complex

variables whereas w0 is real. We note that w0 and w have zero and twice the frequency of A and B,

respectively. The complex conjugates of A and B are denoted by A∗ and B∗, respectively. In this

model, poloidal magnetic field A is generated by toroidal magnetic field B (e.g. α-effect through

helicity) which is assumed to be proportional to rotation rate Ω (see Eq. 1). Equation 2 represents

the generation of toroidal magnetic field B by poloidal magnetic field A, where the quenching of

Ω-effect is incorporated by total shear 1 + w0. The differential rotation is inhibited by the tension
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in the magnetic field lines via Lorentz force and causes the quenching of Ω-effect. Due to back-

reaction, the total shear is reduced from 1 to 1 + w0 < 1 as w0 is always negative and is given by

1 + w0 = ∆Ω/Ω. Generation of mean differential rotation w0 and fluctuating differential rotation

w is represented by Eq. 3 and Eq. 4, respectively. ν0 and ν represent viscosity of mean differen-

tial rotation and fluctuating differential rotation, respectively; κ, λ1 and λ2 are constant parameters

which represent the strength of nonlinear feedback due to the Lorentz force by magnetic field and

enhanced magnetic dissipation (e.g. magnetic flux loss). In particular, κ represents the efficiency

of the quenching of α-effect while λ1 and λ2 represent the efficiency in the poloidal and toroidal

magnetic flux losses, respectively (see Sood & Kim 2013 for full details).

To understand the evolution of rotation rate and magnetic field in spindown of solar-type stars,

we extend this model by upgrading Ω from a kinematically prescribed to a dynamic variable. To

this end, we first replace D by the square of time dependent rotation rate Ω(t) in Eq. 1:

Ȧ =
2Ω2B

1 + κ(|B|2)
− [1 + λ1(|B|2)]A, (5)

where Ω is real. Second, we need to include the additional equation for the evolution of Ω(t) to

model the spindown of a star by the loss of angular momentum due to magnetic fields. While the

latter depends on many factors such as the mass flux and geometry and complexity of magnetic

fields (e.g. Garraffo et al 2016) such as the Alfven radius over which it acts as a rotational brake and

the latitude at which the mass release happen, for simplicity, we incorporate their overall effects in

our dynamical model by the ansatz that a decay rate ofΩ is proportional to the strength of magnetic

fields as ε1|B|
2 + ε2

|A|2

Ω
with the two tunable parameters ǫ1 and ǫ2. Here, |B| represents the strength

of toroidal magnetic field and |A|
Ω

is the strength of poloidal magnetic field in physical units due to

our non-dimensionalisation (see Sood & Kim 2013). Our empirical model is thus described by the

following equation for Ω:

Ω̇ = −ε1|B|
2Ω − ε2

|A|2

Ω2
Ω. (6)

Eq. 6 represents the overall spindown of the star as a whole due to the loss of angular momentum

through magnetic fields. Constant parameters ε1 and ε2 represent the efficiency of angular momen-

tum loss via toroidal and poloidal magnetic fields, respectively, which are taken to be independent

in general, given the uncertainty in precise role of poloidal and toroidal magnetic fields in spin-

down. Eq. 6 is motivated to capture the key feature of the previous model (e.g. DZM) where the

dependence of the angular momentum loss on Ω is roughly proportional to Ω3 for slowly rotating

stars (below the critical rotation rate) to Ω for fast rotating stars (above the critical rotation rate),

respectively. Specifically, for fast rotating stars with the rotation rate above the critical value, |B|

and |A| become independent of Ω, Eq. 6 reducing to Ω̇ ∝ −Ω, resulting in the exponential decay

of Ω in time. On the other hand, for slow rotating stars, Ω̇ ∼ −Ω3 would be reproduced should
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magnetic field increase linearly with Ω as |B|, |A| ∼ Ω (see §3.2 for the scaling relation). To

summarize, our extended model consists of Eqs. 2-4 and 5-6, where Eqs. 2-4 are the same as in

our previous model, Eq. 5 is the modified form of Eq. 1, and Eq. 6 is a new equation to model the

time-evolution of Ω.

This system is investigated taking ν = 0.5, ν0 = 35.0, κ = 0.025, λ1,2 = 1.125 and ε1,2 =

3.5 · 10−5. The parameters ν, ν0, κ and λ1,2 are much the same as in our previous work (Sood &

Kim 2013, 2014). As can be seen from Eq. 6, the two new parameters ε1,2 control the rate of

the spindown process. The value 3.5 · 10−5 was chosen as it yields an overall spindown timescale

of several Gyrs; larger (smaller) values of ε1,2 were also investigated, and yielded qualitatively

the same dynamics, simply occurring on shorter (longer) timescales. In particular, we have

checked that qualitatively similar results are obtained in the limiting cases where ǫ1 = 0 or ǫ2 = 0.

Correspondingly, the dimensionless time scales such that the largely completed spindown process

translates to the present-day age of the Sun of 4.5 Gyrs.

To model the spindown process, we take the initial value ofΩ to be 30, corresponding to thirty

times the present-day solar rotation, which isΩ = 1 in our non-dimensionalisation. An initial value

of Ω = 30 is intended to model the rotation rate of young stars at an age of around ∼ 107 years.

In contrast to Ω, which can only decrease monotonically according to Eq. 6, the initial conditions

of the other four variables are not important, as they can increase as well as decrease, and turn

out to settle in to statistically stationary states on comparatively rapid timescales; that is, transients

depending on initial conditions of these quantities quickly vanish, and the subsequent evolution

depends only on the initial value chosen for Ω. Finally, note that because Ω is monotonically

decreasing in time, we can effectively invert the relationship Ω(t) as t(Ω), and therefore consider

all the other variables as functions of Ω rather than t.

3. Results

3.1. Ω versus age relationship

Fig. 1 shows the relationship between Ω and t. A sharp decrease in Ω can be seen for earlier

times, which slows down as age starts increasing. In the left panel of Fig. 2 we fit this curve

using an exponential law, that is, Ω ∝ emt. The best fit, for stars with rotation periods in the range

1 ≤ Prot ≤ 3, has m = −1.35, corresponding to an e-folding time of 0.74 Gyrs. In the right panel

of Fig. 2 we fit this curve using power laws, that is, Ω ∝ tn. For larger times we get power law

scalings which vary gradually for different rotation rates, that is, n becomes smaller for smaller

rotation as observed in MacGregor and Brenner (1991). For larger age (slower rotation rates), the

power law exponent n is found to be around −0.52 for stars with rotation periods in the range
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23 ≤ Prot < 25.65. For different rotation rates we summarise the scalings in Table 1.

0.03 0.5 1 1.5 2 2.5 3 3.5 4 4.5
1
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Age (Gyrs)
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3
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1.5
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1

P
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t (
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)

0.065155 0.065165 0.065175 0.065185

26.986

26.987

26.988

Age (Gyrs)
Ω

1.11168

1.11164

1.11160

P
ro

t (
da

ys
)

Fig. 1.— The left panel shows Ω as a function of age over the full range [0.03, 4.53] Gyrs. As

noted in section 3, we scale our dimensionless time in physical units by the age of the present-day

Sun of 4.5 Gyrs, while our dimensionless rotation, represented on the vertical axis, is scaled with

thirty times solar rotation to obtain rotation period (Prot) in days, which is depicted on the right

side of the y-axis. The right panel shows a zoomed-in view for age =[0.065155, 0.065185] Gyrs,

and reveals the presence of fluctuations superimposed on the general spindown trend.

Table 1: Power law exponent n for stars with different rotation period in days

n Ω Prot(days)

-1.38 Ω ∈ [3.5, 1.99] 8.57- 15

-0.97 Ω ∈ [1.99, 1.50] 15 - 20

-0.70 Ω ∈ [1.50, 1.28] 20 - 23.34

-0.52 Ω ∈ [1.28, 1.17] 23.34 - 25.65

3.2. |B| versus Ω relationship

Magnetic field strength |B| is shown as a function of rotation rate in Fig. 3 (Left panel). The

unit of B is normalized by the strength of magnetic field in the present-day sun, which is roughly
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Fig. 2.— Left panel shows exponential spindown with Ω ∝ exp−1.35t for ages ∈ [0.03, 0.7325]

Gyrs depicted in red while the blue color represents the trend in semi-logarithmic scale for age

∈ [0.03, 4.53] Gyrs. Right panel shows the power law spindown, Ω ∝ tn, with scaling exponent

−0.52 for solar-type stars. A gradual decrease in |n| suggests a drop in the efficiency of angular

momentum loss, which seems to align with the suggestion for the reduction in the efficiency of

magnetic braking from recent observations from the Kepler space telescope (e.g. Garraffo et al.

2016).

of order 104 Gauss in the solar tachocline and 3 Gauss in the atmosphere. Fig. 3 exhibits notably

different behaviour of |B| in two different rotation rate regimes. For slow rotation rates, we can

clearly see the increasing behavior of |B| with rotation rate which attains a maximum value at

Ω ≈ 5.8. For Ω ∈ [1.17, 5], the scaling of |B| with respect to Ω is found to vary between 2.73

to 0.36. We observe an average scaling of 1.47 for Ω ∈ [1.25, 2] which is close to the observed

scaling of 1.38 ± 0.14 (Vidotto et al 2014). We note that |A| also scales with Ω similarly to |B|.

Interestingly, there is a decrease in |B| which continues up to Ω ≃ 12.5. For Ω ≥ 12.5, that is, for

very high rotation rates, |B| fluctuates on a very rapid timescale, but with a cycle-averaged value,

depicted in red, that is essentially independent of Ω. The rapid fluctuations in |B| are due to the

presence of two modes with different frequencies. The fluctuating behavior of |B| with Ω can be

seen in Fig. 3 (Right panel) for a small cut ofΩ ∈ [23.30, 23.31]. Note how the system spends more

time near the top as opposed to the bottom, which explains why the cycle-averaged value of |B|

(the red curve in the left panel) is higher than the simple average of the cycle maxima and minima

(the highs and lows of the blue curves). (Observationally this would suggest that stars might be

more likely to be observed close to a peak of magnetic activity rather than a trough.) Furthermore,

we notice a gap between the two different rotation rate regimes in the region Ω ∈ [5.8, 12.5].
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Fig. 3.— Magnetic field strength |B| is shown as a function ofΩ (Left panel) with the cycle-average

of |B| depicted in red. We note that the value of |B| ≈ 0.1 at Ω = 1 corresponds to about 3 G at the

star’s surface, whereas the rotation period (Prot) in days is depicted on the top of the plot. Also,

fluctuating behavior |B| for high rotation rate regime is shown for Ω ∈ [23.30, 23.31] (Right panel).

3.3. Power spectra of B and ωcyc versus Ω relationship

To understand how the rapid cycles in |B| gradually evolve as Ω spins down, we divided

the entire time series into discrete chunks of 0.0106 Gyrs, and performed a Fourier transform on

each chunk separately. The precise length of the individual sections is not important, the only

requirements being that it should be long compared with the fast cycle time, but short compared

with the gradual spindown evolution time. Fig. 4 shows Fourier spectra for 8 such sections. It is

notable that at earlier times shown in the first and second rows, there are main two peaks around

ω ∼ 10 in the spectra, whereas at later times only one in the third and fourth rows, with the peaks

furthermore shifting to lower frequencies. In particular, in the second and third rows, where time

increases from age 0.1460 Gyrs to 0.2831 Gyrs, we find that peaks shifting gradually towards

lower frequency as time increases. This behavior continues until we reach time approximately age

0.3253 Gyrs beyond which the multiple peaks of frequency are found to diminish. This behavior

of frequency can be seen in panel 7 of Fig. 4 for time ≈ [0.3148, 0.3253] Gyrs while for time ≈

[0.3569, 0.3675] Gyrs we find only a single peak of frequency (see Fig. 4 panel 8). The behavior

of power spectra of |B| clearly shows that the second peak of frequency vanishes as time increases,
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that is, as the rotation rate decreases. We note that in addition to the main two peaks at ω ∼ 10

or ω < 10 that we discussed above, one or two more peaks are also observed at higher frequency

ω ∼ 20 in the first and second rows. These high frequency modes have much weaker power than

the main peaks and are simply their subharmonics. In the following, we do not discuss these modes

and only focus on the behaviour of the main peaks (e.g. the higher frequency modes are not shown

in Fig. 5).

The gradual transitions in the spectra of |B| are further illustrated in Fig. 5, showing so-

called short-time Fourier transforms (STFT). In this technique the signal is again divided into

short chunks, but these now overlap, essentially forming a moving window, and hence giving an

overview of the continuous evolution of frequencies and amplitudes. Using this method, the most

pronounced frequency of |B| is obtained in Fig. 5 (Left panel) where high to low intensity of

frequency is illustrated via bright red to dark blue colors as shown in color map. For early time

t < 0.3253Gyrs, we observe two curves of frequency of maximum intensity ωcyc (depicted in red)

with age in Gyrs. Lower curve has larger amplitude of frequency than the upper curve. The ex-

istence of these two curves is the manifestation of complex time behaviour of fast rotators and is

reminiscent of the complexity of magnetic topology for active branch stars, discussed in recent

papers (e.g. Matt et al 2015). Both upper and lower curves show that the frequency of maximum

intensity decreases with age rapidly until t ∼ 0.3253Gyrs when the upper curve disappears while

the lower curve exhibits the change in the behaviour. This single curve for t > 0.3253Gyrs is

interpreted as inactive branch.

In order to investigate further, we examine the scaling of ωcyc by showing the behavior of

frequency of maximum intensity ωcyc against rotation rate Ω in the right panel in Fig. 5. Again,

we notice that for high rotation rate we have two curves of frequency for maximum intensity,

whereas for slow rotation rate we have only one single curve. We use power law relationship, that

is, ωcyc ∝ Ω
p with a power-law index p to obtain the scaling. For the upper curve, we find the value

of p ∼ 0.83 for stars with rotation rate 12.8 ≤ Ω ≤ 30. On the other hand, scaling exponent p of

the lower curve varies with rotation rate, as shown in Table 2. Interestingly, for fast rotator with

Ω > 12, an average value of p ∼ 0.9, which is close to the observational value for active branch

stars (Saar & Brandenburg 2001); for slow rotators, solar-like stars with rotation rate in the range

[1.17, 3.5] has p ∼ 1.16, in good agreement with observed scaling exponent for solar-type stars

lying on inactive branch (Saar & Brandenburg 2001).
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Fig. 4.— Power spectra of |B| for 8 distinct intervals in time, indicated by the numbers at the top

of each panel.
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Fig. 5.— Behavior of frequency of maximum intensity ωcyc, as a function of age in Gyrs and

rotation rate can be seen in left panel and right panel, respectively. Here, bright red to dark blue

colors represent high to low intensity of frequency.

Table 2: Power law exponent p for the lower curve in ωcyc ∝ Ω
p at different rotation periods.

p Ω Prot(days)

1.16 Ω ∈ [1.17, 3.5] 25.65 -8.7

0.98 Ω ∈ [3.5, 6] 8.7 - 5

0.80 Ω ∈ [6, 13] 5 - 2.30

1.06 Ω ∈ [16, 30] 1.88 - 1

3.4. Total shear versus Ω relationship

In our dimensionless units, the total shear is given by 1 + w0. Fig. 6 shows how this total

shear changes with rotation rate Ω. As Ω increases from Ω = 1, the total shear is seen to decrease

by 90% from 1 to 0.1 with increasing Ω. This reduction in total shear results from the effect of

magnetic back-reaction on the shear. The saturation of the total shear for high rotation indicates

that the dynamo efficiency is not saturated beyond certain rotation rate. After taking the minimum

value around Ω = 12.5, the total shear increases with Ω in a small interval Ω ∈ [12.5, 17] and then

remains almost constant for high rotation rate Ω ≥ 17. It is important to note that the apparently

broad band of the total shear for Ω ≥ 12.5 in Fig. 5 is due to the two different modes with
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different frequencies existing in this interval. The inset in Fig. 6 shows the total shear for a small

range of Ω ∈ [29.82, 29.84] to highlight the fluctuation in total shear due to two modes. Finally,

Ω = 12.5, where the total shear takes its minimum value is related to very rapid transition in

rotational evolution and is related to the V-P gap discussed later.
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Fig. 6.— Total shear 1 + w0 as a function of rotation rate Ω.

3.5. |B| versus Age Relationship

In Fig. 7 magnetic field strength is shown as a function of age. The magnetic field strength

|B| is observed to maintain almost the same mean value fluctuating with finite amplitude for very

young fast rotating stars of age up to 325 Myrs. This fluctuation is due to the presence of two

different modes as discussed later. The magnetic activity is seen to increase with age in the range

∈ [325, 502] Myrs as |B| ∼ ts with a power law exponent s = 0.53 after which the magnetic activity

remains almost constant in the age interval ∈ [508, 551] Myrs. Beyond this value the magnetic

activity decreases very rapidly with increasing age. We find that power law exponent s varies with

different values for stars with different ages and are provided in Table 3. Finally, we note that our

results suggest that the fraction of poloidal vs toroidal flux fluctuate for fast rotators, consistent
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with complex magnetic topology (e.g. Matt et al 2015), while it takes a constant value for slow

rotators. The mean value of this ratio does not change significantly over time.
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Fig. 7.— Magnetic field strength |B| as a function of age.

Table 3: Power law exponent s for magnetic activity with age t of stars ∈ [1.066, 4.5] Gyrs

s Age (Gyrs)

-0.61 t ∈ [0.5929, 0.7336]

-0.97 t ∈ [0.7336, 1.085]

-1.13 t ∈ [1.085, 1, 437]

-1.25 t ∈ [1.437, 1.788]

-1.40 t ∈ [1.788, 2.139]

-1.64 t ∈ [2.139, 2.843]

-2.00 t ∈ [2.843, 3.54]

-2.50 t ∈ [3.54, 4.5]
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Fig. 8.— Left panel shows the spindown timescale τ as a function of age in Gyrs in linear scale

while right panel shows τ as a function of age in years in log-scale. The oscillations in τ are caused

by the fluctuations in Ω̇ previously seen in Fig. 1 (Right panel).

3.6. Timescale for spindown

In order to quantify the timescale of spindown, we compute the characteristic spindown time

τ = |Ω/Ω̇| by using Eq. 6 as we evolve the system, and then show the suitable averaged value in

Fig. 8 using linear and log scales. The inset in Fig. 8 (left panel) shows the zoomed in view of

τ for very fast rotating stars. Here, red depicts the mean value1 of timescale over time. Clearly,

we observe a spindown timescale of 15.96 Myrs for very young rapidly rotating stars of ages from

30 Myrs which decreases very slowly up to age 315 Myrs. Beyond this, the spindown timescale

is observed to decrease rapidly with increasing age for a short interval [315, 493.9] Myrs. This

decline in spindown time reaches a minimum of approximately 122 Myrs for age 493.9 Myrs.

After this, the spindown timescale starts increasing with age of the stars. Specifically, the spindown

timescale increases linearly for solar-type stars with ages approximately 4.5 Gyrs. The shortest

spindown timescale is obtained in the region [315, 632] Myrs (Ω ∈ [5.8, 12.5]) noted previously,

and interestingly corresponds to the V-P gap, the transition region between fast and slow rotators.

That is, this is the region where the star suddenly jumps from active to inactive branch staying in

this intermediate region for a short time only due to the fast spindown. To summarise, our results

show that spindown time for fast rotating stars in that region is shorter than the spindown time

for slow rotating stars while the spindown timescale for stars in the transition region is even much

1This mean value is obtained over the 1
420

fraction of the interval.

16



shorter than the spindown timescale for fast rotating stars. These results are in good agreement

with observations for spindown timescale (Barnes, 2003).

3.7. Summary of results

Our dynamical model of spindown coupled to the evolution of magnetic fields successfully

reproduced: (i) the basic Ω versus age relationship, (ii) the relationships of |B|, ωcyc and total shear

1 + w0 versus Ω, and (iii) magnetic activity and spindown timescales with age. All three items are

consistent with observations for the spindown process for fast and slow rotating stars, and provide

a natural explanation for the V-P gap associated with the abrupt transition of stars from active (A)

to inactive (I) branches, which is an important unresolved issue.

4. Conclusions

The evolution of magnetic fields and rotation rate is a self-regulated process through the di-

rect interaction between large-scale shear flow and magnetic field and the indirect interaction by

various (nonlinear) feedback mechanisms through small-scale fields. In particular, the generation

of magnetic field and spindown are closely inter-linked processes since the generation of magnetic

field depends on rotation of stars and thus spindown while spindown process crucially depends

upon the magnetic field (e.g. generation, destruction) and differential rotation. In this paper, we

have proposed a dynamical model of spindown to understand self-regulation of magnetic fields

and rotation over the spindown time scale, which for the first time evolves magnetic field and rota-

tion rate at the same time taking into account various mutual interactions. Despite being a simple

parameterized model our model successfully reproduces the observations for spindown of stars

which would otherwise be impossible in a more complete model (e.g. 3D MHD). In particular, we

have found exponential spindown, saturation of magnetic field strength and power law dependence

of frequency of magnetic fields of active and inactive branches for rapidly rotating stars. For slow

rotators, we obtained power law spindown, linear scaling of magnetic field strength and power law

relationship of ωcyc on Ω with power law scaling for inactive branch. The transition from fast to

slow rotating stars is quantitatively shown to occur very rapidly, thereby providing a natural expla-

nation for the V-P gap. In future, interesting extension of our model would include the coupling

of our models to the evolution of mass-loss (e.g. Garraffo 2015) and detailed modelling of slow

rotating stars (Saders et al 2016) and transient Sun (Metcalfe 2016).
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